qlge_main.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int irq_type = MSIX_IRQ;
  67. module_param(irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  70. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  194. if (status)
  195. return status;
  196. status = ql_wait_cfg(qdev, bit);
  197. if (status) {
  198. QPRINTK(qdev, IFUP, ERR,
  199. "Timed out waiting for CFG to come ready.\n");
  200. goto exit;
  201. }
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. mask = CFG_Q_MASK | (bit << 16);
  205. value = bit | (q_id << CFG_Q_SHIFT);
  206. ql_write32(qdev, CFG, (mask | value));
  207. /*
  208. * Wait for the bit to clear after signaling hw.
  209. */
  210. status = ql_wait_cfg(qdev, bit);
  211. exit:
  212. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. {
  293. u32 upper = (addr[0] << 8) | addr[1];
  294. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  295. (addr[4] << 8) | (addr[5]);
  296. status =
  297. ql_wait_reg_rdy(qdev,
  298. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  299. if (status)
  300. goto exit;
  301. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  302. (index << MAC_ADDR_IDX_SHIFT) |
  303. type | MAC_ADDR_E);
  304. ql_write32(qdev, MAC_ADDR_DATA, lower);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  311. (index << MAC_ADDR_IDX_SHIFT) |
  312. type | MAC_ADDR_E);
  313. ql_write32(qdev, MAC_ADDR_DATA, upper);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. break;
  320. }
  321. case MAC_ADDR_TYPE_CAM_MAC:
  322. {
  323. u32 cam_output;
  324. u32 upper = (addr[0] << 8) | addr[1];
  325. u32 lower =
  326. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  327. (addr[5]);
  328. QPRINTK(qdev, IFUP, DEBUG,
  329. "Adding %s address %pM"
  330. " at index %d in the CAM.\n",
  331. ((type ==
  332. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  333. "UNICAST"), addr, index);
  334. status =
  335. ql_wait_reg_rdy(qdev,
  336. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  337. if (status)
  338. goto exit;
  339. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  340. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  341. type); /* type */
  342. ql_write32(qdev, MAC_ADDR_DATA, lower);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, upper);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. /* This field should also include the queue id
  361. and possibly the function id. Right now we hardcode
  362. the route field to NIC core.
  363. */
  364. cam_output = (CAM_OUT_ROUTE_NIC |
  365. (qdev->
  366. func << CAM_OUT_FUNC_SHIFT) |
  367. (0 << CAM_OUT_CQ_ID_SHIFT));
  368. if (qdev->vlgrp)
  369. cam_output |= CAM_OUT_RV;
  370. /* route to NIC core */
  371. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  372. break;
  373. }
  374. case MAC_ADDR_TYPE_VLAN:
  375. {
  376. u32 enable_bit = *((u32 *) &addr[0]);
  377. /* For VLAN, the addr actually holds a bit that
  378. * either enables or disables the vlan id we are
  379. * addressing. It's either MAC_ADDR_E on or off.
  380. * That's bit-27 we're talking about.
  381. */
  382. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  383. (enable_bit ? "Adding" : "Removing"),
  384. index, (enable_bit ? "to" : "from"));
  385. status =
  386. ql_wait_reg_rdy(qdev,
  387. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  391. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  392. type | /* type */
  393. enable_bit); /* enable/disable */
  394. break;
  395. }
  396. case MAC_ADDR_TYPE_MULTI_FLTR:
  397. default:
  398. QPRINTK(qdev, IFUP, CRIT,
  399. "Address type %d not yet supported.\n", type);
  400. status = -EPERM;
  401. }
  402. exit:
  403. return status;
  404. }
  405. /* Set or clear MAC address in hardware. We sometimes
  406. * have to clear it to prevent wrong frame routing
  407. * especially in a bonding environment.
  408. */
  409. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  410. {
  411. int status;
  412. char zero_mac_addr[ETH_ALEN];
  413. char *addr;
  414. if (set) {
  415. addr = &qdev->ndev->dev_addr[0];
  416. QPRINTK(qdev, IFUP, DEBUG,
  417. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  418. addr[0], addr[1], addr[2], addr[3],
  419. addr[4], addr[5]);
  420. } else {
  421. memset(zero_mac_addr, 0, ETH_ALEN);
  422. addr = &zero_mac_addr[0];
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "Clearing MAC address on %s\n",
  425. qdev->ndev->name);
  426. }
  427. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  428. if (status)
  429. return status;
  430. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  431. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  432. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  433. if (status)
  434. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  435. "address.\n");
  436. return status;
  437. }
  438. void ql_link_on(struct ql_adapter *qdev)
  439. {
  440. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  441. qdev->ndev->name);
  442. netif_carrier_on(qdev->ndev);
  443. ql_set_mac_addr(qdev, 1);
  444. }
  445. void ql_link_off(struct ql_adapter *qdev)
  446. {
  447. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  448. qdev->ndev->name);
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. QPRINTK(qdev, IFUP, DEBUG,
  481. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  482. (enable ? "Adding" : "Removing"),
  483. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  484. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  485. ((index ==
  486. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  487. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  488. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  489. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  490. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  491. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  492. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  493. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  494. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  495. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  496. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  497. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  498. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  499. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  500. (enable ? "to" : "from"));
  501. switch (mask) {
  502. case RT_IDX_CAM_HIT:
  503. {
  504. value = RT_IDX_DST_CAM_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  507. break;
  508. }
  509. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  510. {
  511. value = RT_IDX_DST_DFLT_Q | /* dest */
  512. RT_IDX_TYPE_NICQ | /* type */
  513. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  514. break;
  515. }
  516. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  517. {
  518. value = RT_IDX_DST_DFLT_Q | /* dest */
  519. RT_IDX_TYPE_NICQ | /* type */
  520. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  521. break;
  522. }
  523. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  524. {
  525. value = RT_IDX_DST_DFLT_Q | /* dest */
  526. RT_IDX_TYPE_NICQ | /* type */
  527. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  528. break;
  529. }
  530. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  531. {
  532. value = RT_IDX_DST_DFLT_Q | /* dest */
  533. RT_IDX_TYPE_NICQ | /* type */
  534. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  535. break;
  536. }
  537. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  538. {
  539. value = RT_IDX_DST_DFLT_Q | /* dest */
  540. RT_IDX_TYPE_NICQ | /* type */
  541. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  542. break;
  543. }
  544. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  545. {
  546. value = RT_IDX_DST_RSS | /* dest */
  547. RT_IDX_TYPE_NICQ | /* type */
  548. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  549. break;
  550. }
  551. case 0: /* Clear the E-bit on an entry. */
  552. {
  553. value = RT_IDX_DST_DFLT_Q | /* dest */
  554. RT_IDX_TYPE_NICQ | /* type */
  555. (index << RT_IDX_IDX_SHIFT);/* index */
  556. break;
  557. }
  558. default:
  559. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  560. mask);
  561. status = -EPERM;
  562. goto exit;
  563. }
  564. if (value) {
  565. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  566. if (status)
  567. goto exit;
  568. value |= (enable ? RT_IDX_E : 0);
  569. ql_write32(qdev, RT_IDX, value);
  570. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  571. }
  572. exit:
  573. return status;
  574. }
  575. static void ql_enable_interrupts(struct ql_adapter *qdev)
  576. {
  577. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  578. }
  579. static void ql_disable_interrupts(struct ql_adapter *qdev)
  580. {
  581. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  582. }
  583. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  584. * Otherwise, we may have multiple outstanding workers and don't want to
  585. * enable until the last one finishes. In this case, the irq_cnt gets
  586. * incremented everytime we queue a worker and decremented everytime
  587. * a worker finishes. Once it hits zero we enable the interrupt.
  588. */
  589. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  590. {
  591. u32 var = 0;
  592. unsigned long hw_flags = 0;
  593. struct intr_context *ctx = qdev->intr_context + intr;
  594. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  595. /* Always enable if we're MSIX multi interrupts and
  596. * it's not the default (zeroeth) interrupt.
  597. */
  598. ql_write32(qdev, INTR_EN,
  599. ctx->intr_en_mask);
  600. var = ql_read32(qdev, STS);
  601. return var;
  602. }
  603. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  604. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  605. ql_write32(qdev, INTR_EN,
  606. ctx->intr_en_mask);
  607. var = ql_read32(qdev, STS);
  608. }
  609. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  610. return var;
  611. }
  612. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  613. {
  614. u32 var = 0;
  615. struct intr_context *ctx;
  616. /* HW disables for us if we're MSIX multi interrupts and
  617. * it's not the default (zeroeth) interrupt.
  618. */
  619. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  620. return 0;
  621. ctx = qdev->intr_context + intr;
  622. spin_lock(&qdev->hw_lock);
  623. if (!atomic_read(&ctx->irq_cnt)) {
  624. ql_write32(qdev, INTR_EN,
  625. ctx->intr_dis_mask);
  626. var = ql_read32(qdev, STS);
  627. }
  628. atomic_inc(&ctx->irq_cnt);
  629. spin_unlock(&qdev->hw_lock);
  630. return var;
  631. }
  632. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  633. {
  634. int i;
  635. for (i = 0; i < qdev->intr_count; i++) {
  636. /* The enable call does a atomic_dec_and_test
  637. * and enables only if the result is zero.
  638. * So we precharge it here.
  639. */
  640. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  641. i == 0))
  642. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  643. ql_enable_completion_interrupt(qdev, i);
  644. }
  645. }
  646. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  647. {
  648. int status, i;
  649. u16 csum = 0;
  650. __le16 *flash = (__le16 *)&qdev->flash;
  651. status = strncmp((char *)&qdev->flash, str, 4);
  652. if (status) {
  653. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  654. return status;
  655. }
  656. for (i = 0; i < size; i++)
  657. csum += le16_to_cpu(*flash++);
  658. if (csum)
  659. QPRINTK(qdev, IFUP, ERR,
  660. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  661. return csum;
  662. }
  663. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  664. {
  665. int status = 0;
  666. /* wait for reg to come ready */
  667. status = ql_wait_reg_rdy(qdev,
  668. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  669. if (status)
  670. goto exit;
  671. /* set up for reg read */
  672. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  673. /* wait for reg to come ready */
  674. status = ql_wait_reg_rdy(qdev,
  675. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  676. if (status)
  677. goto exit;
  678. /* This data is stored on flash as an array of
  679. * __le32. Since ql_read32() returns cpu endian
  680. * we need to swap it back.
  681. */
  682. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  683. exit:
  684. return status;
  685. }
  686. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  687. {
  688. u32 i, size;
  689. int status;
  690. __le32 *p = (__le32 *)&qdev->flash;
  691. u32 offset;
  692. u8 mac_addr[6];
  693. /* Get flash offset for function and adjust
  694. * for dword access.
  695. */
  696. if (!qdev->port)
  697. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  698. else
  699. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  700. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  701. return -ETIMEDOUT;
  702. size = sizeof(struct flash_params_8000) / sizeof(u32);
  703. for (i = 0; i < size; i++, p++) {
  704. status = ql_read_flash_word(qdev, i+offset, p);
  705. if (status) {
  706. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  707. goto exit;
  708. }
  709. }
  710. status = ql_validate_flash(qdev,
  711. sizeof(struct flash_params_8000) / sizeof(u16),
  712. "8000");
  713. if (status) {
  714. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  715. status = -EINVAL;
  716. goto exit;
  717. }
  718. /* Extract either manufacturer or BOFM modified
  719. * MAC address.
  720. */
  721. if (qdev->flash.flash_params_8000.data_type1 == 2)
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr1,
  724. qdev->ndev->addr_len);
  725. else
  726. memcpy(mac_addr,
  727. qdev->flash.flash_params_8000.mac_addr,
  728. qdev->ndev->addr_len);
  729. if (!is_valid_ether_addr(mac_addr)) {
  730. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  731. status = -EINVAL;
  732. goto exit;
  733. }
  734. memcpy(qdev->ndev->dev_addr,
  735. mac_addr,
  736. qdev->ndev->addr_len);
  737. exit:
  738. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  739. return status;
  740. }
  741. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  742. {
  743. int i;
  744. int status;
  745. __le32 *p = (__le32 *)&qdev->flash;
  746. u32 offset = 0;
  747. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  748. /* Second function's parameters follow the first
  749. * function's.
  750. */
  751. if (qdev->port)
  752. offset = size;
  753. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  754. return -ETIMEDOUT;
  755. for (i = 0; i < size; i++, p++) {
  756. status = ql_read_flash_word(qdev, i+offset, p);
  757. if (status) {
  758. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  759. goto exit;
  760. }
  761. }
  762. status = ql_validate_flash(qdev,
  763. sizeof(struct flash_params_8012) / sizeof(u16),
  764. "8012");
  765. if (status) {
  766. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  767. status = -EINVAL;
  768. goto exit;
  769. }
  770. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  771. status = -EINVAL;
  772. goto exit;
  773. }
  774. memcpy(qdev->ndev->dev_addr,
  775. qdev->flash.flash_params_8012.mac_addr,
  776. qdev->ndev->addr_len);
  777. exit:
  778. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  779. return status;
  780. }
  781. /* xgmac register are located behind the xgmac_addr and xgmac_data
  782. * register pair. Each read/write requires us to wait for the ready
  783. * bit before reading/writing the data.
  784. */
  785. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  786. {
  787. int status;
  788. /* wait for reg to come ready */
  789. status = ql_wait_reg_rdy(qdev,
  790. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  791. if (status)
  792. return status;
  793. /* write the data to the data reg */
  794. ql_write32(qdev, XGMAC_DATA, data);
  795. /* trigger the write */
  796. ql_write32(qdev, XGMAC_ADDR, reg);
  797. return status;
  798. }
  799. /* xgmac register are located behind the xgmac_addr and xgmac_data
  800. * register pair. Each read/write requires us to wait for the ready
  801. * bit before reading/writing the data.
  802. */
  803. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  804. {
  805. int status = 0;
  806. /* wait for reg to come ready */
  807. status = ql_wait_reg_rdy(qdev,
  808. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  809. if (status)
  810. goto exit;
  811. /* set up for reg read */
  812. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  813. /* wait for reg to come ready */
  814. status = ql_wait_reg_rdy(qdev,
  815. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  816. if (status)
  817. goto exit;
  818. /* get the data */
  819. *data = ql_read32(qdev, XGMAC_DATA);
  820. exit:
  821. return status;
  822. }
  823. /* This is used for reading the 64-bit statistics regs. */
  824. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  825. {
  826. int status = 0;
  827. u32 hi = 0;
  828. u32 lo = 0;
  829. status = ql_read_xgmac_reg(qdev, reg, &lo);
  830. if (status)
  831. goto exit;
  832. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  833. if (status)
  834. goto exit;
  835. *data = (u64) lo | ((u64) hi << 32);
  836. exit:
  837. return status;
  838. }
  839. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  840. {
  841. int status;
  842. /*
  843. * Get MPI firmware version for driver banner
  844. * and ethool info.
  845. */
  846. status = ql_mb_about_fw(qdev);
  847. if (status)
  848. goto exit;
  849. status = ql_mb_get_fw_state(qdev);
  850. if (status)
  851. goto exit;
  852. /* Wake up a worker to get/set the TX/RX frame sizes. */
  853. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  854. exit:
  855. return status;
  856. }
  857. /* Take the MAC Core out of reset.
  858. * Enable statistics counting.
  859. * Take the transmitter/receiver out of reset.
  860. * This functionality may be done in the MPI firmware at a
  861. * later date.
