ctree.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /* this also releases the path */
  53. void btrfs_free_path(struct btrfs_path *p)
  54. {
  55. btrfs_release_path(NULL, p);
  56. kmem_cache_free(btrfs_path_cachep, p);
  57. }
  58. /*
  59. * path release drops references on the extent buffers in the path
  60. * and it drops any locks held by this path
  61. *
  62. * It is safe to call this on paths that no locks or extent buffers held.
  63. */
  64. void noinline btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  65. {
  66. int i;
  67. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  68. p->slots[i] = 0;
  69. if (!p->nodes[i])
  70. continue;
  71. if (p->locks[i]) {
  72. btrfs_tree_unlock(p->nodes[i]);
  73. p->locks[i] = 0;
  74. }
  75. free_extent_buffer(p->nodes[i]);
  76. p->nodes[i] = NULL;
  77. }
  78. }
  79. /*
  80. * safely gets a reference on the root node of a tree. A lock
  81. * is not taken, so a concurrent writer may put a different node
  82. * at the root of the tree. See btrfs_lock_root_node for the
  83. * looping required.
  84. *
  85. * The extent buffer returned by this has a reference taken, so
  86. * it won't disappear. It may stop being the root of the tree
  87. * at any time because there are no locks held.
  88. */
  89. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  90. {
  91. struct extent_buffer *eb;
  92. spin_lock(&root->node_lock);
  93. eb = root->node;
  94. extent_buffer_get(eb);
  95. spin_unlock(&root->node_lock);
  96. return eb;
  97. }
  98. /* loop around taking references on and locking the root node of the
  99. * tree until you end up with a lock on the root. A locked buffer
  100. * is returned, with a reference held.
  101. */
  102. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  103. {
  104. struct extent_buffer *eb;
  105. while(1) {
  106. eb = btrfs_root_node(root);
  107. btrfs_tree_lock(eb);
  108. spin_lock(&root->node_lock);
  109. if (eb == root->node) {
  110. spin_unlock(&root->node_lock);
  111. break;
  112. }
  113. spin_unlock(&root->node_lock);
  114. btrfs_tree_unlock(eb);
  115. free_extent_buffer(eb);
  116. }
  117. return eb;
  118. }
  119. /* cowonly root (everything not a reference counted cow subvolume), just get
  120. * put onto a simple dirty list. transaction.c walks this to make sure they
  121. * get properly updated on disk.
  122. */
  123. static void add_root_to_dirty_list(struct btrfs_root *root)
  124. {
  125. if (root->track_dirty && list_empty(&root->dirty_list)) {
  126. list_add(&root->dirty_list,
  127. &root->fs_info->dirty_cowonly_roots);
  128. }
  129. }
  130. /*
  131. * used by snapshot creation to make a copy of a root for a tree with
  132. * a given objectid. The buffer with the new root node is returned in
  133. * cow_ret, and this func returns zero on success or a negative error code.
  134. */
  135. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  136. struct btrfs_root *root,
  137. struct extent_buffer *buf,
  138. struct extent_buffer **cow_ret, u64 new_root_objectid)
  139. {
  140. struct extent_buffer *cow;
  141. u32 nritems;
  142. int ret = 0;
  143. int level;
  144. struct btrfs_root *new_root;
  145. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  146. if (!new_root)
  147. return -ENOMEM;
  148. memcpy(new_root, root, sizeof(*new_root));
  149. new_root->root_key.objectid = new_root_objectid;
  150. WARN_ON(root->ref_cows && trans->transid !=
  151. root->fs_info->running_transaction->transid);
  152. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  153. level = btrfs_header_level(buf);
  154. nritems = btrfs_header_nritems(buf);
  155. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  156. new_root_objectid, trans->transid,
  157. level, buf->start, 0);
  158. if (IS_ERR(cow)) {
  159. kfree(new_root);
  160. return PTR_ERR(cow);
  161. }
  162. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  163. btrfs_set_header_bytenr(cow, cow->start);
  164. btrfs_set_header_generation(cow, trans->transid);
  165. btrfs_set_header_owner(cow, new_root_objectid);
  166. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  167. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  168. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  169. kfree(new_root);
  170. if (ret)
  171. return ret;
  172. btrfs_mark_buffer_dirty(cow);
  173. *cow_ret = cow;
  174. return 0;
  175. }
  176. /*
  177. * does the dirty work in cow of a single block. The parent block
  178. * (if supplied) is updated to point to the new cow copy. The new
  179. * buffer is marked dirty and returned locked. If you modify the block
  180. * it needs to be marked dirty again.
  181. *
  182. * search_start -- an allocation hint for the new block
  183. *
  184. * empty_size -- a hint that you plan on doing more cow. This is the size in bytes
  185. * the allocator should try to find free next to the block it returns. This is
  186. * just a hint and may be ignored by the allocator.
  187. *
  188. * prealloc_dest -- if you have already reserved a destination for the cow,
  189. * this uses that block instead of allocating a new one. btrfs_alloc_reserved_extent
  190. * is used to finish the allocation.
  191. */
  192. int noinline __btrfs_cow_block(struct btrfs_trans_handle *trans,
  193. struct btrfs_root *root,
  194. struct extent_buffer *buf,
  195. struct extent_buffer *parent, int parent_slot,
  196. struct extent_buffer **cow_ret,
  197. u64 search_start, u64 empty_size,
  198. u64 prealloc_dest)
  199. {
  200. u64 parent_start;
  201. struct extent_buffer *cow;
  202. u32 nritems;
  203. int ret = 0;
  204. int level;
  205. int unlock_orig = 0;
  206. if (*cow_ret == buf)
  207. unlock_orig = 1;
  208. WARN_ON(!btrfs_tree_locked(buf));
  209. if (parent)
  210. parent_start = parent->start;
  211. else
  212. parent_start = 0;
  213. WARN_ON(root->ref_cows && trans->transid !=
  214. root->fs_info->running_transaction->transid);
  215. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  216. level = btrfs_header_level(buf);
  217. nritems = btrfs_header_nritems(buf);
  218. if (prealloc_dest) {
  219. struct btrfs_key ins;
  220. ins.objectid = prealloc_dest;
  221. ins.offset = buf->len;
  222. ins.type = BTRFS_EXTENT_ITEM_KEY;
  223. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  224. root->root_key.objectid,
  225. trans->transid, level, 0,
  226. &ins);
  227. BUG_ON(ret);
  228. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  229. buf->len);
  230. } else {
  231. cow = btrfs_alloc_free_block(trans, root, buf->len,
  232. parent_start,
  233. root->root_key.objectid,
  234. trans->transid, level,
  235. search_start, empty_size);
  236. }
  237. if (IS_ERR(cow))
  238. return PTR_ERR(cow);
  239. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  240. btrfs_set_header_bytenr(cow, cow->start);
  241. btrfs_set_header_generation(cow, trans->transid);
  242. btrfs_set_header_owner(cow, root->root_key.objectid);
  243. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  244. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  245. if (btrfs_header_generation(buf) != trans->transid) {
  246. u32 nr_extents;
  247. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  248. if (ret)
  249. return ret;
  250. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  251. WARN_ON(ret);
  252. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  253. /*
  254. * There are only two places that can drop reference to
  255. * tree blocks owned by living reloc trees, one is here,
  256. * the other place is btrfs_merge_path. In both places,
  257. * we check reference count while tree block is locked.
  258. * Furthermore, if reference count is one, it won't get
  259. * increased by someone else.
  260. */
  261. u32 refs;
  262. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  263. buf->len, &refs);
  264. BUG_ON(ret);
  265. if (refs == 1) {
  266. ret = btrfs_update_ref(trans, root, buf, cow,
  267. 0, nritems);
  268. clean_tree_block(trans, root, buf);
  269. } else {
  270. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  271. }
  272. BUG_ON(ret);
  273. } else {
  274. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  275. if (ret)
  276. return ret;
  277. clean_tree_block(trans, root, buf);
  278. }
  279. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  280. ret = btrfs_add_reloc_mapping(root, buf->start,
  281. buf->len, cow->start);
  282. BUG_ON(ret);
  283. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  284. WARN_ON(ret);
  285. }
  286. if (buf == root->node) {
  287. WARN_ON(parent && parent != buf);
  288. spin_lock(&root->node_lock);
  289. root->node = cow;
  290. extent_buffer_get(cow);
  291. spin_unlock(&root->node_lock);
  292. if (buf != root->commit_root) {
  293. btrfs_free_extent(trans, root, buf->start,
  294. buf->len, buf->start,
  295. root->root_key.objectid,
  296. btrfs_header_generation(buf),
  297. 0, 0, 1);
  298. }
  299. free_extent_buffer(buf);
  300. add_root_to_dirty_list(root);
  301. } else {
  302. btrfs_set_node_blockptr(parent, parent_slot,
  303. cow->start);
  304. WARN_ON(trans->transid == 0);
  305. btrfs_set_node_ptr_generation(parent, parent_slot,
  306. trans->transid);
  307. btrfs_mark_buffer_dirty(parent);
  308. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  309. btrfs_free_extent(trans, root, buf->start, buf->len,
  310. parent_start, btrfs_header_owner(parent),
  311. btrfs_header_generation(parent), 0, 0, 1);
  312. }
  313. if (unlock_orig)
  314. btrfs_tree_unlock(buf);
  315. free_extent_buffer(buf);
  316. btrfs_mark_buffer_dirty(cow);
  317. *cow_ret = cow;
  318. return 0;
  319. }
  320. /*
  321. * cows a single block, see __btrfs_cow_block for the real work.
  322. * This version of it has extra checks so that a block isn't cow'd more than
  323. * once per transaction, as long as it hasn't been written yet
  324. */
  325. int noinline btrfs_cow_block(struct btrfs_trans_handle *trans,
  326. struct btrfs_root *root, struct extent_buffer *buf,
  327. struct extent_buffer *parent, int parent_slot,
  328. struct extent_buffer **cow_ret, u64 prealloc_dest)
  329. {
  330. u64 search_start;
  331. int ret;
  332. if (trans->transaction != root->fs_info->running_transaction) {
  333. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  334. root->fs_info->running_transaction->transid);
  335. WARN_ON(1);
  336. }
  337. if (trans->transid != root->fs_info->generation) {
  338. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  339. root->fs_info->generation);
  340. WARN_ON(1);
  341. }
  342. spin_lock(&root->fs_info->hash_lock);
  343. if (btrfs_header_generation(buf) == trans->transid &&
  344. btrfs_header_owner(buf) == root->root_key.objectid &&
  345. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  346. *cow_ret = buf;
  347. spin_unlock(&root->fs_info->hash_lock);
  348. WARN_ON(prealloc_dest);
  349. return 0;
  350. }
  351. spin_unlock(&root->fs_info->hash_lock);
  352. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  353. ret = __btrfs_cow_block(trans, root, buf, parent,
  354. parent_slot, cow_ret, search_start, 0,
  355. prealloc_dest);
  356. return ret;
  357. }
  358. /*
  359. * helper function for defrag to decide if two blocks pointed to by a
  360. * node are actually close by
  361. */
  362. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  363. {
  364. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  365. return 1;
  366. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  367. return 1;
  368. return 0;
  369. }
  370. /*
  371. * compare two keys in a memcmp fashion
  372. */
  373. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  374. {
  375. struct btrfs_key k1;
  376. btrfs_disk_key_to_cpu(&k1, disk);
  377. if (k1.objectid > k2->objectid)
  378. return 1;
  379. if (k1.objectid < k2->objectid)
  380. return -1;
  381. if (k1.type > k2->type)
  382. return 1;
  383. if (k1.type < k2->type)
  384. return -1;
  385. if (k1.offset > k2->offset)
  386. return 1;
  387. if (k1.offset < k2->offset)
  388. return -1;
  389. return 0;
  390. }
  391. /*
  392. * this is used by the defrag code to go through all the
  393. * leaves pointed to by a node and reallocate them so that
  394. * disk order is close to key order
  395. */
  396. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  397. struct btrfs_root *root, struct extent_buffer *parent,
  398. int start_slot, int cache_only, u64 *last_ret,
  399. struct btrfs_key *progress)
  400. {
  401. struct extent_buffer *cur;
  402. u64 blocknr;
  403. u64 gen;
  404. u64 search_start = *last_ret;
  405. u64 last_block = 0;
  406. u64 other;
  407. u32 parent_nritems;
  408. int end_slot;
  409. int i;
  410. int err = 0;
  411. int parent_level;
  412. int uptodate;
  413. u32 blocksize;
  414. int progress_passed = 0;
  415. struct btrfs_disk_key disk_key;
  416. parent_level = btrfs_header_level(parent);
  417. if (cache_only && parent_level != 1)
  418. return 0;
  419. if (trans->transaction != root->fs_info->running_transaction) {
  420. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  421. root->fs_info->running_transaction->transid);
  422. WARN_ON(1);
  423. }
  424. if (trans->transid != root->fs_info->generation) {
  425. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  426. root->fs_info->generation);
  427. WARN_ON(1);
  428. }
  429. parent_nritems = btrfs_header_nritems(parent);
  430. blocksize = btrfs_level_size(root, parent_level - 1);
  431. end_slot = parent_nritems;
  432. if (parent_nritems == 1)
  433. return 0;
  434. for (i = start_slot; i < end_slot; i++) {
  435. int close = 1;
  436. if (!parent->map_token) {
  437. map_extent_buffer(parent,
  438. btrfs_node_key_ptr_offset(i),
  439. sizeof(struct btrfs_key_ptr),
  440. &parent->map_token, &parent->kaddr,
  441. &parent->map_start, &parent->map_len,
  442. KM_USER1);
  443. }
  444. btrfs_node_key(parent, &disk_key, i);
  445. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  446. continue;
  447. progress_passed = 1;
  448. blocknr = btrfs_node_blockptr(parent, i);
  449. gen = btrfs_node_ptr_generation(parent, i);
  450. if (last_block == 0)
  451. last_block = blocknr;
  452. if (i > 0) {
  453. other = btrfs_node_blockptr(parent, i - 1);
  454. close = close_blocks(blocknr, other, blocksize);
  455. }
  456. if (!close && i < end_slot - 2) {
  457. other = btrfs_node_blockptr(parent, i + 1);
  458. close = close_blocks(blocknr, other, blocksize);
  459. }
  460. if (close) {
  461. last_block = blocknr;
  462. continue;
  463. }
  464. if (parent->map_token) {
  465. unmap_extent_buffer(parent, parent->map_token,
  466. KM_USER1);
  467. parent->map_token = NULL;
  468. }
  469. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  470. if (cur)
  471. uptodate = btrfs_buffer_uptodate(cur, gen);
  472. else
  473. uptodate = 0;
  474. if (!cur || !uptodate) {
  475. if (cache_only) {
  476. free_extent_buffer(cur);
  477. continue;
  478. }
  479. if (!cur) {
  480. cur = read_tree_block(root, blocknr,
  481. blocksize, gen);
  482. } else if (!uptodate) {
  483. btrfs_read_buffer(cur, gen);
  484. }
  485. }
  486. if (search_start == 0)
  487. search_start = last_block;
  488. btrfs_tree_lock(cur);
  489. err = __btrfs_cow_block(trans, root, cur, parent, i,
  490. &cur, search_start,
  491. min(16 * blocksize,
  492. (end_slot - i) * blocksize), 0);
  493. if (err) {
  494. btrfs_tree_unlock(cur);
  495. free_extent_buffer(cur);
  496. break;
  497. }
  498. search_start = cur->start;
  499. last_block = cur->start;
  500. *last_ret = search_start;
  501. btrfs_tree_unlock(cur);
  502. free_extent_buffer(cur);
  503. }
  504. if (parent->map_token) {
  505. unmap_extent_buffer(parent, parent->map_token,
  506. KM_USER1);
  507. parent->map_token = NULL;
  508. }
  509. return err;
  510. }
  511. /*
  512. * The leaf data grows from end-to-front in the node.
