reassembly.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748
  1. /*
  2. * IPv6 fragment reassembly
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * $Id: reassembly.c,v 1.26 2001/03/07 22:00:57 davem Exp $
  9. *
  10. * Based on: net/ipv4/ip_fragment.c
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. /*
  18. * Fixes:
  19. * Andi Kleen Make it work with multiple hosts.
  20. * More RFC compliance.
  21. *
  22. * Horst von Brand Add missing #include <linux/string.h>
  23. * Alexey Kuznetsov SMP races, threading, cleanup.
  24. * Patrick McHardy LRU queue of frag heads for evictor.
  25. * Mitsuru KANDA @USAGI Register inet6_protocol{}.
  26. * David Stevens and
  27. * YOSHIFUJI,H. @USAGI Always remove fragment header to
  28. * calculate ICV correctly.
  29. */
  30. #include <linux/errno.h>
  31. #include <linux/types.h>
  32. #include <linux/string.h>
  33. #include <linux/socket.h>
  34. #include <linux/sockios.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/net.h>
  37. #include <linux/list.h>
  38. #include <linux/netdevice.h>
  39. #include <linux/in6.h>
  40. #include <linux/ipv6.h>
  41. #include <linux/icmpv6.h>
  42. #include <linux/random.h>
  43. #include <linux/jhash.h>
  44. #include <linux/skbuff.h>
  45. #include <net/sock.h>
  46. #include <net/snmp.h>
  47. #include <net/ipv6.h>
  48. #include <net/ip6_route.h>
  49. #include <net/protocol.h>
  50. #include <net/transp_v6.h>
  51. #include <net/rawv6.h>
  52. #include <net/ndisc.h>
  53. #include <net/addrconf.h>
  54. #include <net/inet_frag.h>
  55. struct ip6frag_skb_cb
  56. {
  57. struct inet6_skb_parm h;
  58. int offset;
  59. };
  60. #define FRAG6_CB(skb) ((struct ip6frag_skb_cb*)((skb)->cb))
  61. /*
  62. * Equivalent of ipv4 struct ipq
  63. */
  64. struct frag_queue
  65. {
  66. struct inet_frag_queue q;
  67. __be32 id; /* fragment id */
  68. struct in6_addr saddr;
  69. struct in6_addr daddr;
  70. int iif;
  71. unsigned int csum;
  72. __u16 nhoffset;
  73. };
  74. struct inet_frags_ctl ip6_frags_ctl __read_mostly = {
  75. .high_thresh = 256 * 1024,
  76. .low_thresh = 192 * 1024,
  77. .timeout = IPV6_FRAG_TIMEOUT,
  78. .secret_interval = 10 * 60 * HZ,
  79. };
  80. static struct inet_frags ip6_frags;
  81. int ip6_frag_nqueues(void)
  82. {
  83. return ip6_frags.nqueues;
  84. }
  85. int ip6_frag_mem(void)
  86. {
  87. return atomic_read(&ip6_frags.mem);
  88. }
  89. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  90. struct net_device *dev);
  91. /*
  92. * callers should be careful not to use the hash value outside the ipfrag_lock
  93. * as doing so could race with ipfrag_hash_rnd being recalculated.
