ctree.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  22. *root, struct btrfs_path *path, int level);
  23. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_key *ins_key,
  25. struct btrfs_path *path, int data_size);
  26. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct buffer_head *dst, struct buffer_head
  28. *src);
  29. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  30. btrfs_root *root, struct buffer_head *dst_buf,
  31. struct buffer_head *src_buf);
  32. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  33. struct btrfs_path *path, int level, int slot);
  34. inline void btrfs_init_path(struct btrfs_path *p)
  35. {
  36. memset(p, 0, sizeof(*p));
  37. }
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. btrfs_init_path(path);
  44. return path;
  45. }
  46. void btrfs_free_path(struct btrfs_path *p)
  47. {
  48. btrfs_release_path(NULL, p);
  49. kmem_cache_free(btrfs_path_cachep, p);
  50. }
  51. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (!p->nodes[i])
  56. break;
  57. btrfs_block_release(root, p->nodes[i]);
  58. }
  59. memset(p, 0, sizeof(*p));
  60. }
  61. static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  62. *root, struct buffer_head *buf, struct buffer_head
  63. *parent, int parent_slot, struct buffer_head
  64. **cow_ret, u64 search_start, u64 empty_size)
  65. {
  66. struct buffer_head *cow;
  67. struct btrfs_node *cow_node;
  68. int ret = 0;
  69. int different_trans = 0;
  70. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  71. WARN_ON(!buffer_uptodate(buf));
  72. cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
  73. if (IS_ERR(cow))
  74. return PTR_ERR(cow);
  75. cow_node = btrfs_buffer_node(cow);
  76. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  77. WARN_ON(1);
  78. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  79. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  80. btrfs_set_header_generation(&cow_node->header, trans->transid);
  81. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  82. WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
  83. trans->transid);
  84. if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
  85. trans->transid) {
  86. different_trans = 1;
  87. ret = btrfs_inc_ref(trans, root, buf);
  88. if (ret)
  89. return ret;
  90. } else {
  91. clean_tree_block(trans, root, buf);
  92. }
  93. if (buf == root->node) {
  94. root->node = cow;
  95. get_bh(cow);
  96. if (buf != root->commit_root) {
  97. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  98. }
  99. btrfs_block_release(root, buf);
  100. } else {
  101. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  102. bh_blocknr(cow));
  103. btrfs_mark_buffer_dirty(parent);
  104. WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
  105. trans->transid);
  106. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  107. }
  108. btrfs_block_release(root, buf);
  109. btrfs_mark_buffer_dirty(cow);
  110. *cow_ret = cow;
  111. return 0;
  112. }
  113. int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  114. *root, struct buffer_head *buf, struct buffer_head
  115. *parent, int parent_slot, struct buffer_head
  116. **cow_ret)
  117. {
  118. u64 search_start;
  119. if (trans->transaction != root->fs_info->running_transaction) {
  120. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  121. root->fs_info->running_transaction->transid);
  122. WARN_ON(1);
  123. }
  124. if (trans->transid != root->fs_info->generation) {
  125. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  126. root->fs_info->generation);
  127. WARN_ON(1);
  128. }
  129. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  130. trans->transid) {
  131. *cow_ret = buf;
  132. return 0;
  133. }
  134. search_start = bh_blocknr(buf) & ~((u64)65535);
  135. return __btrfs_cow_block(trans, root, buf, parent,
  136. parent_slot, cow_ret, search_start, 0);
  137. }
  138. static int close_blocks(u64 blocknr, u64 other)
  139. {
  140. if (blocknr < other && other - blocknr < 8)
  141. return 1;
  142. if (blocknr > other && blocknr - other < 8)
  143. return 1;
  144. return 0;
  145. }
