integrator_ap.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/syscore_ops.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/mtd/physmap.h>
  35. #include <linux/clk.h>
  36. #include <linux/platform_data/clk-integrator.h>
  37. #include <linux/of_irq.h>
  38. #include <linux/of_address.h>
  39. #include <linux/of_platform.h>
  40. #include <linux/stat.h>
  41. #include <linux/sys_soc.h>
  42. #include <video/vga.h>
  43. #include <mach/hardware.h>
  44. #include <mach/platform.h>
  45. #include <asm/hardware/arm_timer.h>
  46. #include <asm/setup.h>
  47. #include <asm/param.h> /* HZ */
  48. #include <asm/mach-types.h>
  49. #include <asm/sched_clock.h>
  50. #include <mach/lm.h>
  51. #include <mach/irqs.h>
  52. #include <asm/mach/arch.h>
  53. #include <asm/mach/irq.h>
  54. #include <asm/mach/map.h>
  55. #include <asm/mach/pci.h>
  56. #include <asm/mach/time.h>
  57. #include <plat/fpga-irq.h>
  58. #include "common.h"
  59. /* Base address to the AP system controller */
  60. static void __iomem *ap_syscon_base;
  61. /*
  62. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  63. * is the (PA >> 12).
  64. *
  65. * Setup a VA for the Integrator interrupt controller (for header #0,
  66. * just for now).
  67. */
  68. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  69. #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
  70. #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
  71. /*
  72. * Logical Physical
  73. * e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
  74. * ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
  75. * ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
  76. * fee00000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
  77. * ef000000 Cache flush
  78. * f1000000 10000000 Core module registers
  79. * f1100000 11000000 System controller registers
  80. * f1200000 12000000 EBI registers
  81. * f1300000 13000000 Counter/Timer
  82. * f1400000 14000000 Interrupt controller
  83. * f1600000 16000000 UART 0
  84. * f1700000 17000000 UART 1
  85. * f1a00000 1a000000 Debug LEDs
  86. * f1b00000 1b000000 GPIO
  87. */
  88. static struct map_desc ap_io_desc[] __initdata = {
  89. {
  90. .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
  91. .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
  92. .length = SZ_4K,
  93. .type = MT_DEVICE
  94. }, {
  95. .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
  96. .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
  97. .length = SZ_4K,
  98. .type = MT_DEVICE
  99. }, {
  100. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  101. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  102. .length = SZ_4K,
  103. .type = MT_DEVICE
  104. }, {
  105. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  106. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  107. .length = SZ_4K,
  108. .type = MT_DEVICE
  109. }, {
  110. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  111. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  112. .length = SZ_4K,
  113. .type = MT_DEVICE
  114. }, {
  115. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  116. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  117. .length = SZ_4K,
  118. .type = MT_DEVICE
  119. }, {
  120. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  121. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  122. .length = SZ_4K,
  123. .type = MT_DEVICE
  124. }, {
  125. .virtual = (unsigned long)PCI_MEMORY_VADDR,
  126. .pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
  127. .length = SZ_16M,
  128. .type = MT_DEVICE
  129. }, {
  130. .virtual = (unsigned long)PCI_CONFIG_VADDR,
  131. .pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
  132. .length = SZ_16M,
  133. .type = MT_DEVICE
  134. }, {
  135. .virtual = (unsigned long)PCI_V3_VADDR,
  136. .pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
  137. .length = SZ_64K,
  138. .type = MT_DEVICE
  139. }
  140. };
  141. static void __init ap_map_io(void)
  142. {
  143. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  144. vga_base = (unsigned long)PCI_MEMORY_VADDR;
  145. pci_map_io_early(__phys_to_pfn(PHYS_PCI_IO_BASE));
  146. }
  147. #ifdef CONFIG_PM
  148. static unsigned long ic_irq_enable;
  149. static int irq_suspend(void)
  150. {
  151. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  152. return 0;
  153. }
  154. static void irq_resume(void)
  155. {
  156. /* disable all irq sources */
  157. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  158. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  159. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  160. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  161. }
  162. #else
  163. #define irq_suspend NULL
  164. #define irq_resume NULL
  165. #endif
  166. static struct syscore_ops irq_syscore_ops = {
  167. .suspend = irq_suspend,
  168. .resume = irq_resume,
  169. };
  170. static int __init irq_syscore_init(void)
  171. {
  172. register_syscore_ops(&irq_syscore_ops);
  173. return 0;
  174. }
  175. device_initcall(irq_syscore_init);
  176. /*
  177. * Flash handling.