  94. */
  95. static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
  96. struct in6_addr *daddr)
  97. {
  98. u32 a, b, c;
  99. a = (__force u32)saddr->s6_addr32[0];
  100. b = (__force u32)saddr->s6_addr32[1];
  101. c = (__force u32)saddr->s6_addr32[2];
  102. a += JHASH_GOLDEN_RATIO;
  103. b += JHASH_GOLDEN_RATIO;
  104. c += ip6_frags.rnd;
  105. __jhash_mix(a, b, c);
  106. a += (__force u32)saddr->s6_addr32[3];
  107. b += (__force u32)daddr->s6_addr32[0];
  108. c += (__force u32)daddr->s6_addr32[1];
  109. __jhash_mix(a, b, c);
  110. a += (__force u32)daddr->s6_addr32[2];
  111. b += (__force u32)daddr->s6_addr32[3];
  112. c += (__force u32)id;
  113. __jhash_mix(a, b, c);
  114. return c & (INETFRAGS_HASHSZ - 1);
  115. }
  116. static unsigned int ip6_hashfn(struct inet_frag_queue *q)
  117. {
  118. struct frag_queue *fq;
  119. fq = container_of(q, struct frag_queue, q);
  120. return ip6qhashfn(fq->id, &fq->saddr, &fq->daddr);
  121. }
  122. /* Memory Tracking Functions. */
  123. static inline void frag_kfree_skb(struct sk_buff *skb, int *work)
  124. {
  125. if (work)
  126. *work -= skb->truesize;
  127. atomic_sub(skb->truesize, &ip6_frags.mem);
  128. kfree_skb(skb);
  129. }
  130. static inline void frag_free_queue(struct frag_queue *fq, int *work)
  131. {
  132. if (work)
  133. *work -= sizeof(struct frag_queue);
  134. atomic_sub(sizeof(struct frag_queue), &ip6_frags.mem);
  135. kfree(fq);
  136. }
  137. static inline struct frag_queue *frag_alloc_queue(void)
  138. {
  139. struct frag_queue *fq = kzalloc(sizeof(struct frag_queue), GFP_ATOMIC);
  140. if(!fq)
  141. return NULL;
  142. atomic_add(sizeof(struct frag_queue), &ip6_frags.mem);
  143. return fq;
  144. }
  145. /* Destruction primitives. */
  146. /* Complete destruction of fq. */
  147. static void ip6_frag_destroy(struct frag_queue *fq, int *work)
  148. {
  149. struct sk_buff *fp;
  150. BUG_TRAP(fq->q.last_in&COMPLETE);
  151. BUG_TRAP(del_timer(&fq->q.timer) == 0);
  152. /* Release all fragment data. */
  153. fp = fq->q.fragments;
  154. while (fp) {
  155. struct sk_buff *xp = fp->next;
  156. frag_kfree_skb(fp, work);
  157. fp = xp;
  158. }
  159. frag_free_queue(fq, work);
  160. }
  161. static __inline__ void fq_put(struct frag_queue *fq, int *work)
  162. {
  163. if (atomic_dec_and_test(&fq->q.refcnt))
  164. ip6_frag_destroy(fq, work);
  165. }
  166. /* Kill fq entry. It is not destroyed immediately,
  167. * because caller (and someone more) holds reference count.
  168. */
  169. static __inline__ void fq_kill(struct frag_queue *fq)
  170. {
  171. inet_frag_kill(&fq->q, &ip6_frags);
  172. }
  173. static void ip6_evictor(struct inet6_dev *idev)
  174. {
  175. struct frag_queue *fq;
  176. struct list_head *tmp;
  177. int work;
  178. work = atomic_read(&ip6_frags.mem) - ip6_frags_ctl.low_thresh;
  179. if (work <= 0)
  180. return;
  181. while(work > 0) {
  182. read_lock(&ip6_frags.lock);
  183. if (list_empty(&ip6_frags.lru_list)) {
  184. read_unlock(&ip6_frags.lock);
  185. return;
  186. }
  187. tmp = ip6_frags.lru_list.next;
  188. fq = list_entry(tmp, struct frag_queue, q.lru_list);
  189. atomic_inc(&fq->q.refcnt);
  190. read_unlock(&ip6_frags.lock);
  191. spin_lock(&fq->q.lock);
  192. if (!(fq->q.last_in&COMPLETE))
  193. fq_kill(fq);
  194. spin_unlock(&fq->q.lock);
  195. fq_put(fq, &work);
  196. IP6_INC_STATS_BH(idev, IPSTATS_MIB_REASMFAILS);
  197. }
  198. }
  199. static void ip6_frag_expire(unsigned long data)
  200. {
  201. struct frag_queue *fq = (struct frag_queue *) data;
  202. struct net_device *dev = NULL;
  203. spin_lock(&fq->q.lock);
  204. if (fq->q.last_in & COMPLETE)
  205. goto out;
  206. fq_kill(fq);
  207. dev = dev_get_by_index(&init_net, fq->iif);
  208. if (!dev)
  209. goto out;
  210. rcu_read_lock();
  211. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
  212. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  213. rcu_read_unlock();
  214. /* Don't send error if the first segment did not arrive. */
  215. if (!(fq->q.last_in&FIRST_IN) || !fq->q.fragments)
  216. goto out;
  217. /*
  218. But use as source device on which LAST ARRIVED
  219. segment was received. And do not use fq->dev
  220. pointer directly, device might already disappeared.