  146. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  147. struct btrfs_root *root, struct buffer_head *parent,
  148. int cache_only, u64 *last_ret)
  149. {
  150. struct btrfs_node *parent_node;
  151. struct buffer_head *cur_bh;
  152. struct buffer_head *tmp_bh;
  153. u64 blocknr;
  154. u64 search_start = *last_ret;
  155. u64 last_block = 0;
  156. u64 other;
  157. u32 parent_nritems;
  158. int start_slot;
  159. int end_slot;
  160. int i;
  161. int err = 0;
  162. int parent_level;
  163. if (trans->transaction != root->fs_info->running_transaction) {
  164. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  165. root->fs_info->running_transaction->transid);
  166. WARN_ON(1);
  167. }
  168. if (trans->transid != root->fs_info->generation) {
  169. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  170. root->fs_info->generation);
  171. WARN_ON(1);
  172. }
  173. parent_node = btrfs_buffer_node(parent);
  174. parent_nritems = btrfs_header_nritems(&parent_node->header);
  175. parent_level = btrfs_header_level(&parent_node->header);
  176. start_slot = 0;
  177. end_slot = parent_nritems;
  178. if (parent_nritems == 1)
  179. return 0;
  180. for (i = start_slot; i < end_slot; i++) {
  181. int close = 1;
  182. blocknr = btrfs_node_blockptr(parent_node, i);
  183. if (last_block == 0)
  184. last_block = blocknr;
  185. if (i > 0) {
  186. other = btrfs_node_blockptr(parent_node, i - 1);
  187. close = close_blocks(blocknr, other);
  188. }
  189. if (close && i < end_slot - 1) {
  190. other = btrfs_node_blockptr(parent_node, i + 1);
  191. close = close_blocks(blocknr, other);
  192. }
  193. if (close) {
  194. last_block = blocknr;
  195. continue;
  196. }
  197. cur_bh = btrfs_find_tree_block(root, blocknr);
  198. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  199. buffer_locked(cur_bh) || !buffer_defrag(cur_bh)) {
  200. if (cache_only) {
  201. brelse(cur_bh);
  202. continue;
  203. }
  204. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  205. buffer_locked(cur_bh)) {
  206. brelse(cur_bh);
  207. cur_bh = read_tree_block(root, blocknr);
  208. }
  209. }
  210. if (search_start == 0)
  211. search_start = last_block & ~((u64)65535);
  212. err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
  213. &tmp_bh, search_start,
  214. min(8, end_slot - i));
  215. if (err)
  216. break;
  217. search_start = bh_blocknr(tmp_bh);
  218. *last_ret = search_start;
  219. if (parent_level == 1)
  220. clear_buffer_defrag(tmp_bh);
  221. brelse(tmp_bh);
  222. }
  223. return err;
  224. }
  225. /*
  226. * The leaf data grows from end-to-front in the node.
  227. * this returns the address of the start of the last item,
  228. * which is the stop of the leaf data stack
  229. */
  230. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  231. struct btrfs_leaf *leaf)
  232. {
  233. u32 nr = btrfs_header_nritems(&leaf->header);
  234. if (nr == 0)
  235. return BTRFS_LEAF_DATA_SIZE(root);
  236. return btrfs_item_offset(leaf->items + nr - 1);
  237. }
  238. /*
  239. * compare two keys in a memcmp fashion
  240. */
  241. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  242. {
  243. struct btrfs_key k1;
  244. btrfs_disk_key_to_cpu(&k1, disk);
  245. if (k1.objectid > k2->objectid)
  246. return 1;
  247. if (k1.objectid < k2->objectid)
  248. return -1;
  249. if (k1.flags > k2->flags)
  250. return 1;
  251. if (k1.flags < k2->flags)
  252. return -1;
  253. if (k1.offset > k2->offset)
  254. return 1;
  255. if (k1.offset < k2->offset)
  256. return -1;
  257. return 0;
  258. }
  259. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  260. int level)
  261. {
  262. struct btrfs_node *parent = NULL;
  263. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  264. int parent_slot;
  265. int slot;
  266. struct btrfs_key cpukey;
  267. u32 nritems = btrfs_header_nritems(&node->header);
  268. if (path->nodes[level + 1])
  269. parent = btrfs_buffer_node(path->nodes[level + 1]);
  270. slot = path->slots[level];
  271. BUG_ON(nritems == 0);
  272. if (parent) {
  273. struct btrfs_disk_key *parent_key;
  274. parent_slot = path->slots[level + 1];
  275. parent_key = &parent->ptrs[parent_slot].key;