  513. * this returns the address of the start of the last item,
  514. * which is the stop of the leaf data stack
  515. */
  516. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  517. struct extent_buffer *leaf)
  518. {
  519. u32 nr = btrfs_header_nritems(leaf);
  520. if (nr == 0)
  521. return BTRFS_LEAF_DATA_SIZE(root);
  522. return btrfs_item_offset_nr(leaf, nr - 1);
  523. }
  524. /*
  525. * extra debugging checks to make sure all the items in a key are
  526. * well formed and in the proper order
  527. */
  528. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  529. int level)
  530. {
  531. struct extent_buffer *parent = NULL;
  532. struct extent_buffer *node = path->nodes[level];
  533. struct btrfs_disk_key parent_key;
  534. struct btrfs_disk_key node_key;
  535. int parent_slot;
  536. int slot;
  537. struct btrfs_key cpukey;
  538. u32 nritems = btrfs_header_nritems(node);
  539. if (path->nodes[level + 1])
  540. parent = path->nodes[level + 1];
  541. slot = path->slots[level];
  542. BUG_ON(nritems == 0);
  543. if (parent) {
  544. parent_slot = path->slots[level + 1];
  545. btrfs_node_key(parent, &parent_key, parent_slot);
  546. btrfs_node_key(node, &node_key, 0);
  547. BUG_ON(memcmp(&parent_key, &node_key,
  548. sizeof(struct btrfs_disk_key)));
  549. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  550. btrfs_header_bytenr(node));
  551. }
  552. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  553. if (slot != 0) {
  554. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  555. btrfs_node_key(node, &node_key, slot);
  556. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  557. }
  558. if (slot < nritems - 1) {
  559. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  560. btrfs_node_key(node, &node_key, slot);
  561. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  562. }
  563. return 0;
  564. }
  565. /*
  566. * extra checking to make sure all the items in a leaf are
  567. * well formed and in the proper order
  568. */
  569. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  570. int level)
  571. {
  572. struct extent_buffer *leaf = path->nodes[level];
  573. struct extent_buffer *parent = NULL;
  574. int parent_slot;
  575. struct btrfs_key cpukey;
  576. struct btrfs_disk_key parent_key;
  577. struct btrfs_disk_key leaf_key;
  578. int slot = path->slots[0];
  579. u32 nritems = btrfs_header_nritems(leaf);
  580. if (path->nodes[level + 1])
  581. parent = path->nodes[level + 1];
  582. if (nritems == 0)
  583. return 0;
  584. if (parent) {
  585. parent_slot = path->slots[level + 1];
  586. btrfs_node_key(parent, &parent_key, parent_slot);
  587. btrfs_item_key(leaf, &leaf_key, 0);
  588. BUG_ON(memcmp(&parent_key, &leaf_key,
  589. sizeof(struct btrfs_disk_key)));
  590. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  591. btrfs_header_bytenr(leaf));
  592. }
  593. #if 0
  594. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  595. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  596. btrfs_item_key(leaf, &leaf_key, i);
  597. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  598. btrfs_print_leaf(root, leaf);
  599. printk("slot %d offset bad key\n", i);
  600. BUG_ON(1);
  601. }
  602. if (btrfs_item_offset_nr(leaf, i) !=
  603. btrfs_item_end_nr(leaf, i + 1)) {
  604. btrfs_print_leaf(root, leaf);
  605. printk("slot %d offset bad\n", i);
  606. BUG_ON(1);
  607. }
  608. if (i == 0) {
  609. if (btrfs_item_offset_nr(leaf, i) +
  610. btrfs_item_size_nr(leaf, i) !=
  611. BTRFS_LEAF_DATA_SIZE(root)) {
  612. btrfs_print_leaf(root, leaf);
  613. printk("slot %d first offset bad\n", i);
  614. BUG_ON(1);
  615. }
  616. }
  617. }
  618. if (nritems > 0) {
  619. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  620. btrfs_print_leaf(root, leaf);
  621. printk("slot %d bad size \n", nritems - 1);
  622. BUG_ON(1);
  623. }
  624. }
  625. #endif
  626. if (slot != 0 && slot < nritems - 1) {
  627. btrfs_item_key(leaf, &leaf_key, slot);
  628. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  629. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  630. btrfs_print_leaf(root, leaf);
  631. printk("slot %d offset bad key\n", slot);
  632. BUG_ON(1);
  633. }
  634. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  635. btrfs_item_end_nr(leaf, slot)) {
  636. btrfs_print_leaf(root, leaf);
  637. printk("slot %d offset bad\n", slot);
  638. BUG_ON(1);
  639. }
  640. }
  641. if (slot < nritems - 1) {
  642. btrfs_item_key(leaf, &leaf_key, slot);
  643. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  644. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  645. if (btrfs_item_offset_nr(leaf, slot) !=
  646. btrfs_item_end_nr(leaf, slot + 1)) {
  647. btrfs_print_leaf(root, leaf);
  648. printk("slot %d offset bad\n", slot);
  649. BUG_ON(1);
  650. }
  651. }
  652. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  653. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  654. return 0;
  655. }
  656. static int noinline check_block(struct btrfs_root *root,
  657. struct btrfs_path *path, int level)
  658. {
  659. u64 found_start;
  660. return 0;
  661. if (btrfs_header_level(path->nodes[level]) != level)
  662. printk("warning: bad level %Lu wanted %d found %d\n",
  663. path->nodes[level]->start, level,
  664. btrfs_header_level(path->nodes[level]));
  665. found_start = btrfs_header_bytenr(path->nodes[level]);
  666. if (found_start != path->nodes[level]->start) {
  667. printk("warning: bad bytentr %Lu found %Lu\n",
  668. path->nodes[level]->start, found_start);
  669. }
  670. #if 0
  671. struct extent_buffer *buf = path->nodes[level];
  672. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  673. (unsigned long)btrfs_header_fsid(buf),
  674. BTRFS_FSID_SIZE)) {
  675. printk("warning bad block %Lu\n", buf->start);
  676. return 1;
  677. }
  678. #endif
  679. if (level == 0)
  680. return check_leaf(root, path, level);
  681. return check_node(root, path, level);
  682. }
  683. /*
  684. * search for key in the extent_buffer. The items start at offset p,
  685. * and they are item_size apart. There are 'max' items in p.
  686. *
  687. * the slot in the array is returned via slot, and it points to
  688. * the place where you would insert key if it is not found in
  689. * the array.
  690. *
  691. * slot may point to max if the key is bigger than all of the keys
  692. */
  693. static noinline int generic_bin_search(struct extent_buffer *eb,
  694. unsigned long p,
  695. int item_size, struct btrfs_key *key,
  696. int max, int *slot)
  697. {
  698. int low = 0;
  699. int high = max;
  700. int mid;
  701. int ret;
  702. struct btrfs_disk_key *tmp = NULL;
  703. struct btrfs_disk_key unaligned;
  704. unsigned long offset;
  705. char *map_token = NULL;
  706. char *kaddr = NULL;
  707. unsigned long map_start = 0;
  708. unsigned long map_len = 0;
  709. int err;
  710. while(low < high) {
  711. mid = (low + high) / 2;
  712. offset = p + mid * item_size;
  713. if (!map_token || offset < map_start ||
  714. (offset + sizeof(struct btrfs_disk_key)) >
  715. map_start + map_len) {
  716. if (map_token) {
  717. unmap_extent_buffer(eb, map_token, KM_USER0);
  718. map_token = NULL;
  719. }
  720. err = map_extent_buffer(eb, offset,
  721. sizeof(struct btrfs_disk_key),
  722. &map_token, &kaddr,
  723. &map_start, &map_len, KM_USER0);
  724. if (!err) {
  725. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  726. map_start);
  727. } else {
  728. read_extent_buffer(eb, &unaligned,
  729. offset, sizeof(unaligned));
  730. tmp = &unaligned;
  731. }
  732. } else {
  733. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  734. map_start);
  735. }
  736. ret = comp_keys(tmp, key);
  737. if (ret < 0)
  738. low = mid + 1;
  739. else if (ret > 0)
  740. high = mid;
  741. else {
  742. *slot = mid;
  743. if (map_token)
  744. unmap_extent_buffer(eb, map_token, KM_USER0);
  745. return 0;
  746. }
  747. }
  748. *slot = low;
  749. if (map_token)
  750. unmap_extent_buffer(eb, map_token, KM_USER0);
  751. return 1;
  752. }
  753. /*
  754. * simple bin_search frontend that does the right thing for
  755. * leaves vs nodes
  756. */
  757. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  758. int level, int *slot)
  759. {
  760. if (level == 0) {
  761. return generic_bin_search(eb,
  762. offsetof(struct btrfs_leaf, items),
  763. sizeof(struct btrfs_item),
  764. key, btrfs_header_nritems(eb),
  765. slot);
  766. } else {
  767. return generic_bin_search(eb,
  768. offsetof(struct btrfs_node, ptrs),
  769. sizeof(struct btrfs_key_ptr),
  770. key, btrfs_header_nritems(eb),
  771. slot);
  772. }
  773. return -1;
  774. }
  775. /* given a node and slot number, this reads the blocks it points to. The
  776. * extent buffer is returned with a reference taken (but unlocked).
  777. * NULL is returned on error.
  778. */
  779. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  780. struct extent_buffer *parent, int slot)
  781. {
  782. int level = btrfs_header_level(parent);
  783. if (slot < 0)
  784. return NULL;
  785. if (slot >= btrfs_header_nritems(parent))
  786. return NULL;
  787. BUG_ON(level == 0);
  788. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  789. btrfs_level_size(root, level - 1),
  790. btrfs_node_ptr_generation(parent, slot));
  791. }
  792. /*
  793. * node level balancing, used to make sure nodes are in proper order for
  794. * item deletion. We balance from the top down, so we have to make sure
  795. * that a deletion won't leave an node completely empty later on.
  796. */
  797. static noinline int balance_level(struct btrfs_trans_handle *trans,
  798. struct btrfs_root *root,
  799. struct btrfs_path *path, int level)
  800. {
  801. struct extent_buffer *right = NULL;
  802. struct extent_buffer *mid;
  803. struct extent_buffer *left = NULL;
  804. struct extent_buffer *parent = NULL;
  805. int ret = 0;
  806. int wret;
  807. int pslot;
  808. int orig_slot = path->slots[level];
  809. int err_on_enospc = 0;
  810. u64 orig_ptr;
  811. if (level == 0)
  812. return 0;
  813. mid = path->nodes[level];
  814. WARN_ON(!path->locks[level]);
  815. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  816. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  817. if (level < BTRFS_MAX_LEVEL - 1)
  818. parent = path->nodes[level + 1];
  819. pslot = path->slots[level + 1];
  820. /*
  821. * deal with the case where there is only one pointer in the root
  822. * by promoting the node below to a root
  823. */
  824. if (!parent) {
  825. struct extent_buffer *child;
  826. if (btrfs_header_nritems(mid) != 1)
  827. return 0;
  828. /* promote the child to a root */
  829. child = read_node_slot(root, mid, 0);
  830. btrfs_tree_lock(child);
  831. BUG_ON(!child);
  832. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  833. BUG_ON(ret);
  834. spin_lock(&root->node_lock);
  835. root->node = child;
  836. spin_unlock(&root->node_lock);
  837. ret = btrfs_update_extent_ref(trans, root, child->start,
  838. mid->start, child->start,
  839. root->root_key.objectid,
  840. trans->transid, level - 1, 0);
  841. BUG_ON(ret);
  842. add_root_to_dirty_list(root);
  843. btrfs_tree_unlock(child);
  844. path->locks[level] = 0;
  845. path->nodes[level] = NULL;
  846. clean_tree_block(trans, root, mid);
  847. btrfs_tree_unlock(mid);
  848. /* once for the path */
  849. free_extent_buffer(mid);
  850. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  851. mid->start, root->root_key.objectid,
  852. btrfs_header_generation(mid), 0, 0, 1);
  853. /* once for the root ptr */
  854. free_extent_buffer(mid);
  855. return ret;
  856. }
  857. if (btrfs_header_nritems(mid) >
  858. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  859. return 0;
  860. if (btrfs_header_nritems(mid) < 2)
  861. err_on_enospc = 1;
  862. left = read_node_slot(root, parent, pslot - 1);
  863. if (left) {
  864. btrfs_tree_lock(left);
  865. wret = btrfs_cow_block(trans, root, left,
  866. parent, pslot - 1, &left, 0);
  867. if (wret) {
  868. ret = wret;
  869. goto enospc;
  870. }
  871. }
  872. right = read_node_slot(root, parent, pslot + 1);
  873. if (right) {
  874. btrfs_tree_lock(right);
  875. wret = btrfs_cow_block(trans, root, right,
  876. parent, pslot + 1, &right, 0);
  877. if (wret) {
  878. ret = wret;
  879. goto enospc;
  880. }
  881. }
  882. /* first, try to make some room in the middle buffer */
  883. if (left) {
  884. orig_slot += btrfs_header_nritems(left);
  885. wret = push_node_left(trans, root, left, mid, 1);
  886. if (wret < 0)
  887. ret = wret;
  888. if (btrfs_header_nritems(mid) < 2)
  889. err_on_enospc = 1;
  890. }
  891. /*
  892. * then try to empty the right most buffer into the middle
  893. */
  894. if (right) {
  895. wret = push_node_left(trans, root, mid, right, 1);
  896. if (wret < 0 && wret != -ENOSPC)
  897. ret = wret;
  898. if (btrfs_header_nritems(right) == 0) {
  899. u64 bytenr = right->start;
  900. u64 generation = btrfs_header_generation(parent);
  901. u32 blocksize = right->len;
  902. clean_tree_block(trans, root, right);
  903. btrfs_tree_unlock(right);
  904. free_extent_buffer(right);
  905. right = NULL;
  906. wret = del_ptr(trans, root, path, level + 1, pslot +
  907. 1);
  908. if (wret)
  909. ret = wret;
  910. wret = btrfs_free_extent(trans, root, bytenr,
  911. blocksize, parent->start,
  912. btrfs_header_owner(parent),
  913. generation, 0, 0, 1);
  914. if (wret)
  915. ret = wret;
  916. } else {
  917. struct btrfs_disk_key right_key;
  918. btrfs_node_key(right, &right_key, 0);
  919. btrfs_set_node_key(parent, &right_key, pslot + 1);
  920. btrfs_mark_buffer_dirty(parent);
  921. }
  922. }
  923. if (btrfs_header_nritems(mid) == 1) {
  924. /*
  925. * we're not allowed to leave a node with one item in the
  926. * tree during a delete. A deletion from lower in the tree
  927. * could try to delete the only pointer in this node.
