vmx.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. struct vmcs {
  52. u32 revision_id;
  53. u32 abort;
  54. char data[0];
  55. };
  56. struct vcpu_vmx {
  57. struct kvm_vcpu vcpu;
  58. struct list_head local_vcpus_link;
  59. unsigned long host_rsp;
  60. int launched;
  61. u8 fail;
  62. u32 idt_vectoring_info;
  63. struct kvm_msr_entry *guest_msrs;
  64. struct kvm_msr_entry *host_msrs;
  65. int nmsrs;
  66. int save_nmsrs;
  67. int msr_offset_efer;
  68. #ifdef CONFIG_X86_64
  69. int msr_offset_kernel_gs_base;
  70. #endif
  71. struct vmcs *vmcs;
  72. struct {
  73. int loaded;
  74. u16 fs_sel, gs_sel, ldt_sel;
  75. int gs_ldt_reload_needed;
  76. int fs_reload_needed;
  77. int guest_efer_loaded;
  78. } host_state;
  79. struct {
  80. int vm86_active;
  81. u8 save_iopl;
  82. struct kvm_save_segment {
  83. u16 selector;
  84. unsigned long base;
  85. u32 limit;
  86. u32 ar;
  87. } tr, es, ds, fs, gs;
  88. struct {
  89. bool pending;
  90. u8 vector;
  91. unsigned rip;
  92. } irq;
  93. } rmode;
  94. int vpid;
  95. bool emulation_required;
  96. /* Support for vnmi-less CPUs */
  97. int soft_vnmi_blocked;
  98. ktime_t entry_time;
  99. s64 vnmi_blocked_time;
  100. u32 exit_reason;
  101. };
  102. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  103. {
  104. return container_of(vcpu, struct vcpu_vmx, vcpu);
  105. }
  106. static int init_rmode(struct kvm *kvm);
  107. static u64 construct_eptp(unsigned long root_hpa);
  108. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  109. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  110. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  111. static unsigned long *vmx_io_bitmap_a;
  112. static unsigned long *vmx_io_bitmap_b;
  113. static unsigned long *vmx_msr_bitmap_legacy;
  114. static unsigned long *vmx_msr_bitmap_longmode;
  115. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  116. static DEFINE_SPINLOCK(vmx_vpid_lock);
  117. static struct vmcs_config {
  118. int size;
  119. int order;
  120. u32 revision_id;
  121. u32 pin_based_exec_ctrl;
  122. u32 cpu_based_exec_ctrl;
  123. u32 cpu_based_2nd_exec_ctrl;
  124. u32 vmexit_ctrl;
  125. u32 vmentry_ctrl;
  126. } vmcs_config;
  127. static struct vmx_capability {
  128. u32 ept;
  129. u32 vpid;
  130. } vmx_capability;
  131. #define VMX_SEGMENT_FIELD(seg) \
  132. [VCPU_SREG_##seg] = { \
  133. .selector = GUEST_##seg##_SELECTOR, \
  134. .base = GUEST_##seg##_BASE, \
  135. .limit = GUEST_##seg##_LIMIT, \
  136. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  137. }
  138. static struct kvm_vmx_segment_field {
  139. unsigned selector;
  140. unsigned base;
  141. unsigned limit;
  142. unsigned ar_bytes;
  143. } kvm_vmx_segment_fields[] = {
  144. VMX_SEGMENT_FIELD(CS),
  145. VMX_SEGMENT_FIELD(DS),
  146. VMX_SEGMENT_FIELD(ES),
  147. VMX_SEGMENT_FIELD(FS),
  148. VMX_SEGMENT_FIELD(GS),
  149. VMX_SEGMENT_FIELD(SS),
  150. VMX_SEGMENT_FIELD(TR),
  151. VMX_SEGMENT_FIELD(LDTR),
  152. };
  153. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  154. /*
  155. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  156. * away by decrementing the array size.
  157. */
  158. static const u32 vmx_msr_index[] = {
  159. #ifdef CONFIG_X86_64
  160. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  161. #endif
  162. MSR_EFER, MSR_K6_STAR,
  163. };
  164. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  165. static void load_msrs(struct kvm_msr_entry *e, int n)
  166. {
  167. int i;
  168. for (i = 0; i < n; ++i)
  169. wrmsrl(e[i].index, e[i].data);
  170. }
  171. static void save_msrs(struct kvm_msr_entry *e, int n)
  172. {
  173. int i;
  174. for (i = 0; i < n; ++i)
  175. rdmsrl(e[i].index, e[i].data);
  176. }
  177. static inline int is_page_fault(u32 intr_info)
  178. {
  179. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  180. INTR_INFO_VALID_MASK)) ==
  181. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  182. }
  183. static inline int is_no_device(u32 intr_info)
  184. {
  185. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  186. INTR_INFO_VALID_MASK)) ==
  187. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  188. }
  189. static inline int is_invalid_opcode(u32 intr_info)
  190. {
  191. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  192. INTR_INFO_VALID_MASK)) ==
  193. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  194. }
  195. static inline int is_external_interrupt(u32 intr_info)
  196. {
  197. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  198. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  199. }
  200. static inline int is_machine_check(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int cpu_has_vmx_msr_bitmap(void)
  207. {
  208. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  209. }
  210. static inline int cpu_has_vmx_tpr_shadow(void)
  211. {
  212. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  213. }
  214. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  215. {
  216. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  217. }
  218. static inline int cpu_has_secondary_exec_ctrls(void)
  219. {
  220. return vmcs_config.cpu_based_exec_ctrl &
  221. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  222. }
  223. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  224. {
  225. return vmcs_config.cpu_based_2nd_exec_ctrl &
  226. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  227. }
  228. static inline bool cpu_has_vmx_flexpriority(void)
  229. {
  230. return cpu_has_vmx_tpr_shadow() &&
  231. cpu_has_vmx_virtualize_apic_accesses();
  232. }
  233. static inline bool cpu_has_vmx_ept_execute_only(void)
  234. {
  235. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  236. }
  237. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  238. {
  239. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  240. }
  241. static inline bool cpu_has_vmx_eptp_writeback(void)
  242. {
  243. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  244. }
  245. static inline bool cpu_has_vmx_ept_2m_page(void)
  246. {
  247. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  248. }
  249. static inline int cpu_has_vmx_invept_individual_addr(void)
  250. {
  251. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  252. }
  253. static inline int cpu_has_vmx_invept_context(void)
  254. {
  255. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  256. }
  257. static inline int cpu_has_vmx_invept_global(void)
  258. {
  259. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  260. }
  261. static inline int cpu_has_vmx_ept(void)
  262. {
  263. return vmcs_config.cpu_based_2nd_exec_ctrl &
  264. SECONDARY_EXEC_ENABLE_EPT;
  265. }
  266. static inline int cpu_has_vmx_unrestricted_guest(void)
  267. {
  268. return vmcs_config.cpu_based_2nd_exec_ctrl &
  269. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  270. }
  271. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  272. {
  273. return flexpriority_enabled &&
  274. (cpu_has_vmx_virtualize_apic_accesses()) &&
  275. (irqchip_in_kernel(kvm));
  276. }
  277. static inline int cpu_has_vmx_vpid(void)
  278. {
  279. return vmcs_config.cpu_based_2nd_exec_ctrl &
  280. SECONDARY_EXEC_ENABLE_VPID;
  281. }
  282. static inline int cpu_has_virtual_nmis(void)
  283. {
  284. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  285. }
  286. static inline bool report_flexpriority(void)
  287. {
  288. return flexpriority_enabled;
  289. }
  290. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  291. {
  292. int i;
  293. for (i = 0; i < vmx->nmsrs; ++i)
  294. if (vmx->guest_msrs[i].index == msr)
  295. return i;
  296. return -1;
  297. }
  298. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  299. {
  300. struct {
  301. u64 vpid : 16;
  302. u64 rsvd : 48;
  303. u64 gva;
  304. } operand = { vpid, 0, gva };
  305. asm volatile (__ex(ASM_VMX_INVVPID)
  306. /* CF==1 or ZF==1 --> rc = -1 */
  307. "; ja 1f ; ud2 ; 1:"
  308. : : "a"(&operand), "c"(ext) : "cc", "memory");
  309. }
  310. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  311. {
  312. struct {
  313. u64 eptp, gpa;
  314. } operand = {eptp, gpa};
  315. asm volatile (__ex(ASM_VMX_INVEPT)
  316. /* CF==1 or ZF==1 --> rc = -1 */
  317. "; ja 1f ; ud2 ; 1:\n"
  318. : : "a" (&operand), "c" (ext) : "cc", "memory");
  319. }
  320. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  321. {
  322. int i;
  323. i = __find_msr_index(vmx, msr);
  324. if (i >= 0)
  325. return &vmx->guest_msrs[i];
  326. return NULL;
  327. }
  328. static void vmcs_clear(struct vmcs *vmcs)
  329. {
  330. u64 phys_addr = __pa(vmcs);
  331. u8 error;
  332. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  333. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  334. : "cc", "memory");
  335. if (error)
  336. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  337. vmcs, phys_addr);
  338. }
  339. static void __vcpu_clear(void *arg)
  340. {
  341. struct vcpu_vmx *vmx = arg;
  342. int cpu = raw_smp_processor_id();
  343. if (vmx->vcpu.cpu == cpu)
  344. vmcs_clear(vmx->vmcs);
  345. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  346. per_cpu(current_vmcs, cpu) = NULL;
  347. rdtscll(vmx->vcpu.arch.host_tsc);
  348. list_del(&vmx->local_vcpus_link);
  349. vmx->vcpu.cpu = -1;
  350. vmx->launched = 0;
  351. }
  352. static void vcpu_clear(struct vcpu_vmx *vmx)
  353. {
  354. if (vmx->vcpu.cpu == -1)
  355. return;
  356. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  357. }
  358. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  359. {
  360. if (vmx->vpid == 0)
  361. return;
  362. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  363. }
  364. static inline void ept_sync_global(void)
  365. {
  366. if (cpu_has_vmx_invept_global())
  367. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  368. }
  369. static inline void ept_sync_context(u64 eptp)
  370. {
  371. if (enable_ept) {
  372. if (cpu_has_vmx_invept_context())
  373. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  374. else
  375. ept_sync_global();
  376. }
  377. }
  378. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  379. {
  380. if (enable_ept) {
  381. if (cpu_has_vmx_invept_individual_addr())
  382. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  383. eptp, gpa);
  384. else
  385. ept_sync_context(eptp);
  386. }
  387. }
  388. static unsigned long vmcs_readl(unsigned long field)
  389. {
  390. unsigned long value;
  391. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  392. : "=a"(value) : "d"(field) : "cc");
  393. return value;
  394. }
  395. static u16 vmcs_read16(unsigned long field)
  396. {
  397. return vmcs_readl(field);
  398. }
  399. static u32 vmcs_read32(unsigned long field)
  400. {
  401. return vmcs_readl(field);
  402. }
  403. static u64 vmcs_read64(unsigned long field)
  404. {
  405. #ifdef CONFIG_X86_64
  406. return vmcs_readl(field);
  407. #else
  408. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  409. #endif
  410. }
  411. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  412. {
  413. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  414. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  415. dump_stack();
  416. }
  417. static void vmcs_writel(unsigned long field, unsigned long value)
  418. {
  419. u8 error;
  420. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  421. : "=q"(error) : "a"(value), "d"(field) : "cc");
  422. if (unlikely(error))
  423. vmwrite_error(field, value);
  424. }
  425. static void vmcs_write16(unsigned long field, u16 value)
  426. {
  427. vmcs_writel(field, value);
  428. }
  429. static void vmcs_write32(unsigned long field, u32 value)
  430. {
  431. vmcs_writel(field, value);
  432. }
  433. static void vmcs_write64(unsigned long field, u64 value)
  434. {
  435. vmcs_writel(field, value);
  436. #ifndef CONFIG_X86_64
  437. asm volatile ("");
  438. vmcs_writel(field+1, value >> 32);
  439. #endif
  440. }
  441. static void vmcs_clear_bits(unsigned long field, u32 mask)
  442. {
  443. vmcs_writel(field, vmcs_readl(field) & ~mask);
  444. }
  445. static void vmcs_set_bits(unsigned long field, u32 mask)
  446. {
  447. vmcs_writel(field, vmcs_readl(field) | mask);
  448. }
  449. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  450. {
  451. u32 eb;
  452. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  453. if (!vcpu->fpu_active)
  454. eb |= 1u << NM_VECTOR;
  455. /*
  456. * Unconditionally intercept #DB so we can maintain dr6 without
  457. * reading it every exit.
  458. */
  459. eb |= 1u << DB_VECTOR;
  460. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  461. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  462. eb |= 1u << BP_VECTOR;
  463. }
  464. if (to_vmx(vcpu)->rmode.vm86_active)
  465. eb = ~0;
  466. if (enable_ept)
  467. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  468. vmcs_write32(EXCEPTION_BITMAP, eb);
  469. }
  470. static void reload_tss(void)
  471. {
  472. /*
  473. * VT restores TR but not its size. Useless.