  221. */
  222. fq->q.fragments->dev = dev;
  223. icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0, dev);
  224. out:
  225. if (dev)
  226. dev_put(dev);
  227. spin_unlock(&fq->q.lock);
  228. fq_put(fq, NULL);
  229. }
  230. /* Creation primitives. */
  231. static struct frag_queue *ip6_frag_intern(struct frag_queue *fq_in)
  232. {
  233. struct frag_queue *fq;
  234. unsigned int hash;
  235. #ifdef CONFIG_SMP
  236. struct hlist_node *n;
  237. #endif
  238. write_lock(&ip6_frags.lock);
  239. hash = ip6qhashfn(fq_in->id, &fq_in->saddr, &fq_in->daddr);
  240. #ifdef CONFIG_SMP
  241. hlist_for_each_entry(fq, n, &ip6_frags.hash[hash], q.list) {
  242. if (fq->id == fq_in->id &&
  243. ipv6_addr_equal(&fq_in->saddr, &fq->saddr) &&
  244. ipv6_addr_equal(&fq_in->daddr, &fq->daddr)) {
  245. atomic_inc(&fq->q.refcnt);
  246. write_unlock(&ip6_frags.lock);
  247. fq_in->q.last_in |= COMPLETE;
  248. fq_put(fq_in, NULL);
  249. return fq;
  250. }
  251. }
  252. #endif
  253. fq = fq_in;
  254. if (!mod_timer(&fq->q.timer, jiffies + ip6_frags_ctl.timeout))
  255. atomic_inc(&fq->q.refcnt);
  256. atomic_inc(&fq->q.refcnt);
  257. hlist_add_head(&fq->q.list, &ip6_frags.hash[hash]);
  258. INIT_LIST_HEAD(&fq->q.lru_list);
  259. list_add_tail(&fq->q.lru_list, &ip6_frags.lru_list);
  260. ip6_frags.nqueues++;
  261. write_unlock(&ip6_frags.lock);
  262. return fq;
  263. }
  264. static struct frag_queue *
  265. ip6_frag_create(__be32 id, struct in6_addr *src, struct in6_addr *dst,
  266. struct inet6_dev *idev)
  267. {
  268. struct frag_queue *fq;
  269. if ((fq = frag_alloc_queue()) == NULL)
  270. goto oom;
  271. fq->id = id;
  272. ipv6_addr_copy(&fq->saddr, src);
  273. ipv6_addr_copy(&fq->daddr, dst);
  274. init_timer(&fq->q.timer);
  275. fq->q.timer.function = ip6_frag_expire;
  276. fq->q.timer.data = (long) fq;
  277. spin_lock_init(&fq->q.lock);
  278. atomic_set(&fq->q.refcnt, 1);
  279. return ip6_frag_intern(fq);
  280. oom:
  281. IP6_INC_STATS_BH(idev, IPSTATS_MIB_REASMFAILS);
  282. return NULL;
  283. }
  284. static __inline__ struct frag_queue *
  285. fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst,
  286. struct inet6_dev *idev)
  287. {
  288. struct frag_queue *fq;
  289. struct hlist_node *n;
  290. unsigned int hash;
  291. read_lock(&ip6_frags.lock);
  292. hash = ip6qhashfn(id, src, dst);
  293. hlist_for_each_entry(fq, n, &ip6_frags.hash[hash], q.list) {
  294. if (fq->id == id &&
  295. ipv6_addr_equal(src, &fq->saddr) &&
  296. ipv6_addr_equal(dst, &fq->daddr)) {
  297. atomic_inc(&fq->q.refcnt);
  298. read_unlock(&ip6_frags.lock);
  299. return fq;
  300. }
  301. }
  302. read_unlock(&ip6_frags.lock);
  303. return ip6_frag_create(id, src, dst, idev);
  304. }
  305. static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
  306. struct frag_hdr *fhdr, int nhoff)
  307. {
  308. struct sk_buff *prev, *next;
  309. struct net_device *dev;
  310. int offset, end;
  311. if (fq->q.last_in & COMPLETE)
  312. goto err;
  313. offset = ntohs(fhdr->frag_off) & ~0x7;
  314. end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
  315. ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
  316. if ((unsigned int)end > IPV6_MAXPLEN) {
  317. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
  318. IPSTATS_MIB_INHDRERRORS);
  319. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  320. ((u8 *)&fhdr->frag_off -
  321. skb_network_header(skb)));
  322. return -1;
  323. }
  324. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  325. const unsigned char *nh = skb_network_header(skb);
  326. skb->csum = csum_sub(skb->csum,
  327. csum_partial(nh, (u8 *)(fhdr + 1) - nh,
  328. 0));
  329. }
  330. /* Is this the final fragment? */
  331. if (!(fhdr->frag_off & htons(IP6_MF))) {
  332. /* If we already have some bits beyond end
  333. * or have different end, the segment is corrupted.