  276. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  277. sizeof(struct btrfs_disk_key)));
  278. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  279. btrfs_header_blocknr(&node->header));
  280. }
  281. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  282. if (slot != 0) {
  283. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  284. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  285. }
  286. if (slot < nritems - 1) {
  287. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  288. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  289. }
  290. return 0;
  291. }
  292. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  293. int level)
  294. {
  295. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  296. struct btrfs_node *parent = NULL;
  297. int parent_slot;
  298. int slot = path->slots[0];
  299. struct btrfs_key cpukey;
  300. u32 nritems = btrfs_header_nritems(&leaf->header);
  301. if (path->nodes[level + 1])
  302. parent = btrfs_buffer_node(path->nodes[level + 1]);
  303. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  304. if (nritems == 0)
  305. return 0;
  306. if (parent) {
  307. struct btrfs_disk_key *parent_key;
  308. parent_slot = path->slots[level + 1];
  309. parent_key = &parent->ptrs[parent_slot].key;
  310. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  311. sizeof(struct btrfs_disk_key)));
  312. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  313. btrfs_header_blocknr(&leaf->header));
  314. }
  315. if (slot != 0) {
  316. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  317. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  318. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  319. btrfs_item_end(leaf->items + slot));
  320. }
  321. if (slot < nritems - 1) {
  322. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  323. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  324. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  325. btrfs_item_end(leaf->items + slot + 1));
  326. }
  327. BUG_ON(btrfs_item_offset(leaf->items) +
  328. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  329. return 0;
  330. }
  331. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  332. int level)
  333. {
  334. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  335. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  336. sizeof(node->header.fsid)))
  337. BUG();
  338. if (level == 0)
  339. return check_leaf(root, path, level);
  340. return check_node(root, path, level);
  341. }
  342. /*
  343. * search for key in the array p. items p are item_size apart
  344. * and there are 'max' items in p
  345. * the slot in the array is returned via slot, and it points to
  346. * the place where you would insert key if it is not found in
  347. * the array.
  348. *
  349. * slot may point to max if the key is bigger than all of the keys
  350. */
  351. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  352. int max, int *slot)
  353. {
  354. int low = 0;
  355. int high = max;
  356. int mid;
  357. int ret;
  358. struct btrfs_disk_key *tmp;
  359. while(low < high) {
  360. mid = (low + high) / 2;
  361. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  362. ret = comp_keys(tmp, key);
  363. if (ret < 0)
  364. low = mid + 1;
  365. else if (ret > 0)
  366. high = mid;
  367. else {
  368. *slot = mid;
  369. return 0;
  370. }
  371. }
  372. *slot = low;
  373. return 1;
  374. }
  375. /*
  376. * simple bin_search frontend that does the right thing for
  377. * leaves vs nodes
  378. */
  379. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  380. {
  381. if (btrfs_is_leaf(c)) {
  382. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  383. return generic_bin_search((void *)l->items,
  384. sizeof(struct btrfs_item),
  385. key, btrfs_header_nritems(&c->header),
  386. slot);
  387. } else {
  388. return generic_bin_search((void *)c->ptrs,
  389. sizeof(struct btrfs_key_ptr),
  390. key, btrfs_header_nritems(&c->header),
  391. slot);
  392. }
  393. return -1;
  394. }
  395. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  396. struct buffer_head *parent_buf,
  397. int slot)
  398. {