  862. */
  863. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  864. {
  865. int status = 0;
  866. u32 data;
  867. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  868. /* Another function has the semaphore, so
  869. * wait for the port init bit to come ready.
  870. */
  871. QPRINTK(qdev, LINK, INFO,
  872. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  873. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  874. if (status) {
  875. QPRINTK(qdev, LINK, CRIT,
  876. "Port initialize timed out.\n");
  877. }
  878. return status;
  879. }
  880. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  881. /* Set the core reset. */
  882. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  883. if (status)
  884. goto end;
  885. data |= GLOBAL_CFG_RESET;
  886. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  887. if (status)
  888. goto end;
  889. /* Clear the core reset and turn on jumbo for receiver. */
  890. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  891. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  892. data |= GLOBAL_CFG_TX_STAT_EN;
  893. data |= GLOBAL_CFG_RX_STAT_EN;
  894. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  895. if (status)
  896. goto end;
  897. /* Enable transmitter, and clear it's reset. */
  898. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  899. if (status)
  900. goto end;
  901. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  902. data |= TX_CFG_EN; /* Enable the transmitter. */
  903. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  904. if (status)
  905. goto end;
  906. /* Enable receiver and clear it's reset. */
  907. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  908. if (status)
  909. goto end;
  910. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  911. data |= RX_CFG_EN; /* Enable the receiver. */
  912. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  913. if (status)
  914. goto end;
  915. /* Turn on jumbo. */
  916. status =
  917. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  918. if (status)
  919. goto end;
  920. status =
  921. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  922. if (status)
  923. goto end;
  924. /* Signal to the world that the port is enabled. */
  925. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  926. end:
  927. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  928. return status;
  929. }
  930. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  931. {
  932. return PAGE_SIZE << qdev->lbq_buf_order;
  933. }
  934. /* Get the next large buffer. */
  935. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  936. {
  937. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  938. rx_ring->lbq_curr_idx++;
  939. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  940. rx_ring->lbq_curr_idx = 0;
  941. rx_ring->lbq_free_cnt++;
  942. return lbq_desc;
  943. }
  944. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  945. struct rx_ring *rx_ring)
  946. {
  947. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  948. pci_dma_sync_single_for_cpu(qdev->pdev,
  949. pci_unmap_addr(lbq_desc, mapaddr),
  950. rx_ring->lbq_buf_size,
  951. PCI_DMA_FROMDEVICE);
  952. /* If it's the last chunk of our master page then
  953. * we unmap it.
  954. */
  955. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  956. == ql_lbq_block_size(qdev))
  957. pci_unmap_page(qdev->pdev,
  958. lbq_desc->p.pg_chunk.map,
  959. ql_lbq_block_size(qdev),
  960. PCI_DMA_FROMDEVICE);
  961. return lbq_desc;
  962. }
  963. /* Get the next small buffer. */
  964. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  965. {
  966. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  967. rx_ring->sbq_curr_idx++;
  968. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  969. rx_ring->sbq_curr_idx = 0;
  970. rx_ring->sbq_free_cnt++;
  971. return sbq_desc;
  972. }
  973. /* Update an rx ring index. */
  974. static void ql_update_cq(struct rx_ring *rx_ring)
  975. {
  976. rx_ring->cnsmr_idx++;
  977. rx_ring->curr_entry++;
  978. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  979. rx_ring->cnsmr_idx = 0;
  980. rx_ring->curr_entry = rx_ring->cq_base;
  981. }
  982. }
  983. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  984. {
  985. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  986. }
  987. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  988. struct bq_desc *lbq_desc)
  989. {
  990. if (!rx_ring->pg_chunk.page) {
  991. u64 map;
  992. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  993. GFP_ATOMIC,
  994. qdev->lbq_buf_order);
  995. if (unlikely(!rx_ring->pg_chunk.page)) {
  996. QPRINTK(qdev, DRV, ERR,
  997. "page allocation failed.\n");
  998. return -ENOMEM;
  999. }
  1000. rx_ring->pg_chunk.offset = 0;
  1001. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1002. 0, ql_lbq_block_size(qdev),
  1003. PCI_DMA_FROMDEVICE);
  1004. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1005. __free_pages(rx_ring->pg_chunk.page,
  1006. qdev->lbq_buf_order);
  1007. QPRINTK(qdev, DRV, ERR,
  1008. "PCI mapping failed.\n");
  1009. return -ENOMEM;
  1010. }
  1011. rx_ring->pg_chunk.map = map;
  1012. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1013. }
  1014. /* Copy the current master pg_chunk info
  1015. * to the current descriptor.
  1016. */
  1017. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1018. /* Adjust the master page chunk for next
  1019. * buffer get.
  1020. */
  1021. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1022. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1023. rx_ring->pg_chunk.page = NULL;
  1024. lbq_desc->p.pg_chunk.last_flag = 1;
  1025. } else {
  1026. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1027. get_page(rx_ring->pg_chunk.page);
  1028. lbq_desc->p.pg_chunk.last_flag = 0;
  1029. }
  1030. return 0;
  1031. }
  1032. /* Process (refill) a large buffer queue. */
  1033. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1034. {
  1035. u32 clean_idx = rx_ring->lbq_clean_idx;
  1036. u32 start_idx = clean_idx;
  1037. struct bq_desc *lbq_desc;
  1038. u64 map;
  1039. int i;
  1040. while (rx_ring->lbq_free_cnt > 32) {
  1041. for (i = 0; i < 16; i++) {
  1042. QPRINTK(qdev, RX_STATUS, DEBUG,
  1043. "lbq: try cleaning clean_idx = %d.\n",
  1044. clean_idx);
  1045. lbq_desc = &rx_ring->lbq[clean_idx];
  1046. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1047. QPRINTK(qdev, IFUP, ERR,
  1048. "Could not get a page chunk.\n");
  1049. return;
  1050. }
  1051. map = lbq_desc->p.pg_chunk.map +
  1052. lbq_desc->p.pg_chunk.offset;
  1053. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1054. pci_unmap_len_set(lbq_desc, maplen,
  1055. rx_ring->lbq_buf_size);
  1056. *lbq_desc->addr = cpu_to_le64(map);
  1057. pci_dma_sync_single_for_device(qdev->pdev, map,
  1058. rx_ring->lbq_buf_size,
  1059. PCI_DMA_FROMDEVICE);
  1060. clean_idx++;
  1061. if (clean_idx == rx_ring->lbq_len)
  1062. clean_idx = 0;
  1063. }
  1064. rx_ring->lbq_clean_idx = clean_idx;
  1065. rx_ring->lbq_prod_idx += 16;
  1066. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1067. rx_ring->lbq_prod_idx = 0;
  1068. rx_ring->lbq_free_cnt -= 16;
  1069. }
  1070. if (start_idx != clean_idx) {
  1071. QPRINTK(qdev, RX_STATUS, DEBUG,
  1072. "lbq: updating prod idx = %d.\n",
  1073. rx_ring->lbq_prod_idx);
  1074. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1075. rx_ring->lbq_prod_idx_db_reg);
  1076. }
  1077. }
  1078. /* Process (refill) a small buffer queue. */
  1079. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1080. {
  1081. u32 clean_idx = rx_ring->sbq_clean_idx;
  1082. u32 start_idx = clean_idx;
  1083. struct bq_desc *sbq_desc;
  1084. u64 map;
  1085. int i;
  1086. while (rx_ring->sbq_free_cnt > 16) {
  1087. for (i = 0; i < 16; i++) {
  1088. sbq_desc = &rx_ring->sbq[clean_idx];
  1089. QPRINTK(qdev, RX_STATUS, DEBUG,
  1090. "sbq: try cleaning clean_idx = %d.\n",
  1091. clean_idx);
  1092. if (sbq_desc->p.skb == NULL) {
  1093. QPRINTK(qdev, RX_STATUS, DEBUG,
  1094. "sbq: getting new skb for index %d.\n",
  1095. sbq_desc->index);
  1096. sbq_desc->p.skb =
  1097. netdev_alloc_skb(qdev->ndev,
  1098. SMALL_BUFFER_SIZE);
  1099. if (sbq_desc->p.skb == NULL) {
  1100. QPRINTK(qdev, PROBE, ERR,
  1101. "Couldn't get an skb.\n");
  1102. rx_ring->sbq_clean_idx = clean_idx;
  1103. return;
  1104. }
  1105. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1106. map = pci_map_single(qdev->pdev,
  1107. sbq_desc->p.skb->data,
  1108. rx_ring->sbq_buf_size,
  1109. PCI_DMA_FROMDEVICE);
  1110. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1111. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1112. rx_ring->sbq_clean_idx = clean_idx;
  1113. dev_kfree_skb_any(sbq_desc->p.skb);
  1114. sbq_desc->p.skb = NULL;
  1115. return;
  1116. }
  1117. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1118. pci_unmap_len_set(sbq_desc, maplen,
  1119. rx_ring->sbq_buf_size);
  1120. *sbq_desc->addr = cpu_to_le64(map);
  1121. }
  1122. clean_idx++;
  1123. if (clean_idx == rx_ring->sbq_len)
  1124. clean_idx = 0;
  1125. }
  1126. rx_ring->sbq_clean_idx = clean_idx;
  1127. rx_ring->sbq_prod_idx += 16;
  1128. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1129. rx_ring->sbq_prod_idx = 0;
  1130. rx_ring->sbq_free_cnt -= 16;
  1131. }
  1132. if (start_idx != clean_idx) {
  1133. QPRINTK(qdev, RX_STATUS, DEBUG,
  1134. "sbq: updating prod idx = %d.\n",
  1135. rx_ring->sbq_prod_idx);
  1136. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1137. rx_ring->sbq_prod_idx_db_reg);
  1138. }
  1139. }
  1140. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1141. struct rx_ring *rx_ring)
  1142. {
  1143. ql_update_sbq(qdev, rx_ring);
  1144. ql_update_lbq(qdev, rx_ring);
  1145. }
  1146. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1147. * fails at some stage, or from the interrupt when a tx completes.
  1148. */
  1149. static void ql_unmap_send(struct ql_adapter *qdev,
  1150. struct tx_ring_desc *tx_ring_desc, int mapped)
  1151. {
  1152. int i;
  1153. for (i = 0; i < mapped; i++) {
  1154. if (i == 0 || (i == 7 && mapped > 7)) {
  1155. /*
  1156. * Unmap the skb->data area, or the
  1157. * external sglist (AKA the Outbound
  1158. * Address List (OAL)).
  1159. * If its the zeroeth element, then it's
  1160. * the skb->data area. If it's the 7th
  1161. * element and there is more than 6 frags,
  1162. * then its an OAL.
  1163. */
  1164. if (i == 7) {
  1165. QPRINTK(qdev, TX_DONE, DEBUG,
  1166. "unmapping OAL area.\n");
  1167. }
  1168. pci_unmap_single(qdev->pdev,
  1169. pci_unmap_addr(&tx_ring_desc->map[i],
  1170. mapaddr),
  1171. pci_unmap_len(&tx_ring_desc->map[i],
  1172. maplen),
  1173. PCI_DMA_TODEVICE);
  1174. } else {
  1175. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1176. i);
  1177. pci_unmap_page(qdev->pdev,
  1178. pci_unmap_addr(&tx_ring_desc->map[i],
  1179. mapaddr),
  1180. pci_unmap_len(&tx_ring_desc->map[i],
  1181. maplen), PCI_DMA_TODEVICE);
  1182. }
  1183. }
  1184. }
  1185. /* Map the buffers for this transmit. This will return
  1186. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1187. */
  1188. static int ql_map_send(struct ql_adapter *qdev,
  1189. struct ob_mac_iocb_req *mac_iocb_ptr,
  1190. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1191. {
  1192. int len = skb_headlen(skb);
  1193. dma_addr_t map;
  1194. int frag_idx, err, map_idx = 0;
  1195. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1196. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1197. if (frag_cnt) {
  1198. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1199. }
  1200. /*
  1201. * Map the skb buffer first.
  1202. */
  1203. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1204. err = pci_dma_mapping_error(qdev->pdev, map);
  1205. if (err) {
  1206. QPRINTK(qdev, TX_QUEUED, ERR,
  1207. "PCI mapping failed with error: %d\n", err);
  1208. return NETDEV_TX_BUSY;
  1209. }
  1210. tbd->len = cpu_to_le32(len);
  1211. tbd->addr = cpu_to_le64(map);
  1212. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1213. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1214. map_idx++;
  1215. /*
  1216. * This loop fills the remainder of the 8 address descriptors
  1217. * in the IOCB. If there are more than 7 fragments, then the
  1218. * eighth address desc will point to an external list (OAL).
  1219. * When this happens, the remainder of the frags will be stored
  1220. * in this list.
  1221. */
  1222. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1223. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1224. tbd++;
  1225. if (frag_idx == 6 && frag_cnt > 7) {
  1226. /* Let's tack on an sglist.
  1227. * Our control block will now
  1228. * look like this:
  1229. * iocb->seg[0] = skb->data
  1230. * iocb->seg[1] = frag[0]
  1231. * iocb->seg[2] = frag[1]
  1232. * iocb->seg[3] = frag[2]
  1233. * iocb->seg[4] = frag[3]
  1234. * iocb->seg[5] = frag[4]
  1235. * iocb->seg[6] = frag[5]
  1236. * iocb->seg[7] = ptr to OAL (external sglist)
  1237. * oal->seg[0] = frag[6]
  1238. * oal->seg[1] = frag[7]
  1239. * oal->seg[2] = frag[8]
  1240. * oal->seg[3] = frag[9]
  1241. * oal->seg[4] = frag[10]
  1242. * etc...
  1243. */
  1244. /* Tack on the OAL in the eighth segment of IOCB. */
  1245. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1246. sizeof(struct oal),
  1247. PCI_DMA_TODEVICE);
  1248. err = pci_dma_mapping_error(qdev->pdev, map);
  1249. if (err) {
  1250. QPRINTK(qdev, TX_QUEUED, ERR,
  1251. "PCI mapping outbound address list with error: %d\n",
  1252. err);
  1253. goto map_error;
  1254. }
  1255. tbd->addr = cpu_to_le64(map);
  1256. /*
  1257. * The length is the number of fragments
  1258. * that remain to be mapped times the length
  1259. * of our sglist (OAL).
  1260. */
  1261. tbd->len =
  1262. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1263. (frag_cnt - frag_idx)) | TX_DESC_C);
  1264. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1265. map);
  1266. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1267. sizeof(struct oal));
  1268. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1269. map_idx++;
  1270. }
  1271. map =
  1272. pci_map_page(qdev->pdev, frag->page,
  1273. frag->page_offset, frag->size,
  1274. PCI_DMA_TODEVICE);
  1275. err = pci_dma_mapping_error(qdev->pdev, map);
  1276. if (err) {
  1277. QPRINTK(qdev, TX_QUEUED, ERR,
  1278. "PCI mapping frags failed with error: %d.\n",
  1279. err);
  1280. goto map_error;
  1281. }
  1282. tbd->addr = cpu_to_le64(map);
  1283. tbd->len = cpu_to_le32(frag->size);
  1284. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1285. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1286. frag->size);
  1287. }
  1288. /* Save the number of segments we've mapped. */
  1289. tx_ring_desc->map_cnt = map_idx;
  1290. /* Terminate the last segment. */
  1291. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1292. return NETDEV_TX_OK;
  1293. map_error:
  1294. /*
  1295. * If the first frag mapping failed, then i will be zero.