  928. * So, pull some keys from the left.
  929. * There has to be a left pointer at this point because
  930. * otherwise we would have pulled some pointers from the
  931. * right
  932. */
  933. BUG_ON(!left);
  934. wret = balance_node_right(trans, root, mid, left);
  935. if (wret < 0) {
  936. ret = wret;
  937. goto enospc;
  938. }
  939. if (wret == 1) {
  940. wret = push_node_left(trans, root, left, mid, 1);
  941. if (wret < 0)
  942. ret = wret;
  943. }
  944. BUG_ON(wret == 1);
  945. }
  946. if (btrfs_header_nritems(mid) == 0) {
  947. /* we've managed to empty the middle node, drop it */
  948. u64 root_gen = btrfs_header_generation(parent);
  949. u64 bytenr = mid->start;
  950. u32 blocksize = mid->len;
  951. clean_tree_block(trans, root, mid);
  952. btrfs_tree_unlock(mid);
  953. free_extent_buffer(mid);
  954. mid = NULL;
  955. wret = del_ptr(trans, root, path, level + 1, pslot);
  956. if (wret)
  957. ret = wret;
  958. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  959. parent->start,
  960. btrfs_header_owner(parent),
  961. root_gen, 0, 0, 1);
  962. if (wret)
  963. ret = wret;
  964. } else {
  965. /* update the parent key to reflect our changes */
  966. struct btrfs_disk_key mid_key;
  967. btrfs_node_key(mid, &mid_key, 0);
  968. btrfs_set_node_key(parent, &mid_key, pslot);
  969. btrfs_mark_buffer_dirty(parent);
  970. }
  971. /* update the path */
  972. if (left) {
  973. if (btrfs_header_nritems(left) > orig_slot) {
  974. extent_buffer_get(left);
  975. /* left was locked after cow */
  976. path->nodes[level] = left;
  977. path->slots[level + 1] -= 1;
  978. path->slots[level] = orig_slot;
  979. if (mid) {
  980. btrfs_tree_unlock(mid);
  981. free_extent_buffer(mid);
  982. }
  983. } else {
  984. orig_slot -= btrfs_header_nritems(left);
  985. path->slots[level] = orig_slot;
  986. }
  987. }
  988. /* double check we haven't messed things up */
  989. check_block(root, path, level);
  990. if (orig_ptr !=
  991. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  992. BUG();
  993. enospc:
  994. if (right) {
  995. btrfs_tree_unlock(right);
  996. free_extent_buffer(right);
  997. }
  998. if (left) {
  999. if (path->nodes[level] != left)
  1000. btrfs_tree_unlock(left);
  1001. free_extent_buffer(left);
  1002. }
  1003. return ret;
  1004. }
  1005. /* Node balancing for insertion. Here we only split or push nodes around
  1006. * when they are completely full. This is also done top down, so we
  1007. * have to be pessimistic.
  1008. */
  1009. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1010. struct btrfs_root *root,
  1011. struct btrfs_path *path, int level)
  1012. {
  1013. struct extent_buffer *right = NULL;
  1014. struct extent_buffer *mid;
  1015. struct extent_buffer *left = NULL;
  1016. struct extent_buffer *parent = NULL;
  1017. int ret = 0;
  1018. int wret;
  1019. int pslot;
  1020. int orig_slot = path->slots[level];
  1021. u64 orig_ptr;
  1022. if (level == 0)
  1023. return 1;
  1024. mid = path->nodes[level];
  1025. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1026. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1027. if (level < BTRFS_MAX_LEVEL - 1)
  1028. parent = path->nodes[level + 1];
  1029. pslot = path->slots[level + 1];
  1030. if (!parent)
  1031. return 1;
  1032. left = read_node_slot(root, parent, pslot - 1);
  1033. /* first, try to make some room in the middle buffer */
  1034. if (left) {
  1035. u32 left_nr;
  1036. btrfs_tree_lock(left);
  1037. left_nr = btrfs_header_nritems(left);
  1038. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1039. wret = 1;
  1040. } else {
  1041. ret = btrfs_cow_block(trans, root, left, parent,
  1042. pslot - 1, &left, 0);
  1043. if (ret)
  1044. wret = 1;
  1045. else {
  1046. wret = push_node_left(trans, root,
  1047. left, mid, 0);
  1048. }
  1049. }
  1050. if (wret < 0)
  1051. ret = wret;
  1052. if (wret == 0) {
  1053. struct btrfs_disk_key disk_key;
  1054. orig_slot += left_nr;
  1055. btrfs_node_key(mid, &disk_key, 0);
  1056. btrfs_set_node_key(parent, &disk_key, pslot);
  1057. btrfs_mark_buffer_dirty(parent);
  1058. if (btrfs_header_nritems(left) > orig_slot) {
  1059. path->nodes[level] = left;
  1060. path->slots[level + 1] -= 1;
  1061. path->slots[level] = orig_slot;
  1062. btrfs_tree_unlock(mid);
  1063. free_extent_buffer(mid);
  1064. } else {
  1065. orig_slot -=
  1066. btrfs_header_nritems(left);
  1067. path->slots[level] = orig_slot;
  1068. btrfs_tree_unlock(left);
  1069. free_extent_buffer(left);
  1070. }
  1071. return 0;
  1072. }
  1073. btrfs_tree_unlock(left);
  1074. free_extent_buffer(left);
  1075. }
  1076. right = read_node_slot(root, parent, pslot + 1);
  1077. /*
  1078. * then try to empty the right most buffer into the middle
  1079. */
  1080. if (right) {
  1081. u32 right_nr;
  1082. btrfs_tree_lock(right);
  1083. right_nr = btrfs_header_nritems(right);
  1084. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1085. wret = 1;
  1086. } else {
  1087. ret = btrfs_cow_block(trans, root, right,
  1088. parent, pslot + 1,
  1089. &right, 0);
  1090. if (ret)
  1091. wret = 1;
  1092. else {
  1093. wret = balance_node_right(trans, root,
  1094. right, mid);
  1095. }
  1096. }
  1097. if (wret < 0)
  1098. ret = wret;
  1099. if (wret == 0) {
  1100. struct btrfs_disk_key disk_key;
  1101. btrfs_node_key(right, &disk_key, 0);
  1102. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1103. btrfs_mark_buffer_dirty(parent);
  1104. if (btrfs_header_nritems(mid) <= orig_slot) {
  1105. path->nodes[level] = right;
  1106. path->slots[level + 1] += 1;
  1107. path->slots[level] = orig_slot -
  1108. btrfs_header_nritems(mid);
  1109. btrfs_tree_unlock(mid);
  1110. free_extent_buffer(mid);
  1111. } else {
  1112. btrfs_tree_unlock(right);
  1113. free_extent_buffer(right);
  1114. }
  1115. return 0;
  1116. }
  1117. btrfs_tree_unlock(right);
  1118. free_extent_buffer(right);
  1119. }
  1120. return 1;
  1121. }
  1122. /*
  1123. * readahead one full node of leaves, finding things that are close
  1124. * to the block in 'slot', and triggering ra on them.
  1125. */
  1126. static noinline void reada_for_search(struct btrfs_root *root,
  1127. struct btrfs_path *path,
  1128. int level, int slot, u64 objectid)
  1129. {
  1130. struct extent_buffer *node;
  1131. struct btrfs_disk_key disk_key;
  1132. u32 nritems;
  1133. u64 search;
  1134. u64 lowest_read;
  1135. u64 highest_read;
  1136. u64 nread = 0;
  1137. int direction = path->reada;
  1138. struct extent_buffer *eb;
  1139. u32 nr;
  1140. u32 blocksize;
  1141. u32 nscan = 0;
  1142. if (level != 1)
  1143. return;
  1144. if (!path->nodes[level])
  1145. return;
  1146. node = path->nodes[level];
  1147. search = btrfs_node_blockptr(node, slot);
  1148. blocksize = btrfs_level_size(root, level - 1);
  1149. eb = btrfs_find_tree_block(root, search, blocksize);
  1150. if (eb) {
  1151. free_extent_buffer(eb);
  1152. return;
  1153. }
  1154. highest_read = search;
  1155. lowest_read = search;
  1156. nritems = btrfs_header_nritems(node);
  1157. nr = slot;
  1158. while(1) {
  1159. if (direction < 0) {
  1160. if (nr == 0)
  1161. break;
  1162. nr--;
  1163. } else if (direction > 0) {
  1164. nr++;
  1165. if (nr >= nritems)
  1166. break;
  1167. }
  1168. if (path->reada < 0 && objectid) {
  1169. btrfs_node_key(node, &disk_key, nr);
  1170. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1171. break;
  1172. }
  1173. search = btrfs_node_blockptr(node, nr);
  1174. if ((search >= lowest_read && search <= highest_read) ||
  1175. (search < lowest_read && lowest_read - search <= 32768) ||
  1176. (search > highest_read && search - highest_read <= 32768)) {
  1177. readahead_tree_block(root, search, blocksize,
  1178. btrfs_node_ptr_generation(node, nr));
  1179. nread += blocksize;
  1180. }
  1181. nscan++;
  1182. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  1183. break;
  1184. if(nread > (1024 * 1024) || nscan > 128)
  1185. break;
  1186. if (search < lowest_read)
  1187. lowest_read = search;
  1188. if (search > highest_read)
  1189. highest_read = search;
  1190. }
  1191. }
  1192. /*
  1193. * when we walk down the tree, it is usually safe to unlock the higher layers in
  1194. * the tree. The exceptions are when our path goes through slot 0, because operations
  1195. * on the tree might require changing key pointers higher up in the tree.
  1196. *
  1197. * callers might also have set path->keep_locks, which tells this code to
  1198. * keep the lock if the path points to the last slot in the block. This is
  1199. * part of walking through the tree, and selecting the next slot in the higher
  1200. * block.
  1201. *
  1202. * lowest_unlock sets the lowest level in the tree we're allowed to unlock.
  1203. * so if lowest_unlock is 1, level 0 won't be unlocked
  1204. */
  1205. static noinline void unlock_up(struct btrfs_path *path, int level,
  1206. int lowest_unlock)
  1207. {
  1208. int i;
  1209. int skip_level = level;
  1210. int no_skips = 0;
  1211. struct extent_buffer *t;
  1212. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1213. if (!path->nodes[i])
  1214. break;
  1215. if (!path->locks[i])
  1216. break;
  1217. if (!no_skips && path->slots[i] == 0) {
  1218. skip_level = i + 1;
  1219. continue;
  1220. }
  1221. if (!no_skips && path->keep_locks) {
  1222. u32 nritems;
  1223. t = path->nodes[i];
  1224. nritems = btrfs_header_nritems(t);
  1225. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1226. skip_level = i + 1;
  1227. continue;
  1228. }
  1229. }
  1230. if (skip_level < i && i >= lowest_unlock)
  1231. no_skips = 1;
  1232. t = path->nodes[i];
  1233. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1234. btrfs_tree_unlock(t);
  1235. path->locks[i] = 0;
  1236. }
  1237. }
  1238. }
  1239. /*
  1240. * look for key in the tree. path is filled in with nodes along the way
  1241. * if key is found, we return zero and you can find the item in the leaf
  1242. * level of the path (level 0)
  1243. *
  1244. * If the key isn't found, the path points to the slot where it should
  1245. * be inserted, and 1 is returned. If there are other errors during the
  1246. * search a negative error number is returned.
  1247. *
  1248. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1249. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1250. * possible)
  1251. */
  1252. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1253. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1254. ins_len, int cow)
  1255. {
  1256. struct extent_buffer *b;
  1257. struct extent_buffer *tmp;
  1258. int slot;
  1259. int ret;
  1260. int level;
  1261. int should_reada = p->reada;
  1262. int lowest_unlock = 1;
  1263. int blocksize;
  1264. u8 lowest_level = 0;
  1265. u64 blocknr;
  1266. u64 gen;
  1267. struct btrfs_key prealloc_block;
  1268. lowest_level = p->lowest_level;
  1269. WARN_ON(lowest_level && ins_len > 0);
  1270. WARN_ON(p->nodes[0] != NULL);
  1271. WARN_ON(cow && root == root->fs_info->extent_root &&
  1272. !mutex_is_locked(&root->fs_info->alloc_mutex));
  1273. if (ins_len < 0)
  1274. lowest_unlock = 2;
  1275. prealloc_block.objectid = 0;
  1276. again:
  1277. if (p->skip_locking)
  1278. b = btrfs_root_node(root);
  1279. else
  1280. b = btrfs_lock_root_node(root);
  1281. while (b) {
  1282. level = btrfs_header_level(b);
  1283. /*
  1284. * setup the path here so we can release it under lock
  1285. * contention with the cow code
  1286. */
  1287. p->nodes[level] = b;
  1288. if (!p->skip_locking)
  1289. p->locks[level] = 1;
  1290. if (cow) {
  1291. int wret;
  1292. /* is a cow on this block not required */
  1293. spin_lock(&root->fs_info->hash_lock);
  1294. if (btrfs_header_generation(b) == trans->transid &&
  1295. btrfs_header_owner(b) == root->root_key.objectid &&
  1296. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1297. spin_unlock(&root->fs_info->hash_lock);
  1298. goto cow_done;
  1299. }
  1300. spin_unlock(&root->fs_info->hash_lock);
  1301. /* ok, we have to cow, is our old prealloc the right
  1302. * size?