  399. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  400. if (slot < 0)
  401. return NULL;
  402. if (slot >= btrfs_header_nritems(&node->header))
  403. return NULL;
  404. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  405. }
  406. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  407. *root, struct btrfs_path *path, int level)
  408. {
  409. struct buffer_head *right_buf;
  410. struct buffer_head *mid_buf;
  411. struct buffer_head *left_buf;
  412. struct buffer_head *parent_buf = NULL;
  413. struct btrfs_node *right = NULL;
  414. struct btrfs_node *mid;
  415. struct btrfs_node *left = NULL;
  416. struct btrfs_node *parent = NULL;
  417. int ret = 0;
  418. int wret;
  419. int pslot;
  420. int orig_slot = path->slots[level];
  421. int err_on_enospc = 0;
  422. u64 orig_ptr;
  423. if (level == 0)
  424. return 0;
  425. mid_buf = path->nodes[level];
  426. mid = btrfs_buffer_node(mid_buf);
  427. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  428. if (level < BTRFS_MAX_LEVEL - 1)
  429. parent_buf = path->nodes[level + 1];
  430. pslot = path->slots[level + 1];
  431. /*
  432. * deal with the case where there is only one pointer in the root
  433. * by promoting the node below to a root
  434. */
  435. if (!parent_buf) {
  436. struct buffer_head *child;
  437. u64 blocknr = bh_blocknr(mid_buf);
  438. if (btrfs_header_nritems(&mid->header) != 1)
  439. return 0;
  440. /* promote the child to a root */
  441. child = read_node_slot(root, mid_buf, 0);
  442. BUG_ON(!child);
  443. root->node = child;
  444. path->nodes[level] = NULL;
  445. clean_tree_block(trans, root, mid_buf);
  446. wait_on_buffer(mid_buf);
  447. /* once for the path */
  448. btrfs_block_release(root, mid_buf);
  449. /* once for the root ptr */
  450. btrfs_block_release(root, mid_buf);
  451. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  452. }
  453. parent = btrfs_buffer_node(parent_buf);
  454. if (btrfs_header_nritems(&mid->header) >
  455. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  456. return 0;
  457. if (btrfs_header_nritems(&mid->header) < 2)
  458. err_on_enospc = 1;
  459. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  460. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  461. /* first, try to make some room in the middle buffer */
  462. if (left_buf) {
  463. wret = btrfs_cow_block(trans, root, left_buf,
  464. parent_buf, pslot - 1, &left_buf);
  465. if (wret) {
  466. ret = wret;
  467. goto enospc;
  468. }
  469. left = btrfs_buffer_node(left_buf);
  470. orig_slot += btrfs_header_nritems(&left->header);
  471. wret = push_node_left(trans, root, left_buf, mid_buf);
  472. if (wret < 0)
  473. ret = wret;
  474. if (btrfs_header_nritems(&mid->header) < 2)
  475. err_on_enospc = 1;
  476. }
  477. /*
  478. * then try to empty the right most buffer into the middle
  479. */
  480. if (right_buf) {
  481. wret = btrfs_cow_block(trans, root, right_buf,
  482. parent_buf, pslot + 1, &right_buf);
  483. if (wret) {
  484. ret = wret;
  485. goto enospc;
  486. }
  487. right = btrfs_buffer_node(right_buf);
  488. wret = push_node_left(trans, root, mid_buf, right_buf);
  489. if (wret < 0 && wret != -ENOSPC)
  490. ret = wret;
  491. if (btrfs_header_nritems(&right->header) == 0) {
  492. u64 blocknr = bh_blocknr(right_buf);
  493. clean_tree_block(trans, root, right_buf);
  494. wait_on_buffer(right_buf);
  495. btrfs_block_release(root, right_buf);
  496. right_buf = NULL;
  497. right = NULL;
  498. wret = del_ptr(trans, root, path, level + 1, pslot +
  499. 1);
  500. if (wret)
  501. ret = wret;
  502. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  503. if (wret)
  504. ret = wret;
  505. } else {
  506. btrfs_memcpy(root, parent,
  507. &parent->ptrs[pslot + 1].key,
  508. &right->ptrs[0].key,
  509. sizeof(struct btrfs_disk_key));
  510. btrfs_mark_buffer_dirty(parent_buf);
  511. }
  512. }
  513. if (btrfs_header_nritems(&mid->header) == 1) {
  514. /*
  515. * we're not allowed to leave a node with one item in the
  516. * tree during a delete. A deletion from lower in the tree
  517. * could try to delete the only pointer in this node.
  518. * So, pull some keys from the left.