  1296. * This causes the unmap of the skb->data area. Otherwise
  1297. * we pass in the number of frags that mapped successfully
  1298. * so they can be umapped.
  1299. */
  1300. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1301. return NETDEV_TX_BUSY;
  1302. }
  1303. static void ql_realign_skb(struct sk_buff *skb, int len)
  1304. {
  1305. void *temp_addr = skb->data;
  1306. /* Undo the skb_reserve(skb,32) we did before
  1307. * giving to hardware, and realign data on
  1308. * a 2-byte boundary.
  1309. */
  1310. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1311. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1312. skb_copy_to_linear_data(skb, temp_addr,
  1313. (unsigned int)len);
  1314. }
  1315. /*
  1316. * This function builds an skb for the given inbound
  1317. * completion. It will be rewritten for readability in the near
  1318. * future, but for not it works well.
  1319. */
  1320. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1321. struct rx_ring *rx_ring,
  1322. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1323. {
  1324. struct bq_desc *lbq_desc;
  1325. struct bq_desc *sbq_desc;
  1326. struct sk_buff *skb = NULL;
  1327. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1328. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1329. /*
  1330. * Handle the header buffer if present.
  1331. */
  1332. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1333. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1334. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1335. /*
  1336. * Headers fit nicely into a small buffer.
  1337. */
  1338. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1339. pci_unmap_single(qdev->pdev,
  1340. pci_unmap_addr(sbq_desc, mapaddr),
  1341. pci_unmap_len(sbq_desc, maplen),
  1342. PCI_DMA_FROMDEVICE);
  1343. skb = sbq_desc->p.skb;
  1344. ql_realign_skb(skb, hdr_len);
  1345. skb_put(skb, hdr_len);
  1346. sbq_desc->p.skb = NULL;
  1347. }
  1348. /*
  1349. * Handle the data buffer(s).
  1350. */
  1351. if (unlikely(!length)) { /* Is there data too? */
  1352. QPRINTK(qdev, RX_STATUS, DEBUG,
  1353. "No Data buffer in this packet.\n");
  1354. return skb;
  1355. }
  1356. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1357. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1358. QPRINTK(qdev, RX_STATUS, DEBUG,
  1359. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1360. /*
  1361. * Data is less than small buffer size so it's
  1362. * stuffed in a small buffer.
  1363. * For this case we append the data
  1364. * from the "data" small buffer to the "header" small
  1365. * buffer.
  1366. */
  1367. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1368. pci_dma_sync_single_for_cpu(qdev->pdev,
  1369. pci_unmap_addr
  1370. (sbq_desc, mapaddr),
  1371. pci_unmap_len
  1372. (sbq_desc, maplen),
  1373. PCI_DMA_FROMDEVICE);
  1374. memcpy(skb_put(skb, length),
  1375. sbq_desc->p.skb->data, length);
  1376. pci_dma_sync_single_for_device(qdev->pdev,
  1377. pci_unmap_addr
  1378. (sbq_desc,
  1379. mapaddr),
  1380. pci_unmap_len
  1381. (sbq_desc,
  1382. maplen),
  1383. PCI_DMA_FROMDEVICE);
  1384. } else {
  1385. QPRINTK(qdev, RX_STATUS, DEBUG,
  1386. "%d bytes in a single small buffer.\n", length);
  1387. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1388. skb = sbq_desc->p.skb;
  1389. ql_realign_skb(skb, length);
  1390. skb_put(skb, length);
  1391. pci_unmap_single(qdev->pdev,
  1392. pci_unmap_addr(sbq_desc,
  1393. mapaddr),
  1394. pci_unmap_len(sbq_desc,
  1395. maplen),
  1396. PCI_DMA_FROMDEVICE);
  1397. sbq_desc->p.skb = NULL;
  1398. }
  1399. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1400. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1401. QPRINTK(qdev, RX_STATUS, DEBUG,
  1402. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1403. /*
  1404. * The data is in a single large buffer. We
  1405. * chain it to the header buffer's skb and let
  1406. * it rip.
  1407. */
  1408. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1409. QPRINTK(qdev, RX_STATUS, DEBUG,
  1410. "Chaining page at offset = %d,"
  1411. "for %d bytes to skb.\n",
  1412. lbq_desc->p.pg_chunk.offset, length);
  1413. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1414. lbq_desc->p.pg_chunk.offset,
  1415. length);
  1416. skb->len += length;
  1417. skb->data_len += length;
  1418. skb->truesize += length;
  1419. } else {
  1420. /*
  1421. * The headers and data are in a single large buffer. We
  1422. * copy it to a new skb and let it go. This can happen with
  1423. * jumbo mtu on a non-TCP/UDP frame.
  1424. */
  1425. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1426. skb = netdev_alloc_skb(qdev->ndev, length);
  1427. if (skb == NULL) {
  1428. QPRINTK(qdev, PROBE, DEBUG,
  1429. "No skb available, drop the packet.\n");
  1430. return NULL;
  1431. }
  1432. pci_unmap_page(qdev->pdev,
  1433. pci_unmap_addr(lbq_desc,
  1434. mapaddr),
  1435. pci_unmap_len(lbq_desc, maplen),
  1436. PCI_DMA_FROMDEVICE);
  1437. skb_reserve(skb, NET_IP_ALIGN);
  1438. QPRINTK(qdev, RX_STATUS, DEBUG,
  1439. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1440. skb_fill_page_desc(skb, 0,
  1441. lbq_desc->p.pg_chunk.page,
  1442. lbq_desc->p.pg_chunk.offset,
  1443. length);
  1444. skb->len += length;
  1445. skb->data_len += length;
  1446. skb->truesize += length;
  1447. length -= length;
  1448. __pskb_pull_tail(skb,
  1449. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1450. VLAN_ETH_HLEN : ETH_HLEN);
  1451. }
  1452. } else {
  1453. /*
  1454. * The data is in a chain of large buffers
  1455. * pointed to by a small buffer. We loop
  1456. * thru and chain them to the our small header
  1457. * buffer's skb.
  1458. * frags: There are 18 max frags and our small
  1459. * buffer will hold 32 of them. The thing is,
  1460. * we'll use 3 max for our 9000 byte jumbo
  1461. * frames. If the MTU goes up we could
  1462. * eventually be in trouble.
  1463. */
  1464. int size, i = 0;
  1465. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1466. pci_unmap_single(qdev->pdev,
  1467. pci_unmap_addr(sbq_desc, mapaddr),
  1468. pci_unmap_len(sbq_desc, maplen),
  1469. PCI_DMA_FROMDEVICE);
  1470. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1471. /*
  1472. * This is an non TCP/UDP IP frame, so
  1473. * the headers aren't split into a small
  1474. * buffer. We have to use the small buffer
  1475. * that contains our sg list as our skb to
  1476. * send upstairs. Copy the sg list here to
  1477. * a local buffer and use it to find the
  1478. * pages to chain.
  1479. */
  1480. QPRINTK(qdev, RX_STATUS, DEBUG,
  1481. "%d bytes of headers & data in chain of large.\n", length);
  1482. skb = sbq_desc->p.skb;
  1483. sbq_desc->p.skb = NULL;
  1484. skb_reserve(skb, NET_IP_ALIGN);
  1485. }
  1486. while (length > 0) {
  1487. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1488. size = (length < rx_ring->lbq_buf_size) ? length :
  1489. rx_ring->lbq_buf_size;
  1490. QPRINTK(qdev, RX_STATUS, DEBUG,
  1491. "Adding page %d to skb for %d bytes.\n",
  1492. i, size);
  1493. skb_fill_page_desc(skb, i,
  1494. lbq_desc->p.pg_chunk.page,
  1495. lbq_desc->p.pg_chunk.offset,
  1496. size);
  1497. skb->len += size;
  1498. skb->data_len += size;
  1499. skb->truesize += size;
  1500. length -= size;
  1501. i++;
  1502. }
  1503. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1504. VLAN_ETH_HLEN : ETH_HLEN);
  1505. }
  1506. return skb;
  1507. }
  1508. /* Process an inbound completion from an rx ring. */
  1509. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1510. struct rx_ring *rx_ring,
  1511. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1512. {
  1513. struct net_device *ndev = qdev->ndev;
  1514. struct sk_buff *skb = NULL;
  1515. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1516. IB_MAC_IOCB_RSP_VLAN_MASK)
  1517. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1518. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1519. if (unlikely(!skb)) {
  1520. QPRINTK(qdev, RX_STATUS, DEBUG,
  1521. "No skb available, drop packet.\n");
  1522. return;
  1523. }
  1524. /* Frame error, so drop the packet. */
  1525. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1526. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1527. ib_mac_rsp->flags2);
  1528. dev_kfree_skb_any(skb);
  1529. return;
  1530. }
  1531. /* The max framesize filter on this chip is set higher than
  1532. * MTU since FCoE uses 2k frames.
  1533. */
  1534. if (skb->len > ndev->mtu + ETH_HLEN) {
  1535. dev_kfree_skb_any(skb);
  1536. return;
  1537. }
  1538. /* loopback self test for ethtool */
  1539. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1540. ql_check_lb_frame(qdev, skb);
  1541. dev_kfree_skb_any(skb);
  1542. return;
  1543. }
  1544. prefetch(skb->data);
  1545. skb->dev = ndev;
  1546. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1547. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1548. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1549. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1550. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1551. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1552. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1553. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1554. }
  1555. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1556. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1557. }
  1558. skb->protocol = eth_type_trans(skb, ndev);
  1559. skb->ip_summed = CHECKSUM_NONE;
  1560. /* If rx checksum is on, and there are no
  1561. * csum or frame errors.
  1562. */
  1563. if (qdev->rx_csum &&
  1564. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1565. /* TCP frame. */
  1566. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1567. QPRINTK(qdev, RX_STATUS, DEBUG,
  1568. "TCP checksum done!\n");
  1569. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1570. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1571. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1572. /* Unfragmented ipv4 UDP frame. */
  1573. struct iphdr *iph = (struct iphdr *) skb->data;
  1574. if (!(iph->frag_off &
  1575. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1576. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1577. QPRINTK(qdev, RX_STATUS, DEBUG,
  1578. "TCP checksum done!\n");
  1579. }
  1580. }
  1581. }
  1582. ndev->stats.rx_packets++;
  1583. ndev->stats.rx_bytes += skb->len;
  1584. skb_record_rx_queue(skb, rx_ring->cq_id);
  1585. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1586. if (qdev->vlgrp &&
  1587. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1588. (vlan_id != 0))
  1589. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1590. vlan_id, skb);
  1591. else
  1592. napi_gro_receive(&rx_ring->napi, skb);
  1593. } else {
  1594. if (qdev->vlgrp &&
  1595. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1596. (vlan_id != 0))
  1597. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1598. else
  1599. netif_receive_skb(skb);
  1600. }
  1601. }
  1602. /* Process an outbound completion from an rx ring. */
  1603. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1604. struct ob_mac_iocb_rsp *mac_rsp)
  1605. {
  1606. struct net_device *ndev = qdev->ndev;
  1607. struct tx_ring *tx_ring;
  1608. struct tx_ring_desc *tx_ring_desc;
  1609. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1610. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1611. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1612. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1613. ndev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1614. ndev->stats.tx_packets++;
  1615. dev_kfree_skb(tx_ring_desc->skb);
  1616. tx_ring_desc->skb = NULL;
  1617. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1618. OB_MAC_IOCB_RSP_S |
  1619. OB_MAC_IOCB_RSP_L |
  1620. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1621. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1622. QPRINTK(qdev, TX_DONE, WARNING,
  1623. "Total descriptor length did not match transfer length.\n");
  1624. }
  1625. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1626. QPRINTK(qdev, TX_DONE, WARNING,
  1627. "Frame too short to be legal, not sent.\n");
  1628. }
  1629. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1630. QPRINTK(qdev, TX_DONE, WARNING,
  1631. "Frame too long, but sent anyway.\n");
  1632. }
  1633. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1634. QPRINTK(qdev, TX_DONE, WARNING,
  1635. "PCI backplane error. Frame not sent.\n");
  1636. }
  1637. }
  1638. atomic_inc(&tx_ring->tx_count);
  1639. }
  1640. /* Fire up a handler to reset the MPI processor. */
  1641. void ql_queue_fw_error(struct ql_adapter *qdev)
  1642. {
  1643. ql_link_off(qdev);
  1644. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1645. }
  1646. void ql_queue_asic_error(struct ql_adapter *qdev)
  1647. {
  1648. ql_link_off(qdev);
  1649. ql_disable_interrupts(qdev);
  1650. /* Clear adapter up bit to signal the recovery
  1651. * process that it shouldn't kill the reset worker
  1652. * thread
  1653. */
  1654. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1655. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1656. }
  1657. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1658. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1659. {
  1660. switch (ib_ae_rsp->event) {
  1661. case MGMT_ERR_EVENT:
  1662. QPRINTK(qdev, RX_ERR, ERR,
  1663. "Management Processor Fatal Error.\n");
  1664. ql_queue_fw_error(qdev);
  1665. return;
  1666. case CAM_LOOKUP_ERR_EVENT:
  1667. QPRINTK(qdev, LINK, ERR,
  1668. "Multiple CAM hits lookup occurred.\n");
  1669. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1670. ql_queue_asic_error(qdev);
  1671. return;
  1672. case SOFT_ECC_ERROR_EVENT:
  1673. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1674. ql_queue_asic_error(qdev);
  1675. break;
  1676. case PCI_ERR_ANON_BUF_RD:
  1677. QPRINTK(qdev, RX_ERR, ERR,
  1678. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1679. ib_ae_rsp->q_id);
  1680. ql_queue_asic_error(qdev);
  1681. break;
  1682. default:
  1683. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1684. ib_ae_rsp->event);
  1685. ql_queue_asic_error(qdev);
  1686. break;
  1687. }
  1688. }
  1689. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1690. {
  1691. struct ql_adapter *qdev = rx_ring->qdev;
  1692. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1693. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1694. int count = 0;
  1695. struct tx_ring *tx_ring;
  1696. /* While there are entries in the completion queue. */
  1697. while (prod != rx_ring->cnsmr_idx) {
  1698. QPRINTK(qdev, RX_STATUS, DEBUG,
  1699. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1700. prod, rx_ring->cnsmr_idx);
  1701. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1702. rmb();
  1703. switch (net_rsp->opcode) {
  1704. case OPCODE_OB_MAC_TSO_IOCB:
  1705. case OPCODE_OB_MAC_IOCB:
  1706. ql_process_mac_tx_intr(qdev, net_rsp);
  1707. break;
  1708. default:
  1709. QPRINTK(qdev, RX_STATUS, DEBUG,
  1710. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1711. net_rsp->opcode);
  1712. }
  1713. count++;
  1714. ql_update_cq(rx_ring);
  1715. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1716. }
  1717. ql_write_cq_idx(rx_ring);
  1718. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1719. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1720. net_rsp != NULL) {
  1721. if (atomic_read(&tx_ring->queue_stopped) &&
  1722. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1723. /*
  1724. * The queue got stopped because the tx_ring was full.
  1725. * Wake it up, because it's now at least 25% empty.