  1303. */
  1304. if (prealloc_block.objectid &&
  1305. prealloc_block.offset != b->len) {
  1306. btrfs_free_reserved_extent(root,
  1307. prealloc_block.objectid,
  1308. prealloc_block.offset);
  1309. prealloc_block.objectid = 0;
  1310. }
  1311. /*
  1312. * for higher level blocks, try not to allocate blocks
  1313. * with the block and the parent locks held.
  1314. */
  1315. if (level > 1 && !prealloc_block.objectid &&
  1316. btrfs_path_lock_waiting(p, level)) {
  1317. u32 size = b->len;
  1318. u64 hint = b->start;
  1319. btrfs_release_path(root, p);
  1320. ret = btrfs_reserve_extent(trans, root,
  1321. size, size, 0,
  1322. hint, (u64)-1,
  1323. &prealloc_block, 0);
  1324. BUG_ON(ret);
  1325. goto again;
  1326. }
  1327. wret = btrfs_cow_block(trans, root, b,
  1328. p->nodes[level + 1],
  1329. p->slots[level + 1],
  1330. &b, prealloc_block.objectid);
  1331. prealloc_block.objectid = 0;
  1332. if (wret) {
  1333. free_extent_buffer(b);
  1334. ret = wret;
  1335. goto done;
  1336. }
  1337. }
  1338. cow_done:
  1339. BUG_ON(!cow && ins_len);
  1340. if (level != btrfs_header_level(b))
  1341. WARN_ON(1);
  1342. level = btrfs_header_level(b);
  1343. p->nodes[level] = b;
  1344. if (!p->skip_locking)
  1345. p->locks[level] = 1;
  1346. ret = check_block(root, p, level);
  1347. if (ret) {
  1348. ret = -1;
  1349. goto done;
  1350. }
  1351. ret = bin_search(b, key, level, &slot);
  1352. if (level != 0) {
  1353. if (ret && slot > 0)
  1354. slot -= 1;
  1355. p->slots[level] = slot;
  1356. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1357. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1358. int sret = split_node(trans, root, p, level);
  1359. BUG_ON(sret > 0);
  1360. if (sret) {
  1361. ret = sret;
  1362. goto done;
  1363. }
  1364. b = p->nodes[level];
  1365. slot = p->slots[level];
  1366. } else if (ins_len < 0) {
  1367. int sret = balance_level(trans, root, p,
  1368. level);
  1369. if (sret) {
  1370. ret = sret;
  1371. goto done;
  1372. }
  1373. b = p->nodes[level];
  1374. if (!b) {
  1375. btrfs_release_path(NULL, p);
  1376. goto again;
  1377. }
  1378. slot = p->slots[level];
  1379. BUG_ON(btrfs_header_nritems(b) == 1);
  1380. }
  1381. unlock_up(p, level, lowest_unlock);
  1382. /* this is only true while dropping a snapshot */
  1383. if (level == lowest_level) {
  1384. ret = 0;
  1385. goto done;
  1386. }
  1387. blocknr = btrfs_node_blockptr(b, slot);
  1388. gen = btrfs_node_ptr_generation(b, slot);
  1389. blocksize = btrfs_level_size(root, level - 1);
  1390. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1391. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1392. b = tmp;
  1393. } else {
  1394. /*
  1395. * reduce lock contention at high levels
  1396. * of the btree by dropping locks before
  1397. * we read.
  1398. */
  1399. if (level > 1) {
  1400. btrfs_release_path(NULL, p);
  1401. if (tmp)
  1402. free_extent_buffer(tmp);
  1403. if (should_reada)
  1404. reada_for_search(root, p,
  1405. level, slot,
  1406. key->objectid);
  1407. tmp = read_tree_block(root, blocknr,
  1408. blocksize, gen);
  1409. if (tmp)
  1410. free_extent_buffer(tmp);
  1411. goto again;
  1412. } else {
  1413. if (tmp)
  1414. free_extent_buffer(tmp);
  1415. if (should_reada)
  1416. reada_for_search(root, p,
  1417. level, slot,
  1418. key->objectid);
  1419. b = read_node_slot(root, b, slot);
  1420. }
  1421. }
  1422. if (!p->skip_locking)
  1423. btrfs_tree_lock(b);
  1424. } else {
  1425. p->slots[level] = slot;
  1426. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1427. sizeof(struct btrfs_item) + ins_len) {
  1428. int sret = split_leaf(trans, root, key,
  1429. p, ins_len, ret == 0);
  1430. BUG_ON(sret > 0);
  1431. if (sret) {
  1432. ret = sret;
  1433. goto done;
  1434. }
  1435. }
  1436. unlock_up(p, level, lowest_unlock);
  1437. goto done;
  1438. }
  1439. }
  1440. ret = 1;
  1441. done:
  1442. if (prealloc_block.objectid) {
  1443. btrfs_free_reserved_extent(root,
  1444. prealloc_block.objectid,
  1445. prealloc_block.offset);
  1446. }
  1447. return ret;
  1448. }
  1449. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1450. struct btrfs_root *root,
  1451. struct btrfs_key *node_keys,
  1452. u64 *nodes, int lowest_level)
  1453. {
  1454. struct extent_buffer *eb;
  1455. struct extent_buffer *parent;
  1456. struct btrfs_key key;
  1457. u64 bytenr;
  1458. u64 generation;
  1459. u32 blocksize;
  1460. int level;
  1461. int slot;
  1462. int key_match;
  1463. int ret;
  1464. eb = btrfs_lock_root_node(root);
  1465. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1466. BUG_ON(ret);
  1467. parent = eb;
  1468. while (1) {
  1469. level = btrfs_header_level(parent);
  1470. if (level == 0 || level <= lowest_level)
  1471. break;
  1472. ret = bin_search(parent, &node_keys[lowest_level], level,
  1473. &slot);
  1474. if (ret && slot > 0)
  1475. slot--;
  1476. bytenr = btrfs_node_blockptr(parent, slot);
  1477. if (nodes[level - 1] == bytenr)
  1478. break;
  1479. blocksize = btrfs_level_size(root, level - 1);
  1480. generation = btrfs_node_ptr_generation(parent, slot);
  1481. btrfs_node_key_to_cpu(eb, &key, slot);
  1482. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1483. /*
  1484. * if node keys match and node pointer hasn't been modified
  1485. * in the running transaction, we can merge the path. for
  1486. * reloc trees, the node pointer check is skipped, this is
  1487. * because the reloc trees are fully controlled by the space
  1488. * balance code, no one else can modify them.
  1489. */
  1490. if (!nodes[level - 1] || !key_match ||
  1491. (generation == trans->transid &&
  1492. root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)) {
  1493. next_level:
  1494. if (level == 1 || level == lowest_level + 1)
  1495. break;
  1496. eb = read_tree_block(root, bytenr, blocksize,
  1497. generation);
  1498. btrfs_tree_lock(eb);
  1499. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1500. &eb, 0);
  1501. BUG_ON(ret);
  1502. btrfs_tree_unlock(parent);
  1503. free_extent_buffer(parent);
  1504. parent = eb;
  1505. continue;
  1506. }
  1507. if (generation == trans->transid) {
  1508. u32 refs;
  1509. BUG_ON(btrfs_header_owner(eb) !=
  1510. BTRFS_TREE_RELOC_OBJECTID);
  1511. /*
  1512. * lock the block to keep __btrfs_cow_block from
  1513. * changing the reference count.
  1514. */
  1515. eb = read_tree_block(root, bytenr, blocksize,
  1516. generation);
  1517. btrfs_tree_lock(eb);
  1518. ret = btrfs_lookup_extent_ref(trans, root, bytenr,
  1519. blocksize, &refs);
  1520. BUG_ON(ret);
  1521. /*
  1522. * if replace block whose reference count is one,
  1523. * we have to "drop the subtree". so skip it for
  1524. * simplicity
  1525. */
  1526. if (refs == 1) {
  1527. btrfs_tree_unlock(eb);
  1528. free_extent_buffer(eb);
  1529. goto next_level;
  1530. }
  1531. }
  1532. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1533. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1534. btrfs_mark_buffer_dirty(parent);
  1535. ret = btrfs_inc_extent_ref(trans, root,
  1536. nodes[level - 1],
  1537. blocksize, parent->start,
  1538. btrfs_header_owner(parent),
  1539. btrfs_header_generation(parent),
  1540. level - 1, 0);
  1541. BUG_ON(ret);
  1542. ret = btrfs_free_extent(trans, root, bytenr,
  1543. blocksize, parent->start,
  1544. btrfs_header_owner(parent),
  1545. btrfs_header_generation(parent),
  1546. level - 1, 0, 1);
  1547. BUG_ON(ret);
  1548. if (generation == trans->transid) {
  1549. btrfs_tree_unlock(eb);
  1550. free_extent_buffer(eb);
  1551. }
  1552. break;
  1553. }
  1554. btrfs_tree_unlock(parent);
  1555. free_extent_buffer(parent);
  1556. return 0;
  1557. }
  1558. /*
  1559. * adjust the pointers going up the tree, starting at level
  1560. * making sure the right key of each node is points to 'key'.
  1561. * This is used after shifting pointers to the left, so it stops
  1562. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1563. * higher levels
  1564. *
  1565. * If this fails to write a tree block, it returns -1, but continues
  1566. * fixing up the blocks in ram so the tree is consistent.
  1567. */
  1568. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1569. struct btrfs_root *root, struct btrfs_path *path,
  1570. struct btrfs_disk_key *key, int level)
  1571. {
  1572. int i;
  1573. int ret = 0;
  1574. struct extent_buffer *t;
  1575. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1576. int tslot = path->slots[i];
  1577. if (!path->nodes[i])
  1578. break;
  1579. t = path->nodes[i];
  1580. btrfs_set_node_key(t, key, tslot);
  1581. btrfs_mark_buffer_dirty(path->nodes[i]);
  1582. if (tslot != 0)
  1583. break;
  1584. }
  1585. return ret;
  1586. }
  1587. /*
  1588. * update item key.
  1589. *
  1590. * This function isn't completely safe. It's the caller's responsibility
  1591. * that the new key won't break the order
  1592. */
  1593. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1594. struct btrfs_root *root, struct btrfs_path *path,
  1595. struct btrfs_key *new_key)
  1596. {
  1597. struct btrfs_disk_key disk_key;
  1598. struct extent_buffer *eb;
  1599. int slot;
  1600. eb = path->nodes[0];
  1601. slot = path->slots[0];
  1602. if (slot > 0) {
  1603. btrfs_item_key(eb, &disk_key, slot - 1);
  1604. if (comp_keys(&disk_key, new_key) >= 0)
  1605. return -1;
  1606. }
  1607. if (slot < btrfs_header_nritems(eb) - 1) {
  1608. btrfs_item_key(eb, &disk_key, slot + 1);
  1609. if (comp_keys(&disk_key, new_key) <= 0)
  1610. return -1;
  1611. }
  1612. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1613. btrfs_set_item_key(eb, &disk_key, slot);
  1614. btrfs_mark_buffer_dirty(eb);
  1615. if (slot == 0)
  1616. fixup_low_keys(trans, root, path, &disk_key, 1);
  1617. return 0;
  1618. }
  1619. /*
  1620. * try to push data from one node into the next node left in the
  1621. * tree.
  1622. *
  1623. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1624. * error, and > 0 if there was no room in the left hand block.
  1625. */
  1626. static int push_node_left(struct btrfs_trans_handle *trans,
  1627. struct btrfs_root *root, struct extent_buffer *dst,
  1628. struct extent_buffer *src, int empty)
  1629. {
  1630. int push_items = 0;
  1631. int src_nritems;
  1632. int dst_nritems;
  1633. int ret = 0;
  1634. src_nritems = btrfs_header_nritems(src);
  1635. dst_nritems = btrfs_header_nritems(dst);
  1636. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1637. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1638. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1639. if (!empty && src_nritems <= 8)
  1640. return 1;
  1641. if (push_items <= 0) {
  1642. return 1;
  1643. }
  1644. if (empty) {
  1645. push_items = min(src_nritems, push_items);
  1646. if (push_items < src_nritems) {
  1647. /* leave at least 8 pointers in the node if
  1648. * we aren't going to empty it
  1649. */
  1650. if (src_nritems - push_items < 8) {
  1651. if (push_items <= 8)
  1652. return 1;
  1653. push_items -= 8;
  1654. }
  1655. }
  1656. } else
  1657. push_items = min(src_nritems - 8, push_items);
  1658. copy_extent_buffer(dst, src,
  1659. btrfs_node_key_ptr_offset(dst_nritems),
  1660. btrfs_node_key_ptr_offset(0),
  1661. push_items * sizeof(struct btrfs_key_ptr));
  1662. if (push_items < src_nritems) {
  1663. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1664. btrfs_node_key_ptr_offset(push_items),
  1665. (src_nritems - push_items) *
  1666. sizeof(struct btrfs_key_ptr));
  1667. }
  1668. btrfs_set_header_nritems(src, src_nritems - push_items);
  1669. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1670. btrfs_mark_buffer_dirty(src);
  1671. btrfs_mark_buffer_dirty(dst);
  1672. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1673. BUG_ON(ret);
  1674. return ret;
  1675. }
  1676. /*
  1677. * try to push data from one node into the next node right in the
  1678. * tree.
  1679. *
  1680. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1681. * error, and > 0 if there was no room in the right hand block.
  1682. *
  1683. * this will only push up to 1/2 the contents of the left node over
  1684. */
  1685. static int balance_node_right(struct btrfs_trans_handle *trans,
  1686. struct btrfs_root *root,
  1687. struct extent_buffer *dst,
  1688. struct extent_buffer *src)
  1689. {
  1690. int push_items = 0;
  1691. int max_push;
  1692. int src_nritems;
  1693. int dst_nritems;
  1694. int ret = 0;
  1695. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1696. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1697. src_nritems = btrfs_header_nritems(src);
  1698. dst_nritems = btrfs_header_nritems(dst);
  1699. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1700. if (push_items <= 0) {
  1701. return 1;
  1702. }
  1703. if (src_nritems < 4) {
  1704. return 1;
  1705. }
  1706. max_push = src_nritems / 2 + 1;
  1707. /* don't try to empty the node */
  1708. if (max_push >= src_nritems) {
  1709. return 1;
  1710. }
  1711. if (max_push < push_items)
  1712. push_items = max_push;
  1713. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1714. btrfs_node_key_ptr_offset(0),
  1715. (dst_nritems) *
  1716. sizeof(struct btrfs_key_ptr));
  1717. copy_extent_buffer(dst, src,
  1718. btrfs_node_key_ptr_offset(0),
  1719. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1720. push_items * sizeof(struct btrfs_key_ptr));
  1721. btrfs_set_header_nritems(src, src_nritems - push_items);
  1722. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1723. btrfs_mark_buffer_dirty(src);
  1724. btrfs_mark_buffer_dirty(dst);
  1725. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1726. BUG_ON(ret);
  1727. return ret;
  1728. }
  1729. /*
  1730. * helper function to insert a new root level in the tree.