  519. * There has to be a left pointer at this point because
  520. * otherwise we would have pulled some pointers from the
  521. * right
  522. */
  523. BUG_ON(!left_buf);
  524. wret = balance_node_right(trans, root, mid_buf, left_buf);
  525. if (wret < 0) {
  526. ret = wret;
  527. goto enospc;
  528. }
  529. BUG_ON(wret == 1);
  530. }
  531. if (btrfs_header_nritems(&mid->header) == 0) {
  532. /* we've managed to empty the middle node, drop it */
  533. u64 blocknr = bh_blocknr(mid_buf);
  534. clean_tree_block(trans, root, mid_buf);
  535. wait_on_buffer(mid_buf);
  536. btrfs_block_release(root, mid_buf);
  537. mid_buf = NULL;
  538. mid = NULL;
  539. wret = del_ptr(trans, root, path, level + 1, pslot);
  540. if (wret)
  541. ret = wret;
  542. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  543. if (wret)
  544. ret = wret;
  545. } else {
  546. /* update the parent key to reflect our changes */
  547. btrfs_memcpy(root, parent,
  548. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  549. sizeof(struct btrfs_disk_key));
  550. btrfs_mark_buffer_dirty(parent_buf);
  551. }
  552. /* update the path */
  553. if (left_buf) {
  554. if (btrfs_header_nritems(&left->header) > orig_slot) {
  555. get_bh(left_buf);
  556. path->nodes[level] = left_buf;
  557. path->slots[level + 1] -= 1;
  558. path->slots[level] = orig_slot;
  559. if (mid_buf)
  560. btrfs_block_release(root, mid_buf);
  561. } else {
  562. orig_slot -= btrfs_header_nritems(&left->header);
  563. path->slots[level] = orig_slot;
  564. }
  565. }
  566. /* double check we haven't messed things up */
  567. check_block(root, path, level);
  568. if (orig_ptr !=
  569. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  570. path->slots[level]))
  571. BUG();
  572. enospc:
  573. if (right_buf)
  574. btrfs_block_release(root, right_buf);
  575. if (left_buf)
  576. btrfs_block_release(root, left_buf);
  577. return ret;
  578. }
  579. /* returns zero if the push worked, non-zero otherwise */
  580. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  581. struct btrfs_root *root,
  582. struct btrfs_path *path, int level)
  583. {
  584. struct buffer_head *right_buf;
  585. struct buffer_head *mid_buf;
  586. struct buffer_head *left_buf;
  587. struct buffer_head *parent_buf = NULL;
  588. struct btrfs_node *right = NULL;
  589. struct btrfs_node *mid;
  590. struct btrfs_node *left = NULL;
  591. struct btrfs_node *parent = NULL;
  592. int ret = 0;
  593. int wret;
  594. int pslot;
  595. int orig_slot = path->slots[level];
  596. u64 orig_ptr;
  597. if (level == 0)
  598. return 1;
  599. mid_buf = path->nodes[level];
  600. mid = btrfs_buffer_node(mid_buf);
  601. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  602. if (level < BTRFS_MAX_LEVEL - 1)
  603. parent_buf = path->nodes[level + 1];
  604. pslot = path->slots[level + 1];
  605. if (!parent_buf)
  606. return 1;
  607. parent = btrfs_buffer_node(parent_buf);
  608. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  609. /* first, try to make some room in the middle buffer */
  610. if (left_buf) {
  611. u32 left_nr;
  612. left = btrfs_buffer_node(left_buf);
  613. left_nr = btrfs_header_nritems(&left->header);
  614. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  615. wret = 1;
  616. } else {
  617. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  618. pslot - 1, &left_buf);
  619. if (ret)
  620. wret = 1;
  621. else {
  622. left = btrfs_buffer_node(left_buf);
  623. wret = push_node_left(trans, root,
  624. left_buf, mid_buf);
  625. }
  626. }
  627. if (wret < 0)
  628. ret = wret;
  629. if (wret == 0) {
  630. orig_slot += left_nr;
  631. btrfs_memcpy(root, parent,
  632. &parent->ptrs[pslot].key,
  633. &mid->ptrs[0].key,
  634. sizeof(struct btrfs_disk_key));
  635. btrfs_mark_buffer_dirty(parent_buf);
  636. if (btrfs_header_nritems(&left->header) > orig_slot) {
