cache.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. /*
  2. * net/sunrpc/cache.c
  3. *
  4. * Generic code for various authentication-related caches
  5. * used by sunrpc clients and servers.
  6. *
  7. * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
  8. *
  9. * Released under terms in GPL version 2. See COPYING.
  10. *
  11. */
  12. #include <linux/types.h>
  13. #include <linux/fs.h>
  14. #include <linux/file.h>
  15. #include <linux/slab.h>
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kmod.h>
  19. #include <linux/list.h>
  20. #include <linux/module.h>
  21. #include <linux/ctype.h>
  22. #include <asm/uaccess.h>
  23. #include <linux/poll.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/net.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/mutex.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/smp_lock.h>
  31. #include <asm/ioctls.h>
  32. #include <linux/sunrpc/types.h>
  33. #include <linux/sunrpc/cache.h>
  34. #include <linux/sunrpc/stats.h>
  35. #include <linux/sunrpc/rpc_pipe_fs.h>
  36. #define RPCDBG_FACILITY RPCDBG_CACHE
  37. static int cache_defer_req(struct cache_req *req, struct cache_head *item);
  38. static void cache_revisit_request(struct cache_head *item);
  39. static void cache_init(struct cache_head *h)
  40. {
  41. time_t now = seconds_since_boot();
  42. h->next = NULL;
  43. h->flags = 0;
  44. kref_init(&h->ref);
  45. h->expiry_time = now + CACHE_NEW_EXPIRY;
  46. h->last_refresh = now;
  47. }
  48. static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
  49. {
  50. return (h->expiry_time < seconds_since_boot()) ||
  51. (detail->flush_time > h->last_refresh);
  52. }
  53. struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  54. struct cache_head *key, int hash)
  55. {
  56. struct cache_head **head, **hp;
  57. struct cache_head *new = NULL, *freeme = NULL;
  58. head = &detail->hash_table[hash];
  59. read_lock(&detail->hash_lock);
  60. for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  61. struct cache_head *tmp = *hp;
  62. if (detail->match(tmp, key)) {
  63. if (cache_is_expired(detail, tmp))
  64. /* This entry is expired, we will discard it. */
  65. break;
  66. cache_get(tmp);
  67. read_unlock(&detail->hash_lock);
  68. return tmp;
  69. }
  70. }
  71. read_unlock(&detail->hash_lock);
  72. /* Didn't find anything, insert an empty entry */
  73. new = detail->alloc();
  74. if (!new)
  75. return NULL;
  76. /* must fully initialise 'new', else
  77. * we might get lose if we need to
  78. * cache_put it soon.
  79. */
  80. cache_init(new);
  81. detail->init(new, key);
  82. write_lock(&detail->hash_lock);
  83. /* check if entry appeared while we slept */
  84. for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  85. struct cache_head *tmp = *hp;
  86. if (detail->match(tmp, key)) {
  87. if (cache_is_expired(detail, tmp)) {
  88. *hp = tmp->next;
  89. tmp->next = NULL;
  90. detail->entries --;
  91. freeme = tmp;
  92. break;
  93. }
  94. cache_get(tmp);
  95. write_unlock(&detail->hash_lock);
  96. cache_put(new, detail);
  97. return tmp;
  98. }
  99. }
  100. new->next = *head;
  101. *head = new;
  102. detail->entries++;
  103. cache_get(new);
  104. write_unlock(&detail->hash_lock);
  105. if (freeme)
  106. cache_put(freeme, detail);
  107. return new;
  108. }
  109. EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
  110. static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
  111. static void cache_fresh_locked(struct cache_head *head, time_t expiry)
  112. {
  113. head->expiry_time = expiry;
  114. head->last_refresh = seconds_since_boot();
  115. set_bit(CACHE_VALID, &head->flags);
  116. }
  117. static void cache_fresh_unlocked(struct cache_head *head,
  118. struct cache_detail *detail)
  119. {
  120. if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
  121. cache_revisit_request(head);
  122. cache_dequeue(detail, head);
  123. }
  124. }
  125. struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
  126. struct cache_head *new, struct cache_head *old, int hash)
  127. {
  128. /* The 'old' entry is to be replaced by 'new'.
  129. * If 'old' is not VALID, we update it directly,
  130. * otherwise we need to replace it
  131. */
  132. struct cache_head **head;
  133. struct cache_head *tmp;
  134. if (!test_bit(CACHE_VALID, &old->flags)) {
  135. write_lock(&detail->hash_lock);
  136. if (!test_bit(CACHE_VALID, &old->flags)) {
  137. if (test_bit(CACHE_NEGATIVE, &new->flags))
  138. set_bit(CACHE_NEGATIVE, &old->flags);
  139. else
  140. detail->update(old, new);
  141. cache_fresh_locked(old, new->expiry_time);
  142. write_unlock(&detail->hash_lock);
  143. cache_fresh_unlocked(old, detail);
  144. return old;
  145. }
  146. write_unlock(&detail->hash_lock);
  147. }
  148. /* We need to insert a new entry */
  149. tmp = detail->alloc();
  150. if (!tmp) {
  151. cache_put(old, detail);
  152. return NULL;
  153. }
  154. cache_init(tmp);
  155. detail->init(tmp, old);
  156. head = &detail->hash_table[hash];
  157. write_lock(&detail->hash_lock);
  158. if (test_bit(CACHE_NEGATIVE, &new->flags))
  159. set_bit(CACHE_NEGATIVE, &tmp->flags);
  160. else
  161. detail->update(tmp, new);
  162. tmp->next = *head;
  163. *head = tmp;
  164. detail->entries++;
  165. cache_get(tmp);
  166. cache_fresh_locked(tmp, new->expiry_time);
  167. cache_fresh_locked(old, 0);
  168. write_unlock(&detail->hash_lock);
  169. cache_fresh_unlocked(tmp, detail);
  170. cache_fresh_unlocked(old, detail);
  171. cache_put(old, detail);
  172. return tmp;
  173. }
  174. EXPORT_SYMBOL_GPL(sunrpc_cache_update);
  175. static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
  176. {
  177. if (!cd->cache_upcall)
  178. return -EINVAL;
  179. return cd->cache_upcall(cd, h);
  180. }
  181. static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
  182. {
  183. if (!test_bit(CACHE_VALID, &h->flags))
  184. return -EAGAIN;
  185. else {
  186. /* entry is valid */
  187. if (test_bit(CACHE_NEGATIVE, &h->flags))
  188. return -ENOENT;
  189. else
  190. return 0;
  191. }
  192. }
  193. /*
  194. * This is the generic cache management routine for all
  195. * the authentication caches.
  196. * It checks the currency of a cache item and will (later)
  197. * initiate an upcall to fill it if needed.
  198. *
  199. *
  200. * Returns 0 if the cache_head can be used, or cache_puts it and returns
  201. * -EAGAIN if upcall is pending and request has been queued
  202. * -ETIMEDOUT if upcall failed or request could not be queue or
  203. * upcall completed but item is still invalid (implying that
  204. * the cache item has been replaced with a newer one).