  474. */
  475. struct descriptor_table gdt;
  476. struct desc_struct *descs;
  477. kvm_get_gdt(&gdt);
  478. descs = (void *)gdt.base;
  479. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  480. load_TR_desc();
  481. }
  482. static void load_transition_efer(struct vcpu_vmx *vmx)
  483. {
  484. int efer_offset = vmx->msr_offset_efer;
  485. u64 host_efer;
  486. u64 guest_efer;
  487. u64 ignore_bits;
  488. if (efer_offset < 0)
  489. return;
  490. host_efer = vmx->host_msrs[efer_offset].data;
  491. guest_efer = vmx->guest_msrs[efer_offset].data;
  492. /*
  493. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  494. * outside long mode
  495. */
  496. ignore_bits = EFER_NX | EFER_SCE;
  497. #ifdef CONFIG_X86_64
  498. ignore_bits |= EFER_LMA | EFER_LME;
  499. /* SCE is meaningful only in long mode on Intel */
  500. if (guest_efer & EFER_LMA)
  501. ignore_bits &= ~(u64)EFER_SCE;
  502. #endif
  503. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  504. return;
  505. vmx->host_state.guest_efer_loaded = 1;
  506. guest_efer &= ~ignore_bits;
  507. guest_efer |= host_efer & ignore_bits;
  508. wrmsrl(MSR_EFER, guest_efer);
  509. vmx->vcpu.stat.efer_reload++;
  510. }
  511. static void reload_host_efer(struct vcpu_vmx *vmx)
  512. {
  513. if (vmx->host_state.guest_efer_loaded) {
  514. vmx->host_state.guest_efer_loaded = 0;
  515. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  516. }
  517. }
  518. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  519. {
  520. struct vcpu_vmx *vmx = to_vmx(vcpu);
  521. if (vmx->host_state.loaded)
  522. return;
  523. vmx->host_state.loaded = 1;
  524. /*
  525. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  526. * allow segment selectors with cpl > 0 or ti == 1.
  527. */
  528. vmx->host_state.ldt_sel = kvm_read_ldt();
  529. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  530. vmx->host_state.fs_sel = kvm_read_fs();
  531. if (!(vmx->host_state.fs_sel & 7)) {
  532. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  533. vmx->host_state.fs_reload_needed = 0;
  534. } else {
  535. vmcs_write16(HOST_FS_SELECTOR, 0);
  536. vmx->host_state.fs_reload_needed = 1;
  537. }
  538. vmx->host_state.gs_sel = kvm_read_gs();
  539. if (!(vmx->host_state.gs_sel & 7))
  540. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  541. else {
  542. vmcs_write16(HOST_GS_SELECTOR, 0);
  543. vmx->host_state.gs_ldt_reload_needed = 1;
  544. }
  545. #ifdef CONFIG_X86_64
  546. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  547. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  548. #else
  549. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  550. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  551. #endif
  552. #ifdef CONFIG_X86_64
  553. if (is_long_mode(&vmx->vcpu))
  554. save_msrs(vmx->host_msrs +
  555. vmx->msr_offset_kernel_gs_base, 1);
  556. #endif
  557. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  558. load_transition_efer(vmx);
  559. }
  560. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  561. {
  562. unsigned long flags;
  563. if (!vmx->host_state.loaded)
  564. return;
  565. ++vmx->vcpu.stat.host_state_reload;
  566. vmx->host_state.loaded = 0;
  567. if (vmx->host_state.fs_reload_needed)
  568. kvm_load_fs(vmx->host_state.fs_sel);
  569. if (vmx->host_state.gs_ldt_reload_needed) {
  570. kvm_load_ldt(vmx->host_state.ldt_sel);
  571. /*
  572. * If we have to reload gs, we must take care to
  573. * preserve our gs base.
  574. */
  575. local_irq_save(flags);
  576. kvm_load_gs(vmx->host_state.gs_sel);
  577. #ifdef CONFIG_X86_64
  578. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  579. #endif
  580. local_irq_restore(flags);
  581. }
  582. reload_tss();
  583. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  584. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  585. reload_host_efer(vmx);
  586. }
  587. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  588. {
  589. preempt_disable();
  590. __vmx_load_host_state(vmx);
  591. preempt_enable();
  592. }
  593. /*
  594. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  595. * vcpu mutex is already taken.
  596. */
  597. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  598. {
  599. struct vcpu_vmx *vmx = to_vmx(vcpu);
  600. u64 phys_addr = __pa(vmx->vmcs);
  601. u64 tsc_this, delta, new_offset;
  602. if (vcpu->cpu != cpu) {
  603. vcpu_clear(vmx);
  604. kvm_migrate_timers(vcpu);
  605. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  606. local_irq_disable();
  607. list_add(&vmx->local_vcpus_link,
  608. &per_cpu(vcpus_on_cpu, cpu));
  609. local_irq_enable();
  610. }
  611. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  612. u8 error;
  613. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  614. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  615. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  616. : "cc");
  617. if (error)
  618. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  619. vmx->vmcs, phys_addr);
  620. }
  621. if (vcpu->cpu != cpu) {
  622. struct descriptor_table dt;
  623. unsigned long sysenter_esp;
  624. vcpu->cpu = cpu;
  625. /*
  626. * Linux uses per-cpu TSS and GDT, so set these when switching
  627. * processors.
  628. */
  629. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  630. kvm_get_gdt(&dt);
  631. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  632. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  633. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  634. /*
  635. * Make sure the time stamp counter is monotonous.
  636. */
  637. rdtscll(tsc_this);
  638. if (tsc_this < vcpu->arch.host_tsc) {
  639. delta = vcpu->arch.host_tsc - tsc_this;
  640. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  641. vmcs_write64(TSC_OFFSET, new_offset);
  642. }
  643. }
  644. }
  645. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  646. {
  647. __vmx_load_host_state(to_vmx(vcpu));
  648. }
  649. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  650. {
  651. if (vcpu->fpu_active)
  652. return;
  653. vcpu->fpu_active = 1;
  654. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  655. if (vcpu->arch.cr0 & X86_CR0_TS)
  656. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  657. update_exception_bitmap(vcpu);
  658. }
  659. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  660. {
  661. if (!vcpu->fpu_active)
  662. return;
  663. vcpu->fpu_active = 0;
  664. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  665. update_exception_bitmap(vcpu);
  666. }
  667. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  668. {
  669. unsigned long rflags;
  670. rflags = vmcs_readl(GUEST_RFLAGS);
  671. if (to_vmx(vcpu)->rmode.vm86_active)
  672. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  673. return rflags;
  674. }
  675. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  676. {
  677. if (to_vmx(vcpu)->rmode.vm86_active)
  678. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  679. vmcs_writel(GUEST_RFLAGS, rflags);
  680. }
  681. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  682. {
  683. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  684. int ret = 0;
  685. if (interruptibility & GUEST_INTR_STATE_STI)
  686. ret |= X86_SHADOW_INT_STI;
  687. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  688. ret |= X86_SHADOW_INT_MOV_SS;
  689. return ret & mask;
  690. }
  691. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  692. {
  693. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  694. u32 interruptibility = interruptibility_old;
  695. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  696. if (mask & X86_SHADOW_INT_MOV_SS)
  697. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  698. if (mask & X86_SHADOW_INT_STI)
  699. interruptibility |= GUEST_INTR_STATE_STI;
  700. if ((interruptibility != interruptibility_old))
  701. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  702. }
  703. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  704. {
  705. unsigned long rip;
  706. rip = kvm_rip_read(vcpu);
  707. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  708. kvm_rip_write(vcpu, rip);
  709. /* skipping an emulated instruction also counts */
  710. vmx_set_interrupt_shadow(vcpu, 0);
  711. }
  712. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  713. bool has_error_code, u32 error_code)
  714. {
  715. struct vcpu_vmx *vmx = to_vmx(vcpu);
  716. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  717. if (has_error_code) {
  718. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  719. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  720. }
  721. if (vmx->rmode.vm86_active) {
  722. vmx->rmode.irq.pending = true;
  723. vmx->rmode.irq.vector = nr;
  724. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  725. if (kvm_exception_is_soft(nr))
  726. vmx->rmode.irq.rip +=
  727. vmx->vcpu.arch.event_exit_inst_len;
  728. intr_info |= INTR_TYPE_SOFT_INTR;
  729. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  730. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  731. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  732. return;
  733. }
  734. if (kvm_exception_is_soft(nr)) {
  735. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  736. vmx->vcpu.arch.event_exit_inst_len);
  737. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  738. } else
  739. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  740. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  741. }
  742. /*
  743. * Swap MSR entry in host/guest MSR entry array.
  744. */
  745. #ifdef CONFIG_X86_64
  746. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  747. {
  748. struct kvm_msr_entry tmp;
  749. tmp = vmx->guest_msrs[to];
  750. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  751. vmx->guest_msrs[from] = tmp;
  752. tmp = vmx->host_msrs[to];
  753. vmx->host_msrs[to] = vmx->host_msrs[from];
  754. vmx->host_msrs[from] = tmp;
  755. }
  756. #endif
  757. /*
  758. * Set up the vmcs to automatically save and restore system
  759. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  760. * mode, as fiddling with msrs is very expensive.
  761. */
  762. static void setup_msrs(struct vcpu_vmx *vmx)
  763. {
  764. int save_nmsrs;
  765. unsigned long *msr_bitmap;
  766. vmx_load_host_state(vmx);
  767. save_nmsrs = 0;
  768. #ifdef CONFIG_X86_64
  769. if (is_long_mode(&vmx->vcpu)) {
  770. int index;
  771. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  772. if (index >= 0)
  773. move_msr_up(vmx, index, save_nmsrs++);
  774. index = __find_msr_index(vmx, MSR_LSTAR);
  775. if (index >= 0)
  776. move_msr_up(vmx, index, save_nmsrs++);
  777. index = __find_msr_index(vmx, MSR_CSTAR);
  778. if (index >= 0)
  779. move_msr_up(vmx, index, save_nmsrs++);
  780. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  781. if (index >= 0)
  782. move_msr_up(vmx, index, save_nmsrs++);
  783. /*
  784. * MSR_K6_STAR is only needed on long mode guests, and only
  785. * if efer.sce is enabled.
  786. */
  787. index = __find_msr_index(vmx, MSR_K6_STAR);
  788. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  789. move_msr_up(vmx, index, save_nmsrs++);
  790. }
  791. #endif
  792. vmx->save_nmsrs = save_nmsrs;
  793. #ifdef CONFIG_X86_64
  794. vmx->msr_offset_kernel_gs_base =
  795. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  796. #endif
  797. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  798. if (cpu_has_vmx_msr_bitmap()) {
  799. if (is_long_mode(&vmx->vcpu))
  800. msr_bitmap = vmx_msr_bitmap_longmode;
  801. else
  802. msr_bitmap = vmx_msr_bitmap_legacy;
  803. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  804. }
  805. }
  806. /*
  807. * reads and returns guest's timestamp counter "register"
  808. * guest_tsc = host_tsc + tsc_offset -- 21.3
  809. */
  810. static u64 guest_read_tsc(void)
  811. {
  812. u64 host_tsc, tsc_offset;
  813. rdtscll(host_tsc);
  814. tsc_offset = vmcs_read64(TSC_OFFSET);
  815. return host_tsc + tsc_offset;
  816. }
  817. /*
  818. * writes 'guest_tsc' into guest's timestamp counter "register"
  819. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  820. */
  821. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  822. {
  823. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  824. }
  825. /*
  826. * Reads an msr value (of 'msr_index') into 'pdata'.
  827. * Returns 0 on success, non-0 otherwise.
  828. * Assumes vcpu_load() was already called.
  829. */
  830. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  831. {
  832. u64 data;
  833. struct kvm_msr_entry *msr;
  834. if (!pdata) {
  835. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  836. return -EINVAL;
  837. }
  838. switch (msr_index) {
  839. #ifdef CONFIG_X86_64
  840. case MSR_FS_BASE:
  841. data = vmcs_readl(GUEST_FS_BASE);
  842. break;
  843. case MSR_GS_BASE:
  844. data = vmcs_readl(GUEST_GS_BASE);
  845. break;
  846. case MSR_EFER:
  847. return kvm_get_msr_common(vcpu, msr_index, pdata);
  848. #endif
  849. case MSR_IA32_TSC:
  850. data = guest_read_tsc();
  851. break;
  852. case MSR_IA32_SYSENTER_CS:
  853. data = vmcs_read32(GUEST_SYSENTER_CS);
  854. break;
  855. case MSR_IA32_SYSENTER_EIP:
  856. data = vmcs_readl(GUEST_SYSENTER_EIP);
  857. break;
  858. case MSR_IA32_SYSENTER_ESP:
  859. data = vmcs_readl(GUEST_SYSENTER_ESP);
  860. break;
  861. default:
  862. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  863. if (msr) {
  864. vmx_load_host_state(to_vmx(vcpu));
  865. data = msr->data;
  866. break;
  867. }
  868. return kvm_get_msr_common(vcpu, msr_index, pdata);
  869. }
  870. *pdata = data;
  871. return 0;
  872. }
  873. /*
  874. * Writes msr value into into the appropriate "register".
  875. * Returns 0 on success, non-0 otherwise.
  876. * Assumes vcpu_load() was already called.