  1731. * A new node is allocated, and a single item is inserted to
  1732. * point to the existing root
  1733. *
  1734. * returns zero on success or < 0 on failure.
  1735. */
  1736. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1737. struct btrfs_root *root,
  1738. struct btrfs_path *path, int level)
  1739. {
  1740. u64 lower_gen;
  1741. struct extent_buffer *lower;
  1742. struct extent_buffer *c;
  1743. struct extent_buffer *old;
  1744. struct btrfs_disk_key lower_key;
  1745. int ret;
  1746. BUG_ON(path->nodes[level]);
  1747. BUG_ON(path->nodes[level-1] != root->node);
  1748. lower = path->nodes[level-1];
  1749. if (level == 1)
  1750. btrfs_item_key(lower, &lower_key, 0);
  1751. else
  1752. btrfs_node_key(lower, &lower_key, 0);
  1753. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1754. root->root_key.objectid, trans->transid,
  1755. level, root->node->start, 0);
  1756. if (IS_ERR(c))
  1757. return PTR_ERR(c);
  1758. memset_extent_buffer(c, 0, 0, root->nodesize);
  1759. btrfs_set_header_nritems(c, 1);
  1760. btrfs_set_header_level(c, level);
  1761. btrfs_set_header_bytenr(c, c->start);
  1762. btrfs_set_header_generation(c, trans->transid);
  1763. btrfs_set_header_owner(c, root->root_key.objectid);
  1764. write_extent_buffer(c, root->fs_info->fsid,
  1765. (unsigned long)btrfs_header_fsid(c),
  1766. BTRFS_FSID_SIZE);
  1767. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1768. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1769. BTRFS_UUID_SIZE);
  1770. btrfs_set_node_key(c, &lower_key, 0);
  1771. btrfs_set_node_blockptr(c, 0, lower->start);
  1772. lower_gen = btrfs_header_generation(lower);
  1773. WARN_ON(lower_gen != trans->transid);
  1774. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1775. btrfs_mark_buffer_dirty(c);
  1776. spin_lock(&root->node_lock);
  1777. old = root->node;
  1778. root->node = c;
  1779. spin_unlock(&root->node_lock);
  1780. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1781. lower->start, c->start,
  1782. root->root_key.objectid,
  1783. trans->transid, level - 1, 0);
  1784. BUG_ON(ret);
  1785. /* the super has an extra ref to root->node */
  1786. free_extent_buffer(old);
  1787. add_root_to_dirty_list(root);
  1788. extent_buffer_get(c);
  1789. path->nodes[level] = c;
  1790. path->locks[level] = 1;
  1791. path->slots[level] = 0;
  1792. return 0;
  1793. }
  1794. /*
  1795. * worker function to insert a single pointer in a node.
  1796. * the node should have enough room for the pointer already
  1797. *
  1798. * slot and level indicate where you want the key to go, and
  1799. * blocknr is the block the key points to.
  1800. *
  1801. * returns zero on success and < 0 on any error
  1802. */
  1803. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1804. *root, struct btrfs_path *path, struct btrfs_disk_key
  1805. *key, u64 bytenr, int slot, int level)
  1806. {
  1807. struct extent_buffer *lower;
  1808. int nritems;
  1809. BUG_ON(!path->nodes[level]);
  1810. lower = path->nodes[level];
  1811. nritems = btrfs_header_nritems(lower);
  1812. if (slot > nritems)
  1813. BUG();
  1814. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1815. BUG();
  1816. if (slot != nritems) {
  1817. memmove_extent_buffer(lower,
  1818. btrfs_node_key_ptr_offset(slot + 1),
  1819. btrfs_node_key_ptr_offset(slot),
  1820. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1821. }
  1822. btrfs_set_node_key(lower, key, slot);
  1823. btrfs_set_node_blockptr(lower, slot, bytenr);
  1824. WARN_ON(trans->transid == 0);
  1825. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1826. btrfs_set_header_nritems(lower, nritems + 1);
  1827. btrfs_mark_buffer_dirty(lower);
  1828. return 0;
  1829. }
  1830. /*
  1831. * split the node at the specified level in path in two.
  1832. * The path is corrected to point to the appropriate node after the split
  1833. *
  1834. * Before splitting this tries to make some room in the node by pushing
  1835. * left and right, if either one works, it returns right away.
  1836. *
  1837. * returns 0 on success and < 0 on failure
  1838. */
  1839. static noinline int split_node(struct btrfs_trans_handle *trans,
  1840. struct btrfs_root *root,
  1841. struct btrfs_path *path, int level)
  1842. {
  1843. struct extent_buffer *c;
  1844. struct extent_buffer *split;
  1845. struct btrfs_disk_key disk_key;
  1846. int mid;
  1847. int ret;
  1848. int wret;
  1849. u32 c_nritems;
  1850. c = path->nodes[level];
  1851. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1852. if (c == root->node) {
  1853. /* trying to split the root, lets make a new one */
  1854. ret = insert_new_root(trans, root, path, level + 1);
  1855. if (ret)
  1856. return ret;
  1857. } else {
  1858. ret = push_nodes_for_insert(trans, root, path, level);
  1859. c = path->nodes[level];
  1860. if (!ret && btrfs_header_nritems(c) <
  1861. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1862. return 0;
  1863. if (ret < 0)
  1864. return ret;
  1865. }
  1866. c_nritems = btrfs_header_nritems(c);
  1867. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1868. path->nodes[level + 1]->start,
  1869. root->root_key.objectid,
  1870. trans->transid, level, c->start, 0);
  1871. if (IS_ERR(split))
  1872. return PTR_ERR(split);
  1873. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1874. btrfs_set_header_level(split, btrfs_header_level(c));
  1875. btrfs_set_header_bytenr(split, split->start);
  1876. btrfs_set_header_generation(split, trans->transid);
  1877. btrfs_set_header_owner(split, root->root_key.objectid);
  1878. btrfs_set_header_flags(split, 0);
  1879. write_extent_buffer(split, root->fs_info->fsid,
  1880. (unsigned long)btrfs_header_fsid(split),
  1881. BTRFS_FSID_SIZE);
  1882. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1883. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1884. BTRFS_UUID_SIZE);
  1885. mid = (c_nritems + 1) / 2;
  1886. copy_extent_buffer(split, c,
  1887. btrfs_node_key_ptr_offset(0),
  1888. btrfs_node_key_ptr_offset(mid),
  1889. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1890. btrfs_set_header_nritems(split, c_nritems - mid);
  1891. btrfs_set_header_nritems(c, mid);
  1892. ret = 0;
  1893. btrfs_mark_buffer_dirty(c);
  1894. btrfs_mark_buffer_dirty(split);
  1895. btrfs_node_key(split, &disk_key, 0);
  1896. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1897. path->slots[level + 1] + 1,
  1898. level + 1);
  1899. if (wret)
  1900. ret = wret;
  1901. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1902. BUG_ON(ret);
  1903. if (path->slots[level] >= mid) {
  1904. path->slots[level] -= mid;
  1905. btrfs_tree_unlock(c);
  1906. free_extent_buffer(c);
  1907. path->nodes[level] = split;
  1908. path->slots[level + 1] += 1;
  1909. } else {
  1910. btrfs_tree_unlock(split);
  1911. free_extent_buffer(split);
  1912. }
  1913. return ret;
  1914. }
  1915. /*
  1916. * how many bytes are required to store the items in a leaf. start
  1917. * and nr indicate which items in the leaf to check. This totals up the
  1918. * space used both by the item structs and the item data
  1919. */
  1920. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1921. {
  1922. int data_len;
  1923. int nritems = btrfs_header_nritems(l);
  1924. int end = min(nritems, start + nr) - 1;
  1925. if (!nr)
  1926. return 0;
  1927. data_len = btrfs_item_end_nr(l, start);
  1928. data_len = data_len - btrfs_item_offset_nr(l, end);
  1929. data_len += sizeof(struct btrfs_item) * nr;
  1930. WARN_ON(data_len < 0);
  1931. return data_len;
  1932. }
  1933. /*
  1934. * The space between the end of the leaf items and
  1935. * the start of the leaf data. IOW, how much room
  1936. * the leaf has left for both items and data
  1937. */
  1938. int noinline btrfs_leaf_free_space(struct btrfs_root *root,
  1939. struct extent_buffer *leaf)
  1940. {
  1941. int nritems = btrfs_header_nritems(leaf);
  1942. int ret;
  1943. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1944. if (ret < 0) {
  1945. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1946. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1947. leaf_space_used(leaf, 0, nritems), nritems);
  1948. }
  1949. return ret;
  1950. }
  1951. /*
  1952. * push some data in the path leaf to the right, trying to free up at
  1953. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1954. *
  1955. * returns 1 if the push failed because the other node didn't have enough
  1956. * room, 0 if everything worked out and < 0 if there were major errors.
  1957. */
  1958. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1959. *root, struct btrfs_path *path, int data_size,
  1960. int empty)
  1961. {
  1962. struct extent_buffer *left = path->nodes[0];
  1963. struct extent_buffer *right;
  1964. struct extent_buffer *upper;
  1965. struct btrfs_disk_key disk_key;
  1966. int slot;
  1967. u32 i;
  1968. int free_space;
  1969. int push_space = 0;
  1970. int push_items = 0;
  1971. struct btrfs_item *item;
  1972. u32 left_nritems;
  1973. u32 nr;
  1974. u32 right_nritems;
  1975. u32 data_end;
  1976. u32 this_item_size;
  1977. int ret;
  1978. slot = path->slots[1];
  1979. if (!path->nodes[1]) {
  1980. return 1;
  1981. }
  1982. upper = path->nodes[1];
  1983. if (slot >= btrfs_header_nritems(upper) - 1)
  1984. return 1;
  1985. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  1986. right = read_node_slot(root, upper, slot + 1);
  1987. btrfs_tree_lock(right);
  1988. free_space = btrfs_leaf_free_space(root, right);
  1989. if (free_space < data_size + sizeof(struct btrfs_item))
  1990. goto out_unlock;
  1991. /* cow and double check */
  1992. ret = btrfs_cow_block(trans, root, right, upper,
  1993. slot + 1, &right, 0);
  1994. if (ret)
  1995. goto out_unlock;
  1996. free_space = btrfs_leaf_free_space(root, right);
  1997. if (free_space < data_size + sizeof(struct btrfs_item))
  1998. goto out_unlock;
  1999. left_nritems = btrfs_header_nritems(left);
  2000. if (left_nritems == 0)
  2001. goto out_unlock;
  2002. if (empty)
  2003. nr = 0;
  2004. else
  2005. nr = 1;
  2006. if (path->slots[0] >= left_nritems)
  2007. push_space += data_size + sizeof(*item);
  2008. i = left_nritems - 1;
  2009. while (i >= nr) {
  2010. item = btrfs_item_nr(left, i);
  2011. if (!empty && push_items > 0) {
  2012. if (path->slots[0] > i)
  2013. break;
  2014. if (path->slots[0] == i) {
  2015. int space = btrfs_leaf_free_space(root, left);
  2016. if (space + push_space * 2 > free_space)
  2017. break;
  2018. }
  2019. }
  2020. if (path->slots[0] == i)
  2021. push_space += data_size + sizeof(*item);
  2022. if (!left->map_token) {
  2023. map_extent_buffer(left, (unsigned long)item,
  2024. sizeof(struct btrfs_item),
  2025. &left->map_token, &left->kaddr,
  2026. &left->map_start, &left->map_len,
  2027. KM_USER1);
  2028. }
  2029. this_item_size = btrfs_item_size(left, item);
  2030. if (this_item_size + sizeof(*item) + push_space > free_space)
  2031. break;
  2032. push_items++;
  2033. push_space += this_item_size + sizeof(*item);
  2034. if (i == 0)
  2035. break;
  2036. i--;
  2037. }
  2038. if (left->map_token) {
  2039. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2040. left->map_token = NULL;
  2041. }
  2042. if (push_items == 0)
  2043. goto out_unlock;
  2044. if (!empty && push_items == left_nritems)
  2045. WARN_ON(1);
  2046. /* push left to right */
  2047. right_nritems = btrfs_header_nritems(right);
  2048. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2049. push_space -= leaf_data_end(root, left);
  2050. /* make room in the right data area */
  2051. data_end = leaf_data_end(root, right);
  2052. memmove_extent_buffer(right,
  2053. btrfs_leaf_data(right) + data_end - push_space,
  2054. btrfs_leaf_data(right) + data_end,
  2055. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2056. /* copy from the left data area */
  2057. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2058. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2059. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2060. push_space);
  2061. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2062. btrfs_item_nr_offset(0),
  2063. right_nritems * sizeof(struct btrfs_item));
  2064. /* copy the items from left to right */
  2065. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2066. btrfs_item_nr_offset(left_nritems - push_items),
  2067. push_items * sizeof(struct btrfs_item));
  2068. /* update the item pointers */
  2069. right_nritems += push_items;
  2070. btrfs_set_header_nritems(right, right_nritems);
  2071. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2072. for (i = 0; i < right_nritems; i++) {
  2073. item = btrfs_item_nr(right, i);
  2074. if (!right->map_token) {
  2075. map_extent_buffer(right, (unsigned long)item,
  2076. sizeof(struct btrfs_item),
  2077. &right->map_token, &right->kaddr,
  2078. &right->map_start, &right->map_len,
  2079. KM_USER1);
  2080. }
  2081. push_space -= btrfs_item_size(right, item);
  2082. btrfs_set_item_offset(right, item, push_space);
  2083. }
  2084. if (right->map_token) {
  2085. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2086. right->map_token = NULL;
  2087. }
  2088. left_nritems -= push_items;
  2089. btrfs_set_header_nritems(left, left_nritems);
  2090. if (left_nritems)
  2091. btrfs_mark_buffer_dirty(left);
  2092. btrfs_mark_buffer_dirty(right);
  2093. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2094. BUG_ON(ret);
  2095. btrfs_item_key(right, &disk_key, 0);
  2096. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2097. btrfs_mark_buffer_dirty(upper);
  2098. /* then fixup the leaf pointer in the path */
  2099. if (path->slots[0] >= left_nritems) {
  2100. path->slots[0] -= left_nritems;
  2101. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2102. clean_tree_block(trans, root, path->nodes[0]);
  2103. btrfs_tree_unlock(path->nodes[0]);
