smp_32.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. *
  7. * This code is released under the GNU General Public License version 2 or
  8. * later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/mm.h>
  12. #include <linux/delay.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/mc146818rtc.h>
  16. #include <linux/cache.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/cpu.h>
  19. #include <linux/module.h>
  20. #include <asm/mtrr.h>
  21. #include <asm/tlbflush.h>
  22. #include <asm/mmu_context.h>
  23. #include <mach_apic.h>
  24. #include <asm/proto.h>
  25. /*
  26. * Some notes on x86 processor bugs affecting SMP operation:
  27. *
  28. * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  29. * The Linux implications for SMP are handled as follows:
  30. *
  31. * Pentium III / [Xeon]
  32. * None of the E1AP-E3AP errata are visible to the user.
  33. *
  34. * E1AP. see PII A1AP
  35. * E2AP. see PII A2AP
  36. * E3AP. see PII A3AP
  37. *
  38. * Pentium II / [Xeon]
  39. * None of the A1AP-A3AP errata are visible to the user.
  40. *
  41. * A1AP. see PPro 1AP
  42. * A2AP. see PPro 2AP
  43. * A3AP. see PPro 7AP
  44. *
  45. * Pentium Pro
  46. * None of 1AP-9AP errata are visible to the normal user,
  47. * except occasional delivery of 'spurious interrupt' as trap #15.
  48. * This is very rare and a non-problem.
  49. *
  50. * 1AP. Linux maps APIC as non-cacheable
  51. * 2AP. worked around in hardware
  52. * 3AP. fixed in C0 and above steppings microcode update.
  53. * Linux does not use excessive STARTUP_IPIs.
  54. * 4AP. worked around in hardware
  55. * 5AP. symmetric IO mode (normal Linux operation) not affected.
  56. * 'noapic' mode has vector 0xf filled out properly.
  57. * 6AP. 'noapic' mode might be affected - fixed in later steppings
  58. * 7AP. We do not assume writes to the LVT deassering IRQs
  59. * 8AP. We do not enable low power mode (deep sleep) during MP bootup
  60. * 9AP. We do not use mixed mode
  61. *
  62. * Pentium
  63. * There is a marginal case where REP MOVS on 100MHz SMP
  64. * machines with B stepping processors can fail. XXX should provide
  65. * an L1cache=Writethrough or L1cache=off option.
  66. *
  67. * B stepping CPUs may hang. There are hardware work arounds
  68. * for this. We warn about it in case your board doesn't have the work
  69. * arounds. Basically that's so I can tell anyone with a B stepping
  70. * CPU and SMP problems "tough".
  71. *
  72. * Specific items [From Pentium Processor Specification Update]
  73. *
  74. * 1AP. Linux doesn't use remote read
  75. * 2AP. Linux doesn't trust APIC errors
  76. * 3AP. We work around this
  77. * 4AP. Linux never generated 3 interrupts of the same priority
  78. * to cause a lost local interrupt.
  79. * 5AP. Remote read is never used
  80. * 6AP. not affected - worked around in hardware
  81. * 7AP. not affected - worked around in hardware
  82. * 8AP. worked around in hardware - we get explicit CS errors if not
  83. * 9AP. only 'noapic' mode affected. Might generate spurious
  84. * interrupts, we log only the first one and count the
  85. * rest silently.
  86. * 10AP. not affected - worked around in hardware
  87. * 11AP. Linux reads the APIC between writes to avoid this, as per
  88. * the documentation. Make sure you preserve this as it affects
  89. * the C stepping chips too.
  90. * 12AP. not affected - worked around in hardware
  91. * 13AP. not affected - worked around in hardware
  92. * 14AP. we always deassert INIT during bootup
  93. * 15AP. not affected - worked around in hardware
  94. * 16AP. not affected - worked around in hardware
  95. * 17AP. not affected - worked around in hardware
  96. * 18AP. not affected - worked around in hardware
  97. * 19AP. not affected - worked around in BIOS
  98. *
  99. * If this sounds worrying believe me these bugs are either ___RARE___,
  100. * or are signal timing bugs worked around in hardware and there's
  101. * about nothing of note with C stepping upwards.
  102. */
  103. DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
  104. /*
  105. * the following functions deal with sending IPIs between CPUs.