  334. */
  335. if (end < fq->q.len ||
  336. ((fq->q.last_in & LAST_IN) && end != fq->q.len))
  337. goto err;
  338. fq->q.last_in |= LAST_IN;
  339. fq->q.len = end;
  340. } else {
  341. /* Check if the fragment is rounded to 8 bytes.
  342. * Required by the RFC.
  343. */
  344. if (end & 0x7) {
  345. /* RFC2460 says always send parameter problem in
  346. * this case. -DaveM
  347. */
  348. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
  349. IPSTATS_MIB_INHDRERRORS);
  350. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  351. offsetof(struct ipv6hdr, payload_len));
  352. return -1;
  353. }
  354. if (end > fq->q.len) {
  355. /* Some bits beyond end -> corruption. */
  356. if (fq->q.last_in & LAST_IN)
  357. goto err;
  358. fq->q.len = end;
  359. }
  360. }
  361. if (end == offset)
  362. goto err;
  363. /* Point into the IP datagram 'data' part. */
  364. if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
  365. goto err;
  366. if (pskb_trim_rcsum(skb, end - offset))
  367. goto err;
  368. /* Find out which fragments are in front and at the back of us
  369. * in the chain of fragments so far. We must know where to put
  370. * this fragment, right?
  371. */
  372. prev = NULL;
  373. for(next = fq->q.fragments; next != NULL; next = next->next) {
  374. if (FRAG6_CB(next)->offset >= offset)
  375. break; /* bingo! */
  376. prev = next;
  377. }
  378. /* We found where to put this one. Check for overlap with
  379. * preceding fragment, and, if needed, align things so that
  380. * any overlaps are eliminated.
  381. */
  382. if (prev) {
  383. int i = (FRAG6_CB(prev)->offset + prev->len) - offset;
  384. if (i > 0) {
  385. offset += i;
  386. if (end <= offset)
  387. goto err;
  388. if (!pskb_pull(skb, i))
  389. goto err;
  390. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  391. skb->ip_summed = CHECKSUM_NONE;
  392. }
  393. }
  394. /* Look for overlap with succeeding segments.
  395. * If we can merge fragments, do it.
  396. */
  397. while (next && FRAG6_CB(next)->offset < end) {
  398. int i = end - FRAG6_CB(next)->offset; /* overlap is 'i' bytes */
  399. if (i < next->len) {
  400. /* Eat head of the next overlapped fragment
  401. * and leave the loop. The next ones cannot overlap.
  402. */
  403. if (!pskb_pull(next, i))
  404. goto err;
  405. FRAG6_CB(next)->offset += i; /* next fragment */
  406. fq->q.meat -= i;
  407. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  408. next->ip_summed = CHECKSUM_NONE;
  409. break;
  410. } else {
  411. struct sk_buff *free_it = next;
  412. /* Old fragment is completely overridden with
  413. * new one drop it.
