vmx.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return vmcs_config.cpu_based_2nd_exec_ctrl &
  205. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  206. }
  207. static inline bool cpu_has_vmx_flexpriority(void)
  208. {
  209. return cpu_has_vmx_tpr_shadow() &&
  210. cpu_has_vmx_virtualize_apic_accesses();
  211. }
  212. static inline int cpu_has_vmx_invept_individual_addr(void)
  213. {
  214. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  215. }
  216. static inline int cpu_has_vmx_invept_context(void)
  217. {
  218. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  219. }
  220. static inline int cpu_has_vmx_invept_global(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_ept(void)
  225. {
  226. return vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_ENABLE_EPT;
  228. }
  229. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  230. {
  231. return flexpriority_enabled &&
  232. (cpu_has_vmx_virtualize_apic_accesses()) &&
  233. (irqchip_in_kernel(kvm));
  234. }
  235. static inline int cpu_has_vmx_vpid(void)
  236. {
  237. return vmcs_config.cpu_based_2nd_exec_ctrl &
  238. SECONDARY_EXEC_ENABLE_VPID;
  239. }
  240. static inline int cpu_has_virtual_nmis(void)
  241. {
  242. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  243. }
  244. static inline bool report_flexpriority(void)
  245. {
  246. return flexpriority_enabled;
  247. }
  248. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  249. {
  250. int i;
  251. for (i = 0; i < vmx->nmsrs; ++i)
  252. if (vmx->guest_msrs[i].index == msr)
  253. return i;
  254. return -1;
  255. }
  256. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  257. {
  258. struct {
  259. u64 vpid : 16;
  260. u64 rsvd : 48;
  261. u64 gva;
  262. } operand = { vpid, 0, gva };
  263. asm volatile (__ex(ASM_VMX_INVVPID)
  264. /* CF==1 or ZF==1 --> rc = -1 */
  265. "; ja 1f ; ud2 ; 1:"
  266. : : "a"(&operand), "c"(ext) : "cc", "memory");
  267. }
  268. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  269. {
  270. struct {
  271. u64 eptp, gpa;
  272. } operand = {eptp, gpa};
  273. asm volatile (__ex(ASM_VMX_INVEPT)
  274. /* CF==1 or ZF==1 --> rc = -1 */
  275. "; ja 1f ; ud2 ; 1:\n"
  276. : : "a" (&operand), "c" (ext) : "cc", "memory");
  277. }
  278. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  279. {
  280. int i;
  281. i = __find_msr_index(vmx, msr);
  282. if (i >= 0)
  283. return &vmx->guest_msrs[i];
  284. return NULL;
  285. }
  286. static void vmcs_clear(struct vmcs *vmcs)
  287. {
  288. u64 phys_addr = __pa(vmcs);
  289. u8 error;
  290. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  291. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  292. : "cc", "memory");
  293. if (error)
  294. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  295. vmcs, phys_addr);
  296. }
  297. static void __vcpu_clear(void *arg)
  298. {
  299. struct vcpu_vmx *vmx = arg;
  300. int cpu = raw_smp_processor_id();
  301. if (vmx->vcpu.cpu == cpu)
  302. vmcs_clear(vmx->vmcs);
  303. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  304. per_cpu(current_vmcs, cpu) = NULL;
  305. rdtscll(vmx->vcpu.arch.host_tsc);
  306. list_del(&vmx->local_vcpus_link);
  307. vmx->vcpu.cpu = -1;
  308. vmx->launched = 0;
  309. }
  310. static void vcpu_clear(struct vcpu_vmx *vmx)
  311. {
  312. if (vmx->vcpu.cpu == -1)
  313. return;
  314. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  315. }
  316. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  317. {
  318. if (vmx->vpid == 0)
  319. return;
  320. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  321. }
  322. static inline void ept_sync_global(void)
  323. {
  324. if (cpu_has_vmx_invept_global())
  325. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  326. }
  327. static inline void ept_sync_context(u64 eptp)
  328. {
  329. if (enable_ept) {
  330. if (cpu_has_vmx_invept_context())
  331. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  332. else
  333. ept_sync_global();
  334. }
  335. }
  336. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  337. {
  338. if (enable_ept) {
  339. if (cpu_has_vmx_invept_individual_addr())
  340. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  341. eptp, gpa);
  342. else
  343. ept_sync_context(eptp);
  344. }
  345. }
  346. static unsigned long vmcs_readl(unsigned long field)
  347. {
  348. unsigned long value;
  349. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  350. : "=a"(value) : "d"(field) : "cc");
  351. return value;
  352. }
  353. static u16 vmcs_read16(unsigned long field)
  354. {
  355. return vmcs_readl(field);
  356. }
  357. static u32 vmcs_read32(unsigned long field)
  358. {
  359. return vmcs_readl(field);
  360. }
  361. static u64 vmcs_read64(unsigned long field)
  362. {
  363. #ifdef CONFIG_X86_64
  364. return vmcs_readl(field);
  365. #else
  366. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  367. #endif
  368. }
  369. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  370. {
  371. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  372. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  373. dump_stack();
  374. }
  375. static void vmcs_writel(unsigned long field, unsigned long value)
  376. {
  377. u8 error;
  378. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  379. : "=q"(error) : "a"(value), "d"(field) : "cc");
  380. if (unlikely(error))
  381. vmwrite_error(field, value);
  382. }
  383. static void vmcs_write16(unsigned long field, u16 value)
  384. {
  385. vmcs_writel(field, value);
  386. }
  387. static void vmcs_write32(unsigned long field, u32 value)
  388. {
  389. vmcs_writel(field, value);
  390. }
  391. static void vmcs_write64(unsigned long field, u64 value)
  392. {
  393. vmcs_writel(field, value);
  394. #ifndef CONFIG_X86_64
  395. asm volatile ("");
  396. vmcs_writel(field+1, value >> 32);
  397. #endif
  398. }
  399. static void vmcs_clear_bits(unsigned long field, u32 mask)
  400. {
  401. vmcs_writel(field, vmcs_readl(field) & ~mask);
  402. }
  403. static void vmcs_set_bits(unsigned long field, u32 mask)
  404. {
  405. vmcs_writel(field, vmcs_readl(field) | mask);
  406. }
  407. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  408. {
  409. u32 eb;
  410. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  411. if (!vcpu->fpu_active)
  412. eb |= 1u << NM_VECTOR;
  413. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  414. if (vcpu->guest_debug &
  415. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  416. eb |= 1u << DB_VECTOR;
  417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  418. eb |= 1u << BP_VECTOR;
  419. }
  420. if (vcpu->arch.rmode.active)
  421. eb = ~0;
  422. if (enable_ept)
  423. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  424. vmcs_write32(EXCEPTION_BITMAP, eb);
  425. }
  426. static void reload_tss(void)
  427. {
  428. /*
  429. * VT restores TR but not its size. Useless.
  430. */
  431. struct descriptor_table gdt;
  432. struct desc_struct *descs;
  433. kvm_get_gdt(&gdt);
  434. descs = (void *)gdt.base;
  435. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  436. load_TR_desc();
  437. }
  438. static void load_transition_efer(struct vcpu_vmx *vmx)
  439. {
  440. int efer_offset = vmx->msr_offset_efer;
  441. u64 host_efer = vmx->host_msrs[efer_offset].data;
  442. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  443. u64 ignore_bits;
  444. if (efer_offset < 0)
  445. return;
  446. /*
  447. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  448. * outside long mode
  449. */
  450. ignore_bits = EFER_NX | EFER_SCE;
  451. #ifdef CONFIG_X86_64
  452. ignore_bits |= EFER_LMA | EFER_LME;
  453. /* SCE is meaningful only in long mode on Intel */
  454. if (guest_efer & EFER_LMA)
  455. ignore_bits &= ~(u64)EFER_SCE;
  456. #endif
  457. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  458. return;
  459. vmx->host_state.guest_efer_loaded = 1;
  460. guest_efer &= ~ignore_bits;
  461. guest_efer |= host_efer & ignore_bits;
  462. wrmsrl(MSR_EFER, guest_efer);
  463. vmx->vcpu.stat.efer_reload++;
  464. }
  465. static void reload_host_efer(struct vcpu_vmx *vmx)
  466. {
  467. if (vmx->host_state.guest_efer_loaded) {
  468. vmx->host_state.guest_efer_loaded = 0;
  469. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  470. }
  471. }
  472. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  473. {
  474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  475. if (vmx->host_state.loaded)
  476. return;
  477. vmx->host_state.loaded = 1;
  478. /*
  479. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  480. * allow segment selectors with cpl > 0 or ti == 1.
  481. */
  482. vmx->host_state.ldt_sel = kvm_read_ldt();
  483. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  484. vmx->host_state.fs_sel = kvm_read_fs();
  485. if (!(vmx->host_state.fs_sel & 7)) {
  486. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  487. vmx->host_state.fs_reload_needed = 0;
  488. } else {
  489. vmcs_write16(HOST_FS_SELECTOR, 0);
  490. vmx->host_state.fs_reload_needed = 1;
  491. }
  492. vmx->host_state.gs_sel = kvm_read_gs();
  493. if (!(vmx->host_state.gs_sel & 7))
  494. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  495. else {
  496. vmcs_write16(HOST_GS_SELECTOR, 0);
  497. vmx->host_state.gs_ldt_reload_needed = 1;
  498. }
  499. #ifdef CONFIG_X86_64
  500. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  501. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  502. #else
  503. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  504. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  505. #endif
  506. #ifdef CONFIG_X86_64
  507. if (is_long_mode(&vmx->vcpu))
  508. save_msrs(vmx->host_msrs +
  509. vmx->msr_offset_kernel_gs_base, 1);
  510. #endif
  511. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  512. load_transition_efer(vmx);
  513. }
  514. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  515. {
  516. unsigned long flags;
  517. if (!vmx->host_state.loaded)
  518. return;
  519. ++vmx->vcpu.stat.host_state_reload;
  520. vmx->host_state.loaded = 0;
  521. if (vmx->host_state.fs_reload_needed)
  522. kvm_load_fs(vmx->host_state.fs_sel);
  523. if (vmx->host_state.gs_ldt_reload_needed) {
  524. kvm_load_ldt(vmx->host_state.ldt_sel);
  525. /*
  526. * If we have to reload gs, we must take care to
  527. * preserve our gs base.
  528. */
  529. local_irq_save(flags);
  530. kvm_load_gs(vmx->host_state.gs_sel);
  531. #ifdef CONFIG_X86_64
  532. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  533. #endif
  534. local_irq_restore(flags);
  535. }
  536. reload_tss();
  537. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  538. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  539. reload_host_efer(vmx);
  540. }
  541. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  542. {
  543. preempt_disable();
  544. __vmx_load_host_state(vmx);
  545. preempt_enable();
  546. }
  547. /*
  548. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  549. * vcpu mutex is already taken.
  550. */
  551. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  552. {
  553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  554. u64 phys_addr = __pa(vmx->vmcs);
  555. u64 tsc_this, delta, new_offset;
  556. if (vcpu->cpu != cpu) {
  557. vcpu_clear(vmx);
  558. kvm_migrate_timers(vcpu);
  559. vpid_sync_vcpu_all(vmx);
  560. local_irq_disable();
  561. list_add(&vmx->local_vcpus_link,
  562. &per_cpu(vcpus_on_cpu, cpu));
  563. local_irq_enable();
  564. }
  565. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  566. u8 error;
  567. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  568. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  569. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  570. : "cc");
  571. if (error)
  572. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  573. vmx->vmcs, phys_addr);
  574. }
  575. if (vcpu->cpu != cpu) {
  576. struct descriptor_table dt;
  577. unsigned long sysenter_esp;
  578. vcpu->cpu = cpu;
  579. /*
  580. * Linux uses per-cpu TSS and GDT, so set these when switching
  581. * processors.