  106. *
  107. * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
  108. */
  109. static inline int __prepare_ICR (unsigned int shortcut, int vector)
  110. {
  111. unsigned int icr = shortcut | APIC_DEST_LOGICAL;
  112. switch (vector) {
  113. default:
  114. icr |= APIC_DM_FIXED | vector;
  115. break;
  116. case NMI_VECTOR:
  117. icr |= APIC_DM_NMI;
  118. break;
  119. }
  120. return icr;
  121. }
  122. static inline int __prepare_ICR2 (unsigned int mask)
  123. {
  124. return SET_APIC_DEST_FIELD(mask);
  125. }
  126. void __send_IPI_shortcut(unsigned int shortcut, int vector)
  127. {
  128. /*
  129. * Subtle. In the case of the 'never do double writes' workaround
  130. * we have to lock out interrupts to be safe. As we don't care
  131. * of the value read we use an atomic rmw access to avoid costly
  132. * cli/sti. Otherwise we use an even cheaper single atomic write
  133. * to the APIC.
  134. */
  135. unsigned int cfg;
  136. /*
  137. * Wait for idle.
  138. */
  139. apic_wait_icr_idle();
  140. /*
  141. * No need to touch the target chip field
  142. */
  143. cfg = __prepare_ICR(shortcut, vector);
  144. /*
  145. * Send the IPI. The write to APIC_ICR fires this off.
  146. */
  147. apic_write_around(APIC_ICR, cfg);
  148. }
  149. void send_IPI_self(int vector)
  150. {
  151. __send_IPI_shortcut(APIC_DEST_SELF, vector);
  152. }
  153. /*
  154. * This is used to send an IPI with no shorthand notation (the destination is
  155. * specified in bits 56 to 63 of the ICR).
  156. */
  157. static inline void __send_IPI_dest_field(unsigned long mask, int vector)
  158. {
  159. unsigned long cfg;
  160. /*
  161. * Wait for idle.
  162. */
  163. if (unlikely(vector == NMI_VECTOR))
  164. safe_apic_wait_icr_idle();
  165. else
  166. apic_wait_icr_idle();
  167. /*
  168. * prepare target chip field
  169. */
  170. cfg = __prepare_ICR2(mask);
  171. apic_write_around(APIC_ICR2, cfg);
  172. /*
  173. * program the ICR
  174. */
  175. cfg = __prepare_ICR(0, vector);
  176. /*
  177. * Send the IPI. The write to APIC_ICR fires this off.
  178. */
  179. apic_write_around(APIC_ICR, cfg);
  180. }
  181. /*
  182. * This is only used on smaller machines.
  183. */
  184. void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
  185. {
  186. unsigned long mask = cpus_addr(cpumask)[0];
  187. unsigned long flags;
  188. local_irq_save(flags);
  189. WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
  190. __send_IPI_dest_field(mask, vector);
  191. local_irq_restore(flags);
  192. }
  193. void send_IPI_mask_sequence(cpumask_t mask, int vector)
  194. {
  195. unsigned long flags;
  196. unsigned int query_cpu;
  197. /*
  198. * Hack. The clustered APIC addressing mode doesn't allow us to send
  199. * to an arbitrary mask, so I do a unicasts to each CPU instead. This
  200. * should be modified to do 1 message per cluster ID - mbligh
  201. */
  202. local_irq_save(flags);
  203. for_each_possible_cpu(query_cpu) {
  204. if (cpu_isset(query_cpu, mask)) {
  205. __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
  206. vector);
  207. }
  208. }
  209. local_irq_restore(flags);
  210. }
  211. #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
  212. /*
  213. * Smarter SMP flushing macros.
  214. * c/o Linus Torvalds.
  215. *
  216. * These mean you can really definitely utterly forget about
  217. * writing to user space from interrupts. (Its not allowed anyway).
  218. *
  219. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  220. */
  221. static cpumask_t flush_cpumask;
  222. static struct mm_struct * flush_mm;
  223. static unsigned long flush_va;
  224. static DEFINE_SPINLOCK(tlbstate_lock);
  225. /*
  226. * We cannot call mmdrop() because we are in interrupt context,
  227. * instead update mm->cpu_vm_mask.
  228. *
  229. * We need to reload %cr3 since the page tables may be going
  230. * away from under us..