  2104. free_extent_buffer(path->nodes[0]);
  2105. path->nodes[0] = right;
  2106. path->slots[1] += 1;
  2107. } else {
  2108. btrfs_tree_unlock(right);
  2109. free_extent_buffer(right);
  2110. }
  2111. return 0;
  2112. out_unlock:
  2113. btrfs_tree_unlock(right);
  2114. free_extent_buffer(right);
  2115. return 1;
  2116. }
  2117. /*
  2118. * push some data in the path leaf to the left, trying to free up at
  2119. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2120. */
  2121. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2122. *root, struct btrfs_path *path, int data_size,
  2123. int empty)
  2124. {
  2125. struct btrfs_disk_key disk_key;
  2126. struct extent_buffer *right = path->nodes[0];
  2127. struct extent_buffer *left;
  2128. int slot;
  2129. int i;
  2130. int free_space;
  2131. int push_space = 0;
  2132. int push_items = 0;
  2133. struct btrfs_item *item;
  2134. u32 old_left_nritems;
  2135. u32 right_nritems;
  2136. u32 nr;
  2137. int ret = 0;
  2138. int wret;
  2139. u32 this_item_size;
  2140. u32 old_left_item_size;
  2141. slot = path->slots[1];
  2142. if (slot == 0)
  2143. return 1;
  2144. if (!path->nodes[1])
  2145. return 1;
  2146. right_nritems = btrfs_header_nritems(right);
  2147. if (right_nritems == 0) {
  2148. return 1;
  2149. }
  2150. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2151. left = read_node_slot(root, path->nodes[1], slot - 1);
  2152. btrfs_tree_lock(left);
  2153. free_space = btrfs_leaf_free_space(root, left);
  2154. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2155. ret = 1;
  2156. goto out;
  2157. }
  2158. /* cow and double check */
  2159. ret = btrfs_cow_block(trans, root, left,
  2160. path->nodes[1], slot - 1, &left, 0);
  2161. if (ret) {
  2162. /* we hit -ENOSPC, but it isn't fatal here */
  2163. ret = 1;
  2164. goto out;
  2165. }
  2166. free_space = btrfs_leaf_free_space(root, left);
  2167. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2168. ret = 1;
  2169. goto out;
  2170. }
  2171. if (empty)
  2172. nr = right_nritems;
  2173. else
  2174. nr = right_nritems - 1;
  2175. for (i = 0; i < nr; i++) {
  2176. item = btrfs_item_nr(right, i);
  2177. if (!right->map_token) {
  2178. map_extent_buffer(right, (unsigned long)item,
  2179. sizeof(struct btrfs_item),
  2180. &right->map_token, &right->kaddr,
  2181. &right->map_start, &right->map_len,
  2182. KM_USER1);
  2183. }
  2184. if (!empty && push_items > 0) {
  2185. if (path->slots[0] < i)
  2186. break;
  2187. if (path->slots[0] == i) {
  2188. int space = btrfs_leaf_free_space(root, right);
  2189. if (space + push_space * 2 > free_space)
  2190. break;
  2191. }
  2192. }
  2193. if (path->slots[0] == i)
  2194. push_space += data_size + sizeof(*item);
  2195. this_item_size = btrfs_item_size(right, item);
  2196. if (this_item_size + sizeof(*item) + push_space > free_space)
  2197. break;
  2198. push_items++;
  2199. push_space += this_item_size + sizeof(*item);
  2200. }
  2201. if (right->map_token) {
  2202. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2203. right->map_token = NULL;
  2204. }
  2205. if (push_items == 0) {
  2206. ret = 1;
  2207. goto out;
  2208. }
  2209. if (!empty && push_items == btrfs_header_nritems(right))
  2210. WARN_ON(1);
  2211. /* push data from right to left */
  2212. copy_extent_buffer(left, right,
  2213. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2214. btrfs_item_nr_offset(0),
  2215. push_items * sizeof(struct btrfs_item));
  2216. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2217. btrfs_item_offset_nr(right, push_items -1);
  2218. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2219. leaf_data_end(root, left) - push_space,
  2220. btrfs_leaf_data(right) +
  2221. btrfs_item_offset_nr(right, push_items - 1),
  2222. push_space);
  2223. old_left_nritems = btrfs_header_nritems(left);
  2224. BUG_ON(old_left_nritems < 0);
  2225. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2226. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2227. u32 ioff;
  2228. item = btrfs_item_nr(left, i);
  2229. if (!left->map_token) {
  2230. map_extent_buffer(left, (unsigned long)item,
  2231. sizeof(struct btrfs_item),
  2232. &left->map_token, &left->kaddr,
  2233. &left->map_start, &left->map_len,
  2234. KM_USER1);
  2235. }
  2236. ioff = btrfs_item_offset(left, item);
  2237. btrfs_set_item_offset(left, item,
  2238. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2239. }
  2240. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2241. if (left->map_token) {
  2242. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2243. left->map_token = NULL;
  2244. }
  2245. /* fixup right node */
  2246. if (push_items > right_nritems) {
  2247. printk("push items %d nr %u\n", push_items, right_nritems);
  2248. WARN_ON(1);
  2249. }
  2250. if (push_items < right_nritems) {
  2251. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2252. leaf_data_end(root, right);
  2253. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2254. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2255. btrfs_leaf_data(right) +
  2256. leaf_data_end(root, right), push_space);
  2257. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2258. btrfs_item_nr_offset(push_items),
  2259. (btrfs_header_nritems(right) - push_items) *
  2260. sizeof(struct btrfs_item));
  2261. }
  2262. right_nritems -= push_items;
  2263. btrfs_set_header_nritems(right, right_nritems);
  2264. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2265. for (i = 0; i < right_nritems; i++) {
  2266. item = btrfs_item_nr(right, i);
  2267. if (!right->map_token) {
  2268. map_extent_buffer(right, (unsigned long)item,
  2269. sizeof(struct btrfs_item),
  2270. &right->map_token, &right->kaddr,
  2271. &right->map_start, &right->map_len,
  2272. KM_USER1);
  2273. }
  2274. push_space = push_space - btrfs_item_size(right, item);
  2275. btrfs_set_item_offset(right, item, push_space);
  2276. }
  2277. if (right->map_token) {
  2278. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2279. right->map_token = NULL;
  2280. }
  2281. btrfs_mark_buffer_dirty(left);
  2282. if (right_nritems)
  2283. btrfs_mark_buffer_dirty(right);
  2284. ret = btrfs_update_ref(trans, root, right, left,
  2285. old_left_nritems, push_items);
  2286. BUG_ON(ret);
  2287. btrfs_item_key(right, &disk_key, 0);
  2288. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2289. if (wret)
  2290. ret = wret;
  2291. /* then fixup the leaf pointer in the path */
  2292. if (path->slots[0] < push_items) {
  2293. path->slots[0] += old_left_nritems;
  2294. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2295. clean_tree_block(trans, root, path->nodes[0]);
  2296. btrfs_tree_unlock(path->nodes[0]);
  2297. free_extent_buffer(path->nodes[0]);
  2298. path->nodes[0] = left;
  2299. path->slots[1] -= 1;
  2300. } else {
  2301. btrfs_tree_unlock(left);
  2302. free_extent_buffer(left);
  2303. path->slots[0] -= push_items;
  2304. }
  2305. BUG_ON(path->slots[0] < 0);
  2306. return ret;
  2307. out:
  2308. btrfs_tree_unlock(left);
  2309. free_extent_buffer(left);
  2310. return ret;
  2311. }
  2312. /*
  2313. * split the path's leaf in two, making sure there is at least data_size
  2314. * available for the resulting leaf level of the path.
  2315. *
  2316. * returns 0 if all went well and < 0 on failure.
  2317. */
  2318. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2319. struct btrfs_root *root,
  2320. struct btrfs_key *ins_key,
  2321. struct btrfs_path *path, int data_size,
  2322. int extend)
  2323. {
  2324. struct extent_buffer *l;
  2325. u32 nritems;
  2326. int mid;
  2327. int slot;
  2328. struct extent_buffer *right;
  2329. int space_needed = data_size + sizeof(struct btrfs_item);
  2330. int data_copy_size;
  2331. int rt_data_off;
  2332. int i;
  2333. int ret = 0;
  2334. int wret;
  2335. int double_split;
  2336. int num_doubles = 0;
  2337. struct btrfs_disk_key disk_key;
  2338. if (extend)
  2339. space_needed = data_size;
  2340. /* first try to make some room by pushing left and right */
  2341. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2342. wret = push_leaf_right(trans, root, path, data_size, 0);
  2343. if (wret < 0) {
  2344. return wret;
  2345. }
  2346. if (wret) {
  2347. wret = push_leaf_left(trans, root, path, data_size, 0);
  2348. if (wret < 0)
  2349. return wret;
  2350. }
  2351. l = path->nodes[0];
  2352. /* did the pushes work? */
  2353. if (btrfs_leaf_free_space(root, l) >= space_needed)
  2354. return 0;
  2355. }
  2356. if (!path->nodes[1]) {
  2357. ret = insert_new_root(trans, root, path, 1);
  2358. if (ret)
  2359. return ret;
  2360. }
  2361. again:
  2362. double_split = 0;
  2363. l = path->nodes[0];
  2364. slot = path->slots[0];
  2365. nritems = btrfs_header_nritems(l);
  2366. mid = (nritems + 1)/ 2;
  2367. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2368. path->nodes[1]->start,
  2369. root->root_key.objectid,
  2370. trans->transid, 0, l->start, 0);
  2371. if (IS_ERR(right)) {
  2372. BUG_ON(1);
  2373. return PTR_ERR(right);
  2374. }
  2375. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2376. btrfs_set_header_bytenr(right, right->start);
  2377. btrfs_set_header_generation(right, trans->transid);
  2378. btrfs_set_header_owner(right, root->root_key.objectid);
  2379. btrfs_set_header_level(right, 0);
  2380. write_extent_buffer(right, root->fs_info->fsid,
  2381. (unsigned long)btrfs_header_fsid(right),
  2382. BTRFS_FSID_SIZE);
  2383. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2384. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2385. BTRFS_UUID_SIZE);
  2386. if (mid <= slot) {
  2387. if (nritems == 1 ||
  2388. leaf_space_used(l, mid, nritems - mid) + space_needed >
  2389. BTRFS_LEAF_DATA_SIZE(root)) {
  2390. if (slot >= nritems) {
  2391. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2392. btrfs_set_header_nritems(right, 0);
  2393. wret = insert_ptr(trans, root, path,
  2394. &disk_key, right->start,
  2395. path->slots[1] + 1, 1);
  2396. if (wret)
  2397. ret = wret;
  2398. btrfs_tree_unlock(path->nodes[0]);
  2399. free_extent_buffer(path->nodes[0]);
  2400. path->nodes[0] = right;
  2401. path->slots[0] = 0;
  2402. path->slots[1] += 1;
  2403. btrfs_mark_buffer_dirty(right);
  2404. return ret;
  2405. }
  2406. mid = slot;
  2407. if (mid != nritems &&
  2408. leaf_space_used(l, mid, nritems - mid) +
  2409. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2410. double_split = 1;
  2411. }
  2412. }
  2413. } else {
  2414. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  2415. BTRFS_LEAF_DATA_SIZE(root)) {
  2416. if (!extend && slot == 0) {
  2417. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2418. btrfs_set_header_nritems(right, 0);
  2419. wret = insert_ptr(trans, root, path,
  2420. &disk_key,
  2421. right->start,
  2422. path->slots[1], 1);
  2423. if (wret)
  2424. ret = wret;
  2425. btrfs_tree_unlock(path->nodes[0]);
  2426. free_extent_buffer(path->nodes[0]);
  2427. path->nodes[0] = right;
  2428. path->slots[0] = 0;
  2429. if (path->slots[1] == 0) {
  2430. wret = fixup_low_keys(trans, root,
  2431. path, &disk_key, 1);
  2432. if (wret)
  2433. ret = wret;
  2434. }
  2435. btrfs_mark_buffer_dirty(right);
  2436. return ret;
  2437. } else if (extend && slot == 0) {
  2438. mid = 1;
  2439. } else {
  2440. mid = slot;
  2441. if (mid != nritems &&
  2442. leaf_space_used(l, mid, nritems - mid) +
  2443. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2444. double_split = 1;
  2445. }
  2446. }
  2447. }
  2448. }
  2449. nritems = nritems - mid;
  2450. btrfs_set_header_nritems(right, nritems);
  2451. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2452. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2453. btrfs_item_nr_offset(mid),
  2454. nritems * sizeof(struct btrfs_item));
  2455. copy_extent_buffer(right, l,
  2456. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2457. data_copy_size, btrfs_leaf_data(l) +
  2458. leaf_data_end(root, l), data_copy_size);
  2459. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2460. btrfs_item_end_nr(l, mid);
  2461. for (i = 0; i < nritems; i++) {
  2462. struct btrfs_item *item = btrfs_item_nr(right, i);
  2463. u32 ioff;
  2464. if (!right->map_token) {
  2465. map_extent_buffer(right, (unsigned long)item,
  2466. sizeof(struct btrfs_item),
  2467. &right->map_token, &right->kaddr,
  2468. &right->map_start, &right->map_len,
  2469. KM_USER1);
  2470. }
  2471. ioff = btrfs_item_offset(right, item);
  2472. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2473. }
  2474. if (right->map_token) {
  2475. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2476. right->map_token = NULL;
  2477. }
  2478. btrfs_set_header_nritems(l, mid);
  2479. ret = 0;
  2480. btrfs_item_key(right, &disk_key, 0);
  2481. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2482. path->slots[1] + 1, 1);
  2483. if (wret)
  2484. ret = wret;
  2485. btrfs_mark_buffer_dirty(right);
  2486. btrfs_mark_buffer_dirty(l);
  2487. BUG_ON(path->slots[0] != slot);
  2488. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2489. BUG_ON(ret);
  2490. if (mid <= slot) {
  2491. btrfs_tree_unlock(path->nodes[0]);
  2492. free_extent_buffer(path->nodes[0]);
  2493. path->nodes[0] = right;
  2494. path->slots[0] -= mid;
  2495. path->slots[1] += 1;
  2496. } else {
  2497. btrfs_tree_unlock(right);
  2498. free_extent_buffer(right);
  2499. }
  2500. BUG_ON(path->slots[0] < 0);
  2501. if (double_split) {
  2502. BUG_ON(num_doubles != 0);
  2503. num_doubles++;
  2504. goto again;
  2505. }
  2506. return ret;
  2507. }
  2508. /*
  2509. * make the item pointed to by the path smaller. new_size indicates
  2510. * how small to make it, and from_end tells us if we just chop bytes
  2511. * off the end of the item or if we shift the item to chop bytes off
  2512. * the front.