  877. */
  878. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  879. {
  880. struct vcpu_vmx *vmx = to_vmx(vcpu);
  881. struct kvm_msr_entry *msr;
  882. u64 host_tsc;
  883. int ret = 0;
  884. switch (msr_index) {
  885. case MSR_EFER:
  886. vmx_load_host_state(vmx);
  887. ret = kvm_set_msr_common(vcpu, msr_index, data);
  888. break;
  889. #ifdef CONFIG_X86_64
  890. case MSR_FS_BASE:
  891. vmcs_writel(GUEST_FS_BASE, data);
  892. break;
  893. case MSR_GS_BASE:
  894. vmcs_writel(GUEST_GS_BASE, data);
  895. break;
  896. #endif
  897. case MSR_IA32_SYSENTER_CS:
  898. vmcs_write32(GUEST_SYSENTER_CS, data);
  899. break;
  900. case MSR_IA32_SYSENTER_EIP:
  901. vmcs_writel(GUEST_SYSENTER_EIP, data);
  902. break;
  903. case MSR_IA32_SYSENTER_ESP:
  904. vmcs_writel(GUEST_SYSENTER_ESP, data);
  905. break;
  906. case MSR_IA32_TSC:
  907. rdtscll(host_tsc);
  908. guest_write_tsc(data, host_tsc);
  909. break;
  910. case MSR_IA32_CR_PAT:
  911. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  912. vmcs_write64(GUEST_IA32_PAT, data);
  913. vcpu->arch.pat = data;
  914. break;
  915. }
  916. /* Otherwise falls through to kvm_set_msr_common */
  917. default:
  918. msr = find_msr_entry(vmx, msr_index);
  919. if (msr) {
  920. vmx_load_host_state(vmx);
  921. msr->data = data;
  922. break;
  923. }
  924. ret = kvm_set_msr_common(vcpu, msr_index, data);
  925. }
  926. return ret;
  927. }
  928. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  929. {
  930. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  931. switch (reg) {
  932. case VCPU_REGS_RSP:
  933. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  934. break;
  935. case VCPU_REGS_RIP:
  936. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  937. break;
  938. case VCPU_EXREG_PDPTR:
  939. if (enable_ept)
  940. ept_save_pdptrs(vcpu);
  941. break;
  942. default:
  943. break;
  944. }
  945. }
  946. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  947. {
  948. int old_debug = vcpu->guest_debug;
  949. unsigned long flags;
  950. vcpu->guest_debug = dbg->control;
  951. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  952. vcpu->guest_debug = 0;
  953. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  954. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  955. else
  956. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  957. flags = vmcs_readl(GUEST_RFLAGS);
  958. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  959. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  960. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  961. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  962. vmcs_writel(GUEST_RFLAGS, flags);
  963. update_exception_bitmap(vcpu);
  964. return 0;
  965. }
  966. static __init int cpu_has_kvm_support(void)
  967. {
  968. return cpu_has_vmx();
  969. }
  970. static __init int vmx_disabled_by_bios(void)
  971. {
  972. u64 msr;
  973. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  974. return (msr & (FEATURE_CONTROL_LOCKED |
  975. FEATURE_CONTROL_VMXON_ENABLED))
  976. == FEATURE_CONTROL_LOCKED;
  977. /* locked but not enabled */
  978. }
  979. static int hardware_enable(void *garbage)
  980. {
  981. int cpu = raw_smp_processor_id();
  982. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  983. u64 old;
  984. if (read_cr4() & X86_CR4_VMXE)
  985. return -EBUSY;
  986. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  987. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  988. if ((old & (FEATURE_CONTROL_LOCKED |
  989. FEATURE_CONTROL_VMXON_ENABLED))
  990. != (FEATURE_CONTROL_LOCKED |
  991. FEATURE_CONTROL_VMXON_ENABLED))
  992. /* enable and lock */
  993. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  994. FEATURE_CONTROL_LOCKED |
  995. FEATURE_CONTROL_VMXON_ENABLED);
  996. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  997. asm volatile (ASM_VMX_VMXON_RAX
  998. : : "a"(&phys_addr), "m"(phys_addr)
  999. : "memory", "cc");
  1000. ept_sync_global();
  1001. return 0;
  1002. }
  1003. static void vmclear_local_vcpus(void)
  1004. {
  1005. int cpu = raw_smp_processor_id();
  1006. struct vcpu_vmx *vmx, *n;
  1007. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1008. local_vcpus_link)
  1009. __vcpu_clear(vmx);
  1010. }
  1011. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1012. * tricks.
  1013. */
  1014. static void kvm_cpu_vmxoff(void)
  1015. {
  1016. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1017. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1018. }
  1019. static void hardware_disable(void *garbage)
  1020. {
  1021. vmclear_local_vcpus();
  1022. kvm_cpu_vmxoff();
  1023. }
  1024. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1025. u32 msr, u32 *result)
  1026. {
  1027. u32 vmx_msr_low, vmx_msr_high;
  1028. u32 ctl = ctl_min | ctl_opt;
  1029. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1030. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1031. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1032. /* Ensure minimum (required) set of control bits are supported. */
  1033. if (ctl_min & ~ctl)
  1034. return -EIO;
  1035. *result = ctl;
  1036. return 0;
  1037. }
  1038. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1039. {
  1040. u32 vmx_msr_low, vmx_msr_high;
  1041. u32 min, opt, min2, opt2;
  1042. u32 _pin_based_exec_control = 0;
  1043. u32 _cpu_based_exec_control = 0;
  1044. u32 _cpu_based_2nd_exec_control = 0;
  1045. u32 _vmexit_control = 0;
  1046. u32 _vmentry_control = 0;
  1047. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1048. opt = PIN_BASED_VIRTUAL_NMIS;
  1049. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1050. &_pin_based_exec_control) < 0)
  1051. return -EIO;
  1052. min = CPU_BASED_HLT_EXITING |
  1053. #ifdef CONFIG_X86_64
  1054. CPU_BASED_CR8_LOAD_EXITING |
  1055. CPU_BASED_CR8_STORE_EXITING |
  1056. #endif
  1057. CPU_BASED_CR3_LOAD_EXITING |
  1058. CPU_BASED_CR3_STORE_EXITING |
  1059. CPU_BASED_USE_IO_BITMAPS |
  1060. CPU_BASED_MOV_DR_EXITING |
  1061. CPU_BASED_USE_TSC_OFFSETING |
  1062. CPU_BASED_INVLPG_EXITING;
  1063. opt = CPU_BASED_TPR_SHADOW |
  1064. CPU_BASED_USE_MSR_BITMAPS |
  1065. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1066. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1067. &_cpu_based_exec_control) < 0)
  1068. return -EIO;
  1069. #ifdef CONFIG_X86_64
  1070. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1071. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1072. ~CPU_BASED_CR8_STORE_EXITING;
  1073. #endif
  1074. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1075. min2 = 0;
  1076. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1077. SECONDARY_EXEC_WBINVD_EXITING |
  1078. SECONDARY_EXEC_ENABLE_VPID |
  1079. SECONDARY_EXEC_ENABLE_EPT |
  1080. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1081. if (adjust_vmx_controls(min2, opt2,
  1082. MSR_IA32_VMX_PROCBASED_CTLS2,
  1083. &_cpu_based_2nd_exec_control) < 0)
  1084. return -EIO;
  1085. }
  1086. #ifndef CONFIG_X86_64
  1087. if (!(_cpu_based_2nd_exec_control &
  1088. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1089. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1090. #endif
  1091. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1092. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1093. enabled */
  1094. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1095. CPU_BASED_CR3_STORE_EXITING |
  1096. CPU_BASED_INVLPG_EXITING);
  1097. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1098. vmx_capability.ept, vmx_capability.vpid);
  1099. }
  1100. min = 0;
  1101. #ifdef CONFIG_X86_64
  1102. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1103. #endif
  1104. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1105. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1106. &_vmexit_control) < 0)
  1107. return -EIO;
  1108. min = 0;
  1109. opt = VM_ENTRY_LOAD_IA32_PAT;
  1110. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1111. &_vmentry_control) < 0)
  1112. return -EIO;
  1113. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1114. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1115. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1116. return -EIO;
  1117. #ifdef CONFIG_X86_64
  1118. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1119. if (vmx_msr_high & (1u<<16))
  1120. return -EIO;
  1121. #endif
  1122. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1123. if (((vmx_msr_high >> 18) & 15) != 6)
  1124. return -EIO;
  1125. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1126. vmcs_conf->order = get_order(vmcs_config.size);
  1127. vmcs_conf->revision_id = vmx_msr_low;
  1128. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1129. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1130. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1131. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1132. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1133. return 0;
  1134. }
  1135. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1136. {
  1137. int node = cpu_to_node(cpu);
  1138. struct page *pages;
  1139. struct vmcs *vmcs;
  1140. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1141. if (!pages)
  1142. return NULL;
  1143. vmcs = page_address(pages);
  1144. memset(vmcs, 0, vmcs_config.size);
  1145. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1146. return vmcs;
  1147. }
  1148. static struct vmcs *alloc_vmcs(void)
  1149. {
  1150. return alloc_vmcs_cpu(raw_smp_processor_id());
  1151. }
  1152. static void free_vmcs(struct vmcs *vmcs)
  1153. {
  1154. free_pages((unsigned long)vmcs, vmcs_config.order);
  1155. }
  1156. static void free_kvm_area(void)
  1157. {
  1158. int cpu;
  1159. for_each_possible_cpu(cpu) {
  1160. free_vmcs(per_cpu(vmxarea, cpu));
  1161. per_cpu(vmxarea, cpu) = NULL;
  1162. }
  1163. }
  1164. static __init int alloc_kvm_area(void)
  1165. {
  1166. int cpu;
  1167. for_each_possible_cpu(cpu) {
  1168. struct vmcs *vmcs;
  1169. vmcs = alloc_vmcs_cpu(cpu);
  1170. if (!vmcs) {
  1171. free_kvm_area();
  1172. return -ENOMEM;
  1173. }
  1174. per_cpu(vmxarea, cpu) = vmcs;
  1175. }
  1176. return 0;
  1177. }
  1178. static __init int hardware_setup(void)
  1179. {
  1180. if (setup_vmcs_config(&vmcs_config) < 0)
  1181. return -EIO;
  1182. if (boot_cpu_has(X86_FEATURE_NX))
  1183. kvm_enable_efer_bits(EFER_NX);
  1184. if (!cpu_has_vmx_vpid())
  1185. enable_vpid = 0;
  1186. if (!cpu_has_vmx_ept()) {
  1187. enable_ept = 0;
  1188. enable_unrestricted_guest = 0;
  1189. }
  1190. if (!cpu_has_vmx_unrestricted_guest())
  1191. enable_unrestricted_guest = 0;
  1192. if (!cpu_has_vmx_flexpriority())
  1193. flexpriority_enabled = 0;
  1194. if (!cpu_has_vmx_tpr_shadow())
  1195. kvm_x86_ops->update_cr8_intercept = NULL;
  1196. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1197. kvm_disable_largepages();
  1198. return alloc_kvm_area();
  1199. }
  1200. static __exit void hardware_unsetup(void)
  1201. {
  1202. free_kvm_area();
  1203. }
  1204. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1205. {
  1206. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1207. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1208. vmcs_write16(sf->selector, save->selector);
  1209. vmcs_writel(sf->base, save->base);
  1210. vmcs_write32(sf->limit, save->limit);
  1211. vmcs_write32(sf->ar_bytes, save->ar);
  1212. } else {
  1213. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1214. << AR_DPL_SHIFT;
  1215. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1216. }
  1217. }
  1218. static void enter_pmode(struct kvm_vcpu *vcpu)
  1219. {
  1220. unsigned long flags;
  1221. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1222. vmx->emulation_required = 1;
  1223. vmx->rmode.vm86_active = 0;
  1224. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1225. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1226. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1227. flags = vmcs_readl(GUEST_RFLAGS);
  1228. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1229. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1230. vmcs_writel(GUEST_RFLAGS, flags);
  1231. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1232. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1233. update_exception_bitmap(vcpu);
  1234. if (emulate_invalid_guest_state)
  1235. return;
  1236. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1237. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1238. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1239. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1240. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1241. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1242. vmcs_write16(GUEST_CS_SELECTOR,
  1243. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1244. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1245. }
  1246. static gva_t rmode_tss_base(struct kvm *kvm)
  1247. {
  1248. if (!kvm->arch.tss_addr) {
  1249. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1250. kvm->memslots[0].npages - 3;
  1251. return base_gfn << PAGE_SHIFT;
  1252. }
  1253. return kvm->arch.tss_addr;
  1254. }
  1255. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1256. {
  1257. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1258. save->selector = vmcs_read16(sf->selector);
  1259. save->base = vmcs_readl(sf->base);
  1260. save->limit = vmcs_read32(sf->limit);
  1261. save->ar = vmcs_read32(sf->ar_bytes);
  1262. vmcs_write16(sf->selector, save->base >> 4);
  1263. vmcs_write32(sf->base, save->base & 0xfffff);
  1264. vmcs_write32(sf->limit, 0xffff);
  1265. vmcs_write32(sf->ar_bytes, 0xf3);
  1266. }
  1267. static void enter_rmode(struct kvm_vcpu *vcpu)
  1268. {
  1269. unsigned long flags;
  1270. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1271. if (enable_unrestricted_guest)
  1272. return;
  1273. vmx->emulation_required = 1;
  1274. vmx->rmode.vm86_active = 1;
  1275. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1276. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1277. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1278. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1279. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1280. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1281. flags = vmcs_readl(GUEST_RFLAGS);
  1282. vmx->rmode.save_iopl
  1283. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1284. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1285. vmcs_writel(GUEST_RFLAGS, flags);
  1286. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1287. update_exception_bitmap(vcpu);
  1288. if (emulate_invalid_guest_state)
  1289. goto continue_rmode;