  231. */
  232. void leave_mm(int cpu)
  233. {
  234. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
  235. BUG();
  236. cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
  237. load_cr3(swapper_pg_dir);
  238. }
  239. EXPORT_SYMBOL_GPL(leave_mm);
  240. /*
  241. *
  242. * The flush IPI assumes that a thread switch happens in this order:
  243. * [cpu0: the cpu that switches]
  244. * 1) switch_mm() either 1a) or 1b)
  245. * 1a) thread switch to a different mm
  246. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  247. * Stop ipi delivery for the old mm. This is not synchronized with
  248. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  249. * for the wrong mm, and in the worst case we perform a superfluous
  250. * tlb flush.
  251. * 1a2) set cpu_tlbstate to TLBSTATE_OK
  252. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  253. * was in lazy tlb mode.
  254. * 1a3) update cpu_tlbstate[].active_mm
  255. * Now cpu0 accepts tlb flushes for the new mm.
  256. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  257. * Now the other cpus will send tlb flush ipis.
  258. * 1a4) change cr3.
  259. * 1b) thread switch without mm change
  260. * cpu_tlbstate[].active_mm is correct, cpu0 already handles
  261. * flush ipis.
  262. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  263. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  264. * Atomically set the bit [other cpus will start sending flush ipis],
  265. * and test the bit.
  266. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  267. * 2) switch %%esp, ie current
  268. *
  269. * The interrupt must handle 2 special cases:
  270. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  271. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  272. * runs in kernel space, the cpu could load tlb entries for user space
  273. * pages.
  274. *
  275. * The good news is that cpu_tlbstate is local to each cpu, no
  276. * write/read ordering problems.
  277. */
  278. /*
  279. * TLB flush IPI:
  280. *
  281. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  282. * 2) Leave the mm if we are in the lazy tlb mode.
  283. */
  284. void smp_invalidate_interrupt(struct pt_regs *regs)
  285. {
  286. unsigned long cpu;
  287. cpu = get_cpu();
  288. if (!cpu_isset(cpu, flush_cpumask))
  289. goto out;
  290. /*
  291. * This was a BUG() but until someone can quote me the
  292. * line from the intel manual that guarantees an IPI to
  293. * multiple CPUs is retried _only_ on the erroring CPUs
  294. * its staying as a return
  295. *
  296. * BUG();
  297. */
  298. if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
  299. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
  300. if (flush_va == TLB_FLUSH_ALL)
  301. local_flush_tlb();
  302. else
  303. __flush_tlb_one(flush_va);
  304. } else
  305. leave_mm(cpu);
  306. }
  307. ack_APIC_irq();
  308. smp_mb__before_clear_bit();
  309. cpu_clear(cpu, flush_cpumask);
  310. smp_mb__after_clear_bit();
  311. out:
  312. put_cpu_no_resched();
  313. __get_cpu_var(irq_stat).irq_tlb_count++;
  314. }
  315. void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
  316. unsigned long va)
  317. {
  318. cpumask_t cpumask = *cpumaskp;
  319. /*
  320. * A couple of (to be removed) sanity checks:
  321. *
  322. * - current CPU must not be in mask
  323. * - mask must exist :)
  324. */
  325. BUG_ON(cpus_empty(cpumask));
  326. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  327. BUG_ON(!mm);
  328. #ifdef CONFIG_HOTPLUG_CPU
  329. /* If a CPU which we ran on has gone down, OK. */
  330. cpus_and(cpumask, cpumask, cpu_online_map);
  331. if (unlikely(cpus_empty(cpumask)))
  332. return;
  333. #endif
  334. /*
  335. * i'm not happy about this global shared spinlock in the
  336. * MM hot path, but we'll see how contended it is.
  337. * AK: x86-64 has a faster method that could be ported.
  338. */
  339. spin_lock(&tlbstate_lock);
  340. flush_mm = mm;
  341. flush_va = va;
  342. cpus_or(flush_cpumask, cpumask, flush_cpumask);
  343. /*
  344. * We have to send the IPI only to
  345. * CPUs affected.