  1726. */
  1727. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1728. }
  1729. return count;
  1730. }
  1731. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1732. {
  1733. struct ql_adapter *qdev = rx_ring->qdev;
  1734. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1735. struct ql_net_rsp_iocb *net_rsp;
  1736. int count = 0;
  1737. /* While there are entries in the completion queue. */
  1738. while (prod != rx_ring->cnsmr_idx) {
  1739. QPRINTK(qdev, RX_STATUS, DEBUG,
  1740. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1741. prod, rx_ring->cnsmr_idx);
  1742. net_rsp = rx_ring->curr_entry;
  1743. rmb();
  1744. switch (net_rsp->opcode) {
  1745. case OPCODE_IB_MAC_IOCB:
  1746. ql_process_mac_rx_intr(qdev, rx_ring,
  1747. (struct ib_mac_iocb_rsp *)
  1748. net_rsp);
  1749. break;
  1750. case OPCODE_IB_AE_IOCB:
  1751. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1752. net_rsp);
  1753. break;
  1754. default:
  1755. {
  1756. QPRINTK(qdev, RX_STATUS, DEBUG,
  1757. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1758. net_rsp->opcode);
  1759. }
  1760. }
  1761. count++;
  1762. ql_update_cq(rx_ring);
  1763. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1764. if (count == budget)
  1765. break;
  1766. }
  1767. ql_update_buffer_queues(qdev, rx_ring);
  1768. ql_write_cq_idx(rx_ring);
  1769. return count;
  1770. }
  1771. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1772. {
  1773. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1774. struct ql_adapter *qdev = rx_ring->qdev;
  1775. struct rx_ring *trx_ring;
  1776. int i, work_done = 0;
  1777. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  1778. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1779. rx_ring->cq_id);
  1780. /* Service the TX rings first. They start
  1781. * right after the RSS rings. */
  1782. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  1783. trx_ring = &qdev->rx_ring[i];
  1784. /* If this TX completion ring belongs to this vector and
  1785. * it's not empty then service it.
  1786. */
  1787. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  1788. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  1789. trx_ring->cnsmr_idx)) {
  1790. QPRINTK(qdev, INTR, DEBUG,
  1791. "%s: Servicing TX completion ring %d.\n",
  1792. __func__, trx_ring->cq_id);
  1793. ql_clean_outbound_rx_ring(trx_ring);
  1794. }
  1795. }
  1796. /*
  1797. * Now service the RSS ring if it's active.
  1798. */
  1799. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1800. rx_ring->cnsmr_idx) {
  1801. QPRINTK(qdev, INTR, DEBUG,
  1802. "%s: Servicing RX completion ring %d.\n",
  1803. __func__, rx_ring->cq_id);
  1804. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1805. }
  1806. if (work_done < budget) {
  1807. napi_complete(napi);
  1808. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1809. }
  1810. return work_done;
  1811. }
  1812. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1813. {
  1814. struct ql_adapter *qdev = netdev_priv(ndev);
  1815. qdev->vlgrp = grp;
  1816. if (grp) {
  1817. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1818. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1819. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1820. } else {
  1821. QPRINTK(qdev, IFUP, DEBUG,
  1822. "Turning off VLAN in NIC_RCV_CFG.\n");
  1823. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1824. }
  1825. }
  1826. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1827. {
  1828. struct ql_adapter *qdev = netdev_priv(ndev);
  1829. u32 enable_bit = MAC_ADDR_E;
  1830. int status;
  1831. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1832. if (status)
  1833. return;
  1834. if (ql_set_mac_addr_reg
  1835. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1836. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1837. }
  1838. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1839. }
  1840. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1841. {
  1842. struct ql_adapter *qdev = netdev_priv(ndev);
  1843. u32 enable_bit = 0;
  1844. int status;
  1845. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1846. if (status)
  1847. return;
  1848. if (ql_set_mac_addr_reg
  1849. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1850. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1851. }
  1852. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1853. }
  1854. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1855. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1856. {
  1857. struct rx_ring *rx_ring = dev_id;
  1858. napi_schedule(&rx_ring->napi);
  1859. return IRQ_HANDLED;
  1860. }
  1861. /* This handles a fatal error, MPI activity, and the default
  1862. * rx_ring in an MSI-X multiple vector environment.
  1863. * In MSI/Legacy environment it also process the rest of
  1864. * the rx_rings.
  1865. */
  1866. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1867. {
  1868. struct rx_ring *rx_ring = dev_id;
  1869. struct ql_adapter *qdev = rx_ring->qdev;
  1870. struct intr_context *intr_context = &qdev->intr_context[0];
  1871. u32 var;
  1872. int work_done = 0;
  1873. spin_lock(&qdev->hw_lock);
  1874. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1875. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1876. spin_unlock(&qdev->hw_lock);
  1877. return IRQ_NONE;
  1878. }
  1879. spin_unlock(&qdev->hw_lock);
  1880. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1881. /*
  1882. * Check for fatal error.
  1883. */
  1884. if (var & STS_FE) {
  1885. ql_queue_asic_error(qdev);
  1886. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1887. var = ql_read32(qdev, ERR_STS);
  1888. QPRINTK(qdev, INTR, ERR,
  1889. "Resetting chip. Error Status Register = 0x%x\n", var);
  1890. return IRQ_HANDLED;
  1891. }
  1892. /*
  1893. * Check MPI processor activity.
  1894. */
  1895. if ((var & STS_PI) &&
  1896. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  1897. /*
  1898. * We've got an async event or mailbox completion.
  1899. * Handle it and clear the source of the interrupt.
  1900. */
  1901. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1902. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1903. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  1904. queue_delayed_work_on(smp_processor_id(),
  1905. qdev->workqueue, &qdev->mpi_work, 0);
  1906. work_done++;
  1907. }
  1908. /*
  1909. * Get the bit-mask that shows the active queues for this
  1910. * pass. Compare it to the queues that this irq services
  1911. * and call napi if there's a match.
  1912. */
  1913. var = ql_read32(qdev, ISR1);
  1914. if (var & intr_context->irq_mask) {
  1915. QPRINTK(qdev, INTR, INFO,
  1916. "Waking handler for rx_ring[0].\n");
  1917. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1918. napi_schedule(&rx_ring->napi);
  1919. work_done++;
  1920. }
  1921. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1922. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1923. }
  1924. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1925. {
  1926. if (skb_is_gso(skb)) {
  1927. int err;
  1928. if (skb_header_cloned(skb)) {
  1929. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1930. if (err)
  1931. return err;
  1932. }
  1933. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1934. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1935. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1936. mac_iocb_ptr->total_hdrs_len =
  1937. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1938. mac_iocb_ptr->net_trans_offset =
  1939. cpu_to_le16(skb_network_offset(skb) |
  1940. skb_transport_offset(skb)
  1941. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1942. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1943. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1944. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1945. struct iphdr *iph = ip_hdr(skb);
  1946. iph->check = 0;
  1947. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1948. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1949. iph->daddr, 0,
  1950. IPPROTO_TCP,
  1951. 0);
  1952. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1953. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1954. tcp_hdr(skb)->check =
  1955. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1956. &ipv6_hdr(skb)->daddr,
  1957. 0, IPPROTO_TCP, 0);
  1958. }
  1959. return 1;
  1960. }
  1961. return 0;
  1962. }
  1963. static void ql_hw_csum_setup(struct sk_buff *skb,
  1964. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1965. {
  1966. int len;
  1967. struct iphdr *iph = ip_hdr(skb);
  1968. __sum16 *check;
  1969. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1970. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1971. mac_iocb_ptr->net_trans_offset =
  1972. cpu_to_le16(skb_network_offset(skb) |
  1973. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1974. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1975. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1976. if (likely(iph->protocol == IPPROTO_TCP)) {
  1977. check = &(tcp_hdr(skb)->check);
  1978. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1979. mac_iocb_ptr->total_hdrs_len =
  1980. cpu_to_le16(skb_transport_offset(skb) +
  1981. (tcp_hdr(skb)->doff << 2));
  1982. } else {
  1983. check = &(udp_hdr(skb)->check);
  1984. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1985. mac_iocb_ptr->total_hdrs_len =
  1986. cpu_to_le16(skb_transport_offset(skb) +
  1987. sizeof(struct udphdr));
  1988. }
  1989. *check = ~csum_tcpudp_magic(iph->saddr,
  1990. iph->daddr, len, iph->protocol, 0);
  1991. }
  1992. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1993. {
  1994. struct tx_ring_desc *tx_ring_desc;
  1995. struct ob_mac_iocb_req *mac_iocb_ptr;
  1996. struct ql_adapter *qdev = netdev_priv(ndev);
  1997. int tso;
  1998. struct tx_ring *tx_ring;
  1999. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2000. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2001. if (skb_padto(skb, ETH_ZLEN))
  2002. return NETDEV_TX_OK;
  2003. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2004. QPRINTK(qdev, TX_QUEUED, INFO,
  2005. "%s: shutting down tx queue %d du to lack of resources.\n",
  2006. __func__, tx_ring_idx);
  2007. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2008. atomic_inc(&tx_ring->queue_stopped);
  2009. return NETDEV_TX_BUSY;
  2010. }
  2011. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2012. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2013. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2014. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2015. mac_iocb_ptr->tid = tx_ring_desc->index;
  2016. /* We use the upper 32-bits to store the tx queue for this IO.
  2017. * When we get the completion we can use it to establish the context.
  2018. */
  2019. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2020. tx_ring_desc->skb = skb;
  2021. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2022. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2023. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  2024. vlan_tx_tag_get(skb));
  2025. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2026. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2027. }
  2028. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2029. if (tso < 0) {
  2030. dev_kfree_skb_any(skb);
  2031. return NETDEV_TX_OK;
  2032. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2033. ql_hw_csum_setup(skb,
  2034. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2035. }
  2036. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2037. NETDEV_TX_OK) {
  2038. QPRINTK(qdev, TX_QUEUED, ERR,
  2039. "Could not map the segments.\n");
  2040. return NETDEV_TX_BUSY;
  2041. }
  2042. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2043. tx_ring->prod_idx++;
  2044. if (tx_ring->prod_idx == tx_ring->wq_len)
  2045. tx_ring->prod_idx = 0;
  2046. wmb();
  2047. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2048. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2049. tx_ring->prod_idx, skb->len);
  2050. atomic_dec(&tx_ring->tx_count);
  2051. return NETDEV_TX_OK;
  2052. }
  2053. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2054. {
  2055. if (qdev->rx_ring_shadow_reg_area) {
  2056. pci_free_consistent(qdev->pdev,
  2057. PAGE_SIZE,
  2058. qdev->rx_ring_shadow_reg_area,
  2059. qdev->rx_ring_shadow_reg_dma);
  2060. qdev->rx_ring_shadow_reg_area = NULL;
  2061. }
  2062. if (qdev->tx_ring_shadow_reg_area) {
  2063. pci_free_consistent(qdev->pdev,
  2064. PAGE_SIZE,
  2065. qdev->tx_ring_shadow_reg_area,
  2066. qdev->tx_ring_shadow_reg_dma);
  2067. qdev->tx_ring_shadow_reg_area = NULL;
  2068. }
  2069. }
  2070. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2071. {
  2072. qdev->rx_ring_shadow_reg_area =
  2073. pci_alloc_consistent(qdev->pdev,
  2074. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2075. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2076. QPRINTK(qdev, IFUP, ERR,
  2077. "Allocation of RX shadow space failed.\n");
  2078. return -ENOMEM;
  2079. }
  2080. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2081. qdev->tx_ring_shadow_reg_area =
  2082. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2083. &qdev->tx_ring_shadow_reg_dma);
  2084. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2085. QPRINTK(qdev, IFUP, ERR,
  2086. "Allocation of TX shadow space failed.\n");
  2087. goto err_wqp_sh_area;
  2088. }
  2089. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2090. return 0;
  2091. err_wqp_sh_area:
  2092. pci_free_consistent(qdev->pdev,
  2093. PAGE_SIZE,
  2094. qdev->rx_ring_shadow_reg_area,
  2095. qdev->rx_ring_shadow_reg_dma);
  2096. return -ENOMEM;
  2097. }
  2098. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2099. {
  2100. struct tx_ring_desc *tx_ring_desc;
  2101. int i;
  2102. struct ob_mac_iocb_req *mac_iocb_ptr;
  2103. mac_iocb_ptr = tx_ring->wq_base;
  2104. tx_ring_desc = tx_ring->q;
  2105. for (i = 0; i < tx_ring->wq_len; i++) {
  2106. tx_ring_desc->index = i;
  2107. tx_ring_desc->skb = NULL;
  2108. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2109. mac_iocb_ptr++;
  2110. tx_ring_desc++;
  2111. }
  2112. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2113. atomic_set(&tx_ring->queue_stopped, 0);
  2114. }
  2115. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2116. struct tx_ring *tx_ring)
  2117. {
  2118. if (tx_ring->wq_base) {
  2119. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2120. tx_ring->wq_base, tx_ring->wq_base_dma);
  2121. tx_ring->wq_base = NULL;
  2122. }
  2123. kfree(tx_ring->q);
  2124. tx_ring->q = NULL;
  2125. }
  2126. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2127. struct tx_ring *tx_ring)
  2128. {
  2129. tx_ring->wq_base =
  2130. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2131. &tx_ring->wq_base_dma);
  2132. if ((tx_ring->wq_base == NULL)
  2133. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2134. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2135. return -ENOMEM;
  2136. }
  2137. tx_ring->q =
  2138. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2139. if (tx_ring->q == NULL)
  2140. goto err;
  2141. return 0;
  2142. err:
  2143. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2144. tx_ring->wq_base, tx_ring->wq_base_dma);
  2145. return -ENOMEM;
  2146. }
  2147. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2148. {
  2149. struct bq_desc *lbq_desc;
  2150. uint32_t curr_idx, clean_idx;
  2151. curr_idx = rx_ring->lbq_curr_idx;
  2152. clean_idx = rx_ring->lbq_clean_idx;
  2153. while (curr_idx != clean_idx) {
  2154. lbq_desc = &rx_ring->lbq[curr_idx];
  2155. if (lbq_desc->p.pg_chunk.last_flag) {
  2156. pci_unmap_page(qdev->pdev,
  2157. lbq_desc->p.pg_chunk.map,
  2158. ql_lbq_block_size(qdev),
  2159. PCI_DMA_FROMDEVICE);
  2160. lbq_desc->p.pg_chunk.last_flag = 0;
  2161. }
  2162. put_page(lbq_desc->p.pg_chunk.page);
  2163. lbq_desc->p.pg_chunk.page = NULL;
  2164. if (++curr_idx == rx_ring->lbq_len)
  2165. curr_idx = 0;
  2166. }
  2167. }
  2168. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2169. {
  2170. int i;
  2171. struct bq_desc *sbq_desc;
  2172. for (i = 0; i < rx_ring->sbq_len; i++) {
  2173. sbq_desc = &rx_ring->sbq[i];
  2174. if (sbq_desc == NULL) {
  2175. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2176. return;
  2177. }
  2178. if (sbq_desc->p.skb) {
  2179. pci_unmap_single(qdev->pdev,
  2180. pci_unmap_addr(sbq_desc, mapaddr),
  2181. pci_unmap_len(sbq_desc, maplen),
  2182. PCI_DMA_FROMDEVICE);
  2183. dev_kfree_skb(sbq_desc->p.skb);
  2184. sbq_desc->p.skb = NULL;
  2185. }
  2186. }
  2187. }
  2188. /* Free all large and small rx buffers associated
  2189. * with the completion queues for this device.