  1290. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1291. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1292. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1293. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1294. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1295. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1296. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1297. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1298. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1299. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1300. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1301. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1302. continue_rmode:
  1303. kvm_mmu_reset_context(vcpu);
  1304. init_rmode(vcpu->kvm);
  1305. }
  1306. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1307. {
  1308. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1309. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1310. vcpu->arch.shadow_efer = efer;
  1311. if (!msr)
  1312. return;
  1313. if (efer & EFER_LMA) {
  1314. vmcs_write32(VM_ENTRY_CONTROLS,
  1315. vmcs_read32(VM_ENTRY_CONTROLS) |
  1316. VM_ENTRY_IA32E_MODE);
  1317. msr->data = efer;
  1318. } else {
  1319. vmcs_write32(VM_ENTRY_CONTROLS,
  1320. vmcs_read32(VM_ENTRY_CONTROLS) &
  1321. ~VM_ENTRY_IA32E_MODE);
  1322. msr->data = efer & ~EFER_LME;
  1323. }
  1324. setup_msrs(vmx);
  1325. }
  1326. #ifdef CONFIG_X86_64
  1327. static void enter_lmode(struct kvm_vcpu *vcpu)
  1328. {
  1329. u32 guest_tr_ar;
  1330. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1331. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1332. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1333. __func__);
  1334. vmcs_write32(GUEST_TR_AR_BYTES,
  1335. (guest_tr_ar & ~AR_TYPE_MASK)
  1336. | AR_TYPE_BUSY_64_TSS);
  1337. }
  1338. vcpu->arch.shadow_efer |= EFER_LMA;
  1339. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1340. }
  1341. static void exit_lmode(struct kvm_vcpu *vcpu)
  1342. {
  1343. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1344. vmcs_write32(VM_ENTRY_CONTROLS,
  1345. vmcs_read32(VM_ENTRY_CONTROLS)
  1346. & ~VM_ENTRY_IA32E_MODE);
  1347. }
  1348. #endif
  1349. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1350. {
  1351. vpid_sync_vcpu_all(to_vmx(vcpu));
  1352. if (enable_ept)
  1353. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1354. }
  1355. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1356. {
  1357. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1358. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1359. }
  1360. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1361. {
  1362. if (!test_bit(VCPU_EXREG_PDPTR,
  1363. (unsigned long *)&vcpu->arch.regs_dirty))
  1364. return;
  1365. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1366. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1367. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1368. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1369. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1370. }
  1371. }
  1372. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1373. {
  1374. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1375. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1376. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1377. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1378. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1379. }
  1380. __set_bit(VCPU_EXREG_PDPTR,
  1381. (unsigned long *)&vcpu->arch.regs_avail);
  1382. __set_bit(VCPU_EXREG_PDPTR,
  1383. (unsigned long *)&vcpu->arch.regs_dirty);
  1384. }
  1385. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1386. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1387. unsigned long cr0,
  1388. struct kvm_vcpu *vcpu)
  1389. {
  1390. if (!(cr0 & X86_CR0_PG)) {
  1391. /* From paging/starting to nonpaging */
  1392. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1393. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1394. (CPU_BASED_CR3_LOAD_EXITING |
  1395. CPU_BASED_CR3_STORE_EXITING));
  1396. vcpu->arch.cr0 = cr0;
  1397. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1398. } else if (!is_paging(vcpu)) {
  1399. /* From nonpaging to paging */
  1400. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1401. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1402. ~(CPU_BASED_CR3_LOAD_EXITING |
  1403. CPU_BASED_CR3_STORE_EXITING));
  1404. vcpu->arch.cr0 = cr0;
  1405. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1406. }
  1407. if (!(cr0 & X86_CR0_WP))
  1408. *hw_cr0 &= ~X86_CR0_WP;
  1409. }
  1410. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1411. struct kvm_vcpu *vcpu)
  1412. {
  1413. if (!is_paging(vcpu)) {
  1414. *hw_cr4 &= ~X86_CR4_PAE;
  1415. *hw_cr4 |= X86_CR4_PSE;
  1416. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1417. *hw_cr4 &= ~X86_CR4_PAE;
  1418. }
  1419. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1420. {
  1421. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1422. unsigned long hw_cr0;
  1423. if (enable_unrestricted_guest)
  1424. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1425. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1426. else
  1427. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1428. vmx_fpu_deactivate(vcpu);
  1429. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1430. enter_pmode(vcpu);
  1431. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1432. enter_rmode(vcpu);
  1433. #ifdef CONFIG_X86_64
  1434. if (vcpu->arch.shadow_efer & EFER_LME) {
  1435. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1436. enter_lmode(vcpu);
  1437. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1438. exit_lmode(vcpu);
  1439. }
  1440. #endif
  1441. if (enable_ept)
  1442. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1443. vmcs_writel(CR0_READ_SHADOW, cr0);
  1444. vmcs_writel(GUEST_CR0, hw_cr0);
  1445. vcpu->arch.cr0 = cr0;
  1446. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1447. vmx_fpu_activate(vcpu);
  1448. }
  1449. static u64 construct_eptp(unsigned long root_hpa)
  1450. {
  1451. u64 eptp;
  1452. /* TODO write the value reading from MSR */
  1453. eptp = VMX_EPT_DEFAULT_MT |
  1454. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1455. eptp |= (root_hpa & PAGE_MASK);
  1456. return eptp;
  1457. }
  1458. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1459. {
  1460. unsigned long guest_cr3;
  1461. u64 eptp;
  1462. guest_cr3 = cr3;
  1463. if (enable_ept) {
  1464. eptp = construct_eptp(cr3);
  1465. vmcs_write64(EPT_POINTER, eptp);
  1466. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1467. vcpu->kvm->arch.ept_identity_map_addr;
  1468. }
  1469. vmx_flush_tlb(vcpu);
  1470. vmcs_writel(GUEST_CR3, guest_cr3);
  1471. if (vcpu->arch.cr0 & X86_CR0_PE)
  1472. vmx_fpu_deactivate(vcpu);
  1473. }
  1474. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1475. {
  1476. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1477. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1478. vcpu->arch.cr4 = cr4;
  1479. if (enable_ept)
  1480. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1481. vmcs_writel(CR4_READ_SHADOW, cr4);
  1482. vmcs_writel(GUEST_CR4, hw_cr4);
  1483. }
  1484. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1485. {
  1486. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1487. return vmcs_readl(sf->base);
  1488. }
  1489. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1490. struct kvm_segment *var, int seg)
  1491. {
  1492. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1493. u32 ar;
  1494. var->base = vmcs_readl(sf->base);
  1495. var->limit = vmcs_read32(sf->limit);
  1496. var->selector = vmcs_read16(sf->selector);
  1497. ar = vmcs_read32(sf->ar_bytes);
  1498. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1499. ar = 0;
  1500. var->type = ar & 15;
  1501. var->s = (ar >> 4) & 1;
  1502. var->dpl = (ar >> 5) & 3;
  1503. var->present = (ar >> 7) & 1;
  1504. var->avl = (ar >> 12) & 1;
  1505. var->l = (ar >> 13) & 1;
  1506. var->db = (ar >> 14) & 1;
  1507. var->g = (ar >> 15) & 1;
  1508. var->unusable = (ar >> 16) & 1;
  1509. }
  1510. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1511. {
  1512. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1513. return 0;
  1514. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1515. return 3;
  1516. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1517. }
  1518. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1519. {
  1520. u32 ar;
  1521. if (var->unusable)
  1522. ar = 1 << 16;
  1523. else {
  1524. ar = var->type & 15;
  1525. ar |= (var->s & 1) << 4;
  1526. ar |= (var->dpl & 3) << 5;
  1527. ar |= (var->present & 1) << 7;
  1528. ar |= (var->avl & 1) << 12;
  1529. ar |= (var->l & 1) << 13;
  1530. ar |= (var->db & 1) << 14;
  1531. ar |= (var->g & 1) << 15;
  1532. }
  1533. if (ar == 0) /* a 0 value means unusable */
  1534. ar = AR_UNUSABLE_MASK;
  1535. return ar;
  1536. }
  1537. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1538. struct kvm_segment *var, int seg)
  1539. {
  1540. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1541. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1542. u32 ar;
  1543. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1544. vmx->rmode.tr.selector = var->selector;
  1545. vmx->rmode.tr.base = var->base;
  1546. vmx->rmode.tr.limit = var->limit;
  1547. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1548. return;
  1549. }
  1550. vmcs_writel(sf->base, var->base);
  1551. vmcs_write32(sf->limit, var->limit);
  1552. vmcs_write16(sf->selector, var->selector);
  1553. if (vmx->rmode.vm86_active && var->s) {
  1554. /*
  1555. * Hack real-mode segments into vm86 compatibility.
  1556. */
  1557. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1558. vmcs_writel(sf->base, 0xf0000);
  1559. ar = 0xf3;
  1560. } else
  1561. ar = vmx_segment_access_rights(var);
  1562. /*
  1563. * Fix the "Accessed" bit in AR field of segment registers for older
  1564. * qemu binaries.
  1565. * IA32 arch specifies that at the time of processor reset the
  1566. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1567. * is setting it to 0 in the usedland code. This causes invalid guest
  1568. * state vmexit when "unrestricted guest" mode is turned on.
  1569. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1570. * tree. Newer qemu binaries with that qemu fix would not need this
  1571. * kvm hack.
  1572. */
  1573. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1574. ar |= 0x1; /* Accessed */
  1575. vmcs_write32(sf->ar_bytes, ar);
  1576. }
  1577. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1578. {
  1579. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1580. *db = (ar >> 14) & 1;
  1581. *l = (ar >> 13) & 1;
  1582. }
  1583. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1584. {
  1585. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1586. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1587. }
  1588. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1589. {
  1590. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1591. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1592. }
  1593. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1594. {
  1595. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1596. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1597. }
  1598. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1599. {
  1600. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1601. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1602. }
  1603. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1604. {
  1605. struct kvm_segment var;
  1606. u32 ar;
  1607. vmx_get_segment(vcpu, &var, seg);
  1608. ar = vmx_segment_access_rights(&var);
  1609. if (var.base != (var.selector << 4))
  1610. return false;
  1611. if (var.limit != 0xffff)
  1612. return false;
  1613. if (ar != 0xf3)
  1614. return false;
  1615. return true;
  1616. }
  1617. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1618. {
  1619. struct kvm_segment cs;
  1620. unsigned int cs_rpl;
  1621. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1622. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1623. if (cs.unusable)
  1624. return false;
  1625. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1626. return false;
  1627. if (!cs.s)
  1628. return false;
  1629. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1630. if (cs.dpl > cs_rpl)
  1631. return false;
  1632. } else {
  1633. if (cs.dpl != cs_rpl)
  1634. return false;
  1635. }
  1636. if (!cs.present)
  1637. return false;
  1638. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1639. return true;
  1640. }
  1641. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1642. {
  1643. struct kvm_segment ss;
  1644. unsigned int ss_rpl;
  1645. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1646. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1647. if (ss.unusable)
  1648. return true;
  1649. if (ss.type != 3 && ss.type != 7)
  1650. return false;
  1651. if (!ss.s)
  1652. return false;
  1653. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1654. return false;
  1655. if (!ss.present)
  1656. return false;
  1657. return true;
  1658. }
  1659. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1660. {
  1661. struct kvm_segment var;
  1662. unsigned int rpl;
  1663. vmx_get_segment(vcpu, &var, seg);
  1664. rpl = var.selector & SELECTOR_RPL_MASK;
  1665. if (var.unusable)
  1666. return true;
  1667. if (!var.s)
  1668. return false;
  1669. if (!var.present)
  1670. return false;
  1671. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1672. if (var.dpl < rpl) /* DPL < RPL */
  1673. return false;
  1674. }
  1675. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1676. * rights flags
  1677. */
  1678. return true;
  1679. }
  1680. static bool tr_valid(struct kvm_vcpu *vcpu)
  1681. {
  1682. struct kvm_segment tr;
  1683. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1684. if (tr.unusable)
  1685. return false;
  1686. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1687. return false;
  1688. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1689. return false;
  1690. if (!tr.present)
  1691. return false;
  1692. return true;
  1693. }
  1694. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1695. {
  1696. struct kvm_segment ldtr;
  1697. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1698. if (ldtr.unusable)
  1699. return true;
  1700. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1701. return false;
  1702. if (ldtr.type != 2)
  1703. return false;
  1704. if (!ldtr.present)
  1705. return false;
  1706. return true;
  1707. }
  1708. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1709. {
  1710. struct kvm_segment cs, ss;
  1711. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1712. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1713. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1714. (ss.selector & SELECTOR_RPL_MASK));
  1715. }
  1716. /*
  1717. * Check if guest state is valid. Returns true if valid, false if
  1718. * not.