  414. */
  415. next = next->next;
  416. if (prev)
  417. prev->next = next;
  418. else
  419. fq->q.fragments = next;
  420. fq->q.meat -= free_it->len;
  421. frag_kfree_skb(free_it, NULL);
  422. }
  423. }
  424. FRAG6_CB(skb)->offset = offset;
  425. /* Insert this fragment in the chain of fragments. */
  426. skb->next = next;
  427. if (prev)
  428. prev->next = skb;
  429. else
  430. fq->q.fragments = skb;
  431. dev = skb->dev;
  432. if (dev) {
  433. fq->iif = dev->ifindex;
  434. skb->dev = NULL;
  435. }
  436. fq->q.stamp = skb->tstamp;
  437. fq->q.meat += skb->len;
  438. atomic_add(skb->truesize, &ip6_frags.mem);
  439. /* The first fragment.
  440. * nhoffset is obtained from the first fragment, of course.
  441. */
  442. if (offset == 0) {
  443. fq->nhoffset = nhoff;
  444. fq->q.last_in |= FIRST_IN;
  445. }
  446. if (fq->q.last_in == (FIRST_IN | LAST_IN) && fq->q.meat == fq->q.len)
  447. return ip6_frag_reasm(fq, prev, dev);
  448. write_lock(&ip6_frags.lock);
  449. list_move_tail(&fq->q.lru_list, &ip6_frags.lru_list);
  450. write_unlock(&ip6_frags.lock);
  451. return -1;
  452. err:
  453. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
  454. kfree_skb(skb);
  455. return -1;
  456. }
  457. /*
  458. * Check if this packet is complete.
  459. * Returns NULL on failure by any reason, and pointer
  460. * to current nexthdr field in reassembled frame.
  461. *
  462. * It is called with locked fq, and caller must check that
  463. * queue is eligible for reassembly i.e. it is not COMPLETE,
  464. * the last and the first frames arrived and all the bits are here.
  465. */
  466. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  467. struct net_device *dev)
  468. {
  469. struct sk_buff *fp, *head = fq->q.fragments;
  470. int payload_len;
  471. unsigned int nhoff;
  472. fq_kill(fq);
  473. /* Make the one we just received the head. */
  474. if (prev) {
  475. head = prev->next;
  476. fp = skb_clone(head, GFP_ATOMIC);
  477. if (!fp)
  478. goto out_oom;
  479. fp->next = head->next;
  480. prev->next = fp;
  481. skb_morph(head, fq->q.fragments);
  482. head->next = fq->q.fragments->next;
  483. kfree_skb(fq->q.fragments);
  484. fq->q.fragments = head;
  485. }
  486. BUG_TRAP(head != NULL);
  487. BUG_TRAP(FRAG6_CB(head)->offset == 0);
  488. /* Unfragmented part is taken from the first segment. */
  489. payload_len = ((head->data - skb_network_header(head)) -
  490. sizeof(struct ipv6hdr) + fq->q.len -
  491. sizeof(struct frag_hdr));
  492. if (payload_len > IPV6_MAXPLEN)
  493. goto out_oversize;
  494. /* Head of list must not be cloned. */
  495. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  496. goto out_oom;
  497. /* If the first fragment is fragmented itself, we split
  498. * it to two chunks: the first with data and paged part
  499. * and the second, holding only fragments. */
  500. if (skb_shinfo(head)->frag_list) {
  501. struct sk_buff *clone;
  502. int i, plen = 0;
  503. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  504. goto out_oom;
  505. clone->next = head->next;
  506. head->next = clone;
  507. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  508. skb_shinfo(head)->frag_list = NULL;
  509. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  510. plen += skb_shinfo(head)->frags[i].size;
  511. clone->len = clone->data_len = head->data_len - plen;
  512. head->data_len -= clone->len;
  513. head->len -= clone->len;
  514. clone->csum = 0;
  515. clone->ip_summed = head->ip_summed;
  516. atomic_add(clone->truesize, &ip6_frags.mem);
  517. }
  518. /* We have to remove fragment header from datagram and to relocate
  519. * header in order to calculate ICV correctly. */
  520. nhoff = fq->nhoffset;
  521. skb_network_header(head)[nhoff] = skb_transport_header(head)[0];
  522. memmove(head->head + sizeof(struct frag_hdr), head->head,