  2190. */
  2191. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2192. {
  2193. int i;
  2194. struct rx_ring *rx_ring;
  2195. for (i = 0; i < qdev->rx_ring_count; i++) {
  2196. rx_ring = &qdev->rx_ring[i];
  2197. if (rx_ring->lbq)
  2198. ql_free_lbq_buffers(qdev, rx_ring);
  2199. if (rx_ring->sbq)
  2200. ql_free_sbq_buffers(qdev, rx_ring);
  2201. }
  2202. }
  2203. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2204. {
  2205. struct rx_ring *rx_ring;
  2206. int i;
  2207. for (i = 0; i < qdev->rx_ring_count; i++) {
  2208. rx_ring = &qdev->rx_ring[i];
  2209. if (rx_ring->type != TX_Q)
  2210. ql_update_buffer_queues(qdev, rx_ring);
  2211. }
  2212. }
  2213. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2214. struct rx_ring *rx_ring)
  2215. {
  2216. int i;
  2217. struct bq_desc *lbq_desc;
  2218. __le64 *bq = rx_ring->lbq_base;
  2219. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2220. for (i = 0; i < rx_ring->lbq_len; i++) {
  2221. lbq_desc = &rx_ring->lbq[i];
  2222. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2223. lbq_desc->index = i;
  2224. lbq_desc->addr = bq;
  2225. bq++;
  2226. }
  2227. }
  2228. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2229. struct rx_ring *rx_ring)
  2230. {
  2231. int i;
  2232. struct bq_desc *sbq_desc;
  2233. __le64 *bq = rx_ring->sbq_base;
  2234. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2235. for (i = 0; i < rx_ring->sbq_len; i++) {
  2236. sbq_desc = &rx_ring->sbq[i];
  2237. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2238. sbq_desc->index = i;
  2239. sbq_desc->addr = bq;
  2240. bq++;
  2241. }
  2242. }
  2243. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2244. struct rx_ring *rx_ring)
  2245. {
  2246. /* Free the small buffer queue. */
  2247. if (rx_ring->sbq_base) {
  2248. pci_free_consistent(qdev->pdev,
  2249. rx_ring->sbq_size,
  2250. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2251. rx_ring->sbq_base = NULL;
  2252. }
  2253. /* Free the small buffer queue control blocks. */
  2254. kfree(rx_ring->sbq);
  2255. rx_ring->sbq = NULL;
  2256. /* Free the large buffer queue. */
  2257. if (rx_ring->lbq_base) {
  2258. pci_free_consistent(qdev->pdev,
  2259. rx_ring->lbq_size,
  2260. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2261. rx_ring->lbq_base = NULL;
  2262. }
  2263. /* Free the large buffer queue control blocks. */
  2264. kfree(rx_ring->lbq);
  2265. rx_ring->lbq = NULL;
  2266. /* Free the rx queue. */
  2267. if (rx_ring->cq_base) {
  2268. pci_free_consistent(qdev->pdev,
  2269. rx_ring->cq_size,
  2270. rx_ring->cq_base, rx_ring->cq_base_dma);
  2271. rx_ring->cq_base = NULL;
  2272. }
  2273. }
  2274. /* Allocate queues and buffers for this completions queue based
  2275. * on the values in the parameter structure. */
  2276. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2277. struct rx_ring *rx_ring)
  2278. {
  2279. /*
  2280. * Allocate the completion queue for this rx_ring.
  2281. */
  2282. rx_ring->cq_base =
  2283. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2284. &rx_ring->cq_base_dma);
  2285. if (rx_ring->cq_base == NULL) {
  2286. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2287. return -ENOMEM;
  2288. }
  2289. if (rx_ring->sbq_len) {
  2290. /*
  2291. * Allocate small buffer queue.
  2292. */
  2293. rx_ring->sbq_base =
  2294. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2295. &rx_ring->sbq_base_dma);
  2296. if (rx_ring->sbq_base == NULL) {
  2297. QPRINTK(qdev, IFUP, ERR,
  2298. "Small buffer queue allocation failed.\n");
  2299. goto err_mem;
  2300. }
  2301. /*
  2302. * Allocate small buffer queue control blocks.
  2303. */
  2304. rx_ring->sbq =
  2305. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2306. GFP_KERNEL);
  2307. if (rx_ring->sbq == NULL) {
  2308. QPRINTK(qdev, IFUP, ERR,
  2309. "Small buffer queue control block allocation failed.\n");
  2310. goto err_mem;
  2311. }
  2312. ql_init_sbq_ring(qdev, rx_ring);
  2313. }
  2314. if (rx_ring->lbq_len) {
  2315. /*
  2316. * Allocate large buffer queue.
  2317. */
  2318. rx_ring->lbq_base =
  2319. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2320. &rx_ring->lbq_base_dma);
  2321. if (rx_ring->lbq_base == NULL) {
  2322. QPRINTK(qdev, IFUP, ERR,
  2323. "Large buffer queue allocation failed.\n");
  2324. goto err_mem;
  2325. }
  2326. /*
  2327. * Allocate large buffer queue control blocks.
  2328. */
  2329. rx_ring->lbq =
  2330. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2331. GFP_KERNEL);
  2332. if (rx_ring->lbq == NULL) {
  2333. QPRINTK(qdev, IFUP, ERR,
  2334. "Large buffer queue control block allocation failed.\n");
  2335. goto err_mem;
  2336. }
  2337. ql_init_lbq_ring(qdev, rx_ring);
  2338. }
  2339. return 0;
  2340. err_mem:
  2341. ql_free_rx_resources(qdev, rx_ring);
  2342. return -ENOMEM;
  2343. }
  2344. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2345. {
  2346. struct tx_ring *tx_ring;
  2347. struct tx_ring_desc *tx_ring_desc;
  2348. int i, j;
  2349. /*
  2350. * Loop through all queues and free
  2351. * any resources.
  2352. */
  2353. for (j = 0; j < qdev->tx_ring_count; j++) {
  2354. tx_ring = &qdev->tx_ring[j];
  2355. for (i = 0; i < tx_ring->wq_len; i++) {
  2356. tx_ring_desc = &tx_ring->q[i];
  2357. if (tx_ring_desc && tx_ring_desc->skb) {
  2358. QPRINTK(qdev, IFDOWN, ERR,
  2359. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2360. tx_ring_desc->skb, j,
  2361. tx_ring_desc->index);
  2362. ql_unmap_send(qdev, tx_ring_desc,
  2363. tx_ring_desc->map_cnt);
  2364. dev_kfree_skb(tx_ring_desc->skb);
  2365. tx_ring_desc->skb = NULL;
  2366. }
  2367. }
  2368. }
  2369. }
  2370. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2371. {
  2372. int i;
  2373. for (i = 0; i < qdev->tx_ring_count; i++)
  2374. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2375. for (i = 0; i < qdev->rx_ring_count; i++)
  2376. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2377. ql_free_shadow_space(qdev);
  2378. }
  2379. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2380. {
  2381. int i;
  2382. /* Allocate space for our shadow registers and such. */
  2383. if (ql_alloc_shadow_space(qdev))
  2384. return -ENOMEM;
  2385. for (i = 0; i < qdev->rx_ring_count; i++) {
  2386. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2387. QPRINTK(qdev, IFUP, ERR,
  2388. "RX resource allocation failed.\n");
  2389. goto err_mem;
  2390. }
  2391. }
  2392. /* Allocate tx queue resources */
  2393. for (i = 0; i < qdev->tx_ring_count; i++) {
  2394. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2395. QPRINTK(qdev, IFUP, ERR,
  2396. "TX resource allocation failed.\n");
  2397. goto err_mem;
  2398. }
  2399. }
  2400. return 0;
  2401. err_mem:
  2402. ql_free_mem_resources(qdev);
  2403. return -ENOMEM;
  2404. }
  2405. /* Set up the rx ring control block and pass it to the chip.
  2406. * The control block is defined as
  2407. * "Completion Queue Initialization Control Block", or cqicb.
  2408. */
  2409. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2410. {
  2411. struct cqicb *cqicb = &rx_ring->cqicb;
  2412. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2413. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2414. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2415. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2416. void __iomem *doorbell_area =
  2417. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2418. int err = 0;
  2419. u16 bq_len;
  2420. u64 tmp;
  2421. __le64 *base_indirect_ptr;
  2422. int page_entries;
  2423. /* Set up the shadow registers for this ring. */
  2424. rx_ring->prod_idx_sh_reg = shadow_reg;
  2425. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2426. *rx_ring->prod_idx_sh_reg = 0;
  2427. shadow_reg += sizeof(u64);
  2428. shadow_reg_dma += sizeof(u64);
  2429. rx_ring->lbq_base_indirect = shadow_reg;
  2430. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2431. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2432. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2433. rx_ring->sbq_base_indirect = shadow_reg;
  2434. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2435. /* PCI doorbell mem area + 0x00 for consumer index register */
  2436. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2437. rx_ring->cnsmr_idx = 0;
  2438. rx_ring->curr_entry = rx_ring->cq_base;
  2439. /* PCI doorbell mem area + 0x04 for valid register */
  2440. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2441. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2442. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2443. /* PCI doorbell mem area + 0x1c */
  2444. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2445. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2446. cqicb->msix_vect = rx_ring->irq;
  2447. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2448. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2449. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2450. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2451. /*
  2452. * Set up the control block load flags.
  2453. */
  2454. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2455. FLAGS_LV | /* Load MSI-X vector */
  2456. FLAGS_LI; /* Load irq delay values */
  2457. if (rx_ring->lbq_len) {
  2458. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2459. tmp = (u64)rx_ring->lbq_base_dma;
  2460. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2461. page_entries = 0;
  2462. do {
  2463. *base_indirect_ptr = cpu_to_le64(tmp);
  2464. tmp += DB_PAGE_SIZE;
  2465. base_indirect_ptr++;
  2466. page_entries++;
  2467. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2468. cqicb->lbq_addr =
  2469. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2470. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2471. (u16) rx_ring->lbq_buf_size;
  2472. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2473. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2474. (u16) rx_ring->lbq_len;
  2475. cqicb->lbq_len = cpu_to_le16(bq_len);
  2476. rx_ring->lbq_prod_idx = 0;
  2477. rx_ring->lbq_curr_idx = 0;
  2478. rx_ring->lbq_clean_idx = 0;
  2479. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2480. }
  2481. if (rx_ring->sbq_len) {
  2482. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2483. tmp = (u64)rx_ring->sbq_base_dma;
  2484. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2485. page_entries = 0;
  2486. do {
  2487. *base_indirect_ptr = cpu_to_le64(tmp);
  2488. tmp += DB_PAGE_SIZE;
  2489. base_indirect_ptr++;
  2490. page_entries++;
  2491. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2492. cqicb->sbq_addr =
  2493. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2494. cqicb->sbq_buf_size =
  2495. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2496. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2497. (u16) rx_ring->sbq_len;
  2498. cqicb->sbq_len = cpu_to_le16(bq_len);
  2499. rx_ring->sbq_prod_idx = 0;
  2500. rx_ring->sbq_curr_idx = 0;
  2501. rx_ring->sbq_clean_idx = 0;
  2502. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2503. }
  2504. switch (rx_ring->type) {
  2505. case TX_Q:
  2506. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2507. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2508. break;
  2509. case RX_Q:
  2510. /* Inbound completion handling rx_rings run in
  2511. * separate NAPI contexts.
  2512. */
  2513. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2514. 64);
  2515. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2516. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2517. break;
  2518. default:
  2519. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2520. rx_ring->type);
  2521. }
  2522. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2523. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2524. CFG_LCQ, rx_ring->cq_id);
  2525. if (err) {
  2526. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2527. return err;
  2528. }
  2529. return err;
  2530. }
  2531. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2532. {
  2533. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2534. void __iomem *doorbell_area =
  2535. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2536. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2537. (tx_ring->wq_id * sizeof(u64));
  2538. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2539. (tx_ring->wq_id * sizeof(u64));
  2540. int err = 0;
  2541. /*
  2542. * Assign doorbell registers for this tx_ring.
  2543. */
  2544. /* TX PCI doorbell mem area for tx producer index */
  2545. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2546. tx_ring->prod_idx = 0;
  2547. /* TX PCI doorbell mem area + 0x04 */
  2548. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2549. /*
  2550. * Assign shadow registers for this tx_ring.
  2551. */
  2552. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2553. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2554. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2555. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2556. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2557. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2558. wqicb->rid = 0;
  2559. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2560. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2561. ql_init_tx_ring(qdev, tx_ring);
  2562. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2563. (u16) tx_ring->wq_id);
  2564. if (err) {
  2565. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2566. return err;
  2567. }
  2568. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2569. return err;
  2570. }
  2571. static void ql_disable_msix(struct ql_adapter *qdev)
  2572. {
  2573. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2574. pci_disable_msix(qdev->pdev);
  2575. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2576. kfree(qdev->msi_x_entry);
  2577. qdev->msi_x_entry = NULL;
  2578. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2579. pci_disable_msi(qdev->pdev);
  2580. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2581. }
  2582. }
  2583. /* We start by trying to get the number of vectors
  2584. * stored in qdev->intr_count. If we don't get that
  2585. * many then we reduce the count and try again.
  2586. */
  2587. static void ql_enable_msix(struct ql_adapter *qdev)
  2588. {
  2589. int i, err;
  2590. /* Get the MSIX vectors. */
  2591. if (irq_type == MSIX_IRQ) {
  2592. /* Try to alloc space for the msix struct,
  2593. * if it fails then go to MSI/legacy.
  2594. */
  2595. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2596. sizeof(struct msix_entry),
  2597. GFP_KERNEL);
  2598. if (!qdev->msi_x_entry) {
  2599. irq_type = MSI_IRQ;
  2600. goto msi;
  2601. }
  2602. for (i = 0; i < qdev->intr_count; i++)
  2603. qdev->msi_x_entry[i].entry = i;
  2604. /* Loop to get our vectors. We start with
  2605. * what we want and settle for what we get.
  2606. */
  2607. do {
  2608. err = pci_enable_msix(qdev->pdev,
  2609. qdev->msi_x_entry, qdev->intr_count);
  2610. if (err > 0)
  2611. qdev->intr_count = err;
  2612. } while (err > 0);
  2613. if (err < 0) {
  2614. kfree(qdev->msi_x_entry);
  2615. qdev->msi_x_entry = NULL;
  2616. QPRINTK(qdev, IFUP, WARNING,
  2617. "MSI-X Enable failed, trying MSI.\n");
  2618. qdev->intr_count = 1;
  2619. irq_type = MSI_IRQ;
  2620. } else if (err == 0) {
  2621. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2622. QPRINTK(qdev, IFUP, INFO,
  2623. "MSI-X Enabled, got %d vectors.\n",
  2624. qdev->intr_count);
  2625. return;
  2626. }
  2627. }
  2628. msi:
  2629. qdev->intr_count = 1;
  2630. if (irq_type == MSI_IRQ) {
  2631. if (!pci_enable_msi(qdev->pdev)) {
  2632. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2633. QPRINTK(qdev, IFUP, INFO,
  2634. "Running with MSI interrupts.\n");
  2635. return;
  2636. }
  2637. }
  2638. irq_type = LEG_IRQ;
  2639. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2640. }
  2641. /* Each vector services 1 RSS ring and and 1 or more
  2642. * TX completion rings. This function loops through
  2643. * the TX completion rings and assigns the vector that
  2644. * will service it. An example would be if there are
  2645. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2646. * This would mean that vector 0 would service RSS ring 0
  2647. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2648. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2649. */
  2650. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2651. {
  2652. int i, j, vect;
  2653. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2654. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2655. /* Assign irq vectors to TX rx_rings.*/
  2656. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2657. i < qdev->rx_ring_count; i++) {
  2658. if (j == tx_rings_per_vector) {
  2659. vect++;
  2660. j = 0;
  2661. }
  2662. qdev->rx_ring[i].irq = vect;
  2663. j++;
  2664. }
  2665. } else {
  2666. /* For single vector all rings have an irq
  2667. * of zero.