  205. * -ENOENT if cache entry was negative
  206. */
  207. int cache_check(struct cache_detail *detail,
  208. struct cache_head *h, struct cache_req *rqstp)
  209. {
  210. int rv;
  211. long refresh_age, age;
  212. /* First decide return status as best we can */
  213. rv = cache_is_valid(detail, h);
  214. /* now see if we want to start an upcall */
  215. refresh_age = (h->expiry_time - h->last_refresh);
  216. age = seconds_since_boot() - h->last_refresh;
  217. if (rqstp == NULL) {
  218. if (rv == -EAGAIN)
  219. rv = -ENOENT;
  220. } else if (rv == -EAGAIN || age > refresh_age/2) {
  221. dprintk("RPC: Want update, refage=%ld, age=%ld\n",
  222. refresh_age, age);
  223. if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
  224. switch (cache_make_upcall(detail, h)) {
  225. case -EINVAL:
  226. clear_bit(CACHE_PENDING, &h->flags);
  227. cache_revisit_request(h);
  228. if (rv == -EAGAIN) {
  229. set_bit(CACHE_NEGATIVE, &h->flags);
  230. cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
  231. cache_fresh_unlocked(h, detail);
  232. rv = -ENOENT;
  233. }
  234. break;
  235. case -EAGAIN:
  236. clear_bit(CACHE_PENDING, &h->flags);
  237. cache_revisit_request(h);
  238. break;
  239. }
  240. }
  241. }
  242. if (rv == -EAGAIN) {
  243. if (cache_defer_req(rqstp, h) < 0) {
  244. /* Request is not deferred */
  245. rv = cache_is_valid(detail, h);
  246. if (rv == -EAGAIN)
  247. rv = -ETIMEDOUT;
  248. }
  249. }
  250. if (rv)
  251. cache_put(h, detail);
  252. return rv;
  253. }
  254. EXPORT_SYMBOL_GPL(cache_check);
  255. /*
  256. * caches need to be periodically cleaned.
  257. * For this we maintain a list of cache_detail and
  258. * a current pointer into that list and into the table
  259. * for that entry.
  260. *
  261. * Each time clean_cache is called it finds the next non-empty entry
  262. * in the current table and walks the list in that entry
  263. * looking for entries that can be removed.
  264. *
  265. * An entry gets removed if:
  266. * - The expiry is before current time
  267. * - The last_refresh time is before the flush_time for that cache
  268. *
  269. * later we might drop old entries with non-NEVER expiry if that table
  270. * is getting 'full' for some definition of 'full'
  271. *
  272. * The question of "how often to scan a table" is an interesting one
  273. * and is answered in part by the use of the "nextcheck" field in the
  274. * cache_detail.
  275. * When a scan of a table begins, the nextcheck field is set to a time
  276. * that is well into the future.
  277. * While scanning, if an expiry time is found that is earlier than the
  278. * current nextcheck time, nextcheck is set to that expiry time.
  279. * If the flush_time is ever set to a time earlier than the nextcheck
  280. * time, the nextcheck time is then set to that flush_time.
  281. *
  282. * A table is then only scanned if the current time is at least
  283. * the nextcheck time.
  284. *
  285. */
  286. static LIST_HEAD(cache_list);
  287. static DEFINE_SPINLOCK(cache_list_lock);
  288. static struct cache_detail *current_detail;
  289. static int current_index;
  290. static void do_cache_clean(struct work_struct *work);
  291. static struct delayed_work cache_cleaner;
  292. static void sunrpc_init_cache_detail(struct cache_detail *cd)
  293. {
  294. rwlock_init(&cd->hash_lock);
  295. INIT_LIST_HEAD(&cd->queue);
  296. spin_lock(&cache_list_lock);
  297. cd->nextcheck = 0;
  298. cd->entries = 0;
  299. atomic_set(&cd->readers, 0);
  300. cd->last_close = 0;
  301. cd->last_warn = -1;
  302. list_add(&cd->others, &cache_list);
  303. spin_unlock(&cache_list_lock);
  304. /* start the cleaning process */
  305. schedule_delayed_work(&cache_cleaner, 0);
  306. }
  307. static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
  308. {
  309. cache_purge(cd);
  310. spin_lock(&cache_list_lock);
  311. write_lock(&cd->hash_lock);
  312. if (cd->entries || atomic_read(&cd->inuse)) {
  313. write_unlock(&cd->hash_lock);
  314. spin_unlock(&cache_list_lock);
  315. goto out;
  316. }
  317. if (current_detail == cd)
  318. current_detail = NULL;
  319. list_del_init(&cd->others);
  320. write_unlock(&cd->hash_lock);
  321. spin_unlock(&cache_list_lock);
  322. if (list_empty(&cache_list)) {
  323. /* module must be being unloaded so its safe to kill the worker */
  324. cancel_delayed_work_sync(&cache_cleaner);
  325. }
  326. return;
  327. out:
  328. printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
  329. }
  330. /* clean cache tries to find something to clean
  331. * and cleans it.
  332. * It returns 1 if it cleaned something,
  333. * 0 if it didn't find anything this time
  334. * -1 if it fell off the end of the list.
  335. */
  336. static int cache_clean(void)
  337. {
  338. int rv = 0;
  339. struct list_head *next;
  340. spin_lock(&cache_list_lock);
  341. /* find a suitable table if we don't already have one */
  342. while (current_detail == NULL ||
  343. current_index >= current_detail->hash_size) {
  344. if (current_detail)
  345. next = current_detail->others.next;
  346. else
  347. next = cache_list.next;
  348. if (next == &cache_list) {
  349. current_detail = NULL;
  350. spin_unlock(&cache_list_lock);
  351. return -1;
  352. }
  353. current_detail = list_entry(next, struct cache_detail, others);
  354. if (current_detail->nextcheck > seconds_since_boot())
  355. current_index = current_detail->hash_size;
  356. else {
  357. current_index = 0;
  358. current_detail->nextcheck = seconds_since_boot()+30*60;
  359. }
  360. }
  361. /* find a non-empty bucket in the table */
  362. while (current_detail &&
  363. current_index < current_detail->hash_size &&
  364. current_detail->hash_table[current_index] == NULL)
  365. current_index++;
  366. /* find a cleanable entry in the bucket and clean it, or set to next bucket */
  367. if (current_detail && current_index < current_detail->hash_size) {
  368. struct cache_head *ch, **cp;
  369. struct cache_detail *d;
  370. write_lock(&current_detail->hash_lock);
  371. /* Ok, now to clean this strand */
  372. cp = & current_detail->hash_table[current_index];
  373. for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
  374. if (current_detail->nextcheck > ch->expiry_time)
  375. current_detail->nextcheck = ch->expiry_time+1;
  376. if (!cache_is_expired(current_detail, ch))
  377. continue;
  378. *cp = ch->next;
  379. ch->next = NULL;
  380. current_detail->entries--;
  381. rv = 1;
  382. break;
  383. }
  384. write_unlock(&current_detail->hash_lock);
  385. d = current_detail;
  386. if (!ch)
  387. current_index ++;
  388. spin_unlock(&cache_list_lock);
  389. if (ch) {
  390. if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
  391. cache_dequeue(current_detail, ch);
  392. cache_revisit_request(ch);
  393. cache_put(ch, d);
  394. }
  395. } else
  396. spin_unlock(&cache_list_lock);
  397. return rv;
  398. }
  399. /*
  400. * We want to regularly clean the cache, so we need to schedule some work ...