  1719. * We assume that registers are always usable
  1720. */
  1721. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1722. {
  1723. /* real mode guest state checks */
  1724. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1725. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1726. return false;
  1727. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1728. return false;
  1729. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1730. return false;
  1731. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1732. return false;
  1733. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1734. return false;
  1735. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1736. return false;
  1737. } else {
  1738. /* protected mode guest state checks */
  1739. if (!cs_ss_rpl_check(vcpu))
  1740. return false;
  1741. if (!code_segment_valid(vcpu))
  1742. return false;
  1743. if (!stack_segment_valid(vcpu))
  1744. return false;
  1745. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1746. return false;
  1747. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1748. return false;
  1749. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1750. return false;
  1751. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1752. return false;
  1753. if (!tr_valid(vcpu))
  1754. return false;
  1755. if (!ldtr_valid(vcpu))
  1756. return false;
  1757. }
  1758. /* TODO:
  1759. * - Add checks on RIP
  1760. * - Add checks on RFLAGS
  1761. */
  1762. return true;
  1763. }
  1764. static int init_rmode_tss(struct kvm *kvm)
  1765. {
  1766. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1767. u16 data = 0;
  1768. int ret = 0;
  1769. int r;
  1770. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1771. if (r < 0)
  1772. goto out;
  1773. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1774. r = kvm_write_guest_page(kvm, fn++, &data,
  1775. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1776. if (r < 0)
  1777. goto out;
  1778. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1779. if (r < 0)
  1780. goto out;
  1781. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1782. if (r < 0)
  1783. goto out;
  1784. data = ~0;
  1785. r = kvm_write_guest_page(kvm, fn, &data,
  1786. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1787. sizeof(u8));
  1788. if (r < 0)
  1789. goto out;
  1790. ret = 1;
  1791. out:
  1792. return ret;
  1793. }
  1794. static int init_rmode_identity_map(struct kvm *kvm)
  1795. {
  1796. int i, r, ret;
  1797. pfn_t identity_map_pfn;
  1798. u32 tmp;
  1799. if (!enable_ept)
  1800. return 1;
  1801. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1802. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1803. "haven't been allocated!\n");
  1804. return 0;
  1805. }
  1806. if (likely(kvm->arch.ept_identity_pagetable_done))
  1807. return 1;
  1808. ret = 0;
  1809. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1810. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1811. if (r < 0)
  1812. goto out;
  1813. /* Set up identity-mapping pagetable for EPT in real mode */
  1814. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1815. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1816. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1817. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1818. &tmp, i * sizeof(tmp), sizeof(tmp));
  1819. if (r < 0)
  1820. goto out;
  1821. }
  1822. kvm->arch.ept_identity_pagetable_done = true;
  1823. ret = 1;
  1824. out:
  1825. return ret;
  1826. }
  1827. static void seg_setup(int seg)
  1828. {
  1829. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1830. unsigned int ar;
  1831. vmcs_write16(sf->selector, 0);
  1832. vmcs_writel(sf->base, 0);
  1833. vmcs_write32(sf->limit, 0xffff);
  1834. if (enable_unrestricted_guest) {
  1835. ar = 0x93;
  1836. if (seg == VCPU_SREG_CS)
  1837. ar |= 0x08; /* code segment */
  1838. } else
  1839. ar = 0xf3;
  1840. vmcs_write32(sf->ar_bytes, ar);
  1841. }
  1842. static int alloc_apic_access_page(struct kvm *kvm)
  1843. {
  1844. struct kvm_userspace_memory_region kvm_userspace_mem;
  1845. int r = 0;
  1846. down_write(&kvm->slots_lock);
  1847. if (kvm->arch.apic_access_page)
  1848. goto out;
  1849. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1850. kvm_userspace_mem.flags = 0;
  1851. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1852. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1853. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1854. if (r)
  1855. goto out;
  1856. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1857. out:
  1858. up_write(&kvm->slots_lock);
  1859. return r;
  1860. }
  1861. static int alloc_identity_pagetable(struct kvm *kvm)
  1862. {
  1863. struct kvm_userspace_memory_region kvm_userspace_mem;
  1864. int r = 0;
  1865. down_write(&kvm->slots_lock);
  1866. if (kvm->arch.ept_identity_pagetable)
  1867. goto out;
  1868. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1869. kvm_userspace_mem.flags = 0;
  1870. kvm_userspace_mem.guest_phys_addr =
  1871. kvm->arch.ept_identity_map_addr;
  1872. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1873. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1874. if (r)
  1875. goto out;
  1876. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1877. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1878. out:
  1879. up_write(&kvm->slots_lock);
  1880. return r;
  1881. }
  1882. static void allocate_vpid(struct vcpu_vmx *vmx)
  1883. {
  1884. int vpid;
  1885. vmx->vpid = 0;
  1886. if (!enable_vpid)
  1887. return;
  1888. spin_lock(&vmx_vpid_lock);
  1889. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1890. if (vpid < VMX_NR_VPIDS) {
  1891. vmx->vpid = vpid;
  1892. __set_bit(vpid, vmx_vpid_bitmap);
  1893. }
  1894. spin_unlock(&vmx_vpid_lock);
  1895. }
  1896. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1897. {
  1898. int f = sizeof(unsigned long);
  1899. if (!cpu_has_vmx_msr_bitmap())
  1900. return;
  1901. /*
  1902. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1903. * have the write-low and read-high bitmap offsets the wrong way round.
  1904. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1905. */
  1906. if (msr <= 0x1fff) {
  1907. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1908. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1909. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1910. msr &= 0x1fff;
  1911. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1912. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1913. }
  1914. }
  1915. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1916. {
  1917. if (!longmode_only)
  1918. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1919. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1920. }
  1921. /*
  1922. * Sets up the vmcs for emulated real mode.
  1923. */
  1924. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1925. {
  1926. u32 host_sysenter_cs, msr_low, msr_high;
  1927. u32 junk;
  1928. u64 host_pat, tsc_this, tsc_base;
  1929. unsigned long a;
  1930. struct descriptor_table dt;
  1931. int i;
  1932. unsigned long kvm_vmx_return;
  1933. u32 exec_control;
  1934. /* I/O */
  1935. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1936. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1937. if (cpu_has_vmx_msr_bitmap())
  1938. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1939. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1940. /* Control */
  1941. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1942. vmcs_config.pin_based_exec_ctrl);
  1943. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1944. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1945. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1946. #ifdef CONFIG_X86_64
  1947. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1948. CPU_BASED_CR8_LOAD_EXITING;
  1949. #endif
  1950. }
  1951. if (!enable_ept)
  1952. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1953. CPU_BASED_CR3_LOAD_EXITING |
  1954. CPU_BASED_INVLPG_EXITING;
  1955. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1956. if (cpu_has_secondary_exec_ctrls()) {
  1957. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1958. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1959. exec_control &=
  1960. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1961. if (vmx->vpid == 0)
  1962. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1963. if (!enable_ept)
  1964. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1965. if (!enable_unrestricted_guest)
  1966. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1967. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1968. }
  1969. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1970. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1971. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1972. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1973. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1974. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1975. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1976. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1977. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1978. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1979. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1980. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1981. #ifdef CONFIG_X86_64
  1982. rdmsrl(MSR_FS_BASE, a);
  1983. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1984. rdmsrl(MSR_GS_BASE, a);
  1985. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1986. #else
  1987. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1988. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1989. #endif
  1990. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1991. kvm_get_idt(&dt);
  1992. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1993. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1994. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1995. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1996. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1997. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1998. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1999. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2000. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2001. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2002. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2003. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2004. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2005. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2006. host_pat = msr_low | ((u64) msr_high << 32);
  2007. vmcs_write64(HOST_IA32_PAT, host_pat);
  2008. }
  2009. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2010. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2011. host_pat = msr_low | ((u64) msr_high << 32);
  2012. /* Write the default value follow host pat */
  2013. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2014. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2015. vmx->vcpu.arch.pat = host_pat;
  2016. }
  2017. for (i = 0; i < NR_VMX_MSR; ++i) {
  2018. u32 index = vmx_msr_index[i];
  2019. u32 data_low, data_high;
  2020. u64 data;
  2021. int j = vmx->nmsrs;
  2022. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2023. continue;
  2024. if (wrmsr_safe(index, data_low, data_high) < 0)
  2025. continue;
  2026. data = data_low | ((u64)data_high << 32);
  2027. vmx->host_msrs[j].index = index;
  2028. vmx->host_msrs[j].reserved = 0;
  2029. vmx->host_msrs[j].data = data;
  2030. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2031. ++vmx->nmsrs;
  2032. }
  2033. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2034. /* 22.2.1, 20.8.1 */
  2035. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2036. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2037. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2038. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2039. rdtscll(tsc_this);
  2040. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2041. tsc_base = tsc_this;
  2042. guest_write_tsc(0, tsc_base);
  2043. return 0;
  2044. }
  2045. static int init_rmode(struct kvm *kvm)
  2046. {
  2047. if (!init_rmode_tss(kvm))
  2048. return 0;
  2049. if (!init_rmode_identity_map(kvm))
  2050. return 0;
  2051. return 1;
  2052. }
  2053. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2054. {
  2055. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2056. u64 msr;
  2057. int ret;
  2058. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2059. down_read(&vcpu->kvm->slots_lock);
  2060. if (!init_rmode(vmx->vcpu.kvm)) {
  2061. ret = -ENOMEM;
  2062. goto out;
  2063. }
  2064. vmx->rmode.vm86_active = 0;
  2065. vmx->soft_vnmi_blocked = 0;
  2066. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2067. kvm_set_cr8(&vmx->vcpu, 0);
  2068. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2069. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2070. msr |= MSR_IA32_APICBASE_BSP;
  2071. kvm_set_apic_base(&vmx->vcpu, msr);
  2072. fx_init(&vmx->vcpu);
  2073. seg_setup(VCPU_SREG_CS);
  2074. /*
  2075. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2076. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2077. */
  2078. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2079. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2080. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2081. } else {
  2082. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2083. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2084. }
  2085. seg_setup(VCPU_SREG_DS);
  2086. seg_setup(VCPU_SREG_ES);
  2087. seg_setup(VCPU_SREG_FS);
  2088. seg_setup(VCPU_SREG_GS);
  2089. seg_setup(VCPU_SREG_SS);
  2090. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2091. vmcs_writel(GUEST_TR_BASE, 0);
  2092. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2093. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2094. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2095. vmcs_writel(GUEST_LDTR_BASE, 0);
  2096. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2097. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2098. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2099. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2100. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2101. vmcs_writel(GUEST_RFLAGS, 0x02);
  2102. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2103. kvm_rip_write(vcpu, 0xfff0);
  2104. else
  2105. kvm_rip_write(vcpu, 0);
  2106. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2107. vmcs_writel(GUEST_DR7, 0x400);
  2108. vmcs_writel(GUEST_GDTR_BASE, 0);
  2109. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2110. vmcs_writel(GUEST_IDTR_BASE, 0);
  2111. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2112. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2113. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2114. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2115. /* Special registers */
  2116. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2117. setup_msrs(vmx);
  2118. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2119. if (cpu_has_vmx_tpr_shadow()) {
  2120. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2121. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2122. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2123. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2124. vmcs_write32(TPR_THRESHOLD, 0);
  2125. }
  2126. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2127. vmcs_write64(APIC_ACCESS_ADDR,
  2128. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2129. if (vmx->vpid != 0)
  2130. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2131. vmx->vcpu.arch.cr0 = 0x60000010;
  2132. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2133. vmx_set_cr4(&vmx->vcpu, 0);
  2134. vmx_set_efer(&vmx->vcpu, 0);
  2135. vmx_fpu_activate(&vmx->vcpu);
  2136. update_exception_bitmap(&vmx->vcpu);
  2137. vpid_sync_vcpu_all(vmx);
  2138. ret = 0;
  2139. /* HACK: Don't enable emulation on guest boot/reset */
  2140. vmx->emulation_required = 0;
  2141. out:
  2142. up_read(&vcpu->kvm->slots_lock);
  2143. return ret;
  2144. }
  2145. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2146. {
  2147. u32 cpu_based_vm_exec_control;
  2148. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2149. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2150. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2151. }
  2152. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2153. {
  2154. u32 cpu_based_vm_exec_control;
  2155. if (!cpu_has_virtual_nmis()) {
  2156. enable_irq_window(vcpu);
  2157. return;
  2158. }
  2159. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2160. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2161. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2162. }
  2163. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2164. {
  2165. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2166. uint32_t intr;
  2167. int irq = vcpu->arch.interrupt.nr;
  2168. trace_kvm_inj_virq(irq);
  2169. ++vcpu->stat.irq_injections;
  2170. if (vmx->rmode.vm86_active) {
  2171. vmx->rmode.irq.pending = true;
  2172. vmx->rmode.irq.vector = irq;
  2173. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2174. if (vcpu->arch.interrupt.soft)
  2175. vmx->rmode.irq.rip +=
  2176. vmx->vcpu.arch.event_exit_inst_len;
  2177. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2178. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2179. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2180. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2181. return;
  2182. }
  2183. intr = irq | INTR_INFO_VALID_MASK;
  2184. if (vcpu->arch.interrupt.soft) {
  2185. intr |= INTR_TYPE_SOFT_INTR;
  2186. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2187. vmx->vcpu.arch.event_exit_inst_len);
  2188. } else
  2189. intr |= INTR_TYPE_EXT_INTR;
  2190. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2191. }
  2192. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2193. {
  2194. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2195. if (!cpu_has_virtual_nmis()) {
  2196. /*
  2197. * Tracking the NMI-blocked state in software is built upon
  2198. * finding the next open IRQ window. This, in turn, depends on
  2199. * well-behaving guests: They have to keep IRQs disabled at
  2200. * least as long as the NMI handler runs. Otherwise we may
  2201. * cause NMI nesting, maybe breaking the guest. But as this is
  2202. * highly unlikely, we can live with the residual risk.
  2203. */
  2204. vmx->soft_vnmi_blocked = 1;
  2205. vmx->vnmi_blocked_time = 0;
  2206. }
  2207. ++vcpu->stat.nmi_injections;
  2208. if (vmx->rmode.vm86_active) {
  2209. vmx->rmode.irq.pending = true;
  2210. vmx->rmode.irq.vector = NMI_VECTOR;
  2211. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2212. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2213. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2214. INTR_INFO_VALID_MASK);
  2215. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2216. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2217. return;
  2218. }
  2219. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2220. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2221. }
  2222. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2223. {
  2224. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2225. return 0;
  2226. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2227. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2228. GUEST_INTR_STATE_NMI));
  2229. }
  2230. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2231. {
  2232. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2233. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2234. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2235. }
  2236. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2237. {
  2238. int ret;
  2239. struct kvm_userspace_memory_region tss_mem = {
  2240. .slot = TSS_PRIVATE_MEMSLOT,
  2241. .guest_phys_addr = addr,
  2242. .memory_size = PAGE_SIZE * 3,
  2243. .flags = 0,
  2244. };
  2245. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2246. if (ret)
  2247. return ret;
  2248. kvm->arch.tss_addr = addr;
  2249. return 0;
  2250. }
  2251. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2252. int vec, u32 err_code)
  2253. {
  2254. /*
  2255. * Instruction with address size override prefix opcode 0x67
  2256. * Cause the #SS fault with 0 error code in VM86 mode.