  523. (head->data - head->head) - sizeof(struct frag_hdr));
  524. head->mac_header += sizeof(struct frag_hdr);
  525. head->network_header += sizeof(struct frag_hdr);
  526. skb_shinfo(head)->frag_list = head->next;
  527. skb_reset_transport_header(head);
  528. skb_push(head, head->data - skb_network_header(head));
  529. atomic_sub(head->truesize, &ip6_frags.mem);
  530. for (fp=head->next; fp; fp = fp->next) {
  531. head->data_len += fp->len;
  532. head->len += fp->len;
  533. if (head->ip_summed != fp->ip_summed)
  534. head->ip_summed = CHECKSUM_NONE;
  535. else if (head->ip_summed == CHECKSUM_COMPLETE)
  536. head->csum = csum_add(head->csum, fp->csum);
  537. head->truesize += fp->truesize;
  538. atomic_sub(fp->truesize, &ip6_frags.mem);
  539. }
  540. head->next = NULL;
  541. head->dev = dev;
  542. head->tstamp = fq->q.stamp;
  543. ipv6_hdr(head)->payload_len = htons(payload_len);
  544. IP6CB(head)->nhoff = nhoff;
  545. /* Yes, and fold redundant checksum back. 8) */
  546. if (head->ip_summed == CHECKSUM_COMPLETE)
  547. head->csum = csum_partial(skb_network_header(head),
  548. skb_network_header_len(head),
  549. head->csum);
  550. rcu_read_lock();
  551. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
  552. rcu_read_unlock();
  553. fq->q.fragments = NULL;
  554. return 1;
  555. out_oversize:
  556. if (net_ratelimit())
  557. printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len);
  558. goto out_fail;
  559. out_oom:
  560. if (net_ratelimit())
  561. printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n");
  562. out_fail:
  563. rcu_read_lock();
  564. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  565. rcu_read_unlock();
  566. return -1;
  567. }
  568. static int ipv6_frag_rcv(struct sk_buff **skbp)
  569. {
  570. struct sk_buff *skb = *skbp;
  571. struct frag_hdr *fhdr;
  572. struct frag_queue *fq;
  573. struct ipv6hdr *hdr = ipv6_hdr(skb);
  574. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMREQDS);
  575. /* Jumbo payload inhibits frag. header */
  576. if (hdr->payload_len==0) {
  577. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
  578. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  579. skb_network_header_len(skb));
  580. return -1;
  581. }
  582. if (!pskb_may_pull(skb, (skb_transport_offset(skb) +
  583. sizeof(struct frag_hdr)))) {
  584. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
  585. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  586. skb_network_header_len(skb));
  587. return -1;
  588. }
  589. hdr = ipv6_hdr(skb);
  590. fhdr = (struct frag_hdr *)skb_transport_header(skb);
  591. if (!(fhdr->frag_off & htons(0xFFF9))) {
  592. /* It is not a fragmented frame */
  593. skb->transport_header += sizeof(struct frag_hdr);
  594. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMOKS);
  595. IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb);
  596. return 1;
  597. }
  598. if (atomic_read(&ip6_frags.mem) > ip6_frags_ctl.high_thresh)
  599. ip6_evictor(ip6_dst_idev(skb->dst));
  600. if ((fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr,
  601. ip6_dst_idev(skb->dst))) != NULL) {
  602. int ret;
  603. spin_lock(&fq->q.lock);
  604. ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff);
  605. spin_unlock(&fq->q.lock);
  606. fq_put(fq, NULL);
  607. return ret;
  608. }
  609. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
  610. kfree_skb(skb);
  611. return -1;
  612. }
  613. static struct inet6_protocol frag_protocol =
  614. {
  615. .handler = ipv6_frag_rcv,
  616. .flags = INET6_PROTO_NOPOLICY,
  617. };
  618. void __init ipv6_frag_init(void)
  619. {
  620. if (inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT) < 0)
  621. printk(KERN_ERR "ipv6_frag_init: Could not register protocol\n");
  622. ip6_frags.ctl = &ip6_frags_ctl;
  623. ip6_frags.hashfn = ip6_hashfn;
  624. inet_frags_init(&ip6_frags);
  625. }