  401. */
  402. static void do_cache_clean(struct work_struct *work)
  403. {
  404. int delay = 5;
  405. if (cache_clean() == -1)
  406. delay = round_jiffies_relative(30*HZ);
  407. if (list_empty(&cache_list))
  408. delay = 0;
  409. if (delay)
  410. schedule_delayed_work(&cache_cleaner, delay);
  411. }
  412. /*
  413. * Clean all caches promptly. This just calls cache_clean
  414. * repeatedly until we are sure that every cache has had a chance to
  415. * be fully cleaned
  416. */
  417. void cache_flush(void)
  418. {
  419. while (cache_clean() != -1)
  420. cond_resched();
  421. while (cache_clean() != -1)
  422. cond_resched();
  423. }
  424. EXPORT_SYMBOL_GPL(cache_flush);
  425. void cache_purge(struct cache_detail *detail)
  426. {
  427. detail->flush_time = LONG_MAX;
  428. detail->nextcheck = seconds_since_boot();
  429. cache_flush();
  430. detail->flush_time = 1;
  431. }
  432. EXPORT_SYMBOL_GPL(cache_purge);
  433. /*
  434. * Deferral and Revisiting of Requests.
  435. *
  436. * If a cache lookup finds a pending entry, we
  437. * need to defer the request and revisit it later.
  438. * All deferred requests are stored in a hash table,
  439. * indexed by "struct cache_head *".
  440. * As it may be wasteful to store a whole request
  441. * structure, we allow the request to provide a
  442. * deferred form, which must contain a
  443. * 'struct cache_deferred_req'
  444. * This cache_deferred_req contains a method to allow
  445. * it to be revisited when cache info is available
  446. */
  447. #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
  448. #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
  449. #define DFR_MAX 300 /* ??? */
  450. static DEFINE_SPINLOCK(cache_defer_lock);
  451. static LIST_HEAD(cache_defer_list);
  452. static struct list_head cache_defer_hash[DFR_HASHSIZE];
  453. static int cache_defer_cnt;
  454. static void __unhash_deferred_req(struct cache_deferred_req *dreq)
  455. {
  456. list_del_init(&dreq->recent);
  457. list_del_init(&dreq->hash);
  458. cache_defer_cnt--;
  459. }
  460. static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
  461. {
  462. int hash = DFR_HASH(item);
  463. list_add(&dreq->recent, &cache_defer_list);
  464. if (cache_defer_hash[hash].next == NULL)
  465. INIT_LIST_HEAD(&cache_defer_hash[hash]);
  466. list_add(&dreq->hash, &cache_defer_hash[hash]);
  467. }
  468. static int setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
  469. {
  470. struct cache_deferred_req *discard;
  471. dreq->item = item;
  472. spin_lock(&cache_defer_lock);
  473. __hash_deferred_req(dreq, item);
  474. /* it is in, now maybe clean up */
  475. discard = NULL;
  476. if (++cache_defer_cnt > DFR_MAX) {
  477. discard = list_entry(cache_defer_list.prev,
  478. struct cache_deferred_req, recent);
  479. __unhash_deferred_req(discard);
  480. }
  481. spin_unlock(&cache_defer_lock);
  482. if (discard)
  483. /* there was one too many */
  484. discard->revisit(discard, 1);
  485. if (!test_bit(CACHE_PENDING, &item->flags)) {
  486. /* must have just been validated... */
  487. cache_revisit_request(item);
  488. return -EAGAIN;
  489. }
  490. return 0;
  491. }
  492. struct thread_deferred_req {
  493. struct cache_deferred_req handle;
  494. struct completion completion;
  495. };
  496. static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
  497. {
  498. struct thread_deferred_req *dr =
  499. container_of(dreq, struct thread_deferred_req, handle);
  500. complete(&dr->completion);
  501. }
  502. static int cache_wait_req(struct cache_req *req, struct cache_head *item)
  503. {
  504. struct thread_deferred_req sleeper;
  505. struct cache_deferred_req *dreq = &sleeper.handle;
  506. int ret;
  507. sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
  508. dreq->revisit = cache_restart_thread;
  509. ret = setup_deferral(dreq, item);
  510. if (ret)
  511. return ret;
  512. if (wait_for_completion_interruptible_timeout(
  513. &sleeper.completion, req->thread_wait) <= 0) {
  514. /* The completion wasn't completed, so we need
  515. * to clean up
  516. */
  517. spin_lock(&cache_defer_lock);
  518. if (!list_empty(&sleeper.handle.hash)) {
  519. __unhash_deferred_req(&sleeper.handle);
  520. spin_unlock(&cache_defer_lock);
  521. } else {
  522. /* cache_revisit_request already removed
  523. * this from the hash table, but hasn't
  524. * called ->revisit yet. It will very soon
  525. * and we need to wait for it.
  526. */
  527. spin_unlock(&cache_defer_lock);
  528. wait_for_completion(&sleeper.completion);
  529. }
  530. }
  531. if (test_bit(CACHE_PENDING, &item->flags)) {
  532. /* item is still pending, try request
  533. * deferral
  534. */
  535. return -ETIMEDOUT;
  536. }
  537. /* only return success if we actually deferred the
  538. * request. In this case we waited until it was
  539. * answered so no deferral has happened - rather
  540. * an answer already exists.