  2257. */
  2258. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2259. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2260. return 1;
  2261. /*
  2262. * Forward all other exceptions that are valid in real mode.
  2263. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2264. * the required debugging infrastructure rework.
  2265. */
  2266. switch (vec) {
  2267. case DB_VECTOR:
  2268. if (vcpu->guest_debug &
  2269. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2270. return 0;
  2271. kvm_queue_exception(vcpu, vec);
  2272. return 1;
  2273. case BP_VECTOR:
  2274. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2275. return 0;
  2276. /* fall through */
  2277. case DE_VECTOR:
  2278. case OF_VECTOR:
  2279. case BR_VECTOR:
  2280. case UD_VECTOR:
  2281. case DF_VECTOR:
  2282. case SS_VECTOR:
  2283. case GP_VECTOR:
  2284. case MF_VECTOR:
  2285. kvm_queue_exception(vcpu, vec);
  2286. return 1;
  2287. }
  2288. return 0;
  2289. }
  2290. /*
  2291. * Trigger machine check on the host. We assume all the MSRs are already set up
  2292. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2293. * We pass a fake environment to the machine check handler because we want
  2294. * the guest to be always treated like user space, no matter what context
  2295. * it used internally.
  2296. */
  2297. static void kvm_machine_check(void)
  2298. {
  2299. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2300. struct pt_regs regs = {
  2301. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2302. .flags = X86_EFLAGS_IF,
  2303. };
  2304. do_machine_check(&regs, 0);
  2305. #endif
  2306. }
  2307. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2308. {
  2309. /* already handled by vcpu_run */
  2310. return 1;
  2311. }
  2312. static int handle_exception(struct kvm_vcpu *vcpu)
  2313. {
  2314. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2315. struct kvm_run *kvm_run = vcpu->run;
  2316. u32 intr_info, ex_no, error_code;
  2317. unsigned long cr2, rip, dr6;
  2318. u32 vect_info;
  2319. enum emulation_result er;
  2320. vect_info = vmx->idt_vectoring_info;
  2321. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2322. if (is_machine_check(intr_info))
  2323. return handle_machine_check(vcpu);
  2324. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2325. !is_page_fault(intr_info))
  2326. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2327. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2328. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2329. return 1; /* already handled by vmx_vcpu_run() */
  2330. if (is_no_device(intr_info)) {
  2331. vmx_fpu_activate(vcpu);
  2332. return 1;
  2333. }
  2334. if (is_invalid_opcode(intr_info)) {
  2335. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2336. if (er != EMULATE_DONE)
  2337. kvm_queue_exception(vcpu, UD_VECTOR);
  2338. return 1;
  2339. }
  2340. error_code = 0;
  2341. rip = kvm_rip_read(vcpu);
  2342. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2343. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2344. if (is_page_fault(intr_info)) {
  2345. /* EPT won't cause page fault directly */
  2346. if (enable_ept)
  2347. BUG();
  2348. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2349. trace_kvm_page_fault(cr2, error_code);
  2350. if (kvm_event_needs_reinjection(vcpu))
  2351. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2352. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2353. }
  2354. if (vmx->rmode.vm86_active &&
  2355. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2356. error_code)) {
  2357. if (vcpu->arch.halt_request) {
  2358. vcpu->arch.halt_request = 0;
  2359. return kvm_emulate_halt(vcpu);
  2360. }
  2361. return 1;
  2362. }
  2363. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2364. switch (ex_no) {
  2365. case DB_VECTOR:
  2366. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2367. if (!(vcpu->guest_debug &
  2368. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2369. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2370. kvm_queue_exception(vcpu, DB_VECTOR);
  2371. return 1;
  2372. }
  2373. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2374. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2375. /* fall through */
  2376. case BP_VECTOR:
  2377. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2378. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2379. kvm_run->debug.arch.exception = ex_no;
  2380. break;
  2381. default:
  2382. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2383. kvm_run->ex.exception = ex_no;
  2384. kvm_run->ex.error_code = error_code;
  2385. break;
  2386. }
  2387. return 0;
  2388. }
  2389. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2390. {
  2391. ++vcpu->stat.irq_exits;
  2392. return 1;
  2393. }
  2394. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2395. {
  2396. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2397. return 0;
  2398. }
  2399. static int handle_io(struct kvm_vcpu *vcpu)
  2400. {
  2401. unsigned long exit_qualification;
  2402. int size, in, string;
  2403. unsigned port;
  2404. ++vcpu->stat.io_exits;
  2405. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2406. string = (exit_qualification & 16) != 0;
  2407. if (string) {
  2408. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2409. return 0;
  2410. return 1;
  2411. }
  2412. size = (exit_qualification & 7) + 1;
  2413. in = (exit_qualification & 8) != 0;
  2414. port = exit_qualification >> 16;
  2415. skip_emulated_instruction(vcpu);
  2416. return kvm_emulate_pio(vcpu, in, size, port);
  2417. }
  2418. static void
  2419. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2420. {
  2421. /*
  2422. * Patch in the VMCALL instruction:
  2423. */
  2424. hypercall[0] = 0x0f;
  2425. hypercall[1] = 0x01;
  2426. hypercall[2] = 0xc1;
  2427. }
  2428. static int handle_cr(struct kvm_vcpu *vcpu)
  2429. {
  2430. unsigned long exit_qualification, val;
  2431. int cr;
  2432. int reg;
  2433. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2434. cr = exit_qualification & 15;
  2435. reg = (exit_qualification >> 8) & 15;
  2436. switch ((exit_qualification >> 4) & 3) {
  2437. case 0: /* mov to cr */
  2438. val = kvm_register_read(vcpu, reg);
  2439. trace_kvm_cr_write(cr, val);
  2440. switch (cr) {
  2441. case 0:
  2442. kvm_set_cr0(vcpu, val);
  2443. skip_emulated_instruction(vcpu);
  2444. return 1;
  2445. case 3:
  2446. kvm_set_cr3(vcpu, val);
  2447. skip_emulated_instruction(vcpu);
  2448. return 1;
  2449. case 4:
  2450. kvm_set_cr4(vcpu, val);
  2451. skip_emulated_instruction(vcpu);
  2452. return 1;
  2453. case 8: {
  2454. u8 cr8_prev = kvm_get_cr8(vcpu);
  2455. u8 cr8 = kvm_register_read(vcpu, reg);
  2456. kvm_set_cr8(vcpu, cr8);
  2457. skip_emulated_instruction(vcpu);
  2458. if (irqchip_in_kernel(vcpu->kvm))
  2459. return 1;
  2460. if (cr8_prev <= cr8)
  2461. return 1;
  2462. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2463. return 0;
  2464. }
  2465. };
  2466. break;
  2467. case 2: /* clts */
  2468. vmx_fpu_deactivate(vcpu);
  2469. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2470. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2471. vmx_fpu_activate(vcpu);
  2472. skip_emulated_instruction(vcpu);
  2473. return 1;
  2474. case 1: /*mov from cr*/
  2475. switch (cr) {
  2476. case 3:
  2477. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2478. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2479. skip_emulated_instruction(vcpu);
  2480. return 1;
  2481. case 8:
  2482. val = kvm_get_cr8(vcpu);
  2483. kvm_register_write(vcpu, reg, val);
  2484. trace_kvm_cr_read(cr, val);
  2485. skip_emulated_instruction(vcpu);
  2486. return 1;
  2487. }
  2488. break;
  2489. case 3: /* lmsw */
  2490. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2491. skip_emulated_instruction(vcpu);
  2492. return 1;
  2493. default:
  2494. break;
  2495. }
  2496. vcpu->run->exit_reason = 0;
  2497. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2498. (int)(exit_qualification >> 4) & 3, cr);
  2499. return 0;
  2500. }
  2501. static int handle_dr(struct kvm_vcpu *vcpu)
  2502. {
  2503. unsigned long exit_qualification;
  2504. unsigned long val;
  2505. int dr, reg;
  2506. if (!kvm_require_cpl(vcpu, 0))
  2507. return 1;
  2508. dr = vmcs_readl(GUEST_DR7);
  2509. if (dr & DR7_GD) {
  2510. /*
  2511. * As the vm-exit takes precedence over the debug trap, we
  2512. * need to emulate the latter, either for the host or the
  2513. * guest debugging itself.
  2514. */
  2515. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2516. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2517. vcpu->run->debug.arch.dr7 = dr;
  2518. vcpu->run->debug.arch.pc =
  2519. vmcs_readl(GUEST_CS_BASE) +
  2520. vmcs_readl(GUEST_RIP);
  2521. vcpu->run->debug.arch.exception = DB_VECTOR;
  2522. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2523. return 0;
  2524. } else {
  2525. vcpu->arch.dr7 &= ~DR7_GD;
  2526. vcpu->arch.dr6 |= DR6_BD;
  2527. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2528. kvm_queue_exception(vcpu, DB_VECTOR);
  2529. return 1;
  2530. }
  2531. }
  2532. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2533. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2534. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2535. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2536. switch (dr) {
  2537. case 0 ... 3:
  2538. val = vcpu->arch.db[dr];
  2539. break;
  2540. case 6:
  2541. val = vcpu->arch.dr6;
  2542. break;
  2543. case 7:
  2544. val = vcpu->arch.dr7;
  2545. break;
  2546. default:
  2547. val = 0;
  2548. }
  2549. kvm_register_write(vcpu, reg, val);
  2550. } else {
  2551. val = vcpu->arch.regs[reg];
  2552. switch (dr) {
  2553. case 0 ... 3:
  2554. vcpu->arch.db[dr] = val;
  2555. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2556. vcpu->arch.eff_db[dr] = val;
  2557. break;
  2558. case 4 ... 5:
  2559. if (vcpu->arch.cr4 & X86_CR4_DE)
  2560. kvm_queue_exception(vcpu, UD_VECTOR);
  2561. break;
  2562. case 6:
  2563. if (val & 0xffffffff00000000ULL) {
  2564. kvm_queue_exception(vcpu, GP_VECTOR);
  2565. break;
  2566. }
  2567. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2568. break;
  2569. case 7:
  2570. if (val & 0xffffffff00000000ULL) {
  2571. kvm_queue_exception(vcpu, GP_VECTOR);
  2572. break;
  2573. }
  2574. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2575. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2576. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2577. vcpu->arch.switch_db_regs =
  2578. (val & DR7_BP_EN_MASK);
  2579. }
  2580. break;
  2581. }
  2582. }
  2583. skip_emulated_instruction(vcpu);
  2584. return 1;
  2585. }
  2586. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2587. {
  2588. kvm_emulate_cpuid(vcpu);
  2589. return 1;
  2590. }
  2591. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2592. {
  2593. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2594. u64 data;
  2595. if (vmx_get_msr(vcpu, ecx, &data)) {
  2596. kvm_inject_gp(vcpu, 0);
  2597. return 1;
  2598. }
  2599. trace_kvm_msr_read(ecx, data);
  2600. /* FIXME: handling of bits 32:63 of rax, rdx */
  2601. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2602. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2603. skip_emulated_instruction(vcpu);
  2604. return 1;
  2605. }
  2606. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2607. {
  2608. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2609. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2610. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2611. trace_kvm_msr_write(ecx, data);
  2612. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2613. kvm_inject_gp(vcpu, 0);
  2614. return 1;
  2615. }
  2616. skip_emulated_instruction(vcpu);
  2617. return 1;
  2618. }
  2619. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2620. {
  2621. return 1;
  2622. }
  2623. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2624. {
  2625. u32 cpu_based_vm_exec_control;
  2626. /* clear pending irq */
  2627. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2628. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2629. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2630. ++vcpu->stat.irq_window_exits;
  2631. /*
  2632. * If the user space waits to inject interrupts, exit as soon as
  2633. * possible
  2634. */
  2635. if (!irqchip_in_kernel(vcpu->kvm) &&
  2636. vcpu->run->request_interrupt_window &&
  2637. !kvm_cpu_has_interrupt(vcpu)) {
  2638. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2639. return 0;
  2640. }
  2641. return 1;
  2642. }
  2643. static int handle_halt(struct kvm_vcpu *vcpu)
  2644. {
  2645. skip_emulated_instruction(vcpu);
  2646. return kvm_emulate_halt(vcpu);
  2647. }
  2648. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2649. {
  2650. skip_emulated_instruction(vcpu);
  2651. kvm_emulate_hypercall(vcpu);
  2652. return 1;
  2653. }
  2654. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2655. {
  2656. kvm_queue_exception(vcpu, UD_VECTOR);
  2657. return 1;
  2658. }
  2659. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2660. {
  2661. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2662. kvm_mmu_invlpg(vcpu, exit_qualification);
  2663. skip_emulated_instruction(vcpu);
  2664. return 1;
  2665. }
  2666. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2667. {
  2668. skip_emulated_instruction(vcpu);
  2669. /* TODO: Add support for VT-d/pass-through device */
  2670. return 1;
  2671. }
  2672. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2673. {
  2674. unsigned long exit_qualification;
  2675. enum emulation_result er;
  2676. unsigned long offset;
  2677. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2678. offset = exit_qualification & 0xffful;
  2679. er = emulate_instruction(vcpu, 0, 0, 0);
  2680. if (er != EMULATE_DONE) {
  2681. printk(KERN_ERR
  2682. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2683. offset);
  2684. return -ENOEXEC;
  2685. }
  2686. return 1;
  2687. }
  2688. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2689. {
  2690. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2691. unsigned long exit_qualification;
  2692. u16 tss_selector;
  2693. int reason, type, idt_v;
  2694. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2695. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2696. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2697. reason = (u32)exit_qualification >> 30;
  2698. if (reason == TASK_SWITCH_GATE && idt_v) {
  2699. switch (type) {
  2700. case INTR_TYPE_NMI_INTR:
  2701. vcpu->arch.nmi_injected = false;
  2702. if (cpu_has_virtual_nmis())
  2703. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2704. GUEST_INTR_STATE_NMI);
  2705. break;
  2706. case INTR_TYPE_EXT_INTR:
  2707. case INTR_TYPE_SOFT_INTR:
  2708. kvm_clear_interrupt_queue(vcpu);
  2709. break;
  2710. case INTR_TYPE_HARD_EXCEPTION:
  2711. case INTR_TYPE_SOFT_EXCEPTION:
  2712. kvm_clear_exception_queue(vcpu);
  2713. break;
  2714. default:
  2715. break;
  2716. }
  2717. }
  2718. tss_selector = exit_qualification;
  2719. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2720. type != INTR_TYPE_EXT_INTR &&
  2721. type != INTR_TYPE_NMI_INTR))
  2722. skip_emulated_instruction(vcpu);
  2723. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2724. return 0;
  2725. /* clear all local breakpoint enable flags */
  2726. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2727. /*
  2728. * TODO: What about debug traps on tss switch?