  2668. */
  2669. for (i = 0; i < qdev->rx_ring_count; i++)
  2670. qdev->rx_ring[i].irq = 0;
  2671. }
  2672. }
  2673. /* Set the interrupt mask for this vector. Each vector
  2674. * will service 1 RSS ring and 1 or more TX completion
  2675. * rings. This function sets up a bit mask per vector
  2676. * that indicates which rings it services.
  2677. */
  2678. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2679. {
  2680. int j, vect = ctx->intr;
  2681. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2682. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2683. /* Add the RSS ring serviced by this vector
  2684. * to the mask.
  2685. */
  2686. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2687. /* Add the TX ring(s) serviced by this vector
  2688. * to the mask. */
  2689. for (j = 0; j < tx_rings_per_vector; j++) {
  2690. ctx->irq_mask |=
  2691. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2692. (vect * tx_rings_per_vector) + j].cq_id);
  2693. }
  2694. } else {
  2695. /* For single vector we just shift each queue's
  2696. * ID into the mask.
  2697. */
  2698. for (j = 0; j < qdev->rx_ring_count; j++)
  2699. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2700. }
  2701. }
  2702. /*
  2703. * Here we build the intr_context structures based on
  2704. * our rx_ring count and intr vector count.
  2705. * The intr_context structure is used to hook each vector
  2706. * to possibly different handlers.
  2707. */
  2708. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2709. {
  2710. int i = 0;
  2711. struct intr_context *intr_context = &qdev->intr_context[0];
  2712. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2713. /* Each rx_ring has it's
  2714. * own intr_context since we have separate
  2715. * vectors for each queue.
  2716. */
  2717. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2718. qdev->rx_ring[i].irq = i;
  2719. intr_context->intr = i;
  2720. intr_context->qdev = qdev;
  2721. /* Set up this vector's bit-mask that indicates
  2722. * which queues it services.
  2723. */
  2724. ql_set_irq_mask(qdev, intr_context);
  2725. /*
  2726. * We set up each vectors enable/disable/read bits so
  2727. * there's no bit/mask calculations in the critical path.
  2728. */
  2729. intr_context->intr_en_mask =
  2730. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2731. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2732. | i;
  2733. intr_context->intr_dis_mask =
  2734. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2735. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2736. INTR_EN_IHD | i;
  2737. intr_context->intr_read_mask =
  2738. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2739. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2740. i;
  2741. if (i == 0) {
  2742. /* The first vector/queue handles
  2743. * broadcast/multicast, fatal errors,
  2744. * and firmware events. This in addition
  2745. * to normal inbound NAPI processing.
  2746. */
  2747. intr_context->handler = qlge_isr;
  2748. sprintf(intr_context->name, "%s-rx-%d",
  2749. qdev->ndev->name, i);
  2750. } else {
  2751. /*
  2752. * Inbound queues handle unicast frames only.
  2753. */
  2754. intr_context->handler = qlge_msix_rx_isr;
  2755. sprintf(intr_context->name, "%s-rx-%d",
  2756. qdev->ndev->name, i);
  2757. }
  2758. }
  2759. } else {
  2760. /*
  2761. * All rx_rings use the same intr_context since
  2762. * there is only one vector.
  2763. */
  2764. intr_context->intr = 0;
  2765. intr_context->qdev = qdev;
  2766. /*
  2767. * We set up each vectors enable/disable/read bits so
  2768. * there's no bit/mask calculations in the critical path.
  2769. */
  2770. intr_context->intr_en_mask =
  2771. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2772. intr_context->intr_dis_mask =
  2773. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2774. INTR_EN_TYPE_DISABLE;
  2775. intr_context->intr_read_mask =
  2776. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2777. /*
  2778. * Single interrupt means one handler for all rings.
  2779. */
  2780. intr_context->handler = qlge_isr;
  2781. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2782. /* Set up this vector's bit-mask that indicates
  2783. * which queues it services. In this case there is
  2784. * a single vector so it will service all RSS and
  2785. * TX completion rings.
  2786. */
  2787. ql_set_irq_mask(qdev, intr_context);
  2788. }
  2789. /* Tell the TX completion rings which MSIx vector
  2790. * they will be using.
  2791. */
  2792. ql_set_tx_vect(qdev);
  2793. }
  2794. static void ql_free_irq(struct ql_adapter *qdev)
  2795. {
  2796. int i;
  2797. struct intr_context *intr_context = &qdev->intr_context[0];
  2798. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2799. if (intr_context->hooked) {
  2800. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2801. free_irq(qdev->msi_x_entry[i].vector,
  2802. &qdev->rx_ring[i]);
  2803. QPRINTK(qdev, IFDOWN, DEBUG,
  2804. "freeing msix interrupt %d.\n", i);
  2805. } else {
  2806. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2807. QPRINTK(qdev, IFDOWN, DEBUG,
  2808. "freeing msi interrupt %d.\n", i);
  2809. }
  2810. }
  2811. }
  2812. ql_disable_msix(qdev);
  2813. }
  2814. static int ql_request_irq(struct ql_adapter *qdev)
  2815. {
  2816. int i;
  2817. int status = 0;
  2818. struct pci_dev *pdev = qdev->pdev;
  2819. struct intr_context *intr_context = &qdev->intr_context[0];
  2820. ql_resolve_queues_to_irqs(qdev);
  2821. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2822. atomic_set(&intr_context->irq_cnt, 0);
  2823. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2824. status = request_irq(qdev->msi_x_entry[i].vector,
  2825. intr_context->handler,
  2826. 0,
  2827. intr_context->name,
  2828. &qdev->rx_ring[i]);
  2829. if (status) {
  2830. QPRINTK(qdev, IFUP, ERR,
  2831. "Failed request for MSIX interrupt %d.\n",
  2832. i);
  2833. goto err_irq;
  2834. } else {
  2835. QPRINTK(qdev, IFUP, DEBUG,
  2836. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2837. i,
  2838. qdev->rx_ring[i].type ==
  2839. DEFAULT_Q ? "DEFAULT_Q" : "",
  2840. qdev->rx_ring[i].type ==
  2841. TX_Q ? "TX_Q" : "",
  2842. qdev->rx_ring[i].type ==
  2843. RX_Q ? "RX_Q" : "", intr_context->name);
  2844. }
  2845. } else {
  2846. QPRINTK(qdev, IFUP, DEBUG,
  2847. "trying msi or legacy interrupts.\n");
  2848. QPRINTK(qdev, IFUP, DEBUG,
  2849. "%s: irq = %d.\n", __func__, pdev->irq);
  2850. QPRINTK(qdev, IFUP, DEBUG,
  2851. "%s: context->name = %s.\n", __func__,
  2852. intr_context->name);
  2853. QPRINTK(qdev, IFUP, DEBUG,
  2854. "%s: dev_id = 0x%p.\n", __func__,
  2855. &qdev->rx_ring[0]);
  2856. status =
  2857. request_irq(pdev->irq, qlge_isr,
  2858. test_bit(QL_MSI_ENABLED,
  2859. &qdev->
  2860. flags) ? 0 : IRQF_SHARED,
  2861. intr_context->name, &qdev->rx_ring[0]);
  2862. if (status)
  2863. goto err_irq;
  2864. QPRINTK(qdev, IFUP, ERR,
  2865. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2866. i,
  2867. qdev->rx_ring[0].type ==
  2868. DEFAULT_Q ? "DEFAULT_Q" : "",
  2869. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2870. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2871. intr_context->name);
  2872. }
  2873. intr_context->hooked = 1;
  2874. }
  2875. return status;
  2876. err_irq:
  2877. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2878. ql_free_irq(qdev);
  2879. return status;
  2880. }
  2881. static int ql_start_rss(struct ql_adapter *qdev)
  2882. {
  2883. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  2884. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  2885. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  2886. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  2887. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  2888. 0xbe, 0xac, 0x01, 0xfa};
  2889. struct ricb *ricb = &qdev->ricb;
  2890. int status = 0;
  2891. int i;
  2892. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2893. memset((void *)ricb, 0, sizeof(*ricb));
  2894. ricb->base_cq = RSS_L4K;
  2895. ricb->flags =
  2896. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  2897. ricb->mask = cpu_to_le16((u16)(0x3ff));
  2898. /*
  2899. * Fill out the Indirection Table.
  2900. */
  2901. for (i = 0; i < 1024; i++)
  2902. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  2903. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  2904. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  2905. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2906. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2907. if (status) {
  2908. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2909. return status;
  2910. }
  2911. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2912. return status;
  2913. }
  2914. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2915. {
  2916. int i, status = 0;
  2917. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2918. if (status)
  2919. return status;
  2920. /* Clear all the entries in the routing table. */
  2921. for (i = 0; i < 16; i++) {
  2922. status = ql_set_routing_reg(qdev, i, 0, 0);
  2923. if (status) {
  2924. QPRINTK(qdev, IFUP, ERR,
  2925. "Failed to init routing register for CAM "
  2926. "packets.\n");
  2927. break;
  2928. }
  2929. }
  2930. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2931. return status;
  2932. }
  2933. /* Initialize the frame-to-queue routing. */
  2934. static int ql_route_initialize(struct ql_adapter *qdev)
  2935. {
  2936. int status = 0;
  2937. /* Clear all the entries in the routing table. */
  2938. status = ql_clear_routing_entries(qdev);
  2939. if (status)
  2940. return status;
  2941. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2942. if (status)
  2943. return status;
  2944. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2945. if (status) {
  2946. QPRINTK(qdev, IFUP, ERR,
  2947. "Failed to init routing register for error packets.\n");
  2948. goto exit;
  2949. }
  2950. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2951. if (status) {
  2952. QPRINTK(qdev, IFUP, ERR,
  2953. "Failed to init routing register for broadcast packets.\n");
  2954. goto exit;
  2955. }
  2956. /* If we have more than one inbound queue, then turn on RSS in the
  2957. * routing block.
  2958. */
  2959. if (qdev->rss_ring_count > 1) {
  2960. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2961. RT_IDX_RSS_MATCH, 1);
  2962. if (status) {
  2963. QPRINTK(qdev, IFUP, ERR,
  2964. "Failed to init routing register for MATCH RSS packets.\n");
  2965. goto exit;
  2966. }
  2967. }
  2968. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2969. RT_IDX_CAM_HIT, 1);
  2970. if (status)
  2971. QPRINTK(qdev, IFUP, ERR,
  2972. "Failed to init routing register for CAM packets.\n");
  2973. exit:
  2974. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2975. return status;
  2976. }
  2977. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2978. {
  2979. int status, set;
  2980. /* If check if the link is up and use to
  2981. * determine if we are setting or clearing
  2982. * the MAC address in the CAM.
  2983. */
  2984. set = ql_read32(qdev, STS);
  2985. set &= qdev->port_link_up;
  2986. status = ql_set_mac_addr(qdev, set);
  2987. if (status) {
  2988. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2989. return status;
  2990. }
  2991. status = ql_route_initialize(qdev);
  2992. if (status)
  2993. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2994. return status;
  2995. }
  2996. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2997. {
  2998. u32 value, mask;
  2999. int i;
  3000. int status = 0;
  3001. /*
  3002. * Set up the System register to halt on errors.
  3003. */
  3004. value = SYS_EFE | SYS_FAE;
  3005. mask = value << 16;
  3006. ql_write32(qdev, SYS, mask | value);
  3007. /* Set the default queue, and VLAN behavior. */
  3008. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3009. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3010. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3011. /* Set the MPI interrupt to enabled. */
  3012. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3013. /* Enable the function, set pagesize, enable error checking. */
  3014. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3015. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  3016. /* Set/clear header splitting. */
  3017. mask = FSC_VM_PAGESIZE_MASK |
  3018. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3019. ql_write32(qdev, FSC, mask | value);
  3020. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  3021. min(SMALL_BUF_MAP_SIZE, MAX_SPLIT_SIZE));
  3022. /* Set RX packet routing to use port/pci function on which the
  3023. * packet arrived on in addition to usual frame routing.
  3024. * This is helpful on bonding where both interfaces can have
  3025. * the same MAC address.
  3026. */
  3027. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3028. /* Reroute all packets to our Interface.
  3029. * They may have been routed to MPI firmware
  3030. * due to WOL.
  3031. */
  3032. value = ql_read32(qdev, MGMT_RCV_CFG);
  3033. value &= ~MGMT_RCV_CFG_RM;
  3034. mask = 0xffff0000;
  3035. /* Sticky reg needs clearing due to WOL. */
  3036. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3037. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3038. /* Default WOL is enable on Mezz cards */
  3039. if (qdev->pdev->subsystem_device == 0x0068 ||
  3040. qdev->pdev->subsystem_device == 0x0180)
  3041. qdev->wol = WAKE_MAGIC;
  3042. /* Start up the rx queues. */
  3043. for (i = 0; i < qdev->rx_ring_count; i++) {
  3044. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3045. if (status) {
  3046. QPRINTK(qdev, IFUP, ERR,
  3047. "Failed to start rx ring[%d].\n", i);
  3048. return status;
  3049. }
  3050. }
  3051. /* If there is more than one inbound completion queue
  3052. * then download a RICB to configure RSS.
  3053. */
  3054. if (qdev->rss_ring_count > 1) {
  3055. status = ql_start_rss(qdev);
  3056. if (status) {
  3057. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  3058. return status;
  3059. }
  3060. }
  3061. /* Start up the tx queues. */
  3062. for (i = 0; i < qdev->tx_ring_count; i++) {
  3063. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3064. if (status) {
  3065. QPRINTK(qdev, IFUP, ERR,
  3066. "Failed to start tx ring[%d].\n", i);
  3067. return status;
  3068. }
  3069. }
  3070. /* Initialize the port and set the max framesize. */
  3071. status = qdev->nic_ops->port_initialize(qdev);
  3072. if (status)
  3073. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3074. /* Set up the MAC address and frame routing filter. */
  3075. status = ql_cam_route_initialize(qdev);
  3076. if (status) {
  3077. QPRINTK(qdev, IFUP, ERR,
  3078. "Failed to init CAM/Routing tables.\n");
  3079. return status;
  3080. }
  3081. /* Start NAPI for the RSS queues. */
  3082. for (i = 0; i < qdev->rss_ring_count; i++) {
  3083. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3084. i);
  3085. napi_enable(&qdev->rx_ring[i].napi);
  3086. }
  3087. return status;
  3088. }
  3089. /* Issue soft reset to chip. */
  3090. static int ql_adapter_reset(struct ql_adapter *qdev)
  3091. {
  3092. u32 value;
  3093. int status = 0;
  3094. unsigned long end_jiffies;
  3095. /* Clear all the entries in the routing table. */
  3096. status = ql_clear_routing_entries(qdev);
  3097. if (status) {
  3098. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3099. return status;
  3100. }
  3101. end_jiffies = jiffies +
  3102. max((unsigned long)1, usecs_to_jiffies(30));
  3103. /* Stop management traffic. */
  3104. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3105. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3106. ql_wait_fifo_empty(qdev);
  3107. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3108. do {
  3109. value = ql_read32(qdev, RST_FO);
  3110. if ((value & RST_FO_FR) == 0)
  3111. break;
  3112. cpu_relax();
  3113. } while (time_before(jiffies, end_jiffies));
  3114. if (value & RST_FO_FR) {
  3115. QPRINTK(qdev, IFDOWN, ERR,
  3116. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3117. status = -ETIMEDOUT;
  3118. }
  3119. /* Resume management traffic. */
  3120. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3121. return status;
  3122. }
  3123. static void ql_display_dev_info(struct net_device *ndev)
  3124. {
  3125. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3126. QPRINTK(qdev, PROBE, INFO,
  3127. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3128. "XG Roll = %d, XG Rev = %d.\n",
  3129. qdev->func,
  3130. qdev->port,
  3131. qdev->chip_rev_id & 0x0000000f,
  3132. qdev->chip_rev_id >> 4 & 0x0000000f,
  3133. qdev->chip_rev_id >> 8 & 0x0000000f,
  3134. qdev->chip_rev_id >> 12 & 0x0000000f);
  3135. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3136. }
  3137. int ql_wol(struct ql_adapter *qdev)
  3138. {
  3139. int status = 0;
  3140. u32 wol = MB_WOL_DISABLE;
  3141. /* The CAM is still intact after a reset, but if we
  3142. * are doing WOL, then we may need to program the
  3143. * routing regs. We would also need to issue the mailbox
  3144. * commands to instruct the MPI what to do per the ethtool
  3145. * settings.