  582. */
  583. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  584. kvm_get_gdt(&dt);
  585. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  586. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  587. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  588. /*
  589. * Make sure the time stamp counter is monotonous.
  590. */
  591. rdtscll(tsc_this);
  592. if (tsc_this < vcpu->arch.host_tsc) {
  593. delta = vcpu->arch.host_tsc - tsc_this;
  594. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  595. vmcs_write64(TSC_OFFSET, new_offset);
  596. }
  597. }
  598. }
  599. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  600. {
  601. __vmx_load_host_state(to_vmx(vcpu));
  602. }
  603. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  604. {
  605. if (vcpu->fpu_active)
  606. return;
  607. vcpu->fpu_active = 1;
  608. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  609. if (vcpu->arch.cr0 & X86_CR0_TS)
  610. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  611. update_exception_bitmap(vcpu);
  612. }
  613. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  614. {
  615. if (!vcpu->fpu_active)
  616. return;
  617. vcpu->fpu_active = 0;
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  622. {
  623. return vmcs_readl(GUEST_RFLAGS);
  624. }
  625. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  626. {
  627. if (vcpu->arch.rmode.active)
  628. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  629. vmcs_writel(GUEST_RFLAGS, rflags);
  630. }
  631. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  632. {
  633. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  634. int ret = 0;
  635. if (interruptibility & GUEST_INTR_STATE_STI)
  636. ret |= X86_SHADOW_INT_STI;
  637. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  638. ret |= X86_SHADOW_INT_MOV_SS;
  639. return ret & mask;
  640. }
  641. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  642. {
  643. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  644. u32 interruptibility = interruptibility_old;
  645. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  646. if (mask & X86_SHADOW_INT_MOV_SS)
  647. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  648. if (mask & X86_SHADOW_INT_STI)
  649. interruptibility |= GUEST_INTR_STATE_STI;
  650. if ((interruptibility != interruptibility_old))
  651. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  652. }
  653. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  654. {
  655. unsigned long rip;
  656. rip = kvm_rip_read(vcpu);
  657. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  658. kvm_rip_write(vcpu, rip);
  659. /* skipping an emulated instruction also counts */
  660. vmx_set_interrupt_shadow(vcpu, 0);
  661. }
  662. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  663. bool has_error_code, u32 error_code)
  664. {
  665. struct vcpu_vmx *vmx = to_vmx(vcpu);
  666. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  667. if (has_error_code) {
  668. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  669. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  670. }
  671. if (vcpu->arch.rmode.active) {
  672. vmx->rmode.irq.pending = true;
  673. vmx->rmode.irq.vector = nr;
  674. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  675. if (nr == BP_VECTOR || nr == OF_VECTOR)
  676. vmx->rmode.irq.rip++;
  677. intr_info |= INTR_TYPE_SOFT_INTR;
  678. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  679. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  680. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  681. return;
  682. }
  683. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  684. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  685. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  686. } else
  687. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  688. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  689. }
  690. /*
  691. * Swap MSR entry in host/guest MSR entry array.
  692. */
  693. #ifdef CONFIG_X86_64
  694. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  695. {
  696. struct kvm_msr_entry tmp;
  697. tmp = vmx->guest_msrs[to];
  698. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  699. vmx->guest_msrs[from] = tmp;
  700. tmp = vmx->host_msrs[to];
  701. vmx->host_msrs[to] = vmx->host_msrs[from];
  702. vmx->host_msrs[from] = tmp;
  703. }
  704. #endif
  705. /*
  706. * Set up the vmcs to automatically save and restore system
  707. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  708. * mode, as fiddling with msrs is very expensive.
  709. */
  710. static void setup_msrs(struct vcpu_vmx *vmx)
  711. {
  712. int save_nmsrs;
  713. unsigned long *msr_bitmap;
  714. vmx_load_host_state(vmx);
  715. save_nmsrs = 0;
  716. #ifdef CONFIG_X86_64
  717. if (is_long_mode(&vmx->vcpu)) {
  718. int index;
  719. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  720. if (index >= 0)
  721. move_msr_up(vmx, index, save_nmsrs++);
  722. index = __find_msr_index(vmx, MSR_LSTAR);
  723. if (index >= 0)
  724. move_msr_up(vmx, index, save_nmsrs++);
  725. index = __find_msr_index(vmx, MSR_CSTAR);
  726. if (index >= 0)
  727. move_msr_up(vmx, index, save_nmsrs++);
  728. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  729. if (index >= 0)
  730. move_msr_up(vmx, index, save_nmsrs++);
  731. /*
  732. * MSR_K6_STAR is only needed on long mode guests, and only
  733. * if efer.sce is enabled.
  734. */
  735. index = __find_msr_index(vmx, MSR_K6_STAR);
  736. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  737. move_msr_up(vmx, index, save_nmsrs++);
  738. }
  739. #endif
  740. vmx->save_nmsrs = save_nmsrs;
  741. #ifdef CONFIG_X86_64
  742. vmx->msr_offset_kernel_gs_base =
  743. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  744. #endif
  745. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  746. if (cpu_has_vmx_msr_bitmap()) {
  747. if (is_long_mode(&vmx->vcpu))
  748. msr_bitmap = vmx_msr_bitmap_longmode;
  749. else
  750. msr_bitmap = vmx_msr_bitmap_legacy;
  751. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  752. }
  753. }
  754. /*
  755. * reads and returns guest's timestamp counter "register"
  756. * guest_tsc = host_tsc + tsc_offset -- 21.3
  757. */
  758. static u64 guest_read_tsc(void)
  759. {
  760. u64 host_tsc, tsc_offset;
  761. rdtscll(host_tsc);
  762. tsc_offset = vmcs_read64(TSC_OFFSET);
  763. return host_tsc + tsc_offset;
  764. }
  765. /*
  766. * writes 'guest_tsc' into guest's timestamp counter "register"
  767. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  768. */
  769. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  770. {
  771. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  772. }
  773. /*
  774. * Reads an msr value (of 'msr_index') into 'pdata'.
  775. * Returns 0 on success, non-0 otherwise.
  776. * Assumes vcpu_load() was already called.
  777. */
  778. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  779. {
  780. u64 data;
  781. struct kvm_msr_entry *msr;
  782. if (!pdata) {
  783. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  784. return -EINVAL;
  785. }
  786. switch (msr_index) {
  787. #ifdef CONFIG_X86_64
  788. case MSR_FS_BASE:
  789. data = vmcs_readl(GUEST_FS_BASE);
  790. break;
  791. case MSR_GS_BASE:
  792. data = vmcs_readl(GUEST_GS_BASE);
  793. break;
  794. case MSR_EFER:
  795. return kvm_get_msr_common(vcpu, msr_index, pdata);
  796. #endif
  797. case MSR_IA32_TIME_STAMP_COUNTER:
  798. data = guest_read_tsc();
  799. break;
  800. case MSR_IA32_SYSENTER_CS:
  801. data = vmcs_read32(GUEST_SYSENTER_CS);
  802. break;
  803. case MSR_IA32_SYSENTER_EIP:
  804. data = vmcs_readl(GUEST_SYSENTER_EIP);
  805. break;
  806. case MSR_IA32_SYSENTER_ESP:
  807. data = vmcs_readl(GUEST_SYSENTER_ESP);
  808. break;
  809. default:
  810. vmx_load_host_state(to_vmx(vcpu));
  811. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  812. if (msr) {
  813. data = msr->data;
  814. break;
  815. }
  816. return kvm_get_msr_common(vcpu, msr_index, pdata);
  817. }
  818. *pdata = data;
  819. return 0;
  820. }
  821. /*
  822. * Writes msr value into into the appropriate "register".
  823. * Returns 0 on success, non-0 otherwise.
  824. * Assumes vcpu_load() was already called.
  825. */
  826. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  827. {
  828. struct vcpu_vmx *vmx = to_vmx(vcpu);
  829. struct kvm_msr_entry *msr;
  830. u64 host_tsc;
  831. int ret = 0;
  832. switch (msr_index) {
  833. case MSR_EFER:
  834. vmx_load_host_state(vmx);
  835. ret = kvm_set_msr_common(vcpu, msr_index, data);
  836. break;
  837. #ifdef CONFIG_X86_64
  838. case MSR_FS_BASE:
  839. vmcs_writel(GUEST_FS_BASE, data);
  840. break;
  841. case MSR_GS_BASE:
  842. vmcs_writel(GUEST_GS_BASE, data);
  843. break;
  844. #endif
  845. case MSR_IA32_SYSENTER_CS:
  846. vmcs_write32(GUEST_SYSENTER_CS, data);
  847. break;
  848. case MSR_IA32_SYSENTER_EIP:
  849. vmcs_writel(GUEST_SYSENTER_EIP, data);
  850. break;
  851. case MSR_IA32_SYSENTER_ESP:
  852. vmcs_writel(GUEST_SYSENTER_ESP, data);
  853. break;
  854. case MSR_IA32_TIME_STAMP_COUNTER:
  855. rdtscll(host_tsc);
  856. guest_write_tsc(data, host_tsc);
  857. break;
  858. case MSR_P6_PERFCTR0:
  859. case MSR_P6_PERFCTR1:
  860. case MSR_P6_EVNTSEL0:
  861. case MSR_P6_EVNTSEL1:
  862. /*
  863. * Just discard all writes to the performance counters; this
  864. * should keep both older linux and windows 64-bit guests
  865. * happy
  866. */
  867. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  868. break;
  869. case MSR_IA32_CR_PAT:
  870. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  871. vmcs_write64(GUEST_IA32_PAT, data);
  872. vcpu->arch.pat = data;
  873. break;
  874. }
  875. /* Otherwise falls through to kvm_set_msr_common */
  876. default:
  877. vmx_load_host_state(vmx);
  878. msr = find_msr_entry(vmx, msr_index);
  879. if (msr) {
  880. msr->data = data;
  881. break;
  882. }
  883. ret = kvm_set_msr_common(vcpu, msr_index, data);
  884. }
  885. return ret;
  886. }
  887. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  888. {
  889. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  890. switch (reg) {
  891. case VCPU_REGS_RSP:
  892. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  893. break;
  894. case VCPU_REGS_RIP:
  895. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  896. break;
  897. default:
  898. break;
  899. }
  900. }
  901. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  902. {
  903. int old_debug = vcpu->guest_debug;
  904. unsigned long flags;
  905. vcpu->guest_debug = dbg->control;
  906. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  907. vcpu->guest_debug = 0;
  908. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  909. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  910. else
  911. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  912. flags = vmcs_readl(GUEST_RFLAGS);
  913. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  914. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  915. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  916. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  917. vmcs_writel(GUEST_RFLAGS, flags);
  918. update_exception_bitmap(vcpu);
  919. return 0;
  920. }
  921. static __init int cpu_has_kvm_support(void)
  922. {
  923. return cpu_has_vmx();
  924. }
  925. static __init int vmx_disabled_by_bios(void)
  926. {
  927. u64 msr;
  928. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  929. return (msr & (FEATURE_CONTROL_LOCKED |
  930. FEATURE_CONTROL_VMXON_ENABLED))
  931. == FEATURE_CONTROL_LOCKED;
  932. /* locked but not enabled */
  933. }
  934. static void hardware_enable(void *garbage)
  935. {
  936. int cpu = raw_smp_processor_id();
  937. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  938. u64 old;
  939. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  940. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  941. if ((old & (FEATURE_CONTROL_LOCKED |
  942. FEATURE_CONTROL_VMXON_ENABLED))
  943. != (FEATURE_CONTROL_LOCKED |
  944. FEATURE_CONTROL_VMXON_ENABLED))
  945. /* enable and lock */
  946. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  947. FEATURE_CONTROL_LOCKED |
  948. FEATURE_CONTROL_VMXON_ENABLED);
  949. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  950. asm volatile (ASM_VMX_VMXON_RAX
  951. : : "a"(&phys_addr), "m"(phys_addr)
  952. : "memory", "cc");
  953. }
  954. static void vmclear_local_vcpus(void)
  955. {
  956. int cpu = raw_smp_processor_id();
  957. struct vcpu_vmx *vmx, *n;
  958. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  959. local_vcpus_link)
  960. __vcpu_clear(vmx);
  961. }
  962. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  963. * tricks.