  178. */
  179. #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
  180. #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
  181. static int ap_flash_init(struct platform_device *dev)
  182. {
  183. u32 tmp;
  184. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
  185. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  186. tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
  187. writel(tmp, EBI_CSR1);
  188. if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
  189. writel(0xa05f, EBI_LOCK);
  190. writel(tmp, EBI_CSR1);
  191. writel(0, EBI_LOCK);
  192. }
  193. return 0;
  194. }
  195. static void ap_flash_exit(struct platform_device *dev)
  196. {
  197. u32 tmp;
  198. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
  199. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  200. tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
  201. writel(tmp, EBI_CSR1);
  202. if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
  203. writel(0xa05f, EBI_LOCK);
  204. writel(tmp, EBI_CSR1);
  205. writel(0, EBI_LOCK);
  206. }
  207. }
  208. static void ap_flash_set_vpp(struct platform_device *pdev, int on)
  209. {
  210. if (on)
  211. writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
  212. ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET);
  213. else
  214. writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
  215. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  216. }
  217. static struct physmap_flash_data ap_flash_data = {
  218. .width = 4,
  219. .init = ap_flash_init,
  220. .exit = ap_flash_exit,
  221. .set_vpp = ap_flash_set_vpp,
  222. };
  223. /*
  224. * Where is the timer (VA)?
  225. */
  226. #define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE)
  227. #define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE)
  228. #define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE)
  229. static unsigned long timer_reload;
  230. static u32 notrace integrator_read_sched_clock(void)
  231. {
  232. return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
  233. }
  234. static void integrator_clocksource_init(unsigned long inrate,
  235. void __iomem *base)
  236. {
  237. u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
  238. unsigned long rate = inrate;
  239. if (rate >= 1500000) {
  240. rate /= 16;
  241. ctrl |= TIMER_CTRL_DIV16;
  242. }
  243. writel(0xffff, base + TIMER_LOAD);
  244. writel(ctrl, base + TIMER_CTRL);
  245. clocksource_mmio_init(base + TIMER_VALUE, "timer2",
  246. rate, 200, 16, clocksource_mmio_readl_down);
  247. setup_sched_clock(integrator_read_sched_clock, 16, rate);
  248. }
  249. static void __iomem * clkevt_base;
  250. /*
  251. * IRQ handler for the timer
  252. */
  253. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  254. {
  255. struct clock_event_device *evt = dev_id;
  256. /* clear the interrupt */
  257. writel(1, clkevt_base + TIMER_INTCLR);
  258. evt->event_handler(evt);
  259. return IRQ_HANDLED;
  260. }
  261. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  262. {
  263. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  264. /* Disable timer */
  265. writel(ctrl, clkevt_base + TIMER_CTRL);
  266. switch (mode) {
  267. case CLOCK_EVT_MODE_PERIODIC:
  268. /* Enable the timer and start the periodic tick */
  269. writel(timer_reload, clkevt_base + TIMER_LOAD);
  270. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  271. writel(ctrl, clkevt_base + TIMER_CTRL);
  272. break;
  273. case CLOCK_EVT_MODE_ONESHOT:
  274. /* Leave the timer disabled, .set_next_event will enable it */
  275. ctrl &= ~TIMER_CTRL_PERIODIC;
  276. writel(ctrl, clkevt_base + TIMER_CTRL);
  277. break;
  278. case CLOCK_EVT_MODE_UNUSED:
  279. case CLOCK_EVT_MODE_SHUTDOWN:
  280. case CLOCK_EVT_MODE_RESUME:
  281. default:
  282. /* Just leave in disabled state */
  283. break;
  284. }
  285. }
  286. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  287. {
  288. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  289. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  290. writel(next, clkevt_base + TIMER_LOAD);
  291. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  292. return 0;
  293. }
  294. static struct clock_event_device integrator_clockevent = {
  295. .name = "timer1",
  296. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  297. .set_mode = clkevt_set_mode,
  298. .set_next_event = clkevt_set_next_event,
  299. .rating = 300,
  300. };
  301. static struct irqaction integrator_timer_irq = {
  302. .name = "timer",
  303. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  304. .handler = integrator_timer_interrupt,
  305. .dev_id = &integrator_clockevent,
  306. };
  307. static void integrator_clockevent_init(unsigned long inrate,
  308. void __iomem *base, int irq)
  309. {
  310. unsigned long rate = inrate;
  311. unsigned int ctrl = 0;
  312. clkevt_base = base;
  313. /* Calculate and program a divisor */
  314. if (rate > 0x100000 * HZ) {
  315. rate /= 256;
  316. ctrl |= TIMER_CTRL_DIV256;
  317. } else if (rate > 0x10000 * HZ) {
  318. rate /= 16;
  319. ctrl |= TIMER_CTRL_DIV16;
  320. }
  321. timer_reload = rate / HZ;
  322. writel(ctrl, clkevt_base + TIMER_CTRL);
  323. setup_irq(irq, &integrator_timer_irq);
  324. clockevents_config_and_register(&integrator_clockevent,
  325. rate,
  326. 1,
  327. 0xffffU);
  328. }
  329. void __init ap_init_early(void)
  330. {
  331. }
  332. #ifdef CONFIG_OF
  333. static void __init ap_init_timer_of(void)
  334. {
  335. struct device_node *node;
  336. const char *path;
  337. void __iomem *base;
  338. int err;
  339. int irq;
  340. struct clk *clk;
  341. unsigned long rate;
  342. clk = clk_get_sys("ap_timer", NULL);
  343. BUG_ON(IS_ERR(clk));
  344. clk_prepare_enable(clk);
  345. rate = clk_get_rate(clk);
  346. err = of_property_read_string(of_aliases,
  347. "arm,timer-primary", &path);
  348. if (WARN_ON(err))
  349. return;
  350. node = of_find_node_by_path(path);
  351. base = of_iomap(node, 0);
  352. if (WARN_ON(!base))
  353. return;
  354. writel(0, base + TIMER_CTRL);
  355. integrator_clocksource_init(rate, base);
  356. err = of_property_read_string(of_aliases,
  357. "arm,timer-secondary", &path);
  358. if (WARN_ON(err))
  359. return;
  360. node = of_find_node_by_path(path);
  361. base = of_iomap(node, 0);
  362. if (WARN_ON(!base))
  363. return;
  364. irq = irq_of_parse_and_map(node, 0);
  365. writel(0, base + TIMER_CTRL);
  366. integrator_clockevent_init(rate, base, irq);
  367. }
  368. static struct sys_timer ap_of_timer = {
  369. .init = ap_init_timer_of,
  370. };
  371. static const struct of_device_id fpga_irq_of_match[] __initconst = {
  372. { .compatible = "arm,versatile-fpga-irq", .data = fpga_irq_of_init, },
  373. { /* Sentinel */ }
  374. };
  375. static void __init ap_init_irq_of(void)
  376. {
  377. /* disable core module IRQs */
  378. writel(0xffffffffU, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  379. of_irq_init(fpga_irq_of_match);
  380. integrator_clk_init(false);
  381. }