  346. */
  347. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
  348. while (!cpus_empty(flush_cpumask))
  349. /* nothing. lockup detection does not belong here */
  350. cpu_relax();
  351. flush_mm = NULL;
  352. flush_va = 0;
  353. spin_unlock(&tlbstate_lock);
  354. }
  355. void flush_tlb_current_task(void)
  356. {
  357. struct mm_struct *mm = current->mm;
  358. cpumask_t cpu_mask;
  359. preempt_disable();
  360. cpu_mask = mm->cpu_vm_mask;
  361. cpu_clear(smp_processor_id(), cpu_mask);
  362. local_flush_tlb();
  363. if (!cpus_empty(cpu_mask))
  364. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  365. preempt_enable();
  366. }
  367. void flush_tlb_mm (struct mm_struct * mm)
  368. {
  369. cpumask_t cpu_mask;
  370. preempt_disable();
  371. cpu_mask = mm->cpu_vm_mask;
  372. cpu_clear(smp_processor_id(), cpu_mask);
  373. if (current->active_mm == mm) {
  374. if (current->mm)
  375. local_flush_tlb();
  376. else
  377. leave_mm(smp_processor_id());
  378. }
  379. if (!cpus_empty(cpu_mask))
  380. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  381. preempt_enable();
  382. }
  383. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  384. {
  385. struct mm_struct *mm = vma->vm_mm;
  386. cpumask_t cpu_mask;
  387. preempt_disable();
  388. cpu_mask = mm->cpu_vm_mask;
  389. cpu_clear(smp_processor_id(), cpu_mask);
  390. if (current->active_mm == mm) {
  391. if(current->mm)
  392. __flush_tlb_one(va);
  393. else
  394. leave_mm(smp_processor_id());
  395. }
  396. if (!cpus_empty(cpu_mask))
  397. flush_tlb_others(cpu_mask, mm, va);
  398. preempt_enable();
  399. }
  400. EXPORT_SYMBOL(flush_tlb_page);
  401. static void do_flush_tlb_all(void* info)
  402. {
  403. unsigned long cpu = smp_processor_id();
  404. __flush_tlb_all();
  405. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
  406. leave_mm(cpu);
  407. }
  408. void flush_tlb_all(void)
  409. {
  410. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  411. }
  412. /*
  413. * this function sends a 'reschedule' IPI to another CPU.
  414. * it goes straight through and wastes no time serializing
  415. * anything. Worst case is that we lose a reschedule ...
  416. */
  417. static void native_smp_send_reschedule(int cpu)
  418. {
  419. WARN_ON(cpu_is_offline(cpu));
  420. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  421. }
  422. /*
  423. * Structure and data for smp_call_function(). This is designed to minimise
  424. * static memory requirements. It also looks cleaner.
  425. */
  426. static DEFINE_SPINLOCK(call_lock);
  427. struct call_data_struct {
  428. void (*func) (void *info);
  429. void *info;
  430. atomic_t started;
  431. atomic_t finished;
  432. int wait;
  433. };
  434. void lock_ipi_call_lock(void)
  435. {
  436. spin_lock_irq(&call_lock);
  437. }
  438. void unlock_ipi_call_lock(void)
  439. {
  440. spin_unlock_irq(&call_lock);
  441. }
  442. static struct call_data_struct *call_data;
  443. static void __smp_call_function(void (*func) (void *info), void *info,
  444. int nonatomic, int wait)
  445. {
  446. struct call_data_struct data;
  447. int cpus = num_online_cpus() - 1;
  448. if (!cpus)
  449. return;
  450. data.func = func;
  451. data.info = info;
  452. atomic_set(&data.started, 0);
  453. data.wait = wait;
  454. if (wait)
  455. atomic_set(&data.finished, 0);
  456. call_data = &data;
  457. mb();
  458. /* Send a message to all other CPUs and wait for them to respond */
  459. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  460. /* Wait for response */
  461. while (atomic_read(&data.started) != cpus)
  462. cpu_relax();
  463. if (wait)
  464. while (atomic_read(&data.finished) != cpus)
  465. cpu_relax();
  466. }
  467. /**
  468. * smp_call_function_mask(): Run a function on a set of other CPUs.
  469. * @mask: The set of cpus to run on. Must not include the current cpu.
  470. * @func: The function to run. This must be fast and non-blocking.
  471. * @info: An arbitrary pointer to pass to the function.
  472. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  473. *
  474. * Returns 0 on success, else a negative status code.
  475. *
  476. * If @wait is true, then returns once @func has returned; otherwise
  477. * it returns just before the target cpu calls @func.
  478. *
  479. * You must not call this function with disabled interrupts or from a
  480. * hardware interrupt handler or from a bottom half handler.