  964. */
  965. static void kvm_cpu_vmxoff(void)
  966. {
  967. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  968. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  969. }
  970. static void hardware_disable(void *garbage)
  971. {
  972. vmclear_local_vcpus();
  973. kvm_cpu_vmxoff();
  974. }
  975. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  976. u32 msr, u32 *result)
  977. {
  978. u32 vmx_msr_low, vmx_msr_high;
  979. u32 ctl = ctl_min | ctl_opt;
  980. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  981. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  982. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  983. /* Ensure minimum (required) set of control bits are supported. */
  984. if (ctl_min & ~ctl)
  985. return -EIO;
  986. *result = ctl;
  987. return 0;
  988. }
  989. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  990. {
  991. u32 vmx_msr_low, vmx_msr_high;
  992. u32 min, opt, min2, opt2;
  993. u32 _pin_based_exec_control = 0;
  994. u32 _cpu_based_exec_control = 0;
  995. u32 _cpu_based_2nd_exec_control = 0;
  996. u32 _vmexit_control = 0;
  997. u32 _vmentry_control = 0;
  998. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  999. opt = PIN_BASED_VIRTUAL_NMIS;
  1000. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1001. &_pin_based_exec_control) < 0)
  1002. return -EIO;
  1003. min = CPU_BASED_HLT_EXITING |
  1004. #ifdef CONFIG_X86_64
  1005. CPU_BASED_CR8_LOAD_EXITING |
  1006. CPU_BASED_CR8_STORE_EXITING |
  1007. #endif
  1008. CPU_BASED_CR3_LOAD_EXITING |
  1009. CPU_BASED_CR3_STORE_EXITING |
  1010. CPU_BASED_USE_IO_BITMAPS |
  1011. CPU_BASED_MOV_DR_EXITING |
  1012. CPU_BASED_USE_TSC_OFFSETING |
  1013. CPU_BASED_INVLPG_EXITING;
  1014. opt = CPU_BASED_TPR_SHADOW |
  1015. CPU_BASED_USE_MSR_BITMAPS |
  1016. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1017. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1018. &_cpu_based_exec_control) < 0)
  1019. return -EIO;
  1020. #ifdef CONFIG_X86_64
  1021. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1022. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1023. ~CPU_BASED_CR8_STORE_EXITING;
  1024. #endif
  1025. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1026. min2 = 0;
  1027. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1028. SECONDARY_EXEC_WBINVD_EXITING |
  1029. SECONDARY_EXEC_ENABLE_VPID |
  1030. SECONDARY_EXEC_ENABLE_EPT;
  1031. if (adjust_vmx_controls(min2, opt2,
  1032. MSR_IA32_VMX_PROCBASED_CTLS2,
  1033. &_cpu_based_2nd_exec_control) < 0)
  1034. return -EIO;
  1035. }
  1036. #ifndef CONFIG_X86_64
  1037. if (!(_cpu_based_2nd_exec_control &
  1038. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1039. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1040. #endif
  1041. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1042. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1043. enabled */
  1044. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1045. CPU_BASED_CR3_STORE_EXITING |
  1046. CPU_BASED_INVLPG_EXITING);
  1047. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1048. &_cpu_based_exec_control) < 0)
  1049. return -EIO;
  1050. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1051. vmx_capability.ept, vmx_capability.vpid);
  1052. }
  1053. min = 0;
  1054. #ifdef CONFIG_X86_64
  1055. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1056. #endif
  1057. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1058. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1059. &_vmexit_control) < 0)
  1060. return -EIO;
  1061. min = 0;
  1062. opt = VM_ENTRY_LOAD_IA32_PAT;
  1063. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1064. &_vmentry_control) < 0)
  1065. return -EIO;
  1066. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1067. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1068. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1069. return -EIO;
  1070. #ifdef CONFIG_X86_64
  1071. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1072. if (vmx_msr_high & (1u<<16))
  1073. return -EIO;
  1074. #endif
  1075. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1076. if (((vmx_msr_high >> 18) & 15) != 6)
  1077. return -EIO;
  1078. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1079. vmcs_conf->order = get_order(vmcs_config.size);
  1080. vmcs_conf->revision_id = vmx_msr_low;
  1081. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1082. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1083. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1084. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1085. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1086. return 0;
  1087. }
  1088. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1089. {
  1090. int node = cpu_to_node(cpu);
  1091. struct page *pages;
  1092. struct vmcs *vmcs;
  1093. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1094. if (!pages)
  1095. return NULL;
  1096. vmcs = page_address(pages);
  1097. memset(vmcs, 0, vmcs_config.size);
  1098. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1099. return vmcs;
  1100. }
  1101. static struct vmcs *alloc_vmcs(void)
  1102. {
  1103. return alloc_vmcs_cpu(raw_smp_processor_id());
  1104. }
  1105. static void free_vmcs(struct vmcs *vmcs)
  1106. {
  1107. free_pages((unsigned long)vmcs, vmcs_config.order);
  1108. }
  1109. static void free_kvm_area(void)
  1110. {
  1111. int cpu;
  1112. for_each_online_cpu(cpu)
  1113. free_vmcs(per_cpu(vmxarea, cpu));
  1114. }
  1115. static __init int alloc_kvm_area(void)
  1116. {
  1117. int cpu;
  1118. for_each_online_cpu(cpu) {
  1119. struct vmcs *vmcs;
  1120. vmcs = alloc_vmcs_cpu(cpu);
  1121. if (!vmcs) {
  1122. free_kvm_area();
  1123. return -ENOMEM;
  1124. }
  1125. per_cpu(vmxarea, cpu) = vmcs;
  1126. }
  1127. return 0;
  1128. }
  1129. static __init int hardware_setup(void)
  1130. {
  1131. if (setup_vmcs_config(&vmcs_config) < 0)
  1132. return -EIO;
  1133. if (boot_cpu_has(X86_FEATURE_NX))
  1134. kvm_enable_efer_bits(EFER_NX);
  1135. if (!cpu_has_vmx_vpid())
  1136. enable_vpid = 0;
  1137. if (!cpu_has_vmx_ept())
  1138. enable_ept = 0;
  1139. if (!cpu_has_vmx_flexpriority())
  1140. flexpriority_enabled = 0;
  1141. if (!cpu_has_vmx_tpr_shadow())
  1142. kvm_x86_ops->update_cr8_intercept = NULL;
  1143. return alloc_kvm_area();
  1144. }
  1145. static __exit void hardware_unsetup(void)
  1146. {
  1147. free_kvm_area();
  1148. }
  1149. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1150. {
  1151. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1152. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1153. vmcs_write16(sf->selector, save->selector);
  1154. vmcs_writel(sf->base, save->base);
  1155. vmcs_write32(sf->limit, save->limit);
  1156. vmcs_write32(sf->ar_bytes, save->ar);
  1157. } else {
  1158. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1159. << AR_DPL_SHIFT;
  1160. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1161. }
  1162. }
  1163. static void enter_pmode(struct kvm_vcpu *vcpu)
  1164. {
  1165. unsigned long flags;
  1166. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1167. vmx->emulation_required = 1;
  1168. vcpu->arch.rmode.active = 0;
  1169. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1170. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1171. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1172. flags = vmcs_readl(GUEST_RFLAGS);
  1173. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1174. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1175. vmcs_writel(GUEST_RFLAGS, flags);
  1176. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1177. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1178. update_exception_bitmap(vcpu);
  1179. if (emulate_invalid_guest_state)
  1180. return;
  1181. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1182. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1183. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1184. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1185. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1186. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1187. vmcs_write16(GUEST_CS_SELECTOR,
  1188. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1189. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1190. }
  1191. static gva_t rmode_tss_base(struct kvm *kvm)
  1192. {
  1193. if (!kvm->arch.tss_addr) {
  1194. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1195. kvm->memslots[0].npages - 3;
  1196. return base_gfn << PAGE_SHIFT;
  1197. }
  1198. return kvm->arch.tss_addr;
  1199. }
  1200. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1201. {
  1202. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1203. save->selector = vmcs_read16(sf->selector);
  1204. save->base = vmcs_readl(sf->base);
  1205. save->limit = vmcs_read32(sf->limit);
  1206. save->ar = vmcs_read32(sf->ar_bytes);
  1207. vmcs_write16(sf->selector, save->base >> 4);
  1208. vmcs_write32(sf->base, save->base & 0xfffff);
  1209. vmcs_write32(sf->limit, 0xffff);
  1210. vmcs_write32(sf->ar_bytes, 0xf3);
  1211. }
  1212. static void enter_rmode(struct kvm_vcpu *vcpu)
  1213. {
  1214. unsigned long flags;
  1215. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1216. vmx->emulation_required = 1;
  1217. vcpu->arch.rmode.active = 1;
  1218. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1219. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1220. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1221. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1222. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1223. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1224. flags = vmcs_readl(GUEST_RFLAGS);
  1225. vcpu->arch.rmode.save_iopl
  1226. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1227. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1228. vmcs_writel(GUEST_RFLAGS, flags);
  1229. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1230. update_exception_bitmap(vcpu);
  1231. if (emulate_invalid_guest_state)
  1232. goto continue_rmode;
  1233. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1234. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1235. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1236. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1237. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1238. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1239. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1240. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1241. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1242. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1243. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1244. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1245. continue_rmode:
  1246. kvm_mmu_reset_context(vcpu);
  1247. init_rmode(vcpu->kvm);
  1248. }
  1249. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1250. {
  1251. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1252. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1253. vcpu->arch.shadow_efer = efer;
  1254. if (!msr)
  1255. return;
  1256. if (efer & EFER_LMA) {
  1257. vmcs_write32(VM_ENTRY_CONTROLS,
  1258. vmcs_read32(VM_ENTRY_CONTROLS) |
  1259. VM_ENTRY_IA32E_MODE);
  1260. msr->data = efer;
  1261. } else {
  1262. vmcs_write32(VM_ENTRY_CONTROLS,
  1263. vmcs_read32(VM_ENTRY_CONTROLS) &
  1264. ~VM_ENTRY_IA32E_MODE);
  1265. msr->data = efer & ~EFER_LME;
  1266. }
  1267. setup_msrs(vmx);
  1268. }
  1269. #ifdef CONFIG_X86_64
  1270. static void enter_lmode(struct kvm_vcpu *vcpu)
  1271. {
  1272. u32 guest_tr_ar;
  1273. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1274. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1275. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1276. __func__);
  1277. vmcs_write32(GUEST_TR_AR_BYTES,
  1278. (guest_tr_ar & ~AR_TYPE_MASK)
  1279. | AR_TYPE_BUSY_64_TSS);
  1280. }
  1281. vcpu->arch.shadow_efer |= EFER_LMA;
  1282. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1283. }