  382. /* For the Device Tree, add in the UART callbacks as AUXDATA */
  383. static struct of_dev_auxdata ap_auxdata_lookup[] __initdata = {
  384. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_RTC_BASE,
  385. "rtc", NULL),
  386. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART0_BASE,
  387. "uart0", &integrator_uart_data),
  388. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART1_BASE,
  389. "uart1", &integrator_uart_data),
  390. OF_DEV_AUXDATA("arm,primecell", KMI0_BASE,
  391. "kmi0", NULL),
  392. OF_DEV_AUXDATA("arm,primecell", KMI1_BASE,
  393. "kmi1", NULL),
  394. OF_DEV_AUXDATA("cfi-flash", INTEGRATOR_FLASH_BASE,
  395. "physmap-flash", &ap_flash_data),
  396. { /* sentinel */ },
  397. };
  398. static void __init ap_init_of(void)
  399. {
  400. unsigned long sc_dec;
  401. struct device_node *root;
  402. struct device_node *syscon;
  403. struct device *parent;
  404. struct soc_device *soc_dev;
  405. struct soc_device_attribute *soc_dev_attr;
  406. u32 ap_sc_id;
  407. int err;
  408. int i;
  409. /* Here we create an SoC device for the root node */
  410. root = of_find_node_by_path("/");
  411. if (!root)
  412. return;
  413. syscon = of_find_node_by_path("/syscon");
  414. if (!syscon)
  415. return;
  416. ap_syscon_base = of_iomap(syscon, 0);
  417. if (!ap_syscon_base)
  418. return;
  419. ap_sc_id = readl(ap_syscon_base);
  420. soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL);
  421. if (!soc_dev_attr)
  422. return;
  423. err = of_property_read_string(root, "compatible",
  424. &soc_dev_attr->soc_id);
  425. if (err)
  426. return;
  427. err = of_property_read_string(root, "model", &soc_dev_attr->machine);
  428. if (err)
  429. return;
  430. soc_dev_attr->family = "Integrator";
  431. soc_dev_attr->revision = kasprintf(GFP_KERNEL, "%c",
  432. 'A' + (ap_sc_id & 0x0f));
  433. soc_dev = soc_device_register(soc_dev_attr);
  434. if (IS_ERR_OR_NULL(soc_dev)) {
  435. kfree(soc_dev_attr->revision);
  436. kfree(soc_dev_attr);
  437. return;
  438. }
  439. parent = soc_device_to_device(soc_dev);
  440. if (!IS_ERR_OR_NULL(parent))
  441. integrator_init_sysfs(parent, ap_sc_id);
  442. of_platform_populate(root, of_default_bus_match_table,
  443. ap_auxdata_lookup, parent);
  444. sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET);
  445. for (i = 0; i < 4; i++) {
  446. struct lm_device *lmdev;
  447. if ((sc_dec & (16 << i)) == 0)
  448. continue;
  449. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  450. if (!lmdev)
  451. continue;
  452. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  453. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  454. lmdev->resource.flags = IORESOURCE_MEM;
  455. lmdev->irq = IRQ_AP_EXPINT0 + i;
  456. lmdev->id = i;
  457. lm_device_register(lmdev);
  458. }
  459. }
  460. static const char * ap_dt_board_compat[] = {
  461. "arm,integrator-ap",
  462. NULL,
  463. };
  464. DT_MACHINE_START(INTEGRATOR_AP_DT, "ARM Integrator/AP (Device Tree)")
  465. .reserve = integrator_reserve,
  466. .map_io = ap_map_io,
  467. .nr_irqs = NR_IRQS_INTEGRATOR_AP,
  468. .init_early = ap_init_early,
  469. .init_irq = ap_init_irq_of,
  470. .handle_irq = fpga_handle_irq,
  471. .timer = &ap_of_timer,
  472. .init_machine = ap_init_of,
  473. .restart = integrator_restart,
  474. .dt_compat = ap_dt_board_compat,
  475. MACHINE_END
  476. #endif
  477. #ifdef CONFIG_ATAGS
  478. /*
  479. * For the ATAG boot some static mappings are needed. This will
  480. * go away with the ATAG support down the road.