  3146. */
  3147. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3148. WAKE_MCAST | WAKE_BCAST)) {
  3149. QPRINTK(qdev, IFDOWN, ERR,
  3150. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3151. qdev->wol);
  3152. return -EINVAL;
  3153. }
  3154. if (qdev->wol & WAKE_MAGIC) {
  3155. status = ql_mb_wol_set_magic(qdev, 1);
  3156. if (status) {
  3157. QPRINTK(qdev, IFDOWN, ERR,
  3158. "Failed to set magic packet on %s.\n",
  3159. qdev->ndev->name);
  3160. return status;
  3161. } else
  3162. QPRINTK(qdev, DRV, INFO,
  3163. "Enabled magic packet successfully on %s.\n",
  3164. qdev->ndev->name);
  3165. wol |= MB_WOL_MAGIC_PKT;
  3166. }
  3167. if (qdev->wol) {
  3168. /* Reroute all packets to Management Interface */
  3169. ql_write32(qdev, MGMT_RCV_CFG, (MGMT_RCV_CFG_RM |
  3170. (MGMT_RCV_CFG_RM << 16)));
  3171. wol |= MB_WOL_MODE_ON;
  3172. status = ql_mb_wol_mode(qdev, wol);
  3173. QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
  3174. (status == 0) ? "Sucessfully set" : "Failed", wol,
  3175. qdev->ndev->name);
  3176. }
  3177. return status;
  3178. }
  3179. static int ql_adapter_down(struct ql_adapter *qdev)
  3180. {
  3181. int i, status = 0;
  3182. ql_link_off(qdev);
  3183. /* Don't kill the reset worker thread if we
  3184. * are in the process of recovery.
  3185. */
  3186. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3187. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3188. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3189. cancel_delayed_work_sync(&qdev->mpi_work);
  3190. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3191. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3192. for (i = 0; i < qdev->rss_ring_count; i++)
  3193. napi_disable(&qdev->rx_ring[i].napi);
  3194. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3195. ql_disable_interrupts(qdev);
  3196. ql_tx_ring_clean(qdev);
  3197. /* Call netif_napi_del() from common point.
  3198. */
  3199. for (i = 0; i < qdev->rss_ring_count; i++)
  3200. netif_napi_del(&qdev->rx_ring[i].napi);
  3201. ql_free_rx_buffers(qdev);
  3202. status = ql_adapter_reset(qdev);
  3203. if (status)
  3204. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3205. qdev->func);
  3206. return status;
  3207. }
  3208. static int ql_adapter_up(struct ql_adapter *qdev)
  3209. {
  3210. int err = 0;
  3211. err = ql_adapter_initialize(qdev);
  3212. if (err) {
  3213. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3214. goto err_init;
  3215. }
  3216. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3217. ql_alloc_rx_buffers(qdev);
  3218. /* If the port is initialized and the
  3219. * link is up the turn on the carrier.
  3220. */
  3221. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3222. (ql_read32(qdev, STS) & qdev->port_link_up))
  3223. ql_link_on(qdev);
  3224. ql_enable_interrupts(qdev);
  3225. ql_enable_all_completion_interrupts(qdev);
  3226. netif_tx_start_all_queues(qdev->ndev);
  3227. return 0;
  3228. err_init:
  3229. ql_adapter_reset(qdev);
  3230. return err;
  3231. }
  3232. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3233. {
  3234. ql_free_mem_resources(qdev);
  3235. ql_free_irq(qdev);
  3236. }
  3237. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3238. {
  3239. int status = 0;
  3240. if (ql_alloc_mem_resources(qdev)) {
  3241. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3242. return -ENOMEM;
  3243. }
  3244. status = ql_request_irq(qdev);
  3245. return status;
  3246. }
  3247. static int qlge_close(struct net_device *ndev)
  3248. {
  3249. struct ql_adapter *qdev = netdev_priv(ndev);
  3250. /*
  3251. * Wait for device to recover from a reset.
  3252. * (Rarely happens, but possible.)
  3253. */
  3254. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3255. msleep(1);
  3256. ql_adapter_down(qdev);
  3257. ql_release_adapter_resources(qdev);
  3258. return 0;
  3259. }
  3260. static int ql_configure_rings(struct ql_adapter *qdev)
  3261. {
  3262. int i;
  3263. struct rx_ring *rx_ring;
  3264. struct tx_ring *tx_ring;
  3265. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3266. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3267. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3268. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3269. /* In a perfect world we have one RSS ring for each CPU
  3270. * and each has it's own vector. To do that we ask for
  3271. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3272. * vector count to what we actually get. We then
  3273. * allocate an RSS ring for each.
  3274. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3275. */
  3276. qdev->intr_count = cpu_cnt;
  3277. ql_enable_msix(qdev);
  3278. /* Adjust the RSS ring count to the actual vector count. */
  3279. qdev->rss_ring_count = qdev->intr_count;
  3280. qdev->tx_ring_count = cpu_cnt;
  3281. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3282. for (i = 0; i < qdev->tx_ring_count; i++) {
  3283. tx_ring = &qdev->tx_ring[i];
  3284. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3285. tx_ring->qdev = qdev;
  3286. tx_ring->wq_id = i;
  3287. tx_ring->wq_len = qdev->tx_ring_size;
  3288. tx_ring->wq_size =
  3289. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3290. /*
  3291. * The completion queue ID for the tx rings start
  3292. * immediately after the rss rings.
  3293. */
  3294. tx_ring->cq_id = qdev->rss_ring_count + i;
  3295. }
  3296. for (i = 0; i < qdev->rx_ring_count; i++) {
  3297. rx_ring = &qdev->rx_ring[i];
  3298. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3299. rx_ring->qdev = qdev;
  3300. rx_ring->cq_id = i;
  3301. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3302. if (i < qdev->rss_ring_count) {
  3303. /*
  3304. * Inbound (RSS) queues.
  3305. */
  3306. rx_ring->cq_len = qdev->rx_ring_size;
  3307. rx_ring->cq_size =
  3308. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3309. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3310. rx_ring->lbq_size =
  3311. rx_ring->lbq_len * sizeof(__le64);
  3312. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3313. QPRINTK(qdev, IFUP, DEBUG,
  3314. "lbq_buf_size %d, order = %d\n",
  3315. rx_ring->lbq_buf_size, qdev->lbq_buf_order);
  3316. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3317. rx_ring->sbq_size =
  3318. rx_ring->sbq_len * sizeof(__le64);
  3319. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3320. rx_ring->type = RX_Q;
  3321. } else {
  3322. /*
  3323. * Outbound queue handles outbound completions only.
  3324. */
  3325. /* outbound cq is same size as tx_ring it services. */
  3326. rx_ring->cq_len = qdev->tx_ring_size;
  3327. rx_ring->cq_size =
  3328. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3329. rx_ring->lbq_len = 0;
  3330. rx_ring->lbq_size = 0;
  3331. rx_ring->lbq_buf_size = 0;
  3332. rx_ring->sbq_len = 0;
  3333. rx_ring->sbq_size = 0;
  3334. rx_ring->sbq_buf_size = 0;
  3335. rx_ring->type = TX_Q;
  3336. }
  3337. }
  3338. return 0;
  3339. }
  3340. static int qlge_open(struct net_device *ndev)
  3341. {
  3342. int err = 0;
  3343. struct ql_adapter *qdev = netdev_priv(ndev);
  3344. err = ql_configure_rings(qdev);
  3345. if (err)
  3346. return err;
  3347. err = ql_get_adapter_resources(qdev);
  3348. if (err)
  3349. goto error_up;
  3350. err = ql_adapter_up(qdev);
  3351. if (err)
  3352. goto error_up;
  3353. return err;
  3354. error_up:
  3355. ql_release_adapter_resources(qdev);
  3356. return err;
  3357. }
  3358. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3359. {
  3360. struct rx_ring *rx_ring;
  3361. int i, status;
  3362. u32 lbq_buf_len;
  3363. /* Wait for an oustanding reset to complete. */
  3364. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3365. int i = 3;
  3366. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3367. QPRINTK(qdev, IFUP, ERR,
  3368. "Waiting for adapter UP...\n");
  3369. ssleep(1);
  3370. }
  3371. if (!i) {
  3372. QPRINTK(qdev, IFUP, ERR,
  3373. "Timed out waiting for adapter UP\n");
  3374. return -ETIMEDOUT;
  3375. }
  3376. }
  3377. status = ql_adapter_down(qdev);
  3378. if (status)
  3379. goto error;
  3380. /* Get the new rx buffer size. */
  3381. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3382. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3383. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3384. for (i = 0; i < qdev->rss_ring_count; i++) {
  3385. rx_ring = &qdev->rx_ring[i];
  3386. /* Set the new size. */
  3387. rx_ring->lbq_buf_size = lbq_buf_len;
  3388. }
  3389. status = ql_adapter_up(qdev);
  3390. if (status)
  3391. goto error;
  3392. return status;
  3393. error:
  3394. QPRINTK(qdev, IFUP, ALERT,
  3395. "Driver up/down cycle failed, closing device.\n");
  3396. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3397. dev_close(qdev->ndev);
  3398. return status;
  3399. }
  3400. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3401. {
  3402. struct ql_adapter *qdev = netdev_priv(ndev);
  3403. int status;
  3404. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3405. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3406. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3407. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3408. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3409. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3410. return 0;
  3411. } else
  3412. return -EINVAL;
  3413. queue_delayed_work(qdev->workqueue,
  3414. &qdev->mpi_port_cfg_work, 3*HZ);
  3415. if (!netif_running(qdev->ndev)) {
  3416. ndev->mtu = new_mtu;
  3417. return 0;
  3418. }
  3419. ndev->mtu = new_mtu;
  3420. status = ql_change_rx_buffers(qdev);
  3421. if (status) {
  3422. QPRINTK(qdev, IFUP, ERR,
  3423. "Changing MTU failed.\n");
  3424. }
  3425. return status;
  3426. }
  3427. static struct net_device_stats *qlge_get_stats(struct net_device
  3428. *ndev)
  3429. {
  3430. return &ndev->stats;
  3431. }
  3432. static void qlge_set_multicast_list(struct net_device *ndev)
  3433. {
  3434. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3435. struct dev_mc_list *mc_ptr;
  3436. int i, status;
  3437. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3438. if (status)
  3439. return;
  3440. /*
  3441. * Set or clear promiscuous mode if a
  3442. * transition is taking place.
  3443. */
  3444. if (ndev->flags & IFF_PROMISC) {
  3445. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3446. if (ql_set_routing_reg
  3447. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3448. QPRINTK(qdev, HW, ERR,
  3449. "Failed to set promiscous mode.\n");
  3450. } else {
  3451. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3452. }
  3453. }
  3454. } else {
  3455. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3456. if (ql_set_routing_reg
  3457. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3458. QPRINTK(qdev, HW, ERR,
  3459. "Failed to clear promiscous mode.\n");
  3460. } else {
  3461. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3462. }
  3463. }
  3464. }
  3465. /*
  3466. * Set or clear all multicast mode if a
  3467. * transition is taking place.
  3468. */
  3469. if ((ndev->flags & IFF_ALLMULTI) ||
  3470. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3471. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3472. if (ql_set_routing_reg
  3473. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3474. QPRINTK(qdev, HW, ERR,
  3475. "Failed to set all-multi mode.\n");
  3476. } else {
  3477. set_bit(QL_ALLMULTI, &qdev->flags);
  3478. }
  3479. }
  3480. } else {
  3481. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3482. if (ql_set_routing_reg
  3483. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3484. QPRINTK(qdev, HW, ERR,
  3485. "Failed to clear all-multi mode.\n");
  3486. } else {
  3487. clear_bit(QL_ALLMULTI, &qdev->flags);
  3488. }
  3489. }
  3490. }
  3491. if (ndev->mc_count) {
  3492. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3493. if (status)
  3494. goto exit;
  3495. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3496. i++, mc_ptr = mc_ptr->next)
  3497. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3498. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3499. QPRINTK(qdev, HW, ERR,
  3500. "Failed to loadmulticast address.\n");
  3501. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3502. goto exit;
  3503. }
  3504. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3505. if (ql_set_routing_reg
  3506. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3507. QPRINTK(qdev, HW, ERR,
  3508. "Failed to set multicast match mode.\n");
  3509. } else {
  3510. set_bit(QL_ALLMULTI, &qdev->flags);
  3511. }
  3512. }
  3513. exit:
  3514. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3515. }
  3516. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3517. {
  3518. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3519. struct sockaddr *addr = p;
  3520. int status;
  3521. if (netif_running(ndev))
  3522. return -EBUSY;
  3523. if (!is_valid_ether_addr(addr->sa_data))
  3524. return -EADDRNOTAVAIL;
  3525. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3526. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3527. if (status)
  3528. return status;
  3529. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3530. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3531. if (status)
  3532. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3533. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3534. return status;
  3535. }
  3536. static void qlge_tx_timeout(struct net_device *ndev)
  3537. {
  3538. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3539. ql_queue_asic_error(qdev);
  3540. }
  3541. static void ql_asic_reset_work(struct work_struct *work)
  3542. {
  3543. struct ql_adapter *qdev =
  3544. container_of(work, struct ql_adapter, asic_reset_work.work);
  3545. int status;
  3546. rtnl_lock();
  3547. status = ql_adapter_down(qdev);
  3548. if (status)
  3549. goto error;
  3550. status = ql_adapter_up(qdev);
  3551. if (status)
  3552. goto error;
  3553. /* Restore rx mode. */
  3554. clear_bit(QL_ALLMULTI, &qdev->flags);
  3555. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3556. qlge_set_multicast_list(qdev->ndev);
  3557. rtnl_unlock();
  3558. return;
  3559. error:
  3560. QPRINTK(qdev, IFUP, ALERT,
  3561. "Driver up/down cycle failed, closing device\n");
  3562. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3563. dev_close(qdev->ndev);
  3564. rtnl_unlock();
  3565. }
  3566. static struct nic_operations qla8012_nic_ops = {
  3567. .get_flash = ql_get_8012_flash_params,
  3568. .port_initialize = ql_8012_port_initialize,
  3569. };
  3570. static struct nic_operations qla8000_nic_ops = {
  3571. .get_flash = ql_get_8000_flash_params,
  3572. .port_initialize = ql_8000_port_initialize,
  3573. };
  3574. /* Find the pcie function number for the other NIC
  3575. * on this chip. Since both NIC functions share a
  3576. * common firmware we have the lowest enabled function
  3577. * do any common work. Examples would be resetting
  3578. * after a fatal firmware error, or doing a firmware
  3579. * coredump.