  1284. static void exit_lmode(struct kvm_vcpu *vcpu)
  1285. {
  1286. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1287. vmcs_write32(VM_ENTRY_CONTROLS,
  1288. vmcs_read32(VM_ENTRY_CONTROLS)
  1289. & ~VM_ENTRY_IA32E_MODE);
  1290. }
  1291. #endif
  1292. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1293. {
  1294. vpid_sync_vcpu_all(to_vmx(vcpu));
  1295. if (enable_ept)
  1296. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1297. }
  1298. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1299. {
  1300. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1301. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1302. }
  1303. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1304. {
  1305. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1306. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1307. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1308. return;
  1309. }
  1310. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1311. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1312. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1313. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1314. }
  1315. }
  1316. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1317. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1318. unsigned long cr0,
  1319. struct kvm_vcpu *vcpu)
  1320. {
  1321. if (!(cr0 & X86_CR0_PG)) {
  1322. /* From paging/starting to nonpaging */
  1323. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1324. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1325. (CPU_BASED_CR3_LOAD_EXITING |
  1326. CPU_BASED_CR3_STORE_EXITING));
  1327. vcpu->arch.cr0 = cr0;
  1328. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1329. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1330. *hw_cr0 &= ~X86_CR0_WP;
  1331. } else if (!is_paging(vcpu)) {
  1332. /* From nonpaging to paging */
  1333. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1334. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1335. ~(CPU_BASED_CR3_LOAD_EXITING |
  1336. CPU_BASED_CR3_STORE_EXITING));
  1337. vcpu->arch.cr0 = cr0;
  1338. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1339. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1340. *hw_cr0 &= ~X86_CR0_WP;
  1341. }
  1342. }
  1343. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1344. struct kvm_vcpu *vcpu)
  1345. {
  1346. if (!is_paging(vcpu)) {
  1347. *hw_cr4 &= ~X86_CR4_PAE;
  1348. *hw_cr4 |= X86_CR4_PSE;
  1349. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1350. *hw_cr4 &= ~X86_CR4_PAE;
  1351. }
  1352. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1353. {
  1354. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1355. KVM_VM_CR0_ALWAYS_ON;
  1356. vmx_fpu_deactivate(vcpu);
  1357. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1358. enter_pmode(vcpu);
  1359. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1360. enter_rmode(vcpu);
  1361. #ifdef CONFIG_X86_64
  1362. if (vcpu->arch.shadow_efer & EFER_LME) {
  1363. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1364. enter_lmode(vcpu);
  1365. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1366. exit_lmode(vcpu);
  1367. }
  1368. #endif
  1369. if (enable_ept)
  1370. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1371. vmcs_writel(CR0_READ_SHADOW, cr0);
  1372. vmcs_writel(GUEST_CR0, hw_cr0);
  1373. vcpu->arch.cr0 = cr0;
  1374. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1375. vmx_fpu_activate(vcpu);
  1376. }
  1377. static u64 construct_eptp(unsigned long root_hpa)
  1378. {
  1379. u64 eptp;
  1380. /* TODO write the value reading from MSR */
  1381. eptp = VMX_EPT_DEFAULT_MT |
  1382. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1383. eptp |= (root_hpa & PAGE_MASK);
  1384. return eptp;
  1385. }
  1386. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1387. {
  1388. unsigned long guest_cr3;
  1389. u64 eptp;
  1390. guest_cr3 = cr3;
  1391. if (enable_ept) {
  1392. eptp = construct_eptp(cr3);
  1393. vmcs_write64(EPT_POINTER, eptp);
  1394. ept_sync_context(eptp);
  1395. ept_load_pdptrs(vcpu);
  1396. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1397. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1398. }
  1399. vmx_flush_tlb(vcpu);
  1400. vmcs_writel(GUEST_CR3, guest_cr3);
  1401. if (vcpu->arch.cr0 & X86_CR0_PE)
  1402. vmx_fpu_deactivate(vcpu);
  1403. }
  1404. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1405. {
  1406. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1407. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1408. vcpu->arch.cr4 = cr4;
  1409. if (enable_ept)
  1410. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1411. vmcs_writel(CR4_READ_SHADOW, cr4);
  1412. vmcs_writel(GUEST_CR4, hw_cr4);
  1413. }
  1414. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1415. {
  1416. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1417. return vmcs_readl(sf->base);
  1418. }
  1419. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1420. struct kvm_segment *var, int seg)
  1421. {
  1422. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1423. u32 ar;
  1424. var->base = vmcs_readl(sf->base);
  1425. var->limit = vmcs_read32(sf->limit);
  1426. var->selector = vmcs_read16(sf->selector);
  1427. ar = vmcs_read32(sf->ar_bytes);
  1428. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1429. ar = 0;
  1430. var->type = ar & 15;
  1431. var->s = (ar >> 4) & 1;
  1432. var->dpl = (ar >> 5) & 3;
  1433. var->present = (ar >> 7) & 1;
  1434. var->avl = (ar >> 12) & 1;
  1435. var->l = (ar >> 13) & 1;
  1436. var->db = (ar >> 14) & 1;
  1437. var->g = (ar >> 15) & 1;
  1438. var->unusable = (ar >> 16) & 1;
  1439. }
  1440. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1441. {
  1442. struct kvm_segment kvm_seg;
  1443. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1444. return 0;
  1445. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1446. return 3;
  1447. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1448. return kvm_seg.selector & 3;
  1449. }
  1450. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1451. {
  1452. u32 ar;
  1453. if (var->unusable)
  1454. ar = 1 << 16;
  1455. else {
  1456. ar = var->type & 15;
  1457. ar |= (var->s & 1) << 4;
  1458. ar |= (var->dpl & 3) << 5;
  1459. ar |= (var->present & 1) << 7;
  1460. ar |= (var->avl & 1) << 12;
  1461. ar |= (var->l & 1) << 13;
  1462. ar |= (var->db & 1) << 14;
  1463. ar |= (var->g & 1) << 15;
  1464. }
  1465. if (ar == 0) /* a 0 value means unusable */
  1466. ar = AR_UNUSABLE_MASK;
  1467. return ar;
  1468. }
  1469. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1470. struct kvm_segment *var, int seg)
  1471. {
  1472. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1473. u32 ar;
  1474. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1475. vcpu->arch.rmode.tr.selector = var->selector;
  1476. vcpu->arch.rmode.tr.base = var->base;
  1477. vcpu->arch.rmode.tr.limit = var->limit;
  1478. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1479. return;
  1480. }
  1481. vmcs_writel(sf->base, var->base);
  1482. vmcs_write32(sf->limit, var->limit);
  1483. vmcs_write16(sf->selector, var->selector);
  1484. if (vcpu->arch.rmode.active && var->s) {
  1485. /*
  1486. * Hack real-mode segments into vm86 compatibility.
  1487. */
  1488. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1489. vmcs_writel(sf->base, 0xf0000);
  1490. ar = 0xf3;
  1491. } else
  1492. ar = vmx_segment_access_rights(var);
  1493. vmcs_write32(sf->ar_bytes, ar);
  1494. }
  1495. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1496. {
  1497. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1498. *db = (ar >> 14) & 1;
  1499. *l = (ar >> 13) & 1;
  1500. }
  1501. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1502. {
  1503. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1504. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1505. }
  1506. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1507. {
  1508. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1509. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1510. }
  1511. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1512. {
  1513. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1514. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1515. }
  1516. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1517. {
  1518. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1519. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1520. }
  1521. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1522. {
  1523. struct kvm_segment var;
  1524. u32 ar;
  1525. vmx_get_segment(vcpu, &var, seg);
  1526. ar = vmx_segment_access_rights(&var);
  1527. if (var.base != (var.selector << 4))
  1528. return false;
  1529. if (var.limit != 0xffff)
  1530. return false;
  1531. if (ar != 0xf3)
  1532. return false;
  1533. return true;
  1534. }
  1535. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1536. {
  1537. struct kvm_segment cs;
  1538. unsigned int cs_rpl;
  1539. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1540. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1541. if (cs.unusable)
  1542. return false;
  1543. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1544. return false;
  1545. if (!cs.s)
  1546. return false;
  1547. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1548. if (cs.dpl > cs_rpl)
  1549. return false;
  1550. } else {
  1551. if (cs.dpl != cs_rpl)
  1552. return false;
  1553. }
  1554. if (!cs.present)
  1555. return false;
  1556. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1557. return true;
  1558. }
  1559. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1560. {
  1561. struct kvm_segment ss;
  1562. unsigned int ss_rpl;
  1563. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1564. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1565. if (ss.unusable)
  1566. return true;
  1567. if (ss.type != 3 && ss.type != 7)
  1568. return false;
  1569. if (!ss.s)
  1570. return false;
  1571. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1572. return false;
  1573. if (!ss.present)
  1574. return false;
  1575. return true;
  1576. }
  1577. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1578. {
  1579. struct kvm_segment var;
  1580. unsigned int rpl;
  1581. vmx_get_segment(vcpu, &var, seg);
  1582. rpl = var.selector & SELECTOR_RPL_MASK;
  1583. if (var.unusable)
  1584. return true;
  1585. if (!var.s)
  1586. return false;
  1587. if (!var.present)
  1588. return false;
  1589. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1590. if (var.dpl < rpl) /* DPL < RPL */
  1591. return false;
  1592. }
  1593. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1594. * rights flags
  1595. */
  1596. return true;
  1597. }
  1598. static bool tr_valid(struct kvm_vcpu *vcpu)
  1599. {
  1600. struct kvm_segment tr;
  1601. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1602. if (tr.unusable)
  1603. return false;
  1604. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1605. return false;
  1606. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1607. return false;
  1608. if (!tr.present)
  1609. return false;
  1610. return true;
  1611. }
  1612. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1613. {
  1614. struct kvm_segment ldtr;
  1615. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1616. if (ldtr.unusable)
  1617. return true;
  1618. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1619. return false;
  1620. if (ldtr.type != 2)
  1621. return false;
  1622. if (!ldtr.present)
  1623. return false;
  1624. return true;
  1625. }
  1626. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1627. {
  1628. struct kvm_segment cs, ss;
  1629. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1630. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1631. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1632. (ss.selector & SELECTOR_RPL_MASK));
  1633. }
  1634. /*
  1635. * Check if guest state is valid. Returns true if valid, false if
  1636. * not.