  481. */
  482. static struct map_desc ap_io_desc_atag[] __initdata = {
  483. {
  484. .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
  485. .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
  486. .length = SZ_4K,
  487. .type = MT_DEVICE
  488. },
  489. };
  490. static void __init ap_map_io_atag(void)
  491. {
  492. iotable_init(ap_io_desc_atag, ARRAY_SIZE(ap_io_desc_atag));
  493. ap_syscon_base = __io_address(INTEGRATOR_SC_BASE);
  494. ap_map_io();
  495. }
  496. /*
  497. * This is where non-devicetree initialization code is collected and stashed
  498. * for eventual deletion.
  499. */
  500. static struct resource cfi_flash_resource = {
  501. .start = INTEGRATOR_FLASH_BASE,
  502. .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
  503. .flags = IORESOURCE_MEM,
  504. };
  505. static struct platform_device cfi_flash_device = {
  506. .name = "physmap-flash",
  507. .id = 0,
  508. .dev = {
  509. .platform_data = &ap_flash_data,
  510. },
  511. .num_resources = 1,
  512. .resource = &cfi_flash_resource,
  513. };
  514. static void __init ap_init_timer(void)
  515. {
  516. struct clk *clk;
  517. unsigned long rate;
  518. clk = clk_get_sys("ap_timer", NULL);
  519. BUG_ON(IS_ERR(clk));
  520. clk_prepare_enable(clk);
  521. rate = clk_get_rate(clk);
  522. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  523. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  524. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  525. integrator_clocksource_init(rate, (void __iomem *)TIMER2_VA_BASE);
  526. integrator_clockevent_init(rate, (void __iomem *)TIMER1_VA_BASE,
  527. IRQ_TIMERINT1);
  528. }
  529. static struct sys_timer ap_timer = {
  530. .init = ap_init_timer,
  531. };
  532. #define INTEGRATOR_SC_VALID_INT 0x003fffff
  533. static void __init ap_init_irq(void)
  534. {
  535. /* Disable all interrupts initially. */
  536. /* Do the core module ones */
  537. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  538. /* do the header card stuff next */
  539. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  540. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  541. fpga_irq_init(VA_IC_BASE, "SC", IRQ_PIC_START,
  542. -1, INTEGRATOR_SC_VALID_INT, NULL);
  543. integrator_clk_init(false);
  544. }
  545. static void __init ap_init(void)
  546. {
  547. unsigned long sc_dec;
  548. int i;
  549. platform_device_register(&cfi_flash_device);
  550. sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET);
  551. for (i = 0; i < 4; i++) {
  552. struct lm_device *lmdev;
  553. if ((sc_dec & (16 << i)) == 0)
  554. continue;
  555. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  556. if (!lmdev)
  557. continue;
  558. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  559. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  560. lmdev->resource.flags = IORESOURCE_MEM;
  561. lmdev->irq = IRQ_AP_EXPINT0 + i;
  562. lmdev->id = i;
  563. lm_device_register(lmdev);
  564. }
  565. integrator_init(false);
  566. }
  567. MACHINE_START(INTEGRATOR, "ARM-Integrator")
  568. /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
  569. .atag_offset = 0x100,
  570. .reserve = integrator_reserve,
  571. .map_io = ap_map_io_atag,
  572. .nr_irqs = NR_IRQS_INTEGRATOR_AP,
  573. .init_early = ap_init_early,
  574. .init_irq = ap_init_irq,
  575. .handle_irq = fpga_handle_irq,
  576. .timer = &ap_timer,
  577. .init_machine = ap_init,
  578. .restart = integrator_restart,
  579. MACHINE_END
  580. #endif