  541. */
  542. return -EEXIST;
  543. }
  544. static int cache_defer_req(struct cache_req *req, struct cache_head *item)
  545. {
  546. struct cache_deferred_req *dreq;
  547. int ret;
  548. if (cache_defer_cnt >= DFR_MAX) {
  549. /* too much in the cache, randomly drop this one,
  550. * or continue and drop the oldest
  551. */
  552. if (net_random()&1)
  553. return -ENOMEM;
  554. }
  555. if (req->thread_wait) {
  556. ret = cache_wait_req(req, item);
  557. if (ret != -ETIMEDOUT)
  558. return ret;
  559. }
  560. dreq = req->defer(req);
  561. if (dreq == NULL)
  562. return -ENOMEM;
  563. return setup_deferral(dreq, item);
  564. }
  565. static void cache_revisit_request(struct cache_head *item)
  566. {
  567. struct cache_deferred_req *dreq;
  568. struct list_head pending;
  569. struct list_head *lp;
  570. int hash = DFR_HASH(item);
  571. INIT_LIST_HEAD(&pending);
  572. spin_lock(&cache_defer_lock);
  573. lp = cache_defer_hash[hash].next;
  574. if (lp) {
  575. while (lp != &cache_defer_hash[hash]) {
  576. dreq = list_entry(lp, struct cache_deferred_req, hash);
  577. lp = lp->next;
  578. if (dreq->item == item) {
  579. __unhash_deferred_req(dreq);
  580. list_add(&dreq->recent, &pending);
  581. }
  582. }
  583. }
  584. spin_unlock(&cache_defer_lock);
  585. while (!list_empty(&pending)) {
  586. dreq = list_entry(pending.next, struct cache_deferred_req, recent);
  587. list_del_init(&dreq->recent);
  588. dreq->revisit(dreq, 0);
  589. }
  590. }
  591. void cache_clean_deferred(void *owner)
  592. {
  593. struct cache_deferred_req *dreq, *tmp;
  594. struct list_head pending;
  595. INIT_LIST_HEAD(&pending);
  596. spin_lock(&cache_defer_lock);
  597. list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
  598. if (dreq->owner == owner)
  599. __unhash_deferred_req(dreq);
  600. }
  601. spin_unlock(&cache_defer_lock);
  602. while (!list_empty(&pending)) {
  603. dreq = list_entry(pending.next, struct cache_deferred_req, recent);
  604. list_del_init(&dreq->recent);
  605. dreq->revisit(dreq, 1);
  606. }
  607. }
  608. /*
  609. * communicate with user-space
  610. *
  611. * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
  612. * On read, you get a full request, or block.
  613. * On write, an update request is processed.
  614. * Poll works if anything to read, and always allows write.
  615. *
  616. * Implemented by linked list of requests. Each open file has
  617. * a ->private that also exists in this list. New requests are added
  618. * to the end and may wakeup and preceding readers.
  619. * New readers are added to the head. If, on read, an item is found with
  620. * CACHE_UPCALLING clear, we free it from the list.
  621. *
  622. */
  623. static DEFINE_SPINLOCK(queue_lock);
  624. static DEFINE_MUTEX(queue_io_mutex);
  625. struct cache_queue {
  626. struct list_head list;
  627. int reader; /* if 0, then request */
  628. };
  629. struct cache_request {
  630. struct cache_queue q;
  631. struct cache_head *item;
  632. char * buf;
  633. int len;
  634. int readers;
  635. };
  636. struct cache_reader {
  637. struct cache_queue q;
  638. int offset; /* if non-0, we have a refcnt on next request */
  639. };
  640. static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
  641. loff_t *ppos, struct cache_detail *cd)
  642. {
  643. struct cache_reader *rp = filp->private_data;
  644. struct cache_request *rq;
  645. struct inode *inode = filp->f_path.dentry->d_inode;
  646. int err;
  647. if (count == 0)
  648. return 0;
  649. mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
  650. * readers on this file */
  651. again:
  652. spin_lock(&queue_lock);
  653. /* need to find next request */
  654. while (rp->q.list.next != &cd->queue &&
  655. list_entry(rp->q.list.next, struct cache_queue, list)
  656. ->reader) {
  657. struct list_head *next = rp->q.list.next;
  658. list_move(&rp->q.list, next);
  659. }
  660. if (rp->q.list.next == &cd->queue) {
  661. spin_unlock(&queue_lock);
  662. mutex_unlock(&inode->i_mutex);
  663. BUG_ON(rp->offset);
  664. return 0;
  665. }
  666. rq = container_of(rp->q.list.next, struct cache_request, q.list);
  667. BUG_ON(rq->q.reader);
  668. if (rp->offset == 0)
  669. rq->readers++;
  670. spin_unlock(&queue_lock);
  671. if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
  672. err = -EAGAIN;
  673. spin_lock(&queue_lock);
  674. list_move(&rp->q.list, &rq->q.list);
  675. spin_unlock(&queue_lock);
  676. } else {
  677. if (rp->offset + count > rq->len)
  678. count = rq->len - rp->offset;
  679. err = -EFAULT;
  680. if (copy_to_user(buf, rq->buf + rp->offset, count))
  681. goto out;
  682. rp->offset += count;
  683. if (rp->offset >= rq->len) {
  684. rp->offset = 0;
  685. spin_lock(&queue_lock);
  686. list_move(&rp->q.list, &rq->q.list);
  687. spin_unlock(&queue_lock);
  688. }
  689. err = 0;
  690. }
  691. out:
  692. if (rp->offset == 0) {
  693. /* need to release rq */
  694. spin_lock(&queue_lock);
  695. rq->readers--;
  696. if (rq->readers == 0 &&
  697. !test_bit(CACHE_PENDING, &rq->item->flags)) {
  698. list_del(&rq->q.list);
  699. spin_unlock(&queue_lock);
  700. cache_put(rq->item, cd);
  701. kfree(rq->buf);
  702. kfree(rq);
  703. } else
  704. spin_unlock(&queue_lock);
  705. }
  706. if (err == -EAGAIN)
  707. goto again;
  708. mutex_unlock(&inode->i_mutex);
  709. return err ? err : count;
  710. }
  711. static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
  712. size_t count, struct cache_detail *cd)
  713. {
  714. ssize_t ret;
  715. if (copy_from_user(kaddr, buf, count))
  716. return -EFAULT;
  717. kaddr[count] = '\0';
  718. ret = cd->cache_parse(cd, kaddr, count);
  719. if (!ret)
  720. ret = count;
  721. return ret;
  722. }
  723. static ssize_t cache_slow_downcall(const char __user *buf,
  724. size_t count, struct cache_detail *cd)
  725. {
  726. static char write_buf[8192]; /* protected by queue_io_mutex */
  727. ssize_t ret = -EINVAL;
  728. if (count >= sizeof(write_buf))
  729. goto out;
  730. mutex_lock(&queue_io_mutex);
  731. ret = cache_do_downcall(write_buf, buf, count, cd);
  732. mutex_unlock(&queue_io_mutex);
  733. out:
  734. return ret;
  735. }
  736. static ssize_t cache_downcall(struct address_space *mapping,
  737. const char __user *buf,
  738. size_t count, struct cache_detail *cd)
  739. {
  740. struct page *page;
  741. char *kaddr;
  742. ssize_t ret = -ENOMEM;
  743. if (count >= PAGE_CACHE_SIZE)
  744. goto out_slow;