  1637. * We assume that registers are always usable
  1638. */
  1639. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1640. {
  1641. /* real mode guest state checks */
  1642. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1643. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1644. return false;
  1645. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1646. return false;
  1647. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1648. return false;
  1649. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1650. return false;
  1651. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1652. return false;
  1653. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1654. return false;
  1655. } else {
  1656. /* protected mode guest state checks */
  1657. if (!cs_ss_rpl_check(vcpu))
  1658. return false;
  1659. if (!code_segment_valid(vcpu))
  1660. return false;
  1661. if (!stack_segment_valid(vcpu))
  1662. return false;
  1663. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1664. return false;
  1665. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1666. return false;
  1667. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1668. return false;
  1669. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1670. return false;
  1671. if (!tr_valid(vcpu))
  1672. return false;
  1673. if (!ldtr_valid(vcpu))
  1674. return false;
  1675. }
  1676. /* TODO:
  1677. * - Add checks on RIP
  1678. * - Add checks on RFLAGS
  1679. */
  1680. return true;
  1681. }
  1682. static int init_rmode_tss(struct kvm *kvm)
  1683. {
  1684. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1685. u16 data = 0;
  1686. int ret = 0;
  1687. int r;
  1688. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1689. if (r < 0)
  1690. goto out;
  1691. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1692. r = kvm_write_guest_page(kvm, fn++, &data,
  1693. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1694. if (r < 0)
  1695. goto out;
  1696. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1697. if (r < 0)
  1698. goto out;
  1699. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1700. if (r < 0)
  1701. goto out;
  1702. data = ~0;
  1703. r = kvm_write_guest_page(kvm, fn, &data,
  1704. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1705. sizeof(u8));
  1706. if (r < 0)
  1707. goto out;
  1708. ret = 1;
  1709. out:
  1710. return ret;
  1711. }
  1712. static int init_rmode_identity_map(struct kvm *kvm)
  1713. {
  1714. int i, r, ret;
  1715. pfn_t identity_map_pfn;
  1716. u32 tmp;
  1717. if (!enable_ept)
  1718. return 1;
  1719. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1720. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1721. "haven't been allocated!\n");
  1722. return 0;
  1723. }
  1724. if (likely(kvm->arch.ept_identity_pagetable_done))
  1725. return 1;
  1726. ret = 0;
  1727. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1728. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1729. if (r < 0)
  1730. goto out;
  1731. /* Set up identity-mapping pagetable for EPT in real mode */
  1732. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1733. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1734. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1735. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1736. &tmp, i * sizeof(tmp), sizeof(tmp));
  1737. if (r < 0)
  1738. goto out;
  1739. }
  1740. kvm->arch.ept_identity_pagetable_done = true;
  1741. ret = 1;
  1742. out:
  1743. return ret;
  1744. }
  1745. static void seg_setup(int seg)
  1746. {
  1747. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1748. vmcs_write16(sf->selector, 0);
  1749. vmcs_writel(sf->base, 0);
  1750. vmcs_write32(sf->limit, 0xffff);
  1751. vmcs_write32(sf->ar_bytes, 0xf3);
  1752. }
  1753. static int alloc_apic_access_page(struct kvm *kvm)
  1754. {
  1755. struct kvm_userspace_memory_region kvm_userspace_mem;
  1756. int r = 0;
  1757. down_write(&kvm->slots_lock);
  1758. if (kvm->arch.apic_access_page)
  1759. goto out;
  1760. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1761. kvm_userspace_mem.flags = 0;
  1762. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1763. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1764. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1765. if (r)
  1766. goto out;
  1767. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1768. out:
  1769. up_write(&kvm->slots_lock);
  1770. return r;
  1771. }
  1772. static int alloc_identity_pagetable(struct kvm *kvm)
  1773. {
  1774. struct kvm_userspace_memory_region kvm_userspace_mem;
  1775. int r = 0;
  1776. down_write(&kvm->slots_lock);
  1777. if (kvm->arch.ept_identity_pagetable)
  1778. goto out;
  1779. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1780. kvm_userspace_mem.flags = 0;
  1781. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1782. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1783. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1784. if (r)
  1785. goto out;
  1786. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1787. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1788. out:
  1789. up_write(&kvm->slots_lock);
  1790. return r;
  1791. }
  1792. static void allocate_vpid(struct vcpu_vmx *vmx)
  1793. {
  1794. int vpid;
  1795. vmx->vpid = 0;
  1796. if (!enable_vpid)
  1797. return;
  1798. spin_lock(&vmx_vpid_lock);
  1799. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1800. if (vpid < VMX_NR_VPIDS) {
  1801. vmx->vpid = vpid;
  1802. __set_bit(vpid, vmx_vpid_bitmap);
  1803. }
  1804. spin_unlock(&vmx_vpid_lock);
  1805. }
  1806. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1807. {
  1808. int f = sizeof(unsigned long);
  1809. if (!cpu_has_vmx_msr_bitmap())
  1810. return;
  1811. /*
  1812. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1813. * have the write-low and read-high bitmap offsets the wrong way round.
  1814. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1815. */
  1816. if (msr <= 0x1fff) {
  1817. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1818. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1819. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1820. msr &= 0x1fff;
  1821. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1822. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1823. }
  1824. }
  1825. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1826. {
  1827. if (!longmode_only)
  1828. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1829. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1830. }
  1831. /*
  1832. * Sets up the vmcs for emulated real mode.
  1833. */
  1834. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1835. {
  1836. u32 host_sysenter_cs, msr_low, msr_high;
  1837. u32 junk;
  1838. u64 host_pat, tsc_this, tsc_base;
  1839. unsigned long a;
  1840. struct descriptor_table dt;
  1841. int i;
  1842. unsigned long kvm_vmx_return;
  1843. u32 exec_control;
  1844. /* I/O */
  1845. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1846. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1847. if (cpu_has_vmx_msr_bitmap())
  1848. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1849. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1850. /* Control */
  1851. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1852. vmcs_config.pin_based_exec_ctrl);
  1853. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1854. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1855. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1856. #ifdef CONFIG_X86_64
  1857. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1858. CPU_BASED_CR8_LOAD_EXITING;
  1859. #endif
  1860. }
  1861. if (!enable_ept)
  1862. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1863. CPU_BASED_CR3_LOAD_EXITING |
  1864. CPU_BASED_INVLPG_EXITING;
  1865. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1866. if (cpu_has_secondary_exec_ctrls()) {
  1867. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1868. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1869. exec_control &=
  1870. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1871. if (vmx->vpid == 0)
  1872. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1873. if (!enable_ept)
  1874. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1875. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1876. }
  1877. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1878. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1879. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1880. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1881. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1882. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1883. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1884. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1885. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1886. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1887. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1888. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1889. #ifdef CONFIG_X86_64
  1890. rdmsrl(MSR_FS_BASE, a);
  1891. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1892. rdmsrl(MSR_GS_BASE, a);
  1893. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1894. #else
  1895. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1896. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1897. #endif
  1898. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1899. kvm_get_idt(&dt);
  1900. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1901. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1902. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1903. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1904. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1905. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1906. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1907. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1908. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1909. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1910. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1911. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1912. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1913. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1914. host_pat = msr_low | ((u64) msr_high << 32);
  1915. vmcs_write64(HOST_IA32_PAT, host_pat);
  1916. }
  1917. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1918. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1919. host_pat = msr_low | ((u64) msr_high << 32);
  1920. /* Write the default value follow host pat */
  1921. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1922. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1923. vmx->vcpu.arch.pat = host_pat;
  1924. }
  1925. for (i = 0; i < NR_VMX_MSR; ++i) {
  1926. u32 index = vmx_msr_index[i];
  1927. u32 data_low, data_high;
  1928. u64 data;
  1929. int j = vmx->nmsrs;
  1930. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1931. continue;
  1932. if (wrmsr_safe(index, data_low, data_high) < 0)
  1933. continue;
  1934. data = data_low | ((u64)data_high << 32);
  1935. vmx->host_msrs[j].index = index;
  1936. vmx->host_msrs[j].reserved = 0;
  1937. vmx->host_msrs[j].data = data;
  1938. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1939. ++vmx->nmsrs;
  1940. }
  1941. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1942. /* 22.2.1, 20.8.1 */
  1943. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1944. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1945. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1946. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1947. rdtscll(tsc_this);
  1948. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1949. tsc_base = tsc_this;
  1950. guest_write_tsc(0, tsc_base);
  1951. return 0;
  1952. }
  1953. static int init_rmode(struct kvm *kvm)
  1954. {
  1955. if (!init_rmode_tss(kvm))
  1956. return 0;
  1957. if (!init_rmode_identity_map(kvm))
  1958. return 0;
  1959. return 1;
  1960. }
  1961. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1962. {
  1963. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1964. u64 msr;
  1965. int ret;
  1966. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1967. down_read(&vcpu->kvm->slots_lock);
  1968. if (!init_rmode(vmx->vcpu.kvm)) {
  1969. ret = -ENOMEM;
  1970. goto out;
  1971. }
  1972. vmx->vcpu.arch.rmode.active = 0;
  1973. vmx->soft_vnmi_blocked = 0;
  1974. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1975. kvm_set_cr8(&vmx->vcpu, 0);
  1976. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1977. if (vmx->vcpu.vcpu_id == 0)
  1978. msr |= MSR_IA32_APICBASE_BSP;
  1979. kvm_set_apic_base(&vmx->vcpu, msr);
  1980. fx_init(&vmx->vcpu);
  1981. seg_setup(VCPU_SREG_CS);
  1982. /*
  1983. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1984. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1985. */
  1986. if (vmx->vcpu.vcpu_id == 0) {
  1987. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1988. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1989. } else {
  1990. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1991. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1992. }
  1993. seg_setup(VCPU_SREG_DS);
  1994. seg_setup(VCPU_SREG_ES);
  1995. seg_setup(VCPU_SREG_FS);
  1996. seg_setup(VCPU_SREG_GS);
  1997. seg_setup(VCPU_SREG_SS);
  1998. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1999. vmcs_writel(GUEST_TR_BASE, 0);
  2000. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2001. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2002. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2003. vmcs_writel(GUEST_LDTR_BASE, 0);
  2004. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2005. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2006. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2007. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2008. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2009. vmcs_writel(GUEST_RFLAGS, 0x02);
  2010. if (vmx->vcpu.vcpu_id == 0)
  2011. kvm_rip_write(vcpu, 0xfff0);
  2012. else
  2013. kvm_rip_write(vcpu, 0);
  2014. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2015. vmcs_writel(GUEST_DR7, 0x400);
  2016. vmcs_writel(GUEST_GDTR_BASE, 0);
  2017. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2018. vmcs_writel(GUEST_IDTR_BASE, 0);
  2019. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2020. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2021. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2022. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2023. /* Special registers */
  2024. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2025. setup_msrs(vmx);
  2026. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2027. if (cpu_has_vmx_tpr_shadow()) {
  2028. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2029. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2030. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2031. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2032. vmcs_write32(TPR_THRESHOLD, 0);
  2033. }
  2034. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2035. vmcs_write64(APIC_ACCESS_ADDR,
  2036. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2037. if (vmx->vpid != 0)
  2038. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2039. vmx->vcpu.arch.cr0 = 0x60000010;
  2040. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2041. vmx_set_cr4(&vmx->vcpu, 0);
  2042. vmx_set_efer(&vmx->vcpu, 0);
  2043. vmx_fpu_activate(&vmx->vcpu);
  2044. update_exception_bitmap(&vmx->vcpu);
  2045. vpid_sync_vcpu_all(vmx);
  2046. ret = 0;
  2047. /* HACK: Don't enable emulation on guest boot/reset */
  2048. vmx->emulation_required = 0;
  2049. out:
  2050. up_read(&vcpu->kvm->slots_lock);
  2051. return ret;
  2052. }
  2053. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2054. {
  2055. u32 cpu_based_vm_exec_control;
  2056. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2057. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2058. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2059. }
  2060. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2061. {
  2062. u32 cpu_based_vm_exec_control;
  2063. if (!cpu_has_virtual_nmis()) {
  2064. enable_irq_window(vcpu);
  2065. return;
  2066. }
  2067. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2068. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2069. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2070. }
  2071. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2072. {
  2073. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2074. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2075. ++vcpu->stat.irq_injections;
  2076. if (vcpu->arch.rmode.active) {
  2077. vmx->rmode.irq.pending = true;
  2078. vmx->rmode.irq.vector = irq;
  2079. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2080. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2081. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2082. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2083. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2084. return;
  2085. }
  2086. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2087. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2088. }
  2089. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2090. {
  2091. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2092. if (!cpu_has_virtual_nmis()) {
  2093. /*
  2094. * Tracking the NMI-blocked state in software is built upon
  2095. * finding the next open IRQ window. This, in turn, depends on
  2096. * well-behaving guests: They have to keep IRQs disabled at
  2097. * least as long as the NMI handler runs. Otherwise we may
  2098. * cause NMI nesting, maybe breaking the guest. But as this is
  2099. * highly unlikely, we can live with the residual risk.
  2100. */
  2101. vmx->soft_vnmi_blocked = 1;
  2102. vmx->vnmi_blocked_time = 0;
  2103. }
  2104. ++vcpu->stat.nmi_injections;
  2105. if (vcpu->arch.rmode.active) {
  2106. vmx->rmode.irq.pending = true;
  2107. vmx->rmode.irq.vector = NMI_VECTOR;
  2108. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2109. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2110. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2111. INTR_INFO_VALID_MASK);
  2112. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2113. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2114. return;
  2115. }
  2116. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2117. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2118. }
  2119. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2120. {
  2121. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2122. return 0;
  2123. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2124. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2125. GUEST_INTR_STATE_NMI));
  2126. }
  2127. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2128. {
  2129. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2130. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2131. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2132. }
  2133. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2134. {
  2135. int ret;
  2136. struct kvm_userspace_memory_region tss_mem = {
  2137. .slot = TSS_PRIVATE_MEMSLOT,
  2138. .guest_phys_addr = addr,
  2139. .memory_size = PAGE_SIZE * 3,
  2140. .flags = 0,
  2141. };
  2142. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2143. if (ret)
  2144. return ret;
  2145. kvm->arch.tss_addr = addr;
  2146. return 0;
  2147. }
  2148. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2149. int vec, u32 err_code)
  2150. {
  2151. /*
  2152. * Instruction with address size override prefix opcode 0x67
  2153. * Cause the #SS fault with 0 error code in VM86 mode.