  2729. * Are we supposed to inject them and update dr6?
  2730. */
  2731. return 1;
  2732. }
  2733. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2734. {
  2735. unsigned long exit_qualification;
  2736. gpa_t gpa;
  2737. int gla_validity;
  2738. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2739. if (exit_qualification & (1 << 6)) {
  2740. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2741. return -EINVAL;
  2742. }
  2743. gla_validity = (exit_qualification >> 7) & 0x3;
  2744. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2745. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2746. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2747. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2748. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2749. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2750. (long unsigned int)exit_qualification);
  2751. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2752. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2753. return 0;
  2754. }
  2755. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2756. trace_kvm_page_fault(gpa, exit_qualification);
  2757. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2758. }
  2759. static u64 ept_rsvd_mask(u64 spte, int level)
  2760. {
  2761. int i;
  2762. u64 mask = 0;
  2763. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2764. mask |= (1ULL << i);
  2765. if (level > 2)
  2766. /* bits 7:3 reserved */
  2767. mask |= 0xf8;
  2768. else if (level == 2) {
  2769. if (spte & (1ULL << 7))
  2770. /* 2MB ref, bits 20:12 reserved */
  2771. mask |= 0x1ff000;
  2772. else
  2773. /* bits 6:3 reserved */
  2774. mask |= 0x78;
  2775. }
  2776. return mask;
  2777. }
  2778. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2779. int level)
  2780. {
  2781. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2782. /* 010b (write-only) */
  2783. WARN_ON((spte & 0x7) == 0x2);
  2784. /* 110b (write/execute) */
  2785. WARN_ON((spte & 0x7) == 0x6);
  2786. /* 100b (execute-only) and value not supported by logical processor */
  2787. if (!cpu_has_vmx_ept_execute_only())
  2788. WARN_ON((spte & 0x7) == 0x4);
  2789. /* not 000b */
  2790. if ((spte & 0x7)) {
  2791. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2792. if (rsvd_bits != 0) {
  2793. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2794. __func__, rsvd_bits);
  2795. WARN_ON(1);
  2796. }
  2797. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2798. u64 ept_mem_type = (spte & 0x38) >> 3;
  2799. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2800. ept_mem_type == 7) {
  2801. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2802. __func__, ept_mem_type);
  2803. WARN_ON(1);
  2804. }
  2805. }
  2806. }
  2807. }
  2808. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2809. {
  2810. u64 sptes[4];
  2811. int nr_sptes, i;
  2812. gpa_t gpa;
  2813. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2814. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2815. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2816. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2817. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2818. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2819. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2820. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2821. return 0;
  2822. }
  2823. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2824. {
  2825. u32 cpu_based_vm_exec_control;
  2826. /* clear pending NMI */
  2827. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2828. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2829. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2830. ++vcpu->stat.nmi_window_exits;
  2831. return 1;
  2832. }
  2833. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2834. {
  2835. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2836. enum emulation_result err = EMULATE_DONE;
  2837. int ret = 1;
  2838. while (!guest_state_valid(vcpu)) {
  2839. err = emulate_instruction(vcpu, 0, 0, 0);
  2840. if (err == EMULATE_DO_MMIO) {
  2841. ret = 0;
  2842. goto out;
  2843. }
  2844. if (err != EMULATE_DONE) {
  2845. kvm_report_emulation_failure(vcpu, "emulation failure");
  2846. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2847. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2848. ret = 0;
  2849. goto out;
  2850. }
  2851. if (signal_pending(current))
  2852. goto out;
  2853. if (need_resched())
  2854. schedule();
  2855. }
  2856. vmx->emulation_required = 0;
  2857. out:
  2858. return ret;
  2859. }
  2860. /*
  2861. * The exit handlers return 1 if the exit was handled fully and guest execution
  2862. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2863. * to be done to userspace and return 0.
  2864. */
  2865. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2866. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2867. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2868. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2869. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2870. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2871. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2872. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2873. [EXIT_REASON_CPUID] = handle_cpuid,
  2874. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2875. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2876. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2877. [EXIT_REASON_HLT] = handle_halt,
  2878. [EXIT_REASON_INVLPG] = handle_invlpg,
  2879. [EXIT_REASON_VMCALL] = handle_vmcall,
  2880. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2881. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2882. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2883. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2884. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2885. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2886. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2887. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2888. [EXIT_REASON_VMON] = handle_vmx_insn,
  2889. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2890. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2891. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2892. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2893. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2894. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2895. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2896. };
  2897. static const int kvm_vmx_max_exit_handlers =
  2898. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2899. /*
  2900. * The guest has exited. See if we can fix it or if we need userspace
  2901. * assistance.
  2902. */
  2903. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2904. {
  2905. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2906. u32 exit_reason = vmx->exit_reason;
  2907. u32 vectoring_info = vmx->idt_vectoring_info;
  2908. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2909. /* If guest state is invalid, start emulating */
  2910. if (vmx->emulation_required && emulate_invalid_guest_state)
  2911. return handle_invalid_guest_state(vcpu);
  2912. /* Access CR3 don't cause VMExit in paging mode, so we need
  2913. * to sync with guest real CR3. */
  2914. if (enable_ept && is_paging(vcpu))
  2915. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2916. if (unlikely(vmx->fail)) {
  2917. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2918. vcpu->run->fail_entry.hardware_entry_failure_reason
  2919. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2920. return 0;
  2921. }
  2922. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2923. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2924. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2925. exit_reason != EXIT_REASON_TASK_SWITCH))
  2926. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2927. "(0x%x) and exit reason is 0x%x\n",
  2928. __func__, vectoring_info, exit_reason);
  2929. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2930. if (vmx_interrupt_allowed(vcpu)) {
  2931. vmx->soft_vnmi_blocked = 0;
  2932. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2933. vcpu->arch.nmi_pending) {
  2934. /*
  2935. * This CPU don't support us in finding the end of an
  2936. * NMI-blocked window if the guest runs with IRQs
  2937. * disabled. So we pull the trigger after 1 s of
  2938. * futile waiting, but inform the user about this.
  2939. */
  2940. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2941. "state on VCPU %d after 1 s timeout\n",
  2942. __func__, vcpu->vcpu_id);
  2943. vmx->soft_vnmi_blocked = 0;
  2944. }
  2945. }
  2946. if (exit_reason < kvm_vmx_max_exit_handlers
  2947. && kvm_vmx_exit_handlers[exit_reason])
  2948. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  2949. else {
  2950. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2951. vcpu->run->hw.hardware_exit_reason = exit_reason;
  2952. }
  2953. return 0;
  2954. }
  2955. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2956. {
  2957. if (irr == -1 || tpr < irr) {
  2958. vmcs_write32(TPR_THRESHOLD, 0);
  2959. return;
  2960. }
  2961. vmcs_write32(TPR_THRESHOLD, irr);
  2962. }
  2963. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2964. {
  2965. u32 exit_intr_info;
  2966. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2967. bool unblock_nmi;
  2968. u8 vector;
  2969. int type;
  2970. bool idtv_info_valid;
  2971. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2972. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2973. /* Handle machine checks before interrupts are enabled */
  2974. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2975. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2976. && is_machine_check(exit_intr_info)))
  2977. kvm_machine_check();
  2978. /* We need to handle NMIs before interrupts are enabled */
  2979. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2980. (exit_intr_info & INTR_INFO_VALID_MASK))
  2981. asm("int $2");
  2982. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2983. if (cpu_has_virtual_nmis()) {
  2984. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2985. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2986. /*
  2987. * SDM 3: 27.7.1.2 (September 2008)
  2988. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2989. * a guest IRET fault.
  2990. * SDM 3: 23.2.2 (September 2008)
  2991. * Bit 12 is undefined in any of the following cases:
  2992. * If the VM exit sets the valid bit in the IDT-vectoring
  2993. * information field.
  2994. * If the VM exit is due to a double fault.
  2995. */
  2996. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2997. vector != DF_VECTOR && !idtv_info_valid)
  2998. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2999. GUEST_INTR_STATE_NMI);
  3000. } else if (unlikely(vmx->soft_vnmi_blocked))
  3001. vmx->vnmi_blocked_time +=
  3002. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3003. vmx->vcpu.arch.nmi_injected = false;
  3004. kvm_clear_exception_queue(&vmx->vcpu);
  3005. kvm_clear_interrupt_queue(&vmx->vcpu);
  3006. if (!idtv_info_valid)
  3007. return;
  3008. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3009. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3010. switch (type) {
  3011. case INTR_TYPE_NMI_INTR:
  3012. vmx->vcpu.arch.nmi_injected = true;
  3013. /*
  3014. * SDM 3: 27.7.1.2 (September 2008)
  3015. * Clear bit "block by NMI" before VM entry if a NMI
  3016. * delivery faulted.
  3017. */
  3018. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3019. GUEST_INTR_STATE_NMI);
  3020. break;
  3021. case INTR_TYPE_SOFT_EXCEPTION:
  3022. vmx->vcpu.arch.event_exit_inst_len =
  3023. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3024. /* fall through */
  3025. case INTR_TYPE_HARD_EXCEPTION:
  3026. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3027. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3028. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3029. } else
  3030. kvm_queue_exception(&vmx->vcpu, vector);
  3031. break;
  3032. case INTR_TYPE_SOFT_INTR:
  3033. vmx->vcpu.arch.event_exit_inst_len =
  3034. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3035. /* fall through */
  3036. case INTR_TYPE_EXT_INTR:
  3037. kvm_queue_interrupt(&vmx->vcpu, vector,
  3038. type == INTR_TYPE_SOFT_INTR);
  3039. break;
  3040. default:
  3041. break;
  3042. }
  3043. }
  3044. /*
  3045. * Failure to inject an interrupt should give us the information
  3046. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3047. * when fetching the interrupt redirection bitmap in the real-mode
  3048. * tss, this doesn't happen. So we do it ourselves.