  2513. */
  2514. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2515. struct btrfs_root *root,
  2516. struct btrfs_path *path,
  2517. u32 new_size, int from_end)
  2518. {
  2519. int ret = 0;
  2520. int slot;
  2521. int slot_orig;
  2522. struct extent_buffer *leaf;
  2523. struct btrfs_item *item;
  2524. u32 nritems;
  2525. unsigned int data_end;
  2526. unsigned int old_data_start;
  2527. unsigned int old_size;
  2528. unsigned int size_diff;
  2529. int i;
  2530. slot_orig = path->slots[0];
  2531. leaf = path->nodes[0];
  2532. slot = path->slots[0];
  2533. old_size = btrfs_item_size_nr(leaf, slot);
  2534. if (old_size == new_size)
  2535. return 0;
  2536. nritems = btrfs_header_nritems(leaf);
  2537. data_end = leaf_data_end(root, leaf);
  2538. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2539. size_diff = old_size - new_size;
  2540. BUG_ON(slot < 0);
  2541. BUG_ON(slot >= nritems);
  2542. /*
  2543. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2544. */
  2545. /* first correct the data pointers */
  2546. for (i = slot; i < nritems; i++) {
  2547. u32 ioff;
  2548. item = btrfs_item_nr(leaf, i);
  2549. if (!leaf->map_token) {
  2550. map_extent_buffer(leaf, (unsigned long)item,
  2551. sizeof(struct btrfs_item),
  2552. &leaf->map_token, &leaf->kaddr,
  2553. &leaf->map_start, &leaf->map_len,
  2554. KM_USER1);
  2555. }
  2556. ioff = btrfs_item_offset(leaf, item);
  2557. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2558. }
  2559. if (leaf->map_token) {
  2560. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2561. leaf->map_token = NULL;
  2562. }
  2563. /* shift the data */
  2564. if (from_end) {
  2565. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2566. data_end + size_diff, btrfs_leaf_data(leaf) +
  2567. data_end, old_data_start + new_size - data_end);
  2568. } else {
  2569. struct btrfs_disk_key disk_key;
  2570. u64 offset;
  2571. btrfs_item_key(leaf, &disk_key, slot);
  2572. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2573. unsigned long ptr;
  2574. struct btrfs_file_extent_item *fi;
  2575. fi = btrfs_item_ptr(leaf, slot,
  2576. struct btrfs_file_extent_item);
  2577. fi = (struct btrfs_file_extent_item *)(
  2578. (unsigned long)fi - size_diff);
  2579. if (btrfs_file_extent_type(leaf, fi) ==
  2580. BTRFS_FILE_EXTENT_INLINE) {
  2581. ptr = btrfs_item_ptr_offset(leaf, slot);
  2582. memmove_extent_buffer(leaf, ptr,
  2583. (unsigned long)fi,
  2584. offsetof(struct btrfs_file_extent_item,
  2585. disk_bytenr));
  2586. }
  2587. }
  2588. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2589. data_end + size_diff, btrfs_leaf_data(leaf) +
  2590. data_end, old_data_start - data_end);
  2591. offset = btrfs_disk_key_offset(&disk_key);
  2592. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2593. btrfs_set_item_key(leaf, &disk_key, slot);
  2594. if (slot == 0)
  2595. fixup_low_keys(trans, root, path, &disk_key, 1);
  2596. }
  2597. item = btrfs_item_nr(leaf, slot);
  2598. btrfs_set_item_size(leaf, item, new_size);
  2599. btrfs_mark_buffer_dirty(leaf);
  2600. ret = 0;
  2601. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2602. btrfs_print_leaf(root, leaf);
  2603. BUG();
  2604. }
  2605. return ret;
  2606. }
  2607. /*
  2608. * make the item pointed to by the path bigger, data_size is the new size.
  2609. */
  2610. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2611. struct btrfs_root *root, struct btrfs_path *path,
  2612. u32 data_size)
  2613. {
  2614. int ret = 0;
  2615. int slot;
  2616. int slot_orig;
  2617. struct extent_buffer *leaf;
  2618. struct btrfs_item *item;
  2619. u32 nritems;
  2620. unsigned int data_end;
  2621. unsigned int old_data;
  2622. unsigned int old_size;
  2623. int i;
  2624. slot_orig = path->slots[0];
  2625. leaf = path->nodes[0];
  2626. nritems = btrfs_header_nritems(leaf);
  2627. data_end = leaf_data_end(root, leaf);
  2628. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2629. btrfs_print_leaf(root, leaf);
  2630. BUG();
  2631. }
  2632. slot = path->slots[0];
  2633. old_data = btrfs_item_end_nr(leaf, slot);
  2634. BUG_ON(slot < 0);
  2635. if (slot >= nritems) {
  2636. btrfs_print_leaf(root, leaf);
  2637. printk("slot %d too large, nritems %d\n", slot, nritems);
  2638. BUG_ON(1);
  2639. }
  2640. /*
  2641. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2642. */
  2643. /* first correct the data pointers */
  2644. for (i = slot; i < nritems; i++) {
  2645. u32 ioff;
  2646. item = btrfs_item_nr(leaf, i);
  2647. if (!leaf->map_token) {
  2648. map_extent_buffer(leaf, (unsigned long)item,
  2649. sizeof(struct btrfs_item),
  2650. &leaf->map_token, &leaf->kaddr,
  2651. &leaf->map_start, &leaf->map_len,
  2652. KM_USER1);
  2653. }
  2654. ioff = btrfs_item_offset(leaf, item);
  2655. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2656. }
  2657. if (leaf->map_token) {
  2658. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2659. leaf->map_token = NULL;
  2660. }
  2661. /* shift the data */
  2662. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2663. data_end - data_size, btrfs_leaf_data(leaf) +
  2664. data_end, old_data - data_end);
  2665. data_end = old_data;
  2666. old_size = btrfs_item_size_nr(leaf, slot);
  2667. item = btrfs_item_nr(leaf, slot);
  2668. btrfs_set_item_size(leaf, item, old_size + data_size);
  2669. btrfs_mark_buffer_dirty(leaf);
  2670. ret = 0;
  2671. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2672. btrfs_print_leaf(root, leaf);
  2673. BUG();
  2674. }
  2675. return ret;
  2676. }
  2677. /*
  2678. * Given a key and some data, insert items into the tree.
  2679. * This does all the path init required, making room in the tree if needed.
  2680. */
  2681. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2682. struct btrfs_root *root,
  2683. struct btrfs_path *path,
  2684. struct btrfs_key *cpu_key, u32 *data_size,
  2685. int nr)
  2686. {
  2687. struct extent_buffer *leaf;
  2688. struct btrfs_item *item;
  2689. int ret = 0;
  2690. int slot;
  2691. int slot_orig;
  2692. int i;
  2693. u32 nritems;
  2694. u32 total_size = 0;
  2695. u32 total_data = 0;
  2696. unsigned int data_end;
  2697. struct btrfs_disk_key disk_key;
  2698. for (i = 0; i < nr; i++) {
  2699. total_data += data_size[i];
  2700. }
  2701. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2702. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2703. if (ret == 0)
  2704. return -EEXIST;
  2705. if (ret < 0)
  2706. goto out;
  2707. slot_orig = path->slots[0];
  2708. leaf = path->nodes[0];
  2709. nritems = btrfs_header_nritems(leaf);
  2710. data_end = leaf_data_end(root, leaf);
  2711. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2712. btrfs_print_leaf(root, leaf);
  2713. printk("not enough freespace need %u have %d\n",
  2714. total_size, btrfs_leaf_free_space(root, leaf));
  2715. BUG();
  2716. }
  2717. slot = path->slots[0];
  2718. BUG_ON(slot < 0);
  2719. if (slot != nritems) {
  2720. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2721. if (old_data < data_end) {
  2722. btrfs_print_leaf(root, leaf);
  2723. printk("slot %d old_data %d data_end %d\n",
  2724. slot, old_data, data_end);
  2725. BUG_ON(1);
  2726. }
  2727. /*
  2728. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2729. */
  2730. /* first correct the data pointers */
  2731. WARN_ON(leaf->map_token);
  2732. for (i = slot; i < nritems; i++) {
  2733. u32 ioff;
  2734. item = btrfs_item_nr(leaf, i);
  2735. if (!leaf->map_token) {
  2736. map_extent_buffer(leaf, (unsigned long)item,
  2737. sizeof(struct btrfs_item),
  2738. &leaf->map_token, &leaf->kaddr,
  2739. &leaf->map_start, &leaf->map_len,
  2740. KM_USER1);
  2741. }
  2742. ioff = btrfs_item_offset(leaf, item);
  2743. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2744. }
  2745. if (leaf->map_token) {
  2746. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2747. leaf->map_token = NULL;
  2748. }
  2749. /* shift the items */
  2750. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2751. btrfs_item_nr_offset(slot),
  2752. (nritems - slot) * sizeof(struct btrfs_item));
  2753. /* shift the data */
  2754. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2755. data_end - total_data, btrfs_leaf_data(leaf) +
  2756. data_end, old_data - data_end);
  2757. data_end = old_data;
  2758. }
  2759. /* setup the item for the new data */
  2760. for (i = 0; i < nr; i++) {
  2761. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2762. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2763. item = btrfs_item_nr(leaf, slot + i);
  2764. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2765. data_end -= data_size[i];
  2766. btrfs_set_item_size(leaf, item, data_size[i]);
  2767. }
  2768. btrfs_set_header_nritems(leaf, nritems + nr);
  2769. btrfs_mark_buffer_dirty(leaf);
  2770. ret = 0;
  2771. if (slot == 0) {
  2772. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2773. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2774. }
  2775. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2776. btrfs_print_leaf(root, leaf);
  2777. BUG();
  2778. }
  2779. out:
  2780. return ret;
  2781. }
  2782. /*
  2783. * Given a key and some data, insert an item into the tree.
  2784. * This does all the path init required, making room in the tree if needed.
  2785. */
  2786. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2787. *root, struct btrfs_key *cpu_key, void *data, u32
  2788. data_size)
  2789. {
  2790. int ret = 0;
  2791. struct btrfs_path *path;
  2792. struct extent_buffer *leaf;
  2793. unsigned long ptr;
  2794. path = btrfs_alloc_path();
  2795. BUG_ON(!path);
  2796. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2797. if (!ret) {
  2798. leaf = path->nodes[0];
  2799. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2800. write_extent_buffer(leaf, data, ptr, data_size);
  2801. btrfs_mark_buffer_dirty(leaf);
  2802. }
  2803. btrfs_free_path(path);
  2804. return ret;
  2805. }
  2806. /*
  2807. * delete the pointer from a given node.
  2808. *
  2809. * the tree should have been previously balanced so the deletion does not
  2810. * empty a node.
  2811. */
  2812. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2813. struct btrfs_path *path, int level, int slot)
  2814. {
  2815. struct extent_buffer *parent = path->nodes[level];
  2816. u32 nritems;
  2817. int ret = 0;
  2818. int wret;
  2819. nritems = btrfs_header_nritems(parent);
  2820. if (slot != nritems -1) {
  2821. memmove_extent_buffer(parent,
  2822. btrfs_node_key_ptr_offset(slot),
  2823. btrfs_node_key_ptr_offset(slot + 1),
  2824. sizeof(struct btrfs_key_ptr) *
  2825. (nritems - slot - 1));
  2826. }
  2827. nritems--;
  2828. btrfs_set_header_nritems(parent, nritems);
  2829. if (nritems == 0 && parent == root->node) {
  2830. BUG_ON(btrfs_header_level(root->node) != 1);
  2831. /* just turn the root into a leaf and break */
  2832. btrfs_set_header_level(root->node, 0);
  2833. } else if (slot == 0) {
  2834. struct btrfs_disk_key disk_key;
  2835. btrfs_node_key(parent, &disk_key, 0);
  2836. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2837. if (wret)
  2838. ret = wret;
  2839. }
  2840. btrfs_mark_buffer_dirty(parent);
  2841. return ret;
  2842. }
  2843. /*
  2844. * a helper function to delete the leaf pointed to by path->slots[1] and
  2845. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  2846. * already know it, it is faster to have them pass it down than to
  2847. * read it out of the node again.
  2848. *
  2849. * This deletes the pointer in path->nodes[1] and frees the leaf
  2850. * block extent. zero is returned if it all worked out, < 0 otherwise.
  2851. *
  2852. * The path must have already been setup for deleting the leaf, including
  2853. * all the proper balancing. path->nodes[1] must be locked.
  2854. */
  2855. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  2856. struct btrfs_root *root,
  2857. struct btrfs_path *path, u64 bytenr)
  2858. {
  2859. int ret;
  2860. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2861. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  2862. if (ret)
  2863. return ret;
  2864. ret = btrfs_free_extent(trans, root, bytenr,
  2865. btrfs_level_size(root, 0),
  2866. path->nodes[1]->start,
  2867. btrfs_header_owner(path->nodes[1]),
  2868. root_gen, 0, 0, 1);
  2869. return ret;
  2870. }
  2871. /*
  2872. * delete the item at the leaf level in path. If that empties
  2873. * the leaf, remove it from the tree
  2874. */
  2875. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2876. struct btrfs_path *path, int slot, int nr)
  2877. {
  2878. struct extent_buffer *leaf;
  2879. struct btrfs_item *item;
  2880. int last_off;
  2881. int dsize = 0;
  2882. int ret = 0;
  2883. int wret;
  2884. int i;
  2885. u32 nritems;
  2886. leaf = path->nodes[0];
  2887. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  2888. for (i = 0; i < nr; i++)
  2889. dsize += btrfs_item_size_nr(leaf, slot + i);
  2890. nritems = btrfs_header_nritems(leaf);
  2891. if (slot + nr != nritems) {
  2892. int data_end = leaf_data_end(root, leaf);
  2893. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2894. data_end + dsize,
  2895. btrfs_leaf_data(leaf) + data_end,
  2896. last_off - data_end);
  2897. for (i = slot + nr; i < nritems; i++) {
  2898. u32 ioff;
  2899. item = btrfs_item_nr(leaf, i);
  2900. if (!leaf->map_token) {
  2901. map_extent_buffer(leaf, (unsigned long)item,
  2902. sizeof(struct btrfs_item),
  2903. &leaf->map_token, &leaf->kaddr,
  2904. &leaf->map_start, &leaf->map_len,
  2905. KM_USER1);
  2906. }
  2907. ioff = btrfs_item_offset(leaf, item);
  2908. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2909. }
  2910. if (leaf->map_token) {
  2911. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2912. leaf->map_token = NULL;
  2913. }
  2914. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2915. btrfs_item_nr_offset(slot + nr),
  2916. sizeof(struct btrfs_item) *
  2917. (nritems - slot - nr));
  2918. }
  2919. btrfs_set_header_nritems(leaf, nritems - nr);
  2920. nritems -= nr;
  2921. /* delete the leaf if we've emptied it */
  2922. if (nritems == 0) {
  2923. if (leaf == root->node) {
  2924. btrfs_set_header_level(leaf, 0);
  2925. } else {
  2926. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  2927. BUG_ON(ret);
  2928. }
  2929. } else {
  2930. int used = leaf_space_used(leaf, 0, nritems);
  2931. if (slot == 0) {
  2932. struct btrfs_disk_key disk_key;
  2933. btrfs_item_key(leaf, &disk_key, 0);
  2934. wret = fixup_low_keys(trans, root, path,
  2935. &disk_key, 1);
  2936. if (wret)
  2937. ret = wret;
  2938. }
  2939. /* delete the leaf if it is mostly empty */
  2940. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  2941. /* push_leaf_left fixes the path.