  2154. */
  2155. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2156. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2157. return 1;
  2158. /*
  2159. * Forward all other exceptions that are valid in real mode.
  2160. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2161. * the required debugging infrastructure rework.
  2162. */
  2163. switch (vec) {
  2164. case DB_VECTOR:
  2165. if (vcpu->guest_debug &
  2166. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2167. return 0;
  2168. kvm_queue_exception(vcpu, vec);
  2169. return 1;
  2170. case BP_VECTOR:
  2171. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2172. return 0;
  2173. /* fall through */
  2174. case DE_VECTOR:
  2175. case OF_VECTOR:
  2176. case BR_VECTOR:
  2177. case UD_VECTOR:
  2178. case DF_VECTOR:
  2179. case SS_VECTOR:
  2180. case GP_VECTOR:
  2181. case MF_VECTOR:
  2182. kvm_queue_exception(vcpu, vec);
  2183. return 1;
  2184. }
  2185. return 0;
  2186. }
  2187. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2188. {
  2189. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2190. u32 intr_info, ex_no, error_code;
  2191. unsigned long cr2, rip, dr6;
  2192. u32 vect_info;
  2193. enum emulation_result er;
  2194. vect_info = vmx->idt_vectoring_info;
  2195. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2196. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2197. !is_page_fault(intr_info))
  2198. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2199. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2200. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2201. return 1; /* already handled by vmx_vcpu_run() */
  2202. if (is_no_device(intr_info)) {
  2203. vmx_fpu_activate(vcpu);
  2204. return 1;
  2205. }
  2206. if (is_invalid_opcode(intr_info)) {
  2207. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2208. if (er != EMULATE_DONE)
  2209. kvm_queue_exception(vcpu, UD_VECTOR);
  2210. return 1;
  2211. }
  2212. error_code = 0;
  2213. rip = kvm_rip_read(vcpu);
  2214. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2215. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2216. if (is_page_fault(intr_info)) {
  2217. /* EPT won't cause page fault directly */
  2218. if (enable_ept)
  2219. BUG();
  2220. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2221. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2222. (u32)((u64)cr2 >> 32), handler);
  2223. if (kvm_event_needs_reinjection(vcpu))
  2224. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2225. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2226. }
  2227. if (vcpu->arch.rmode.active &&
  2228. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2229. error_code)) {
  2230. if (vcpu->arch.halt_request) {
  2231. vcpu->arch.halt_request = 0;
  2232. return kvm_emulate_halt(vcpu);
  2233. }
  2234. return 1;
  2235. }
  2236. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2237. switch (ex_no) {
  2238. case DB_VECTOR:
  2239. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2240. if (!(vcpu->guest_debug &
  2241. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2242. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2243. kvm_queue_exception(vcpu, DB_VECTOR);
  2244. return 1;
  2245. }
  2246. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2247. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2248. /* fall through */
  2249. case BP_VECTOR:
  2250. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2251. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2252. kvm_run->debug.arch.exception = ex_no;
  2253. break;
  2254. default:
  2255. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2256. kvm_run->ex.exception = ex_no;
  2257. kvm_run->ex.error_code = error_code;
  2258. break;
  2259. }
  2260. return 0;
  2261. }
  2262. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2263. struct kvm_run *kvm_run)
  2264. {
  2265. ++vcpu->stat.irq_exits;
  2266. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2267. return 1;
  2268. }
  2269. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2270. {
  2271. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2272. return 0;
  2273. }
  2274. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2275. {
  2276. unsigned long exit_qualification;
  2277. int size, in, string;
  2278. unsigned port;
  2279. ++vcpu->stat.io_exits;
  2280. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2281. string = (exit_qualification & 16) != 0;
  2282. if (string) {
  2283. if (emulate_instruction(vcpu,
  2284. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2285. return 0;
  2286. return 1;
  2287. }
  2288. size = (exit_qualification & 7) + 1;
  2289. in = (exit_qualification & 8) != 0;
  2290. port = exit_qualification >> 16;
  2291. skip_emulated_instruction(vcpu);
  2292. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2293. }
  2294. static void
  2295. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2296. {
  2297. /*
  2298. * Patch in the VMCALL instruction:
  2299. */
  2300. hypercall[0] = 0x0f;
  2301. hypercall[1] = 0x01;
  2302. hypercall[2] = 0xc1;
  2303. }
  2304. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2305. {
  2306. unsigned long exit_qualification;
  2307. int cr;
  2308. int reg;
  2309. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2310. cr = exit_qualification & 15;
  2311. reg = (exit_qualification >> 8) & 15;
  2312. switch ((exit_qualification >> 4) & 3) {
  2313. case 0: /* mov to cr */
  2314. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2315. (u32)kvm_register_read(vcpu, reg),
  2316. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2317. handler);
  2318. switch (cr) {
  2319. case 0:
  2320. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2321. skip_emulated_instruction(vcpu);
  2322. return 1;
  2323. case 3:
  2324. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2325. skip_emulated_instruction(vcpu);
  2326. return 1;
  2327. case 4:
  2328. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2329. skip_emulated_instruction(vcpu);
  2330. return 1;
  2331. case 8: {
  2332. u8 cr8_prev = kvm_get_cr8(vcpu);
  2333. u8 cr8 = kvm_register_read(vcpu, reg);
  2334. kvm_set_cr8(vcpu, cr8);
  2335. skip_emulated_instruction(vcpu);
  2336. if (irqchip_in_kernel(vcpu->kvm))
  2337. return 1;
  2338. if (cr8_prev <= cr8)
  2339. return 1;
  2340. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2341. return 0;
  2342. }
  2343. };
  2344. break;
  2345. case 2: /* clts */
  2346. vmx_fpu_deactivate(vcpu);
  2347. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2348. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2349. vmx_fpu_activate(vcpu);
  2350. KVMTRACE_0D(CLTS, vcpu, handler);
  2351. skip_emulated_instruction(vcpu);
  2352. return 1;
  2353. case 1: /*mov from cr*/
  2354. switch (cr) {
  2355. case 3:
  2356. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2357. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2358. (u32)kvm_register_read(vcpu, reg),
  2359. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2360. handler);
  2361. skip_emulated_instruction(vcpu);
  2362. return 1;
  2363. case 8:
  2364. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2365. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2366. (u32)kvm_register_read(vcpu, reg), handler);
  2367. skip_emulated_instruction(vcpu);
  2368. return 1;
  2369. }
  2370. break;
  2371. case 3: /* lmsw */
  2372. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2373. skip_emulated_instruction(vcpu);
  2374. return 1;
  2375. default:
  2376. break;
  2377. }
  2378. kvm_run->exit_reason = 0;
  2379. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2380. (int)(exit_qualification >> 4) & 3, cr);
  2381. return 0;
  2382. }
  2383. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2384. {
  2385. unsigned long exit_qualification;
  2386. unsigned long val;
  2387. int dr, reg;
  2388. dr = vmcs_readl(GUEST_DR7);
  2389. if (dr & DR7_GD) {
  2390. /*
  2391. * As the vm-exit takes precedence over the debug trap, we
  2392. * need to emulate the latter, either for the host or the
  2393. * guest debugging itself.
  2394. */
  2395. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2396. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2397. kvm_run->debug.arch.dr7 = dr;
  2398. kvm_run->debug.arch.pc =
  2399. vmcs_readl(GUEST_CS_BASE) +
  2400. vmcs_readl(GUEST_RIP);
  2401. kvm_run->debug.arch.exception = DB_VECTOR;
  2402. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2403. return 0;
  2404. } else {
  2405. vcpu->arch.dr7 &= ~DR7_GD;
  2406. vcpu->arch.dr6 |= DR6_BD;
  2407. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2408. kvm_queue_exception(vcpu, DB_VECTOR);
  2409. return 1;
  2410. }
  2411. }
  2412. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2413. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2414. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2415. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2416. switch (dr) {
  2417. case 0 ... 3:
  2418. val = vcpu->arch.db[dr];
  2419. break;
  2420. case 6:
  2421. val = vcpu->arch.dr6;
  2422. break;
  2423. case 7:
  2424. val = vcpu->arch.dr7;
  2425. break;
  2426. default:
  2427. val = 0;
  2428. }
  2429. kvm_register_write(vcpu, reg, val);
  2430. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2431. } else {
  2432. val = vcpu->arch.regs[reg];
  2433. switch (dr) {
  2434. case 0 ... 3:
  2435. vcpu->arch.db[dr] = val;
  2436. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2437. vcpu->arch.eff_db[dr] = val;
  2438. break;
  2439. case 4 ... 5:
  2440. if (vcpu->arch.cr4 & X86_CR4_DE)
  2441. kvm_queue_exception(vcpu, UD_VECTOR);
  2442. break;
  2443. case 6:
  2444. if (val & 0xffffffff00000000ULL) {
  2445. kvm_queue_exception(vcpu, GP_VECTOR);
  2446. break;
  2447. }
  2448. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2449. break;
  2450. case 7:
  2451. if (val & 0xffffffff00000000ULL) {
  2452. kvm_queue_exception(vcpu, GP_VECTOR);
  2453. break;
  2454. }
  2455. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2456. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2457. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2458. vcpu->arch.switch_db_regs =
  2459. (val & DR7_BP_EN_MASK);
  2460. }
  2461. break;
  2462. }
  2463. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2464. }
  2465. skip_emulated_instruction(vcpu);
  2466. return 1;
  2467. }
  2468. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2469. {
  2470. kvm_emulate_cpuid(vcpu);
  2471. return 1;
  2472. }
  2473. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2474. {
  2475. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2476. u64 data;
  2477. if (vmx_get_msr(vcpu, ecx, &data)) {
  2478. kvm_inject_gp(vcpu, 0);
  2479. return 1;
  2480. }
  2481. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2482. handler);
  2483. /* FIXME: handling of bits 32:63 of rax, rdx */
  2484. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2485. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2486. skip_emulated_instruction(vcpu);
  2487. return 1;
  2488. }
  2489. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2490. {
  2491. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2492. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2493. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2494. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2495. handler);
  2496. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2497. kvm_inject_gp(vcpu, 0);
  2498. return 1;
  2499. }
  2500. skip_emulated_instruction(vcpu);
  2501. return 1;
  2502. }
  2503. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2504. struct kvm_run *kvm_run)
  2505. {
  2506. return 1;
  2507. }
  2508. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2509. struct kvm_run *kvm_run)
  2510. {
  2511. u32 cpu_based_vm_exec_control;
  2512. /* clear pending irq */
  2513. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2514. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2515. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2516. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2517. ++vcpu->stat.irq_window_exits;
  2518. /*
  2519. * If the user space waits to inject interrupts, exit as soon as
  2520. * possible
  2521. */
  2522. if (!irqchip_in_kernel(vcpu->kvm) &&
  2523. kvm_run->request_interrupt_window &&
  2524. !kvm_cpu_has_interrupt(vcpu)) {
  2525. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2526. return 0;
  2527. }
  2528. return 1;
  2529. }
  2530. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2531. {
  2532. skip_emulated_instruction(vcpu);
  2533. return kvm_emulate_halt(vcpu);
  2534. }
  2535. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2536. {
  2537. skip_emulated_instruction(vcpu);
  2538. kvm_emulate_hypercall(vcpu);
  2539. return 1;
  2540. }
  2541. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2542. {
  2543. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2544. kvm_mmu_invlpg(vcpu, exit_qualification);
  2545. skip_emulated_instruction(vcpu);
  2546. return 1;
  2547. }
  2548. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2549. {
  2550. skip_emulated_instruction(vcpu);
  2551. /* TODO: Add support for VT-d/pass-through device */
  2552. return 1;
  2553. }
  2554. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2555. {
  2556. unsigned long exit_qualification;
  2557. enum emulation_result er;
  2558. unsigned long offset;
  2559. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2560. offset = exit_qualification & 0xffful;
  2561. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2562. if (er != EMULATE_DONE) {
  2563. printk(KERN_ERR
  2564. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2565. offset);
  2566. return -ENOTSUPP;
  2567. }
  2568. return 1;
  2569. }
  2570. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2571. {
  2572. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2573. unsigned long exit_qualification;
  2574. u16 tss_selector;
  2575. int reason, type, idt_v;
  2576. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2577. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2578. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2579. reason = (u32)exit_qualification >> 30;
  2580. if (reason == TASK_SWITCH_GATE && idt_v) {
  2581. switch (type) {
  2582. case INTR_TYPE_NMI_INTR:
  2583. vcpu->arch.nmi_injected = false;
  2584. if (cpu_has_virtual_nmis())
  2585. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2586. GUEST_INTR_STATE_NMI);
  2587. break;
  2588. case INTR_TYPE_EXT_INTR:
  2589. kvm_clear_interrupt_queue(vcpu);
  2590. break;
  2591. case INTR_TYPE_HARD_EXCEPTION:
  2592. case INTR_TYPE_SOFT_EXCEPTION:
  2593. kvm_clear_exception_queue(vcpu);
  2594. break;
  2595. default:
  2596. break;
  2597. }
  2598. }
  2599. tss_selector = exit_qualification;
  2600. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2601. type != INTR_TYPE_EXT_INTR &&
  2602. type != INTR_TYPE_NMI_INTR))
  2603. skip_emulated_instruction(vcpu);
  2604. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2605. return 0;
  2606. /* clear all local breakpoint enable flags */
  2607. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2608. /*
  2609. * TODO: What about debug traps on tss switch?