  3049. */
  3050. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3051. {
  3052. vmx->rmode.irq.pending = 0;
  3053. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3054. return;
  3055. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3056. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3057. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3058. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3059. return;
  3060. }
  3061. vmx->idt_vectoring_info =
  3062. VECTORING_INFO_VALID_MASK
  3063. | INTR_TYPE_EXT_INTR
  3064. | vmx->rmode.irq.vector;
  3065. }
  3066. #ifdef CONFIG_X86_64
  3067. #define R "r"
  3068. #define Q "q"
  3069. #else
  3070. #define R "e"
  3071. #define Q "l"
  3072. #endif
  3073. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3074. {
  3075. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3076. if (enable_ept && is_paging(vcpu)) {
  3077. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3078. ept_load_pdptrs(vcpu);
  3079. }
  3080. /* Record the guest's net vcpu time for enforced NMI injections. */
  3081. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3082. vmx->entry_time = ktime_get();
  3083. /* Don't enter VMX if guest state is invalid, let the exit handler
  3084. start emulation until we arrive back to a valid state */
  3085. if (vmx->emulation_required && emulate_invalid_guest_state)
  3086. return;
  3087. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3088. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3089. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3090. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3091. /* When single-stepping over STI and MOV SS, we must clear the
  3092. * corresponding interruptibility bits in the guest state. Otherwise
  3093. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3094. * exceptions being set, but that's not correct for the guest debugging
  3095. * case. */
  3096. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3097. vmx_set_interrupt_shadow(vcpu, 0);
  3098. /*
  3099. * Loading guest fpu may have cleared host cr0.ts
  3100. */
  3101. vmcs_writel(HOST_CR0, read_cr0());
  3102. if (vcpu->arch.switch_db_regs)
  3103. set_debugreg(vcpu->arch.dr6, 6);
  3104. asm(
  3105. /* Store host registers */
  3106. "push %%"R"dx; push %%"R"bp;"
  3107. "push %%"R"cx \n\t"
  3108. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3109. "je 1f \n\t"
  3110. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3111. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3112. "1: \n\t"
  3113. /* Reload cr2 if changed */
  3114. "mov %c[cr2](%0), %%"R"ax \n\t"
  3115. "mov %%cr2, %%"R"dx \n\t"
  3116. "cmp %%"R"ax, %%"R"dx \n\t"
  3117. "je 2f \n\t"
  3118. "mov %%"R"ax, %%cr2 \n\t"
  3119. "2: \n\t"
  3120. /* Check if vmlaunch of vmresume is needed */
  3121. "cmpl $0, %c[launched](%0) \n\t"
  3122. /* Load guest registers. Don't clobber flags. */
  3123. "mov %c[rax](%0), %%"R"ax \n\t"
  3124. "mov %c[rbx](%0), %%"R"bx \n\t"
  3125. "mov %c[rdx](%0), %%"R"dx \n\t"
  3126. "mov %c[rsi](%0), %%"R"si \n\t"
  3127. "mov %c[rdi](%0), %%"R"di \n\t"
  3128. "mov %c[rbp](%0), %%"R"bp \n\t"
  3129. #ifdef CONFIG_X86_64
  3130. "mov %c[r8](%0), %%r8 \n\t"
  3131. "mov %c[r9](%0), %%r9 \n\t"
  3132. "mov %c[r10](%0), %%r10 \n\t"
  3133. "mov %c[r11](%0), %%r11 \n\t"
  3134. "mov %c[r12](%0), %%r12 \n\t"
  3135. "mov %c[r13](%0), %%r13 \n\t"
  3136. "mov %c[r14](%0), %%r14 \n\t"
  3137. "mov %c[r15](%0), %%r15 \n\t"
  3138. #endif
  3139. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3140. /* Enter guest mode */
  3141. "jne .Llaunched \n\t"
  3142. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3143. "jmp .Lkvm_vmx_return \n\t"
  3144. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3145. ".Lkvm_vmx_return: "
  3146. /* Save guest registers, load host registers, keep flags */
  3147. "xchg %0, (%%"R"sp) \n\t"
  3148. "mov %%"R"ax, %c[rax](%0) \n\t"
  3149. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3150. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3151. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3152. "mov %%"R"si, %c[rsi](%0) \n\t"
  3153. "mov %%"R"di, %c[rdi](%0) \n\t"
  3154. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3155. #ifdef CONFIG_X86_64
  3156. "mov %%r8, %c[r8](%0) \n\t"
  3157. "mov %%r9, %c[r9](%0) \n\t"
  3158. "mov %%r10, %c[r10](%0) \n\t"
  3159. "mov %%r11, %c[r11](%0) \n\t"
  3160. "mov %%r12, %c[r12](%0) \n\t"
  3161. "mov %%r13, %c[r13](%0) \n\t"
  3162. "mov %%r14, %c[r14](%0) \n\t"
  3163. "mov %%r15, %c[r15](%0) \n\t"
  3164. #endif
  3165. "mov %%cr2, %%"R"ax \n\t"
  3166. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3167. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3168. "setbe %c[fail](%0) \n\t"
  3169. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3170. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3171. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3172. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3173. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3174. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3175. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3176. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3177. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3178. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3179. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3180. #ifdef CONFIG_X86_64
  3181. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3182. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3183. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3184. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3185. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3186. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3187. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3188. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3189. #endif
  3190. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3191. : "cc", "memory"
  3192. , R"bx", R"di", R"si"
  3193. #ifdef CONFIG_X86_64
  3194. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3195. #endif
  3196. );
  3197. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3198. | (1 << VCPU_EXREG_PDPTR));
  3199. vcpu->arch.regs_dirty = 0;
  3200. if (vcpu->arch.switch_db_regs)
  3201. get_debugreg(vcpu->arch.dr6, 6);
  3202. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3203. if (vmx->rmode.irq.pending)
  3204. fixup_rmode_irq(vmx);
  3205. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3206. vmx->launched = 1;
  3207. vmx_complete_interrupts(vmx);
  3208. }
  3209. #undef R
  3210. #undef Q
  3211. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3212. {
  3213. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3214. if (vmx->vmcs) {
  3215. vcpu_clear(vmx);
  3216. free_vmcs(vmx->vmcs);
  3217. vmx->vmcs = NULL;
  3218. }
  3219. }
  3220. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3221. {
  3222. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3223. spin_lock(&vmx_vpid_lock);
  3224. if (vmx->vpid != 0)
  3225. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3226. spin_unlock(&vmx_vpid_lock);
  3227. vmx_free_vmcs(vcpu);
  3228. kfree(vmx->host_msrs);
  3229. kfree(vmx->guest_msrs);
  3230. kvm_vcpu_uninit(vcpu);
  3231. kmem_cache_free(kvm_vcpu_cache, vmx);
  3232. }
  3233. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3234. {
  3235. int err;
  3236. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3237. int cpu;
  3238. if (!vmx)
  3239. return ERR_PTR(-ENOMEM);
  3240. allocate_vpid(vmx);
  3241. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3242. if (err)
  3243. goto free_vcpu;
  3244. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3245. if (!vmx->guest_msrs) {
  3246. err = -ENOMEM;
  3247. goto uninit_vcpu;
  3248. }
  3249. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3250. if (!vmx->host_msrs)
  3251. goto free_guest_msrs;
  3252. vmx->vmcs = alloc_vmcs();
  3253. if (!vmx->vmcs)
  3254. goto free_msrs;
  3255. vmcs_clear(vmx->vmcs);
  3256. cpu = get_cpu();
  3257. vmx_vcpu_load(&vmx->vcpu, cpu);
  3258. err = vmx_vcpu_setup(vmx);
  3259. vmx_vcpu_put(&vmx->vcpu);
  3260. put_cpu();
  3261. if (err)
  3262. goto free_vmcs;
  3263. if (vm_need_virtualize_apic_accesses(kvm))
  3264. if (alloc_apic_access_page(kvm) != 0)
  3265. goto free_vmcs;
  3266. if (enable_ept) {
  3267. if (!kvm->arch.ept_identity_map_addr)
  3268. kvm->arch.ept_identity_map_addr =
  3269. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3270. if (alloc_identity_pagetable(kvm) != 0)
  3271. goto free_vmcs;
  3272. }
  3273. return &vmx->vcpu;
  3274. free_vmcs:
  3275. free_vmcs(vmx->vmcs);
  3276. free_msrs:
  3277. kfree(vmx->host_msrs);
  3278. free_guest_msrs:
  3279. kfree(vmx->guest_msrs);
  3280. uninit_vcpu:
  3281. kvm_vcpu_uninit(&vmx->vcpu);
  3282. free_vcpu:
  3283. kmem_cache_free(kvm_vcpu_cache, vmx);
  3284. return ERR_PTR(err);
  3285. }
  3286. static void __init vmx_check_processor_compat(void *rtn)
  3287. {
  3288. struct vmcs_config vmcs_conf;
  3289. *(int *)rtn = 0;
  3290. if (setup_vmcs_config(&vmcs_conf) < 0)
  3291. *(int *)rtn = -EIO;
  3292. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3293. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3294. smp_processor_id());
  3295. *(int *)rtn = -EIO;
  3296. }
  3297. }
  3298. static int get_ept_level(void)
  3299. {
  3300. return VMX_EPT_DEFAULT_GAW + 1;
  3301. }
  3302. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3303. {
  3304. u64 ret;
  3305. /* For VT-d and EPT combination
  3306. * 1. MMIO: always map as UC
  3307. * 2. EPT with VT-d:
  3308. * a. VT-d without snooping control feature: can't guarantee the
  3309. * result, try to trust guest.
  3310. * b. VT-d with snooping control feature: snooping control feature of
  3311. * VT-d engine can guarantee the cache correctness. Just set it
  3312. * to WB to keep consistent with host. So the same as item 3.
  3313. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3314. * consistent with host MTRR
  3315. */
  3316. if (is_mmio)
  3317. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3318. else if (vcpu->kvm->arch.iommu_domain &&
  3319. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3320. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3321. VMX_EPT_MT_EPTE_SHIFT;
  3322. else
  3323. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3324. | VMX_EPT_IGMT_BIT;
  3325. return ret;
  3326. }
  3327. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3328. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3329. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3330. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3331. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3332. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3333. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3334. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3335. { EXIT_REASON_CPUID, "cpuid" },
  3336. { EXIT_REASON_MSR_READ, "rdmsr" },
  3337. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3338. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3339. { EXIT_REASON_HLT, "halt" },
  3340. { EXIT_REASON_INVLPG, "invlpg" },
  3341. { EXIT_REASON_VMCALL, "hypercall" },
  3342. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3343. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3344. { EXIT_REASON_WBINVD, "wbinvd" },
  3345. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3346. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3347. { -1, NULL }
  3348. };
  3349. static bool vmx_gb_page_enable(void)
  3350. {
  3351. return false;
  3352. }
  3353. static struct kvm_x86_ops vmx_x86_ops = {
  3354. .cpu_has_kvm_support = cpu_has_kvm_support,
  3355. .disabled_by_bios = vmx_disabled_by_bios,
  3356. .hardware_setup = hardware_setup,
  3357. .hardware_unsetup = hardware_unsetup,
  3358. .check_processor_compatibility = vmx_check_processor_compat,
  3359. .hardware_enable = hardware_enable,
  3360. .hardware_disable = hardware_disable,
  3361. .cpu_has_accelerated_tpr = report_flexpriority,
  3362. .vcpu_create = vmx_create_vcpu,
  3363. .vcpu_free = vmx_free_vcpu,
  3364. .vcpu_reset = vmx_vcpu_reset,
  3365. .prepare_guest_switch = vmx_save_host_state,
  3366. .vcpu_load = vmx_vcpu_load,
  3367. .vcpu_put = vmx_vcpu_put,
  3368. .set_guest_debug = set_guest_debug,
  3369. .get_msr = vmx_get_msr,
  3370. .set_msr = vmx_set_msr,
  3371. .get_segment_base = vmx_get_segment_base,
  3372. .get_segment = vmx_get_segment,
  3373. .set_segment = vmx_set_segment,
  3374. .get_cpl = vmx_get_cpl,
  3375. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3376. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3377. .set_cr0 = vmx_set_cr0,
  3378. .set_cr3 = vmx_set_cr3,
  3379. .set_cr4 = vmx_set_cr4,
  3380. .set_efer = vmx_set_efer,
  3381. .get_idt = vmx_get_idt,
  3382. .set_idt = vmx_set_idt,
  3383. .get_gdt = vmx_get_gdt,
  3384. .set_gdt = vmx_set_gdt,
  3385. .cache_reg = vmx_cache_reg,
  3386. .get_rflags = vmx_get_rflags,
  3387. .set_rflags = vmx_set_rflags,
  3388. .tlb_flush = vmx_flush_tlb,
  3389. .run = vmx_vcpu_run,
  3390. .handle_exit = vmx_handle_exit,
  3391. .skip_emulated_instruction = skip_emulated_instruction,
  3392. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3393. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3394. .patch_hypercall = vmx_patch_hypercall,
  3395. .set_irq = vmx_inject_irq,
  3396. .set_nmi = vmx_inject_nmi,
  3397. .queue_exception = vmx_queue_exception,
  3398. .interrupt_allowed = vmx_interrupt_allowed,
  3399. .nmi_allowed = vmx_nmi_allowed,
  3400. .enable_nmi_window = enable_nmi_window,
  3401. .enable_irq_window = enable_irq_window,
  3402. .update_cr8_intercept = update_cr8_intercept,
  3403. .set_tss_addr = vmx_set_tss_addr,
  3404. .get_tdp_level = get_ept_level,
  3405. .get_mt_mask = vmx_get_mt_mask,
  3406. .exit_reasons_str = vmx_exit_reasons_str,
  3407. .gb_page_enable = vmx_gb_page_enable,
  3408. };
  3409. static int __init vmx_init(void)
  3410. {
  3411. int r;
  3412. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3413. if (!vmx_io_bitmap_a)
  3414. return -ENOMEM;
  3415. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3416. if (!vmx_io_bitmap_b) {
  3417. r = -ENOMEM;
  3418. goto out;
  3419. }
  3420. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3421. if (!vmx_msr_bitmap_legacy) {
  3422. r = -ENOMEM;
  3423. goto out1;
  3424. }
  3425. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3426. if (!vmx_msr_bitmap_longmode) {
  3427. r = -ENOMEM;
  3428. goto out2;
  3429. }
  3430. /*
  3431. * Allow direct access to the PC debug port (it is often used for I/O
  3432. * delays, but the vmexits simply slow things down).
  3433. */
  3434. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3435. clear_bit(0x80, vmx_io_bitmap_a);
  3436. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3437. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3438. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3439. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3440. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3441. if (r)
  3442. goto out3;
  3443. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3444. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3445. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3446. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3447. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3448. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3449. if (enable_ept) {
  3450. bypass_guest_pf = 0;
  3451. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3452. VMX_EPT_WRITABLE_MASK);
  3453. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3454. VMX_EPT_EXECUTABLE_MASK);
  3455. kvm_enable_tdp();
  3456. } else
  3457. kvm_disable_tdp();
  3458. if (bypass_guest_pf)
  3459. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3460. return 0;
  3461. out3:
  3462. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3463. out2:
  3464. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3465. out1:
  3466. free_page((unsigned long)vmx_io_bitmap_b);
  3467. out:
  3468. free_page((unsigned long)vmx_io_bitmap_a);
  3469. return r;
  3470. }
  3471. static void __exit vmx_exit(void)
  3472. {
  3473. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3474. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3475. free_page((unsigned long)vmx_io_bitmap_b);
  3476. free_page((unsigned long)vmx_io_bitmap_a);
  3477. kvm_exit();
  3478. }
  3479. module_init(vmx_init)
  3480. module_exit(vmx_exit)