  2942. * make sure the path still points to our leaf
  2943. * for possible call to del_ptr below
  2944. */
  2945. slot = path->slots[1];
  2946. extent_buffer_get(leaf);
  2947. wret = push_leaf_left(trans, root, path, 1, 1);
  2948. if (wret < 0 && wret != -ENOSPC)
  2949. ret = wret;
  2950. if (path->nodes[0] == leaf &&
  2951. btrfs_header_nritems(leaf)) {
  2952. wret = push_leaf_right(trans, root, path, 1, 1);
  2953. if (wret < 0 && wret != -ENOSPC)
  2954. ret = wret;
  2955. }
  2956. if (btrfs_header_nritems(leaf) == 0) {
  2957. path->slots[1] = slot;
  2958. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  2959. BUG_ON(ret);
  2960. free_extent_buffer(leaf);
  2961. } else {
  2962. /* if we're still in the path, make sure
  2963. * we're dirty. Otherwise, one of the
  2964. * push_leaf functions must have already
  2965. * dirtied this buffer
  2966. */
  2967. if (path->nodes[0] == leaf)
  2968. btrfs_mark_buffer_dirty(leaf);
  2969. free_extent_buffer(leaf);
  2970. }
  2971. } else {
  2972. btrfs_mark_buffer_dirty(leaf);
  2973. }
  2974. }
  2975. return ret;
  2976. }
  2977. /*
  2978. * search the tree again to find a leaf with lesser keys
  2979. * returns 0 if it found something or 1 if there are no lesser leaves.
  2980. * returns < 0 on io errors.
  2981. *
  2982. * This may release the path, and so you may lose any locks held at the
  2983. * time you call it.
  2984. */
  2985. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2986. {
  2987. struct btrfs_key key;
  2988. struct btrfs_disk_key found_key;
  2989. int ret;
  2990. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  2991. if (key.offset > 0)
  2992. key.offset--;
  2993. else if (key.type > 0)
  2994. key.type--;
  2995. else if (key.objectid > 0)
  2996. key.objectid--;
  2997. else
  2998. return 1;
  2999. btrfs_release_path(root, path);
  3000. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3001. if (ret < 0)
  3002. return ret;
  3003. btrfs_item_key(path->nodes[0], &found_key, 0);
  3004. ret = comp_keys(&found_key, &key);
  3005. if (ret < 0)
  3006. return 0;
  3007. return 1;
  3008. }
  3009. /*
  3010. * A helper function to walk down the tree starting at min_key, and looking
  3011. * for nodes or leaves that are either in cache or have a minimum
  3012. * transaction id. This is used by the btree defrag code, and tree logging
  3013. *
  3014. * This does not cow, but it does stuff the starting key it finds back
  3015. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3016. * key and get a writable path.
  3017. *
  3018. * This does lock as it descends, and path->keep_locks should be set
  3019. * to 1 by the caller.
  3020. *
  3021. * This honors path->lowest_level to prevent descent past a given level
  3022. * of the tree.
  3023. *
  3024. * min_trans indicates the oldest transaction that you are interested
  3025. * in walking through. Any nodes or leaves older than min_trans are
  3026. * skipped over (without reading them).
  3027. *
  3028. * returns zero if something useful was found, < 0 on error and 1 if there
  3029. * was nothing in the tree that matched the search criteria.
  3030. */
  3031. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3032. struct btrfs_key *max_key,
  3033. struct btrfs_path *path, int cache_only,
  3034. u64 min_trans)
  3035. {
  3036. struct extent_buffer *cur;
  3037. struct btrfs_key found_key;
  3038. int slot;
  3039. int sret;
  3040. u32 nritems;
  3041. int level;
  3042. int ret = 1;
  3043. again:
  3044. cur = btrfs_lock_root_node(root);
  3045. level = btrfs_header_level(cur);
  3046. WARN_ON(path->nodes[level]);
  3047. path->nodes[level] = cur;
  3048. path->locks[level] = 1;
  3049. if (btrfs_header_generation(cur) < min_trans) {
  3050. ret = 1;
  3051. goto out;
  3052. }
  3053. while(1) {
  3054. nritems = btrfs_header_nritems(cur);
  3055. level = btrfs_header_level(cur);
  3056. sret = bin_search(cur, min_key, level, &slot);
  3057. /* at the lowest level, we're done, setup the path and exit */
  3058. if (level == path->lowest_level) {
  3059. if (slot >= nritems)
  3060. goto find_next_key;
  3061. ret = 0;
  3062. path->slots[level] = slot;
  3063. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3064. goto out;
  3065. }
  3066. if (sret && slot > 0)
  3067. slot--;
  3068. /*
  3069. * check this node pointer against the cache_only and
  3070. * min_trans parameters. If it isn't in cache or is too
  3071. * old, skip to the next one.
  3072. */
  3073. while(slot < nritems) {
  3074. u64 blockptr;
  3075. u64 gen;
  3076. struct extent_buffer *tmp;
  3077. struct btrfs_disk_key disk_key;
  3078. blockptr = btrfs_node_blockptr(cur, slot);
  3079. gen = btrfs_node_ptr_generation(cur, slot);
  3080. if (gen < min_trans) {
  3081. slot++;
  3082. continue;
  3083. }
  3084. if (!cache_only)
  3085. break;
  3086. if (max_key) {
  3087. btrfs_node_key(cur, &disk_key, slot);
  3088. if (comp_keys(&disk_key, max_key) >= 0) {
  3089. ret = 1;
  3090. goto out;
  3091. }
  3092. }
  3093. tmp = btrfs_find_tree_block(root, blockptr,
  3094. btrfs_level_size(root, level - 1));
  3095. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3096. free_extent_buffer(tmp);
  3097. break;
  3098. }
  3099. if (tmp)
  3100. free_extent_buffer(tmp);
  3101. slot++;
  3102. }
  3103. find_next_key:
  3104. /*
  3105. * we didn't find a candidate key in this node, walk forward
  3106. * and find another one
  3107. */
  3108. if (slot >= nritems) {
  3109. path->slots[level] = slot;
  3110. sret = btrfs_find_next_key(root, path, min_key, level,
  3111. cache_only, min_trans);
  3112. if (sret == 0) {
  3113. btrfs_release_path(root, path);
  3114. goto again;
  3115. } else {
  3116. goto out;
  3117. }
  3118. }
  3119. /* save our key for returning back */
  3120. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3121. path->slots[level] = slot;
  3122. if (level == path->lowest_level) {
  3123. ret = 0;
  3124. unlock_up(path, level, 1);
  3125. goto out;
  3126. }
  3127. cur = read_node_slot(root, cur, slot);
  3128. btrfs_tree_lock(cur);
  3129. path->locks[level - 1] = 1;
  3130. path->nodes[level - 1] = cur;
  3131. unlock_up(path, level, 1);
  3132. }
  3133. out:
  3134. if (ret == 0)
  3135. memcpy(min_key, &found_key, sizeof(found_key));
  3136. return ret;
  3137. }
  3138. /*
  3139. * this is similar to btrfs_next_leaf, but does not try to preserve
  3140. * and fixup the path. It looks for and returns the next key in the
  3141. * tree based on the current path and the cache_only and min_trans
  3142. * parameters.
  3143. *
  3144. * 0 is returned if another key is found, < 0 if there are any errors
  3145. * and 1 is returned if there are no higher keys in the tree
  3146. *
  3147. * path->keep_locks should be set to 1 on the search made before
  3148. * calling this function.
  3149. */
  3150. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3151. struct btrfs_key *key, int lowest_level,
  3152. int cache_only, u64 min_trans)
  3153. {
  3154. int level = lowest_level;
  3155. int slot;
  3156. struct extent_buffer *c;
  3157. while(level < BTRFS_MAX_LEVEL) {
  3158. if (!path->nodes[level])
  3159. return 1;
  3160. slot = path->slots[level] + 1;
  3161. c = path->nodes[level];
  3162. next:
  3163. if (slot >= btrfs_header_nritems(c)) {
  3164. level++;
  3165. if (level == BTRFS_MAX_LEVEL) {
  3166. return 1;
  3167. }
  3168. continue;
  3169. }
  3170. if (level == 0)
  3171. btrfs_item_key_to_cpu(c, key, slot);
  3172. else {
  3173. u64 blockptr = btrfs_node_blockptr(c, slot);
  3174. u64 gen = btrfs_node_ptr_generation(c, slot);
  3175. if (cache_only) {
  3176. struct extent_buffer *cur;
  3177. cur = btrfs_find_tree_block(root, blockptr,
  3178. btrfs_level_size(root, level - 1));
  3179. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3180. slot++;
  3181. if (cur)
  3182. free_extent_buffer(cur);
  3183. goto next;
  3184. }
  3185. free_extent_buffer(cur);
  3186. }
  3187. if (gen < min_trans) {
  3188. slot++;
  3189. goto next;
  3190. }
  3191. btrfs_node_key_to_cpu(c, key, slot);
  3192. }
  3193. return 0;
  3194. }
  3195. return 1;
  3196. }
  3197. /*
  3198. * search the tree again to find a leaf with greater keys
  3199. * returns 0 if it found something or 1 if there are no greater leaves.
  3200. * returns < 0 on io errors.
  3201. */
  3202. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3203. {
  3204. int slot;
  3205. int level = 1;
  3206. struct extent_buffer *c;
  3207. struct extent_buffer *next = NULL;
  3208. struct btrfs_key key;
  3209. u32 nritems;
  3210. int ret;
  3211. nritems = btrfs_header_nritems(path->nodes[0]);
  3212. if (nritems == 0) {
  3213. return 1;
  3214. }
  3215. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3216. btrfs_release_path(root, path);
  3217. path->keep_locks = 1;
  3218. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3219. path->keep_locks = 0;
  3220. if (ret < 0)
  3221. return ret;
  3222. nritems = btrfs_header_nritems(path->nodes[0]);
  3223. /*
  3224. * by releasing the path above we dropped all our locks. A balance
  3225. * could have added more items next to the key that used to be
  3226. * at the very end of the block. So, check again here and
  3227. * advance the path if there are now more items available.
  3228. */
  3229. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3230. path->slots[0]++;
  3231. goto done;
  3232. }
  3233. while(level < BTRFS_MAX_LEVEL) {
  3234. if (!path->nodes[level])
  3235. return 1;
  3236. slot = path->slots[level] + 1;
  3237. c = path->nodes[level];
  3238. if (slot >= btrfs_header_nritems(c)) {
  3239. level++;
  3240. if (level == BTRFS_MAX_LEVEL) {
  3241. return 1;
  3242. }
  3243. continue;
  3244. }
  3245. if (next) {
  3246. btrfs_tree_unlock(next);
  3247. free_extent_buffer(next);
  3248. }
  3249. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3250. path->reada)
  3251. reada_for_search(root, path, level, slot, 0);
  3252. next = read_node_slot(root, c, slot);
  3253. if (!path->skip_locking) {
  3254. WARN_ON(!btrfs_tree_locked(c));
  3255. btrfs_tree_lock(next);
  3256. }
  3257. break;
  3258. }
  3259. path->slots[level] = slot;
  3260. while(1) {
  3261. level--;
  3262. c = path->nodes[level];
  3263. if (path->locks[level])
  3264. btrfs_tree_unlock(c);
  3265. free_extent_buffer(c);
  3266. path->nodes[level] = next;
  3267. path->slots[level] = 0;
  3268. if (!path->skip_locking)
  3269. path->locks[level] = 1;
  3270. if (!level)
  3271. break;
  3272. if (level == 1 && path->locks[1] && path->reada)
  3273. reada_for_search(root, path, level, slot, 0);
  3274. next = read_node_slot(root, next, 0);
  3275. if (!path->skip_locking) {
  3276. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3277. btrfs_tree_lock(next);
  3278. }
  3279. }
  3280. done:
  3281. unlock_up(path, 0, 1);
  3282. return 0;
  3283. }
  3284. /*
  3285. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3286. * searching until it gets past min_objectid or finds an item of 'type'
  3287. *
  3288. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3289. */
  3290. int btrfs_previous_item(struct btrfs_root *root,
  3291. struct btrfs_path *path, u64 min_objectid,
  3292. int type)
  3293. {
  3294. struct btrfs_key found_key;
  3295. struct extent_buffer *leaf;
  3296. u32 nritems;
  3297. int ret;
  3298. while(1) {
  3299. if (path->slots[0] == 0) {
  3300. ret = btrfs_prev_leaf(root, path);
  3301. if (ret != 0)
  3302. return ret;
  3303. } else {
  3304. path->slots[0]--;
  3305. }
  3306. leaf = path->nodes[0];
  3307. nritems = btrfs_header_nritems(leaf);
  3308. if (nritems == 0)
  3309. return 1;
  3310. if (path->slots[0] == nritems)
  3311. path->slots[0]--;
  3312. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3313. if (found_key.type == type)
  3314. return 0;
  3315. if (found_key.objectid < min_objectid)
  3316. break;
  3317. if (found_key.objectid == min_objectid &&
  3318. found_key.type < type)
  3319. break;
  3320. }
  3321. return 1;
  3322. }