  745. page = find_or_create_page(mapping, 0, GFP_KERNEL);
  746. if (!page)
  747. goto out_slow;
  748. kaddr = kmap(page);
  749. ret = cache_do_downcall(kaddr, buf, count, cd);
  750. kunmap(page);
  751. unlock_page(page);
  752. page_cache_release(page);
  753. return ret;
  754. out_slow:
  755. return cache_slow_downcall(buf, count, cd);
  756. }
  757. static ssize_t cache_write(struct file *filp, const char __user *buf,
  758. size_t count, loff_t *ppos,
  759. struct cache_detail *cd)
  760. {
  761. struct address_space *mapping = filp->f_mapping;
  762. struct inode *inode = filp->f_path.dentry->d_inode;
  763. ssize_t ret = -EINVAL;
  764. if (!cd->cache_parse)
  765. goto out;
  766. mutex_lock(&inode->i_mutex);
  767. ret = cache_downcall(mapping, buf, count, cd);
  768. mutex_unlock(&inode->i_mutex);
  769. out:
  770. return ret;
  771. }
  772. static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
  773. static unsigned int cache_poll(struct file *filp, poll_table *wait,
  774. struct cache_detail *cd)
  775. {
  776. unsigned int mask;
  777. struct cache_reader *rp = filp->private_data;
  778. struct cache_queue *cq;
  779. poll_wait(filp, &queue_wait, wait);
  780. /* alway allow write */
  781. mask = POLL_OUT | POLLWRNORM;
  782. if (!rp)
  783. return mask;
  784. spin_lock(&queue_lock);
  785. for (cq= &rp->q; &cq->list != &cd->queue;
  786. cq = list_entry(cq->list.next, struct cache_queue, list))
  787. if (!cq->reader) {
  788. mask |= POLLIN | POLLRDNORM;
  789. break;
  790. }
  791. spin_unlock(&queue_lock);
  792. return mask;
  793. }
  794. static int cache_ioctl(struct inode *ino, struct file *filp,
  795. unsigned int cmd, unsigned long arg,
  796. struct cache_detail *cd)
  797. {
  798. int len = 0;
  799. struct cache_reader *rp = filp->private_data;
  800. struct cache_queue *cq;
  801. if (cmd != FIONREAD || !rp)
  802. return -EINVAL;
  803. spin_lock(&queue_lock);
  804. /* only find the length remaining in current request,
  805. * or the length of the next request
  806. */
  807. for (cq= &rp->q; &cq->list != &cd->queue;
  808. cq = list_entry(cq->list.next, struct cache_queue, list))
  809. if (!cq->reader) {
  810. struct cache_request *cr =
  811. container_of(cq, struct cache_request, q);
  812. len = cr->len - rp->offset;
  813. break;
  814. }
  815. spin_unlock(&queue_lock);
  816. return put_user(len, (int __user *)arg);
  817. }
  818. static int cache_open(struct inode *inode, struct file *filp,
  819. struct cache_detail *cd)
  820. {
  821. struct cache_reader *rp = NULL;
  822. if (!cd || !try_module_get(cd->owner))
  823. return -EACCES;
  824. nonseekable_open(inode, filp);
  825. if (filp->f_mode & FMODE_READ) {
  826. rp = kmalloc(sizeof(*rp), GFP_KERNEL);
  827. if (!rp)
  828. return -ENOMEM;
  829. rp->offset = 0;
  830. rp->q.reader = 1;
  831. atomic_inc(&cd->readers);
  832. spin_lock(&queue_lock);
  833. list_add(&rp->q.list, &cd->queue);
  834. spin_unlock(&queue_lock);
  835. }
  836. filp->private_data = rp;
  837. return 0;
  838. }
  839. static int cache_release(struct inode *inode, struct file *filp,
  840. struct cache_detail *cd)
  841. {
  842. struct cache_reader *rp = filp->private_data;
  843. if (rp) {
  844. spin_lock(&queue_lock);
  845. if (rp->offset) {
  846. struct cache_queue *cq;
  847. for (cq= &rp->q; &cq->list != &cd->queue;
  848. cq = list_entry(cq->list.next, struct cache_queue, list))
  849. if (!cq->reader) {
  850. container_of(cq, struct cache_request, q)
  851. ->readers--;
  852. break;
  853. }
  854. rp->offset = 0;
  855. }
  856. list_del(&rp->q.list);
  857. spin_unlock(&queue_lock);
  858. filp->private_data = NULL;
  859. kfree(rp);
  860. cd->last_close = seconds_since_boot();
  861. atomic_dec(&cd->readers);
  862. }
  863. module_put(cd->owner);
  864. return 0;
  865. }
  866. static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
  867. {
  868. struct cache_queue *cq;
  869. spin_lock(&queue_lock);
  870. list_for_each_entry(cq, &detail->queue, list)
  871. if (!cq->reader) {
  872. struct cache_request *cr = container_of(cq, struct cache_request, q);
  873. if (cr->item != ch)
  874. continue;
  875. if (cr->readers != 0)
  876. continue;
  877. list_del(&cr->q.list);
  878. spin_unlock(&queue_lock);
  879. cache_put(cr->item, detail);
  880. kfree(cr->buf);
  881. kfree(cr);
  882. return;
  883. }
  884. spin_unlock(&queue_lock);
  885. }
  886. /*
  887. * Support routines for text-based upcalls.
  888. * Fields are separated by spaces.
  889. * Fields are either mangled to quote space tab newline slosh with slosh
  890. * or a hexified with a leading \x
  891. * Record is terminated with newline.
  892. *
  893. */
  894. void qword_add(char **bpp, int *lp, char *str)
  895. {
  896. char *bp = *bpp;
  897. int len = *lp;
  898. char c;
  899. if (len < 0) return;
  900. while ((c=*str++) && len)
  901. switch(c) {
  902. case ' ':
  903. case '\t':
  904. case '\n':
  905. case '\\':
  906. if (len >= 4) {
  907. *bp++ = '\\';
  908. *bp++ = '0' + ((c & 0300)>>6);
  909. *bp++ = '0' + ((c & 0070)>>3);
  910. *bp++ = '0' + ((c & 0007)>>0);
  911. }
  912. len -= 4;
  913. break;
  914. default:
  915. *bp++ = c;
  916. len--;
  917. }
  918. if (c || len <1) len = -1;
  919. else {
  920. *bp++ = ' ';
  921. len--;
  922. }
  923. *bpp = bp;
  924. *lp = len;
  925. }
  926. EXPORT_SYMBOL_GPL(qword_add);
  927. void qword_addhex(char **bpp, int *lp, char *buf, int blen)
  928. {
  929. char *bp = *bpp;
  930. int len = *lp;
  931. if (len < 0) return;
  932. if (len > 2) {
  933. *bp++ = '\\';
  934. *bp++ = 'x';
  935. len -= 2;
  936. while (blen && len >= 2) {
  937. unsigned char c = *buf++;
  938. *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
  939. *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
  940. len -= 2;
  941. blen--;
  942. }
  943. }
  944. if (blen || len<1) len = -1;
  945. else {
  946. *bp++ = ' ';
  947. len--;
  948. }
  949. *bpp = bp;
  950. *lp = len;
  951. }
  952. EXPORT_SYMBOL_GPL(qword_addhex);
  953. static void warn_no_listener(struct cache_detail *detail)
  954. {
  955. if (detail->last_warn != detail->last_close) {
  956. detail->last_warn = detail->last_close;
  957. if (detail->warn_no_listener)
  958. detail->warn_no_listener(detail, detail->last_close != 0);
  959. }
  960. }
  961. /*
  962. * register an upcall request to user-space and queue it up for read() by the
  963. * upcall daemon.
  964. *
  965. * Each request is at most one page long.