  637. path->nodes[level] = left_buf;
  638. path->slots[level + 1] -= 1;
  639. path->slots[level] = orig_slot;
  640. btrfs_block_release(root, mid_buf);
  641. } else {
  642. orig_slot -=
  643. btrfs_header_nritems(&left->header);
  644. path->slots[level] = orig_slot;
  645. btrfs_block_release(root, left_buf);
  646. }
  647. check_node(root, path, level);
  648. return 0;
  649. }
  650. btrfs_block_release(root, left_buf);
  651. }
  652. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  653. /*
  654. * then try to empty the right most buffer into the middle
  655. */
  656. if (right_buf) {
  657. u32 right_nr;
  658. right = btrfs_buffer_node(right_buf);
  659. right_nr = btrfs_header_nritems(&right->header);
  660. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  661. wret = 1;
  662. } else {
  663. ret = btrfs_cow_block(trans, root, right_buf,
  664. parent_buf, pslot + 1,
  665. &right_buf);
  666. if (ret)
  667. wret = 1;
  668. else {
  669. right = btrfs_buffer_node(right_buf);
  670. wret = balance_node_right(trans, root,
  671. right_buf, mid_buf);
  672. }
  673. }
  674. if (wret < 0)
  675. ret = wret;
  676. if (wret == 0) {
  677. btrfs_memcpy(root, parent,
  678. &parent->ptrs[pslot + 1].key,
  679. &right->ptrs[0].key,
  680. sizeof(struct btrfs_disk_key));
  681. btrfs_mark_buffer_dirty(parent_buf);
  682. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  683. path->nodes[level] = right_buf;
  684. path->slots[level + 1] += 1;
  685. path->slots[level] = orig_slot -
  686. btrfs_header_nritems(&mid->header);
  687. btrfs_block_release(root, mid_buf);
  688. } else {
  689. btrfs_block_release(root, right_buf);
  690. }
  691. check_node(root, path, level);
  692. return 0;
  693. }
  694. btrfs_block_release(root, right_buf);
  695. }
  696. check_node(root, path, level);
  697. return 1;
  698. }
  699. /*
  700. * readahead one full node of leaves
  701. */
  702. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  703. int level, int slot)
  704. {
  705. struct btrfs_node *node;
  706. int i;
  707. u32 nritems;
  708. u64 item_objectid;
  709. u64 blocknr;
  710. u64 search;
  711. u64 cluster_start;
  712. int ret;
  713. int nread = 0;
  714. int direction = path->reada;
  715. struct radix_tree_root found;
  716. unsigned long gang[8];
  717. struct buffer_head *bh;
  718. if (level == 0)
  719. return;
  720. if (!path->nodes[level])
  721. return;
  722. node = btrfs_buffer_node(path->nodes[level]);
  723. search = btrfs_node_blockptr(node, slot);
  724. bh = btrfs_find_tree_block(root, search);
  725. if (bh) {
  726. brelse(bh);
  727. return;
  728. }
  729. init_bit_radix(&found);
  730. nritems = btrfs_header_nritems(&node->header);
  731. for (i = slot; i < nritems; i++) {
  732. item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
  733. blocknr = btrfs_node_blockptr(node, i);
  734. set_radix_bit(&found, blocknr);
  735. }
  736. if (direction > 0) {
  737. cluster_start = search - 4;
  738. if (cluster_start > search)
  739. cluster_start = 0;
  740. } else
  741. cluster_start = search + 4;
  742. while(1) {
  743. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  744. if (!ret)
  745. break;
  746. for (i = 0; i < ret; i++) {
  747. blocknr = gang[i];
  748. clear_radix_bit(&found, blocknr);
  749. if (nread > 32)
  750. continue;
  751. if (close_blocks(cluster_start, blocknr)) {
  752. readahead_tree_block(root, blocknr);
  753. nread++;
  754. cluster_start = blocknr;
  755. }
  756. }
  757. }
  758. }
  759. /*
  760. * look for key in the tree. path is filled in with nodes along the way
  761. * if key is found, we return zero and you can find the item in the leaf
  762. * level of the path (level 0)
  763. *
  764. * If the key isn't found, the path points to the slot where it should
  765. * be inserted, and 1 is returned. If there are other errors during the
  766. * search a negative error number is returned.