  3580. */
  3581. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3582. {
  3583. int status = 0;
  3584. u32 temp;
  3585. u32 nic_func1, nic_func2;
  3586. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3587. &temp);
  3588. if (status)
  3589. return status;
  3590. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3591. MPI_TEST_NIC_FUNC_MASK);
  3592. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3593. MPI_TEST_NIC_FUNC_MASK);
  3594. if (qdev->func == nic_func1)
  3595. qdev->alt_func = nic_func2;
  3596. else if (qdev->func == nic_func2)
  3597. qdev->alt_func = nic_func1;
  3598. else
  3599. status = -EIO;
  3600. return status;
  3601. }
  3602. static int ql_get_board_info(struct ql_adapter *qdev)
  3603. {
  3604. int status;
  3605. qdev->func =
  3606. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3607. if (qdev->func > 3)
  3608. return -EIO;
  3609. status = ql_get_alt_pcie_func(qdev);
  3610. if (status)
  3611. return status;
  3612. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3613. if (qdev->port) {
  3614. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3615. qdev->port_link_up = STS_PL1;
  3616. qdev->port_init = STS_PI1;
  3617. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3618. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3619. } else {
  3620. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3621. qdev->port_link_up = STS_PL0;
  3622. qdev->port_init = STS_PI0;
  3623. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3624. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3625. }
  3626. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3627. qdev->device_id = qdev->pdev->device;
  3628. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3629. qdev->nic_ops = &qla8012_nic_ops;
  3630. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3631. qdev->nic_ops = &qla8000_nic_ops;
  3632. return status;
  3633. }
  3634. static void ql_release_all(struct pci_dev *pdev)
  3635. {
  3636. struct net_device *ndev = pci_get_drvdata(pdev);
  3637. struct ql_adapter *qdev = netdev_priv(ndev);
  3638. if (qdev->workqueue) {
  3639. destroy_workqueue(qdev->workqueue);
  3640. qdev->workqueue = NULL;
  3641. }
  3642. if (qdev->reg_base)
  3643. iounmap(qdev->reg_base);
  3644. if (qdev->doorbell_area)
  3645. iounmap(qdev->doorbell_area);
  3646. pci_release_regions(pdev);
  3647. pci_set_drvdata(pdev, NULL);
  3648. }
  3649. static int __devinit ql_init_device(struct pci_dev *pdev,
  3650. struct net_device *ndev, int cards_found)
  3651. {
  3652. struct ql_adapter *qdev = netdev_priv(ndev);
  3653. int err = 0;
  3654. memset((void *)qdev, 0, sizeof(*qdev));
  3655. err = pci_enable_device(pdev);
  3656. if (err) {
  3657. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3658. return err;
  3659. }
  3660. qdev->ndev = ndev;
  3661. qdev->pdev = pdev;
  3662. pci_set_drvdata(pdev, ndev);
  3663. /* Set PCIe read request size */
  3664. err = pcie_set_readrq(pdev, 4096);
  3665. if (err) {
  3666. dev_err(&pdev->dev, "Set readrq failed.\n");
  3667. goto err_out;
  3668. }
  3669. err = pci_request_regions(pdev, DRV_NAME);
  3670. if (err) {
  3671. dev_err(&pdev->dev, "PCI region request failed.\n");
  3672. return err;
  3673. }
  3674. pci_set_master(pdev);
  3675. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3676. set_bit(QL_DMA64, &qdev->flags);
  3677. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3678. } else {
  3679. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3680. if (!err)
  3681. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3682. }
  3683. if (err) {
  3684. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3685. goto err_out;
  3686. }
  3687. pci_save_state(pdev);
  3688. qdev->reg_base =
  3689. ioremap_nocache(pci_resource_start(pdev, 1),
  3690. pci_resource_len(pdev, 1));
  3691. if (!qdev->reg_base) {
  3692. dev_err(&pdev->dev, "Register mapping failed.\n");
  3693. err = -ENOMEM;
  3694. goto err_out;
  3695. }
  3696. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3697. qdev->doorbell_area =
  3698. ioremap_nocache(pci_resource_start(pdev, 3),
  3699. pci_resource_len(pdev, 3));
  3700. if (!qdev->doorbell_area) {
  3701. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3702. err = -ENOMEM;
  3703. goto err_out;
  3704. }
  3705. err = ql_get_board_info(qdev);
  3706. if (err) {
  3707. dev_err(&pdev->dev, "Register access failed.\n");
  3708. err = -EIO;
  3709. goto err_out;
  3710. }
  3711. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3712. spin_lock_init(&qdev->hw_lock);
  3713. spin_lock_init(&qdev->stats_lock);
  3714. /* make sure the EEPROM is good */
  3715. err = qdev->nic_ops->get_flash(qdev);
  3716. if (err) {
  3717. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3718. goto err_out;
  3719. }
  3720. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3721. /* Set up the default ring sizes. */
  3722. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3723. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3724. /* Set up the coalescing parameters. */
  3725. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3726. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3727. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3728. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3729. /*
  3730. * Set up the operating parameters.
  3731. */
  3732. qdev->rx_csum = 1;
  3733. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3734. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3735. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3736. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3737. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3738. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3739. init_completion(&qdev->ide_completion);
  3740. if (!cards_found) {
  3741. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3742. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3743. DRV_NAME, DRV_VERSION);
  3744. }
  3745. return 0;
  3746. err_out:
  3747. ql_release_all(pdev);
  3748. pci_disable_device(pdev);
  3749. return err;
  3750. }
  3751. static const struct net_device_ops qlge_netdev_ops = {
  3752. .ndo_open = qlge_open,
  3753. .ndo_stop = qlge_close,
  3754. .ndo_start_xmit = qlge_send,
  3755. .ndo_change_mtu = qlge_change_mtu,
  3756. .ndo_get_stats = qlge_get_stats,
  3757. .ndo_set_multicast_list = qlge_set_multicast_list,
  3758. .ndo_set_mac_address = qlge_set_mac_address,
  3759. .ndo_validate_addr = eth_validate_addr,
  3760. .ndo_tx_timeout = qlge_tx_timeout,
  3761. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  3762. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  3763. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  3764. };
  3765. static int __devinit qlge_probe(struct pci_dev *pdev,
  3766. const struct pci_device_id *pci_entry)
  3767. {
  3768. struct net_device *ndev = NULL;
  3769. struct ql_adapter *qdev = NULL;
  3770. static int cards_found = 0;
  3771. int err = 0;
  3772. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3773. min(MAX_CPUS, (int)num_online_cpus()));
  3774. if (!ndev)
  3775. return -ENOMEM;
  3776. err = ql_init_device(pdev, ndev, cards_found);
  3777. if (err < 0) {
  3778. free_netdev(ndev);
  3779. return err;
  3780. }
  3781. qdev = netdev_priv(ndev);
  3782. SET_NETDEV_DEV(ndev, &pdev->dev);
  3783. ndev->features = (0
  3784. | NETIF_F_IP_CSUM
  3785. | NETIF_F_SG
  3786. | NETIF_F_TSO
  3787. | NETIF_F_TSO6
  3788. | NETIF_F_TSO_ECN
  3789. | NETIF_F_HW_VLAN_TX
  3790. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3791. ndev->features |= NETIF_F_GRO;
  3792. if (test_bit(QL_DMA64, &qdev->flags))
  3793. ndev->features |= NETIF_F_HIGHDMA;
  3794. /*
  3795. * Set up net_device structure.
  3796. */
  3797. ndev->tx_queue_len = qdev->tx_ring_size;
  3798. ndev->irq = pdev->irq;
  3799. ndev->netdev_ops = &qlge_netdev_ops;
  3800. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3801. ndev->watchdog_timeo = 10 * HZ;
  3802. err = register_netdev(ndev);
  3803. if (err) {
  3804. dev_err(&pdev->dev, "net device registration failed.\n");
  3805. ql_release_all(pdev);
  3806. pci_disable_device(pdev);
  3807. return err;
  3808. }
  3809. ql_link_off(qdev);
  3810. ql_display_dev_info(ndev);
  3811. atomic_set(&qdev->lb_count, 0);
  3812. cards_found++;
  3813. return 0;
  3814. }
  3815. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  3816. {
  3817. return qlge_send(skb, ndev);
  3818. }
  3819. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  3820. {
  3821. return ql_clean_inbound_rx_ring(rx_ring, budget);
  3822. }
  3823. static void __devexit qlge_remove(struct pci_dev *pdev)
  3824. {
  3825. struct net_device *ndev = pci_get_drvdata(pdev);
  3826. unregister_netdev(ndev);
  3827. ql_release_all(pdev);
  3828. pci_disable_device(pdev);
  3829. free_netdev(ndev);
  3830. }
  3831. /* Clean up resources without touching hardware. */
  3832. static void ql_eeh_close(struct net_device *ndev)
  3833. {
  3834. int i;
  3835. struct ql_adapter *qdev = netdev_priv(ndev);
  3836. if (netif_carrier_ok(ndev)) {
  3837. netif_carrier_off(ndev);
  3838. netif_stop_queue(ndev);
  3839. }
  3840. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3841. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3842. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3843. cancel_delayed_work_sync(&qdev->mpi_work);
  3844. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3845. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3846. for (i = 0; i < qdev->rss_ring_count; i++)
  3847. netif_napi_del(&qdev->rx_ring[i].napi);
  3848. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3849. ql_tx_ring_clean(qdev);
  3850. ql_free_rx_buffers(qdev);
  3851. ql_release_adapter_resources(qdev);
  3852. }
  3853. /*
  3854. * This callback is called by the PCI subsystem whenever
  3855. * a PCI bus error is detected.
  3856. */
  3857. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3858. enum pci_channel_state state)
  3859. {
  3860. struct net_device *ndev = pci_get_drvdata(pdev);
  3861. switch (state) {
  3862. case pci_channel_io_normal:
  3863. return PCI_ERS_RESULT_CAN_RECOVER;
  3864. case pci_channel_io_frozen:
  3865. netif_device_detach(ndev);
  3866. if (netif_running(ndev))
  3867. ql_eeh_close(ndev);
  3868. pci_disable_device(pdev);
  3869. return PCI_ERS_RESULT_NEED_RESET;
  3870. case pci_channel_io_perm_failure:
  3871. dev_err(&pdev->dev,
  3872. "%s: pci_channel_io_perm_failure.\n", __func__);
  3873. return PCI_ERS_RESULT_DISCONNECT;
  3874. }
  3875. /* Request a slot reset. */
  3876. return PCI_ERS_RESULT_NEED_RESET;
  3877. }
  3878. /*
  3879. * This callback is called after the PCI buss has been reset.
  3880. * Basically, this tries to restart the card from scratch.
  3881. * This is a shortened version of the device probe/discovery code,
  3882. * it resembles the first-half of the () routine.
  3883. */
  3884. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3885. {
  3886. struct net_device *ndev = pci_get_drvdata(pdev);
  3887. struct ql_adapter *qdev = netdev_priv(ndev);
  3888. pdev->error_state = pci_channel_io_normal;
  3889. pci_restore_state(pdev);
  3890. if (pci_enable_device(pdev)) {
  3891. QPRINTK(qdev, IFUP, ERR,
  3892. "Cannot re-enable PCI device after reset.\n");
  3893. return PCI_ERS_RESULT_DISCONNECT;
  3894. }
  3895. pci_set_master(pdev);
  3896. return PCI_ERS_RESULT_RECOVERED;
  3897. }
  3898. static void qlge_io_resume(struct pci_dev *pdev)
  3899. {
  3900. struct net_device *ndev = pci_get_drvdata(pdev);
  3901. struct ql_adapter *qdev = netdev_priv(ndev);
  3902. int err = 0;
  3903. if (ql_adapter_reset(qdev))
  3904. QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
  3905. if (netif_running(ndev)) {
  3906. err = qlge_open(ndev);
  3907. if (err) {
  3908. QPRINTK(qdev, IFUP, ERR,
  3909. "Device initialization failed after reset.\n");
  3910. return;
  3911. }
  3912. } else {
  3913. QPRINTK(qdev, IFUP, ERR,
  3914. "Device was not running prior to EEH.\n");
  3915. }
  3916. netif_device_attach(ndev);
  3917. }
  3918. static struct pci_error_handlers qlge_err_handler = {
  3919. .error_detected = qlge_io_error_detected,
  3920. .slot_reset = qlge_io_slot_reset,
  3921. .resume = qlge_io_resume,
  3922. };
  3923. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3924. {
  3925. struct net_device *ndev = pci_get_drvdata(pdev);
  3926. struct ql_adapter *qdev = netdev_priv(ndev);
  3927. int err;
  3928. netif_device_detach(ndev);
  3929. if (netif_running(ndev)) {
  3930. err = ql_adapter_down(qdev);
  3931. if (!err)
  3932. return err;
  3933. }
  3934. ql_wol(qdev);
  3935. err = pci_save_state(pdev);
  3936. if (err)
  3937. return err;
  3938. pci_disable_device(pdev);
  3939. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3940. return 0;
  3941. }
  3942. #ifdef CONFIG_PM
  3943. static int qlge_resume(struct pci_dev *pdev)
  3944. {
  3945. struct net_device *ndev = pci_get_drvdata(pdev);
  3946. struct ql_adapter *qdev = netdev_priv(ndev);
  3947. int err;
  3948. pci_set_power_state(pdev, PCI_D0);
  3949. pci_restore_state(pdev);
  3950. err = pci_enable_device(pdev);
  3951. if (err) {
  3952. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3953. return err;
  3954. }
  3955. pci_set_master(pdev);
  3956. pci_enable_wake(pdev, PCI_D3hot, 0);
  3957. pci_enable_wake(pdev, PCI_D3cold, 0);
  3958. if (netif_running(ndev)) {
  3959. err = ql_adapter_up(qdev);
  3960. if (err)
  3961. return err;
  3962. }
  3963. netif_device_attach(ndev);
  3964. return 0;
  3965. }
  3966. #endif /* CONFIG_PM */
  3967. static void qlge_shutdown(struct pci_dev *pdev)
  3968. {
  3969. qlge_suspend(pdev, PMSG_SUSPEND);
  3970. }
  3971. static struct pci_driver qlge_driver = {
  3972. .name = DRV_NAME,
  3973. .id_table = qlge_pci_tbl,
  3974. .probe = qlge_probe,
  3975. .remove = __devexit_p(qlge_remove),
  3976. #ifdef CONFIG_PM
  3977. .suspend = qlge_suspend,
  3978. .resume = qlge_resume,
  3979. #endif
  3980. .shutdown = qlge_shutdown,
  3981. .err_handler = &qlge_err_handler
  3982. };
  3983. static int __init qlge_init_module(void)
  3984. {
  3985. return pci_register_driver(&qlge_driver);
  3986. }
  3987. static void __exit qlge_exit(void)
  3988. {
  3989. pci_unregister_driver(&qlge_driver);
  3990. }
  3991. module_init(qlge_init_module);
  3992. module_exit(qlge_exit);