  966. */
  967. int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
  968. void (*cache_request)(struct cache_detail *,
  969. struct cache_head *,
  970. char **,
  971. int *))
  972. {
  973. char *buf;
  974. struct cache_request *crq;
  975. char *bp;
  976. int len;
  977. if (atomic_read(&detail->readers) == 0 &&
  978. detail->last_close < seconds_since_boot() - 30) {
  979. warn_no_listener(detail);
  980. return -EINVAL;
  981. }
  982. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  983. if (!buf)
  984. return -EAGAIN;
  985. crq = kmalloc(sizeof (*crq), GFP_KERNEL);
  986. if (!crq) {
  987. kfree(buf);
  988. return -EAGAIN;
  989. }
  990. bp = buf; len = PAGE_SIZE;
  991. cache_request(detail, h, &bp, &len);
  992. if (len < 0) {
  993. kfree(buf);
  994. kfree(crq);
  995. return -EAGAIN;
  996. }
  997. crq->q.reader = 0;
  998. crq->item = cache_get(h);
  999. crq->buf = buf;
  1000. crq->len = PAGE_SIZE - len;
  1001. crq->readers = 0;
  1002. spin_lock(&queue_lock);
  1003. list_add_tail(&crq->q.list, &detail->queue);
  1004. spin_unlock(&queue_lock);
  1005. wake_up(&queue_wait);
  1006. return 0;
  1007. }
  1008. EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
  1009. /*
  1010. * parse a message from user-space and pass it
  1011. * to an appropriate cache
  1012. * Messages are, like requests, separated into fields by
  1013. * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
  1014. *
  1015. * Message is
  1016. * reply cachename expiry key ... content....
  1017. *
  1018. * key and content are both parsed by cache
  1019. */
  1020. #define isodigit(c) (isdigit(c) && c <= '7')
  1021. int qword_get(char **bpp, char *dest, int bufsize)
  1022. {
  1023. /* return bytes copied, or -1 on error */
  1024. char *bp = *bpp;
  1025. int len = 0;
  1026. while (*bp == ' ') bp++;
  1027. if (bp[0] == '\\' && bp[1] == 'x') {
  1028. /* HEX STRING */
  1029. bp += 2;
  1030. while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
  1031. int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
  1032. bp++;
  1033. byte <<= 4;
  1034. byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
  1035. *dest++ = byte;
  1036. bp++;
  1037. len++;
  1038. }
  1039. } else {
  1040. /* text with \nnn octal quoting */
  1041. while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
  1042. if (*bp == '\\' &&
  1043. isodigit(bp[1]) && (bp[1] <= '3') &&
  1044. isodigit(bp[2]) &&
  1045. isodigit(bp[3])) {
  1046. int byte = (*++bp -'0');
  1047. bp++;
  1048. byte = (byte << 3) | (*bp++ - '0');
  1049. byte = (byte << 3) | (*bp++ - '0');
  1050. *dest++ = byte;
  1051. len++;
  1052. } else {
  1053. *dest++ = *bp++;
  1054. len++;
  1055. }
  1056. }
  1057. }
  1058. if (*bp != ' ' && *bp != '\n' && *bp != '\0')
  1059. return -1;
  1060. while (*bp == ' ') bp++;
  1061. *bpp = bp;
  1062. *dest = '\0';
  1063. return len;
  1064. }
  1065. EXPORT_SYMBOL_GPL(qword_get);
  1066. /*
  1067. * support /proc/sunrpc/cache/$CACHENAME/content
  1068. * as a seqfile.
  1069. * We call ->cache_show passing NULL for the item to
  1070. * get a header, then pass each real item in the cache
  1071. */
  1072. struct handle {
  1073. struct cache_detail *cd;
  1074. };
  1075. static void *c_start(struct seq_file *m, loff_t *pos)
  1076. __acquires(cd->hash_lock)
  1077. {
  1078. loff_t n = *pos;
  1079. unsigned hash, entry;
  1080. struct cache_head *ch;
  1081. struct cache_detail *cd = ((struct handle*)m->private)->cd;
  1082. read_lock(&cd->hash_lock);
  1083. if (!n--)
  1084. return SEQ_START_TOKEN;
  1085. hash = n >> 32;
  1086. entry = n & ((1LL<<32) - 1);
  1087. for (ch=cd->hash_table[hash]; ch; ch=ch->next)
  1088. if (!entry--)
  1089. return ch;
  1090. n &= ~((1LL<<32) - 1);
  1091. do {
  1092. hash++;
  1093. n += 1LL<<32;
  1094. } while(hash < cd->hash_size &&
  1095. cd->hash_table[hash]==NULL);
  1096. if (hash >= cd->hash_size)
  1097. return NULL;
  1098. *pos = n+1;
  1099. return cd->hash_table[hash];
  1100. }
  1101. static void *c_next(struct seq_file *m, void *p, loff_t *pos)
  1102. {
  1103. struct cache_head *ch = p;
  1104. int hash = (*pos >> 32);
  1105. struct cache_detail *cd = ((struct handle*)m->private)->cd;
  1106. if (p == SEQ_START_TOKEN)
  1107. hash = 0;
  1108. else if (ch->next == NULL) {
  1109. hash++;
  1110. *pos += 1LL<<32;
  1111. } else {
  1112. ++*pos;
  1113. return ch->next;
  1114. }
  1115. *pos &= ~((1LL<<32) - 1);
  1116. while (hash < cd->hash_size &&
  1117. cd->hash_table[hash] == NULL) {
  1118. hash++;
  1119. *pos += 1LL<<32;
  1120. }
  1121. if (hash >= cd->hash_size)
  1122. return NULL;
  1123. ++*pos;
  1124. return cd->hash_table[hash];
  1125. }
  1126. static void c_stop(struct seq_file *m, void *p)
  1127. __releases(cd->hash_lock)
  1128. {
  1129. struct cache_detail *cd = ((struct handle*)m->private)->cd;
  1130. read_unlock(&cd->hash_lock);
  1131. }
  1132. static int c_show(struct seq_file *m, void *p)
  1133. {
  1134. struct cache_head *cp = p;
  1135. struct cache_detail *cd = ((struct handle*)m->private)->cd;
  1136. if (p == SEQ_START_TOKEN)
  1137. return cd->cache_show(m, cd, NULL);
  1138. ifdebug(CACHE)
  1139. seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
  1140. convert_to_wallclock(cp->expiry_time),
  1141. atomic_read(&cp->ref.refcount), cp->flags);
  1142. cache_get(cp);
  1143. if (cache_check(cd, cp, NULL))
  1144. /* cache_check does a cache_put on failure */
  1145. seq_printf(m, "# ");
  1146. else
  1147. cache_put(cp, cd);
  1148. return cd->cache_show(m, cd, cp);
  1149. }
  1150. static const struct seq_operations cache_content_op = {
  1151. .start = c_start,
  1152. .next = c_next,
  1153. .stop = c_stop,
  1154. .show = c_show,
  1155. };
  1156. static int content_open(struct inode *inode, struct file *file,
  1157. struct cache_detail *cd)
  1158. {
  1159. struct handle *han;
  1160. if (!cd || !try_module_get(cd->owner))
  1161. return -EACCES;
  1162. han = __seq_open_private(file, &cache_content_op, sizeof(*han));
  1163. if (han == NULL) {
  1164. module_put(cd->owner);
  1165. return -ENOMEM;
  1166. }
  1167. han->cd = cd;
  1168. return 0;
  1169. }
  1170. static int content_release(struct inode *inode, struct file *file,