  767. *
  768. * if ins_len > 0, nodes and leaves will be split as we walk down the
  769. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  770. * possible)
  771. */
  772. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  773. *root, struct btrfs_key *key, struct btrfs_path *p, int
  774. ins_len, int cow)
  775. {
  776. struct buffer_head *b;
  777. struct buffer_head *cow_buf;
  778. struct btrfs_node *c;
  779. u64 blocknr;
  780. int slot;
  781. int ret;
  782. int level;
  783. int should_reada = p->reada;
  784. u8 lowest_level = 0;
  785. lowest_level = p->lowest_level;
  786. WARN_ON(lowest_level && ins_len);
  787. WARN_ON(p->nodes[0] != NULL);
  788. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  789. again:
  790. b = root->node;
  791. get_bh(b);
  792. while (b) {
  793. c = btrfs_buffer_node(b);
  794. level = btrfs_header_level(&c->header);
  795. if (cow) {
  796. int wret;
  797. wret = btrfs_cow_block(trans, root, b,
  798. p->nodes[level + 1],
  799. p->slots[level + 1],
  800. &cow_buf);
  801. if (wret) {
  802. btrfs_block_release(root, cow_buf);
  803. return wret;
  804. }
  805. b = cow_buf;
  806. c = btrfs_buffer_node(b);
  807. }
  808. BUG_ON(!cow && ins_len);
  809. if (level != btrfs_header_level(&c->header))
  810. WARN_ON(1);
  811. level = btrfs_header_level(&c->header);
  812. p->nodes[level] = b;
  813. ret = check_block(root, p, level);
  814. if (ret)
  815. return -1;
  816. ret = bin_search(c, key, &slot);
  817. if (!btrfs_is_leaf(c)) {
  818. if (ret && slot > 0)
  819. slot -= 1;
  820. p->slots[level] = slot;
  821. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  822. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  823. int sret = split_node(trans, root, p, level);
  824. BUG_ON(sret > 0);
  825. if (sret)
  826. return sret;
  827. b = p->nodes[level];
  828. c = btrfs_buffer_node(b);
  829. slot = p->slots[level];
  830. } else if (ins_len < 0) {
  831. int sret = balance_level(trans, root, p,
  832. level);
  833. if (sret)
  834. return sret;
  835. b = p->nodes[level];
  836. if (!b)
  837. goto again;
  838. c = btrfs_buffer_node(b);
  839. slot = p->slots[level];
  840. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  841. }
  842. /* this is only true while dropping a snapshot */
  843. if (level == lowest_level)
  844. break;
  845. blocknr = btrfs_node_blockptr(c, slot);
  846. if (should_reada)
  847. reada_for_search(root, p, level, slot);
  848. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  849. } else {
  850. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  851. p->slots[level] = slot;
  852. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  853. sizeof(struct btrfs_item) + ins_len) {
  854. int sret = split_leaf(trans, root, key,
  855. p, ins_len);
  856. BUG_ON(sret > 0);
  857. if (sret)
  858. return sret;
  859. }
  860. return ret;
  861. }
  862. }
  863. return 1;
  864. }
  865. /*
  866. * adjust the pointers going up the tree, starting at level
  867. * making sure the right key of each node is points to 'key'.
  868. * This is used after shifting pointers to the left, so it stops
  869. * fixing up pointers when a given leaf/node is not in slot 0 of the
  870. * higher levels
  871. *
  872. * If this fails to write a tree block, it returns -1, but continues
  873. * fixing up the blocks in ram so the tree is consistent.
  874. */
  875. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  876. *root, struct btrfs_path *path, struct btrfs_disk_key
  877. *key, int level)
  878. {
  879. int i;
  880. int ret = 0;
  881. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  882. struct btrfs_node *t;
  883. int tslot = path->slots[i];
  884. if (!path->nodes[i])
  885. break;
  886. t = btrfs_buffer_node(path->nodes[i]);
  887. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  888. btrfs_mark_buffer_dirty(path->nodes[i]);
  889. if (tslot != 0)
  890. break;
  891. }
  892. return ret;
  893. }
  894. /*
  895. * try to push data from one node into the next node left in the
  896. * tree.
  897. *
  898. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  899. * error, and > 0 if there was no room in the left hand block.
  900. */
  901. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  902. *root, struct buffer_head *dst_buf, struct
  903. buffer_head *src_buf)
  904. {
  905. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  906. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  907. int push_items = 0;
  908. int src_nritems;
  909. int dst_nritems;
  910. int ret = 0;
  911. src_nritems = btrfs_header_nritems(&src->header);
  912. dst_nritems = btrfs_header_nritems(&dst->header);
  913. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  914. if (push_items <= 0) {
  915. return 1;
  916. }
  917. if (src_nritems < push_items)
  918. push_items = src_nritems;
  919. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  920. push_items * sizeof(struct btrfs_key_ptr));
  921. if (push_items < src_nritems) {
  922. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  923. (src_nritems - push_items) *
  924. sizeof(struct btrfs_key_ptr));
  925. }
  926. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  927. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  928. btrfs_mark_buffer_dirty(src_buf);
  929. btrfs_mark_buffer_dirty(dst_buf);
  930. return ret;
  931. }
  932. /*
  933. * try to push data from one node into the next node right in the
  934. * tree.