  481. */
  482. static int
  483. native_smp_call_function_mask(cpumask_t mask,
  484. void (*func)(void *), void *info,
  485. int wait)
  486. {
  487. struct call_data_struct data;
  488. cpumask_t allbutself;
  489. int cpus;
  490. /* Can deadlock when called with interrupts disabled */
  491. WARN_ON(irqs_disabled());
  492. /* Holding any lock stops cpus from going down. */
  493. spin_lock(&call_lock);
  494. allbutself = cpu_online_map;
  495. cpu_clear(smp_processor_id(), allbutself);
  496. cpus_and(mask, mask, allbutself);
  497. cpus = cpus_weight(mask);
  498. if (!cpus) {
  499. spin_unlock(&call_lock);
  500. return 0;
  501. }
  502. data.func = func;
  503. data.info = info;
  504. atomic_set(&data.started, 0);
  505. data.wait = wait;
  506. if (wait)
  507. atomic_set(&data.finished, 0);
  508. call_data = &data;
  509. wmb();
  510. /* Send a message to other CPUs */
  511. if (cpus_equal(mask, allbutself))
  512. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  513. else
  514. send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  515. /* Wait for response */
  516. while (atomic_read(&data.started) != cpus)
  517. cpu_relax();
  518. if (wait)
  519. while (atomic_read(&data.finished) != cpus)
  520. cpu_relax();
  521. spin_unlock(&call_lock);
  522. return 0;
  523. }
  524. static void stop_this_cpu (void * dummy)
  525. {
  526. local_irq_disable();
  527. /*
  528. * Remove this CPU:
  529. */
  530. cpu_clear(smp_processor_id(), cpu_online_map);
  531. disable_local_APIC();
  532. if (hlt_works(smp_processor_id()))
  533. for(;;) halt();
  534. for (;;);
  535. }
  536. /*
  537. * this function calls the 'stop' function on all other CPUs in the system.
  538. */
  539. static void native_smp_send_stop(void)
  540. {
  541. int nolock;
  542. unsigned long flags;
  543. if (reboot_force)
  544. return;
  545. /* Don't deadlock on the call lock in panic */
  546. nolock = !spin_trylock(&call_lock);
  547. local_irq_save(flags);
  548. __smp_call_function(stop_this_cpu, NULL, 0, 0);
  549. if (!nolock)
  550. spin_unlock(&call_lock);
  551. disable_local_APIC();
  552. local_irq_restore(flags);
  553. }
  554. /*
  555. * Reschedule call back. Nothing to do,
  556. * all the work is done automatically when
  557. * we return from the interrupt.
  558. */
  559. void smp_reschedule_interrupt(struct pt_regs *regs)
  560. {
  561. ack_APIC_irq();
  562. __get_cpu_var(irq_stat).irq_resched_count++;
  563. }
  564. void smp_call_function_interrupt(struct pt_regs *regs)
  565. {
  566. void (*func) (void *info) = call_data->func;
  567. void *info = call_data->info;
  568. int wait = call_data->wait;
  569. ack_APIC_irq();
  570. /*
  571. * Notify initiating CPU that I've grabbed the data and am
  572. * about to execute the function
  573. */
  574. mb();
  575. atomic_inc(&call_data->started);
  576. /*
  577. * At this point the info structure may be out of scope unless wait==1
  578. */
  579. irq_enter();
  580. (*func)(info);
  581. __get_cpu_var(irq_stat).irq_call_count++;
  582. irq_exit();
  583. if (wait) {
  584. mb();
  585. atomic_inc(&call_data->finished);
  586. }
  587. }
  588. static int convert_apicid_to_cpu(int apic_id)
  589. {
  590. int i;
  591. for_each_possible_cpu(i) {
  592. if (per_cpu(x86_cpu_to_apicid, i) == apic_id)
  593. return i;
  594. }
  595. return -1;
  596. }
  597. int safe_smp_processor_id(void)
  598. {
  599. int apicid, cpuid;
  600. if (!boot_cpu_has(X86_FEATURE_APIC))
  601. return 0;
  602. apicid = hard_smp_processor_id();
  603. if (apicid == BAD_APICID)
  604. return 0;
  605. cpuid = convert_apicid_to_cpu(apicid);
  606. return cpuid >= 0 ? cpuid : 0;
  607. }
  608. struct smp_ops smp_ops = {
  609. .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
  610. .smp_prepare_cpus = native_smp_prepare_cpus,
  611. .cpu_up = native_cpu_up,
  612. .smp_cpus_done = native_smp_cpus_done,
  613. .smp_send_stop = native_smp_send_stop,
  614. .smp_send_reschedule = native_smp_send_reschedule,
  615. .smp_call_function_mask = native_smp_call_function_mask,
  616. };
  617. EXPORT_SYMBOL_GPL(smp_ops);