  2610. * Are we supposed to inject them and update dr6?
  2611. */
  2612. return 1;
  2613. }
  2614. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2615. {
  2616. unsigned long exit_qualification;
  2617. gpa_t gpa;
  2618. int gla_validity;
  2619. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2620. if (exit_qualification & (1 << 6)) {
  2621. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2622. return -ENOTSUPP;
  2623. }
  2624. gla_validity = (exit_qualification >> 7) & 0x3;
  2625. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2626. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2627. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2628. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2629. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2630. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2631. (long unsigned int)exit_qualification);
  2632. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2633. kvm_run->hw.hardware_exit_reason = 0;
  2634. return -ENOTSUPP;
  2635. }
  2636. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2637. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2638. }
  2639. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2640. {
  2641. u32 cpu_based_vm_exec_control;
  2642. /* clear pending NMI */
  2643. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2644. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2645. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2646. ++vcpu->stat.nmi_window_exits;
  2647. return 1;
  2648. }
  2649. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2650. struct kvm_run *kvm_run)
  2651. {
  2652. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2653. enum emulation_result err = EMULATE_DONE;
  2654. preempt_enable();
  2655. local_irq_enable();
  2656. while (!guest_state_valid(vcpu)) {
  2657. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2658. if (err == EMULATE_DO_MMIO)
  2659. break;
  2660. if (err != EMULATE_DONE) {
  2661. kvm_report_emulation_failure(vcpu, "emulation failure");
  2662. return;
  2663. }
  2664. if (signal_pending(current))
  2665. break;
  2666. if (need_resched())
  2667. schedule();
  2668. }
  2669. local_irq_disable();
  2670. preempt_disable();
  2671. vmx->invalid_state_emulation_result = err;
  2672. }
  2673. /*
  2674. * The exit handlers return 1 if the exit was handled fully and guest execution
  2675. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2676. * to be done to userspace and return 0.
  2677. */
  2678. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2679. struct kvm_run *kvm_run) = {
  2680. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2681. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2682. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2683. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2684. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2685. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2686. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2687. [EXIT_REASON_CPUID] = handle_cpuid,
  2688. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2689. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2690. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2691. [EXIT_REASON_HLT] = handle_halt,
  2692. [EXIT_REASON_INVLPG] = handle_invlpg,
  2693. [EXIT_REASON_VMCALL] = handle_vmcall,
  2694. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2695. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2696. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2697. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2698. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2699. };
  2700. static const int kvm_vmx_max_exit_handlers =
  2701. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2702. /*
  2703. * The guest has exited. See if we can fix it or if we need userspace
  2704. * assistance.
  2705. */
  2706. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2707. {
  2708. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2709. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2710. u32 vectoring_info = vmx->idt_vectoring_info;
  2711. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2712. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2713. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2714. * we just return 0 */
  2715. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2716. if (guest_state_valid(vcpu))
  2717. vmx->emulation_required = 0;
  2718. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2719. }
  2720. /* Access CR3 don't cause VMExit in paging mode, so we need
  2721. * to sync with guest real CR3. */
  2722. if (enable_ept && is_paging(vcpu)) {
  2723. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2724. ept_load_pdptrs(vcpu);
  2725. }
  2726. if (unlikely(vmx->fail)) {
  2727. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2728. kvm_run->fail_entry.hardware_entry_failure_reason
  2729. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2730. return 0;
  2731. }
  2732. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2733. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2734. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2735. exit_reason != EXIT_REASON_TASK_SWITCH))
  2736. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2737. "(0x%x) and exit reason is 0x%x\n",
  2738. __func__, vectoring_info, exit_reason);
  2739. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2740. if (vmx_interrupt_allowed(vcpu)) {
  2741. vmx->soft_vnmi_blocked = 0;
  2742. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2743. vcpu->arch.nmi_pending) {
  2744. /*
  2745. * This CPU don't support us in finding the end of an
  2746. * NMI-blocked window if the guest runs with IRQs
  2747. * disabled. So we pull the trigger after 1 s of
  2748. * futile waiting, but inform the user about this.
  2749. */
  2750. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2751. "state on VCPU %d after 1 s timeout\n",
  2752. __func__, vcpu->vcpu_id);
  2753. vmx->soft_vnmi_blocked = 0;
  2754. }
  2755. }
  2756. if (exit_reason < kvm_vmx_max_exit_handlers
  2757. && kvm_vmx_exit_handlers[exit_reason])
  2758. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2759. else {
  2760. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2761. kvm_run->hw.hardware_exit_reason = exit_reason;
  2762. }
  2763. return 0;
  2764. }
  2765. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2766. {
  2767. if (irr == -1 || tpr < irr) {
  2768. vmcs_write32(TPR_THRESHOLD, 0);
  2769. return;
  2770. }
  2771. vmcs_write32(TPR_THRESHOLD, irr);
  2772. }
  2773. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2774. {
  2775. u32 exit_intr_info;
  2776. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2777. bool unblock_nmi;
  2778. u8 vector;
  2779. int type;
  2780. bool idtv_info_valid;
  2781. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2782. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2783. if (cpu_has_virtual_nmis()) {
  2784. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2785. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2786. /*
  2787. * SDM 3: 27.7.1.2 (September 2008)
  2788. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2789. * a guest IRET fault.
  2790. * SDM 3: 23.2.2 (September 2008)
  2791. * Bit 12 is undefined in any of the following cases:
  2792. * If the VM exit sets the valid bit in the IDT-vectoring
  2793. * information field.
  2794. * If the VM exit is due to a double fault.
  2795. */
  2796. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2797. vector != DF_VECTOR && !idtv_info_valid)
  2798. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2799. GUEST_INTR_STATE_NMI);
  2800. } else if (unlikely(vmx->soft_vnmi_blocked))
  2801. vmx->vnmi_blocked_time +=
  2802. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2803. vmx->vcpu.arch.nmi_injected = false;
  2804. kvm_clear_exception_queue(&vmx->vcpu);
  2805. kvm_clear_interrupt_queue(&vmx->vcpu);
  2806. if (!idtv_info_valid)
  2807. return;
  2808. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2809. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2810. switch (type) {
  2811. case INTR_TYPE_NMI_INTR:
  2812. vmx->vcpu.arch.nmi_injected = true;
  2813. /*
  2814. * SDM 3: 27.7.1.2 (September 2008)
  2815. * Clear bit "block by NMI" before VM entry if a NMI
  2816. * delivery faulted.
  2817. */
  2818. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2819. GUEST_INTR_STATE_NMI);
  2820. break;
  2821. case INTR_TYPE_HARD_EXCEPTION:
  2822. case INTR_TYPE_SOFT_EXCEPTION:
  2823. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2824. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2825. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2826. } else
  2827. kvm_queue_exception(&vmx->vcpu, vector);
  2828. break;
  2829. case INTR_TYPE_EXT_INTR:
  2830. kvm_queue_interrupt(&vmx->vcpu, vector);
  2831. break;
  2832. default:
  2833. break;
  2834. }
  2835. }
  2836. /*
  2837. * Failure to inject an interrupt should give us the information
  2838. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2839. * when fetching the interrupt redirection bitmap in the real-mode
  2840. * tss, this doesn't happen. So we do it ourselves.