  1171. struct cache_detail *cd)
  1172. {
  1173. int ret = seq_release_private(inode, file);
  1174. module_put(cd->owner);
  1175. return ret;
  1176. }
  1177. static int open_flush(struct inode *inode, struct file *file,
  1178. struct cache_detail *cd)
  1179. {
  1180. if (!cd || !try_module_get(cd->owner))
  1181. return -EACCES;
  1182. return nonseekable_open(inode, file);
  1183. }
  1184. static int release_flush(struct inode *inode, struct file *file,
  1185. struct cache_detail *cd)
  1186. {
  1187. module_put(cd->owner);
  1188. return 0;
  1189. }
  1190. static ssize_t read_flush(struct file *file, char __user *buf,
  1191. size_t count, loff_t *ppos,
  1192. struct cache_detail *cd)
  1193. {
  1194. char tbuf[20];
  1195. unsigned long p = *ppos;
  1196. size_t len;
  1197. sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
  1198. len = strlen(tbuf);
  1199. if (p >= len)
  1200. return 0;
  1201. len -= p;
  1202. if (len > count)
  1203. len = count;
  1204. if (copy_to_user(buf, (void*)(tbuf+p), len))
  1205. return -EFAULT;
  1206. *ppos += len;
  1207. return len;
  1208. }
  1209. static ssize_t write_flush(struct file *file, const char __user *buf,
  1210. size_t count, loff_t *ppos,
  1211. struct cache_detail *cd)
  1212. {
  1213. char tbuf[20];
  1214. char *bp, *ep;
  1215. if (*ppos || count > sizeof(tbuf)-1)
  1216. return -EINVAL;
  1217. if (copy_from_user(tbuf, buf, count))
  1218. return -EFAULT;
  1219. tbuf[count] = 0;
  1220. simple_strtoul(tbuf, &ep, 0);
  1221. if (*ep && *ep != '\n')
  1222. return -EINVAL;
  1223. bp = tbuf;
  1224. cd->flush_time = get_expiry(&bp);
  1225. cd->nextcheck = seconds_since_boot();
  1226. cache_flush();
  1227. *ppos += count;
  1228. return count;
  1229. }
  1230. static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
  1231. size_t count, loff_t *ppos)
  1232. {
  1233. struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
  1234. return cache_read(filp, buf, count, ppos, cd);
  1235. }
  1236. static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
  1237. size_t count, loff_t *ppos)
  1238. {
  1239. struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
  1240. return cache_write(filp, buf, count, ppos, cd);
  1241. }
  1242. static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
  1243. {
  1244. struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
  1245. return cache_poll(filp, wait, cd);
  1246. }
  1247. static long cache_ioctl_procfs(struct file *filp,
  1248. unsigned int cmd, unsigned long arg)
  1249. {
  1250. long ret;
  1251. struct inode *inode = filp->f_path.dentry->d_inode;
  1252. struct cache_detail *cd = PDE(inode)->data;
  1253. lock_kernel();
  1254. ret = cache_ioctl(inode, filp, cmd, arg, cd);
  1255. unlock_kernel();
  1256. return ret;
  1257. }
  1258. static int cache_open_procfs(struct inode *inode, struct file *filp)
  1259. {
  1260. struct cache_detail *cd = PDE(inode)->data;
  1261. return cache_open(inode, filp, cd);
  1262. }
  1263. static int cache_release_procfs(struct inode *inode, struct file *filp)
  1264. {
  1265. struct cache_detail *cd = PDE(inode)->data;
  1266. return cache_release(inode, filp, cd);
  1267. }
  1268. static const struct file_operations cache_file_operations_procfs = {
  1269. .owner = THIS_MODULE,
  1270. .llseek = no_llseek,
  1271. .read = cache_read_procfs,
  1272. .write = cache_write_procfs,
  1273. .poll = cache_poll_procfs,
  1274. .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
  1275. .open = cache_open_procfs,
  1276. .release = cache_release_procfs,
  1277. };
  1278. static int content_open_procfs(struct inode *inode, struct file *filp)
  1279. {
  1280. struct cache_detail *cd = PDE(inode)->data;
  1281. return content_open(inode, filp, cd);
  1282. }
  1283. static int content_release_procfs(struct inode *inode, struct file *filp)
  1284. {
  1285. struct cache_detail *cd = PDE(inode)->data;
  1286. return content_release(inode, filp, cd);
  1287. }
  1288. static const struct file_operations content_file_operations_procfs = {
  1289. .open = content_open_procfs,
  1290. .read = seq_read,
  1291. .llseek = seq_lseek,
  1292. .release = content_release_procfs,
  1293. };
  1294. static int open_flush_procfs(struct inode *inode, struct file *filp)
  1295. {
  1296. struct cache_detail *cd = PDE(inode)->data;
  1297. return open_flush(inode, filp, cd);
  1298. }
  1299. static int release_flush_procfs(struct inode *inode, struct file *filp)
  1300. {
  1301. struct cache_detail *cd = PDE(inode)->data;
  1302. return release_flush(inode, filp, cd);
  1303. }
  1304. static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
  1305. size_t count, loff_t *ppos)
  1306. {
  1307. struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
  1308. return read_flush(filp, buf, count, ppos, cd);
  1309. }
  1310. static ssize_t write_flush_procfs(struct file *filp,
  1311. const char __user *buf,
  1312. size_t count, loff_t *ppos)
  1313. {
  1314. struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
  1315. return write_flush(filp, buf, count, ppos, cd);
  1316. }
  1317. static const struct file_operations cache_flush_operations_procfs = {
  1318. .open = open_flush_procfs,
  1319. .read = read_flush_procfs,
  1320. .write = write_flush_procfs,
  1321. .release = release_flush_procfs,
  1322. };
  1323. static void remove_cache_proc_entries(struct cache_detail *cd)
  1324. {
  1325. if (cd->u.procfs.proc_ent == NULL)
  1326. return;
  1327. if (cd->u.procfs.flush_ent)
  1328. remove_proc_entry("flush", cd->u.procfs.proc_ent);
  1329. if (cd->u.procfs.channel_ent)
  1330. remove_proc_entry("channel", cd->u.procfs.proc_ent);
  1331. if (cd->u.procfs.content_ent)
  1332. remove_proc_entry("content", cd->u.procfs.proc_ent);
  1333. cd->u.procfs.proc_ent = NULL;
  1334. remove_proc_entry(cd->name, proc_net_rpc);
  1335. }
  1336. #ifdef CONFIG_PROC_FS
  1337. static int create_cache_proc_entries(struct cache_detail *cd)
  1338. {
  1339. struct proc_dir_entry *p;
  1340. cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
  1341. if (cd->u.procfs.proc_ent == NULL)
  1342. goto out_nomem;
  1343. cd->u.procfs.channel_ent = NULL;