  2841. */
  2842. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2843. {
  2844. vmx->rmode.irq.pending = 0;
  2845. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2846. return;
  2847. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2848. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2849. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2850. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2851. return;
  2852. }
  2853. vmx->idt_vectoring_info =
  2854. VECTORING_INFO_VALID_MASK
  2855. | INTR_TYPE_EXT_INTR
  2856. | vmx->rmode.irq.vector;
  2857. }
  2858. #ifdef CONFIG_X86_64
  2859. #define R "r"
  2860. #define Q "q"
  2861. #else
  2862. #define R "e"
  2863. #define Q "l"
  2864. #endif
  2865. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2866. {
  2867. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2868. u32 intr_info;
  2869. /* Record the guest's net vcpu time for enforced NMI injections. */
  2870. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2871. vmx->entry_time = ktime_get();
  2872. /* Handle invalid guest state instead of entering VMX */
  2873. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2874. handle_invalid_guest_state(vcpu, kvm_run);
  2875. return;
  2876. }
  2877. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2878. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2879. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2880. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2881. /*
  2882. * Loading guest fpu may have cleared host cr0.ts
  2883. */
  2884. vmcs_writel(HOST_CR0, read_cr0());
  2885. set_debugreg(vcpu->arch.dr6, 6);
  2886. asm(
  2887. /* Store host registers */
  2888. "push %%"R"dx; push %%"R"bp;"
  2889. "push %%"R"cx \n\t"
  2890. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2891. "je 1f \n\t"
  2892. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2893. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2894. "1: \n\t"
  2895. /* Check if vmlaunch of vmresume is needed */
  2896. "cmpl $0, %c[launched](%0) \n\t"
  2897. /* Load guest registers. Don't clobber flags. */
  2898. "mov %c[cr2](%0), %%"R"ax \n\t"
  2899. "mov %%"R"ax, %%cr2 \n\t"
  2900. "mov %c[rax](%0), %%"R"ax \n\t"
  2901. "mov %c[rbx](%0), %%"R"bx \n\t"
  2902. "mov %c[rdx](%0), %%"R"dx \n\t"
  2903. "mov %c[rsi](%0), %%"R"si \n\t"
  2904. "mov %c[rdi](%0), %%"R"di \n\t"
  2905. "mov %c[rbp](%0), %%"R"bp \n\t"
  2906. #ifdef CONFIG_X86_64
  2907. "mov %c[r8](%0), %%r8 \n\t"
  2908. "mov %c[r9](%0), %%r9 \n\t"
  2909. "mov %c[r10](%0), %%r10 \n\t"
  2910. "mov %c[r11](%0), %%r11 \n\t"
  2911. "mov %c[r12](%0), %%r12 \n\t"
  2912. "mov %c[r13](%0), %%r13 \n\t"
  2913. "mov %c[r14](%0), %%r14 \n\t"
  2914. "mov %c[r15](%0), %%r15 \n\t"
  2915. #endif
  2916. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2917. /* Enter guest mode */
  2918. "jne .Llaunched \n\t"
  2919. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2920. "jmp .Lkvm_vmx_return \n\t"
  2921. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2922. ".Lkvm_vmx_return: "
  2923. /* Save guest registers, load host registers, keep flags */
  2924. "xchg %0, (%%"R"sp) \n\t"
  2925. "mov %%"R"ax, %c[rax](%0) \n\t"
  2926. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2927. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2928. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2929. "mov %%"R"si, %c[rsi](%0) \n\t"
  2930. "mov %%"R"di, %c[rdi](%0) \n\t"
  2931. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2932. #ifdef CONFIG_X86_64
  2933. "mov %%r8, %c[r8](%0) \n\t"
  2934. "mov %%r9, %c[r9](%0) \n\t"
  2935. "mov %%r10, %c[r10](%0) \n\t"
  2936. "mov %%r11, %c[r11](%0) \n\t"
  2937. "mov %%r12, %c[r12](%0) \n\t"
  2938. "mov %%r13, %c[r13](%0) \n\t"
  2939. "mov %%r14, %c[r14](%0) \n\t"
  2940. "mov %%r15, %c[r15](%0) \n\t"
  2941. #endif
  2942. "mov %%cr2, %%"R"ax \n\t"
  2943. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2944. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2945. "setbe %c[fail](%0) \n\t"
  2946. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2947. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2948. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2949. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2950. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2951. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2952. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2953. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2954. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2955. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2956. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2957. #ifdef CONFIG_X86_64
  2958. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2959. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2960. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2961. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2962. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2963. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2964. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2965. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2966. #endif
  2967. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2968. : "cc", "memory"
  2969. , R"bx", R"di", R"si"
  2970. #ifdef CONFIG_X86_64
  2971. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2972. #endif
  2973. );
  2974. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2975. vcpu->arch.regs_dirty = 0;
  2976. get_debugreg(vcpu->arch.dr6, 6);
  2977. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2978. if (vmx->rmode.irq.pending)
  2979. fixup_rmode_irq(vmx);
  2980. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2981. vmx->launched = 1;
  2982. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2983. /* We need to handle NMIs before interrupts are enabled */
  2984. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2985. (intr_info & INTR_INFO_VALID_MASK)) {
  2986. KVMTRACE_0D(NMI, vcpu, handler);
  2987. asm("int $2");
  2988. }
  2989. vmx_complete_interrupts(vmx);
  2990. }
  2991. #undef R
  2992. #undef Q
  2993. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2994. {
  2995. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2996. if (vmx->vmcs) {
  2997. vcpu_clear(vmx);
  2998. free_vmcs(vmx->vmcs);
  2999. vmx->vmcs = NULL;
  3000. }
  3001. }
  3002. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3003. {
  3004. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3005. spin_lock(&vmx_vpid_lock);
  3006. if (vmx->vpid != 0)
  3007. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3008. spin_unlock(&vmx_vpid_lock);
  3009. vmx_free_vmcs(vcpu);
  3010. kfree(vmx->host_msrs);
  3011. kfree(vmx->guest_msrs);
  3012. kvm_vcpu_uninit(vcpu);
  3013. kmem_cache_free(kvm_vcpu_cache, vmx);
  3014. }
  3015. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3016. {
  3017. int err;
  3018. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3019. int cpu;
  3020. if (!vmx)
  3021. return ERR_PTR(-ENOMEM);
  3022. allocate_vpid(vmx);
  3023. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3024. if (err)
  3025. goto free_vcpu;
  3026. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3027. if (!vmx->guest_msrs) {
  3028. err = -ENOMEM;
  3029. goto uninit_vcpu;
  3030. }
  3031. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3032. if (!vmx->host_msrs)
  3033. goto free_guest_msrs;
  3034. vmx->vmcs = alloc_vmcs();
  3035. if (!vmx->vmcs)
  3036. goto free_msrs;
  3037. vmcs_clear(vmx->vmcs);
  3038. cpu = get_cpu();
  3039. vmx_vcpu_load(&vmx->vcpu, cpu);
  3040. err = vmx_vcpu_setup(vmx);
  3041. vmx_vcpu_put(&vmx->vcpu);
  3042. put_cpu();
  3043. if (err)
  3044. goto free_vmcs;
  3045. if (vm_need_virtualize_apic_accesses(kvm))
  3046. if (alloc_apic_access_page(kvm) != 0)
  3047. goto free_vmcs;
  3048. if (enable_ept)
  3049. if (alloc_identity_pagetable(kvm) != 0)
  3050. goto free_vmcs;
  3051. return &vmx->vcpu;
  3052. free_vmcs:
  3053. free_vmcs(vmx->vmcs);
  3054. free_msrs:
  3055. kfree(vmx->host_msrs);
  3056. free_guest_msrs:
  3057. kfree(vmx->guest_msrs);
  3058. uninit_vcpu:
  3059. kvm_vcpu_uninit(&vmx->vcpu);
  3060. free_vcpu:
  3061. kmem_cache_free(kvm_vcpu_cache, vmx);
  3062. return ERR_PTR(err);
  3063. }
  3064. static void __init vmx_check_processor_compat(void *rtn)
  3065. {
  3066. struct vmcs_config vmcs_conf;
  3067. *(int *)rtn = 0;
  3068. if (setup_vmcs_config(&vmcs_conf) < 0)
  3069. *(int *)rtn = -EIO;
  3070. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3071. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3072. smp_processor_id());
  3073. *(int *)rtn = -EIO;
  3074. }
  3075. }
  3076. static int get_ept_level(void)
  3077. {
  3078. return VMX_EPT_DEFAULT_GAW + 1;
  3079. }
  3080. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3081. {
  3082. u64 ret;
  3083. /* For VT-d and EPT combination
  3084. * 1. MMIO: always map as UC
  3085. * 2. EPT with VT-d:
  3086. * a. VT-d without snooping control feature: can't guarantee the
  3087. * result, try to trust guest.
  3088. * b. VT-d with snooping control feature: snooping control feature of
  3089. * VT-d engine can guarantee the cache correctness. Just set it
  3090. * to WB to keep consistent with host. So the same as item 3.
  3091. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3092. * consistent with host MTRR
  3093. */
  3094. if (is_mmio)
  3095. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3096. else if (vcpu->kvm->arch.iommu_domain &&
  3097. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3098. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3099. VMX_EPT_MT_EPTE_SHIFT;
  3100. else
  3101. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3102. | VMX_EPT_IGMT_BIT;
  3103. return ret;
  3104. }
  3105. static struct kvm_x86_ops vmx_x86_ops = {
  3106. .cpu_has_kvm_support = cpu_has_kvm_support,
  3107. .disabled_by_bios = vmx_disabled_by_bios,
  3108. .hardware_setup = hardware_setup,
  3109. .hardware_unsetup = hardware_unsetup,
  3110. .check_processor_compatibility = vmx_check_processor_compat,
  3111. .hardware_enable = hardware_enable,
  3112. .hardware_disable = hardware_disable,
  3113. .cpu_has_accelerated_tpr = report_flexpriority,
  3114. .vcpu_create = vmx_create_vcpu,
  3115. .vcpu_free = vmx_free_vcpu,
  3116. .vcpu_reset = vmx_vcpu_reset,
  3117. .prepare_guest_switch = vmx_save_host_state,
  3118. .vcpu_load = vmx_vcpu_load,
  3119. .vcpu_put = vmx_vcpu_put,
  3120. .set_guest_debug = set_guest_debug,
  3121. .get_msr = vmx_get_msr,
  3122. .set_msr = vmx_set_msr,
  3123. .get_segment_base = vmx_get_segment_base,
  3124. .get_segment = vmx_get_segment,
  3125. .set_segment = vmx_set_segment,
  3126. .get_cpl = vmx_get_cpl,
  3127. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3128. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3129. .set_cr0 = vmx_set_cr0,
  3130. .set_cr3 = vmx_set_cr3,
  3131. .set_cr4 = vmx_set_cr4,
  3132. .set_efer = vmx_set_efer,
  3133. .get_idt = vmx_get_idt,
  3134. .set_idt = vmx_set_idt,
  3135. .get_gdt = vmx_get_gdt,
  3136. .set_gdt = vmx_set_gdt,
  3137. .cache_reg = vmx_cache_reg,
  3138. .get_rflags = vmx_get_rflags,
  3139. .set_rflags = vmx_set_rflags,
  3140. .tlb_flush = vmx_flush_tlb,
  3141. .run = vmx_vcpu_run,
  3142. .handle_exit = vmx_handle_exit,
  3143. .skip_emulated_instruction = skip_emulated_instruction,
  3144. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3145. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3146. .patch_hypercall = vmx_patch_hypercall,
  3147. .set_irq = vmx_inject_irq,
  3148. .set_nmi = vmx_inject_nmi,
  3149. .queue_exception = vmx_queue_exception,
  3150. .interrupt_allowed = vmx_interrupt_allowed,
  3151. .nmi_allowed = vmx_nmi_allowed,
  3152. .enable_nmi_window = enable_nmi_window,
  3153. .enable_irq_window = enable_irq_window,
  3154. .update_cr8_intercept = update_cr8_intercept,
  3155. .set_tss_addr = vmx_set_tss_addr,
  3156. .get_tdp_level = get_ept_level,
  3157. .get_mt_mask = vmx_get_mt_mask,
  3158. };
  3159. static int __init vmx_init(void)
  3160. {
  3161. int r;
  3162. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3163. if (!vmx_io_bitmap_a)
  3164. return -ENOMEM;
  3165. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3166. if (!vmx_io_bitmap_b) {
  3167. r = -ENOMEM;
  3168. goto out;
  3169. }
  3170. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3171. if (!vmx_msr_bitmap_legacy) {
  3172. r = -ENOMEM;
  3173. goto out1;
  3174. }
  3175. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3176. if (!vmx_msr_bitmap_longmode) {
  3177. r = -ENOMEM;
  3178. goto out2;
  3179. }
  3180. /*
  3181. * Allow direct access to the PC debug port (it is often used for I/O
  3182. * delays, but the vmexits simply slow things down).
  3183. */
  3184. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3185. clear_bit(0x80, vmx_io_bitmap_a);
  3186. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3187. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3188. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3189. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3190. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3191. if (r)
  3192. goto out3;
  3193. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3194. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3195. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3196. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3197. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3198. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3199. if (enable_ept) {
  3200. bypass_guest_pf = 0;
  3201. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3202. VMX_EPT_WRITABLE_MASK);
  3203. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3204. VMX_EPT_EXECUTABLE_MASK);
  3205. kvm_enable_tdp();
  3206. } else
  3207. kvm_disable_tdp();
  3208. if (bypass_guest_pf)
  3209. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3210. ept_sync_global();
  3211. return 0;
  3212. out3:
  3213. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3214. out2:
  3215. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3216. out1:
  3217. free_page((unsigned long)vmx_io_bitmap_b);
  3218. out:
  3219. free_page((unsigned long)vmx_io_bitmap_a);
  3220. return r;
  3221. }
  3222. static void __exit vmx_exit(void)
  3223. {
  3224. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3225. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3226. free_page((unsigned long)vmx_io_bitmap_b);
  3227. free_page((unsigned long)vmx_io_bitmap_a);
  3228. kvm_exit();
  3229. }
  3230. module_init(vmx_init)
  3231. module_exit(vmx_exit)