  1344. cd->u.procfs.content_ent = NULL;
  1345. p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
  1346. cd->u.procfs.proc_ent,
  1347. &cache_flush_operations_procfs, cd);
  1348. cd->u.procfs.flush_ent = p;
  1349. if (p == NULL)
  1350. goto out_nomem;
  1351. if (cd->cache_upcall || cd->cache_parse) {
  1352. p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
  1353. cd->u.procfs.proc_ent,
  1354. &cache_file_operations_procfs, cd);
  1355. cd->u.procfs.channel_ent = p;
  1356. if (p == NULL)
  1357. goto out_nomem;
  1358. }
  1359. if (cd->cache_show) {
  1360. p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
  1361. cd->u.procfs.proc_ent,
  1362. &content_file_operations_procfs, cd);
  1363. cd->u.procfs.content_ent = p;
  1364. if (p == NULL)
  1365. goto out_nomem;
  1366. }
  1367. return 0;
  1368. out_nomem:
  1369. remove_cache_proc_entries(cd);
  1370. return -ENOMEM;
  1371. }
  1372. #else /* CONFIG_PROC_FS */
  1373. static int create_cache_proc_entries(struct cache_detail *cd)
  1374. {
  1375. return 0;
  1376. }
  1377. #endif
  1378. void __init cache_initialize(void)
  1379. {
  1380. INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
  1381. }
  1382. int cache_register(struct cache_detail *cd)
  1383. {
  1384. int ret;
  1385. sunrpc_init_cache_detail(cd);
  1386. ret = create_cache_proc_entries(cd);
  1387. if (ret)
  1388. sunrpc_destroy_cache_detail(cd);
  1389. return ret;
  1390. }
  1391. EXPORT_SYMBOL_GPL(cache_register);
  1392. void cache_unregister(struct cache_detail *cd)
  1393. {
  1394. remove_cache_proc_entries(cd);
  1395. sunrpc_destroy_cache_detail(cd);
  1396. }
  1397. EXPORT_SYMBOL_GPL(cache_unregister);
  1398. static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
  1399. size_t count, loff_t *ppos)
  1400. {
  1401. struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
  1402. return cache_read(filp, buf, count, ppos, cd);
  1403. }
  1404. static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
  1405. size_t count, loff_t *ppos)
  1406. {
  1407. struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
  1408. return cache_write(filp, buf, count, ppos, cd);
  1409. }
  1410. static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
  1411. {
  1412. struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
  1413. return cache_poll(filp, wait, cd);
  1414. }
  1415. static long cache_ioctl_pipefs(struct file *filp,
  1416. unsigned int cmd, unsigned long arg)
  1417. {
  1418. struct inode *inode = filp->f_dentry->d_inode;
  1419. struct cache_detail *cd = RPC_I(inode)->private;
  1420. long ret;
  1421. lock_kernel();
  1422. ret = cache_ioctl(inode, filp, cmd, arg, cd);
  1423. unlock_kernel();
  1424. return ret;
  1425. }
  1426. static int cache_open_pipefs(struct inode *inode, struct file *filp)
  1427. {
  1428. struct cache_detail *cd = RPC_I(inode)->private;
  1429. return cache_open(inode, filp, cd);
  1430. }
  1431. static int cache_release_pipefs(struct inode *inode, struct file *filp)
  1432. {
  1433. struct cache_detail *cd = RPC_I(inode)->private;
  1434. return cache_release(inode, filp, cd);
  1435. }
  1436. const struct file_operations cache_file_operations_pipefs = {
  1437. .owner = THIS_MODULE,
  1438. .llseek = no_llseek,
  1439. .read = cache_read_pipefs,
  1440. .write = cache_write_pipefs,
  1441. .poll = cache_poll_pipefs,
  1442. .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
  1443. .open = cache_open_pipefs,
  1444. .release = cache_release_pipefs,
  1445. };
  1446. static int content_open_pipefs(struct inode *inode, struct file *filp)
  1447. {
  1448. struct cache_detail *cd = RPC_I(inode)->private;
  1449. return content_open(inode, filp, cd);
  1450. }
  1451. static int content_release_pipefs(struct inode *inode, struct file *filp)
  1452. {
  1453. struct cache_detail *cd = RPC_I(inode)->private;
  1454. return content_release(inode, filp, cd);
  1455. }
  1456. const struct file_operations content_file_operations_pipefs = {
  1457. .open = content_open_pipefs,
  1458. .read = seq_read,
  1459. .llseek = seq_lseek,
  1460. .release = content_release_pipefs,
  1461. };
  1462. static int open_flush_pipefs(struct inode *inode, struct file *filp)
  1463. {
  1464. struct cache_detail *cd = RPC_I(inode)->private;
  1465. return open_flush(inode, filp, cd);
  1466. }
  1467. static int release_flush_pipefs(struct inode *inode, struct file *filp)
  1468. {
  1469. struct cache_detail *cd = RPC_I(inode)->private;
  1470. return release_flush(inode, filp, cd);
  1471. }
  1472. static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
  1473. size_t count, loff_t *ppos)
  1474. {
  1475. struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
  1476. return read_flush(filp, buf, count, ppos, cd);
  1477. }
  1478. static ssize_t write_flush_pipefs(struct file *filp,
  1479. const char __user *buf,
  1480. size_t count, loff_t *ppos)
  1481. {
  1482. struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
  1483. return write_flush(filp, buf, count, ppos, cd);
  1484. }
  1485. const struct file_operations cache_flush_operations_pipefs = {
  1486. .open = open_flush_pipefs,
  1487. .read = read_flush_pipefs,
  1488. .write = write_flush_pipefs,
  1489. .release = release_flush_pipefs,
  1490. };
  1491. int sunrpc_cache_register_pipefs(struct dentry *parent,
  1492. const char *name, mode_t umode,
  1493. struct cache_detail *cd)
  1494. {
  1495. struct qstr q;
  1496. struct dentry *dir;
  1497. int ret = 0;
  1498. sunrpc_init_cache_detail(cd);
  1499. q.name = name;
  1500. q.len = strlen(name);
  1501. q.hash = full_name_hash(q.name, q.len);
  1502. dir = rpc_create_cache_dir(parent, &q, umode, cd);
  1503. if (!IS_ERR(dir))
  1504. cd->u.pipefs.dir = dir;
  1505. else {
  1506. sunrpc_destroy_cache_detail(cd);
  1507. ret = PTR_ERR(dir);
  1508. }
  1509. return ret;
  1510. }
  1511. EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
  1512. void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
  1513. {
  1514. rpc_remove_cache_dir(cd->u.pipefs.dir);
  1515. cd->u.pipefs.dir = NULL;
  1516. sunrpc_destroy_cache_detail(cd);
  1517. }
  1518. EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);