  935. *
  936. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  937. * error, and > 0 if there was no room in the right hand block.
  938. *
  939. * this will only push up to 1/2 the contents of the left node over
  940. */
  941. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  942. btrfs_root *root, struct buffer_head *dst_buf,
  943. struct buffer_head *src_buf)
  944. {
  945. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  946. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  947. int push_items = 0;
  948. int max_push;
  949. int src_nritems;
  950. int dst_nritems;
  951. int ret = 0;
  952. src_nritems = btrfs_header_nritems(&src->header);
  953. dst_nritems = btrfs_header_nritems(&dst->header);
  954. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  955. if (push_items <= 0) {
  956. return 1;
  957. }
  958. max_push = src_nritems / 2 + 1;
  959. /* don't try to empty the node */
  960. if (max_push > src_nritems)
  961. return 1;
  962. if (max_push < push_items)
  963. push_items = max_push;
  964. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  965. dst_nritems * sizeof(struct btrfs_key_ptr));
  966. btrfs_memcpy(root, dst, dst->ptrs,
  967. src->ptrs + src_nritems - push_items,
  968. push_items * sizeof(struct btrfs_key_ptr));
  969. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  970. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  971. btrfs_mark_buffer_dirty(src_buf);
  972. btrfs_mark_buffer_dirty(dst_buf);
  973. return ret;
  974. }
  975. /*
  976. * helper function to insert a new root level in the tree.
  977. * A new node is allocated, and a single item is inserted to
  978. * point to the existing root
  979. *
  980. * returns zero on success or < 0 on failure.
  981. */
  982. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  983. *root, struct btrfs_path *path, int level)
  984. {
  985. struct buffer_head *t;
  986. struct btrfs_node *lower;
  987. struct btrfs_node *c;
  988. struct btrfs_disk_key *lower_key;
  989. BUG_ON(path->nodes[level]);
  990. BUG_ON(path->nodes[level-1] != root->node);
  991. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
  992. if (IS_ERR(t))
  993. return PTR_ERR(t);
  994. c = btrfs_buffer_node(t);
  995. memset(c, 0, root->blocksize);
  996. btrfs_set_header_nritems(&c->header, 1);
  997. btrfs_set_header_level(&c->header, level);
  998. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  999. btrfs_set_header_generation(&c->header, trans->transid);
  1000. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  1001. lower = btrfs_buffer_node(path->nodes[level-1]);
  1002. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  1003. sizeof(c->header.fsid));
  1004. if (btrfs_is_leaf(lower))
  1005. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  1006. else
  1007. lower_key = &lower->ptrs[0].key;
  1008. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  1009. sizeof(struct btrfs_disk_key));
  1010. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  1011. btrfs_mark_buffer_dirty(t);
  1012. /* the super has an extra ref to root->node */
  1013. btrfs_block_release(root, root->node);
  1014. root->node = t;
  1015. get_bh(t);
  1016. path->nodes[level] = t;
  1017. path->slots[level] = 0;
  1018. return 0;
  1019. }
  1020. /*
  1021. * worker function to insert a single pointer in a node.
  1022. * the node should have enough room for the pointer already
  1023. *
  1024. * slot and level indicate where you want the key to go, and
  1025. * blocknr is the block the key points to.
  1026. *
  1027. * returns zero on success and < 0 on any error
  1028. */
  1029. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1030. *root, struct btrfs_path *path, struct btrfs_disk_key
  1031. *key, u64 blocknr, int slot, int level)
  1032. {
  1033. struct btrfs_node *lower;
  1034. int nritems;
  1035. BUG_ON(!path->nodes[level]);
  1036. lower = btrfs_buffer_node(path->nodes[level]);
  1037. nritems = btrfs_header_nritems(&lower->header);
  1038. if (slot > nritems)
  1039. BUG();
  1040. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1041. BUG();
  1042. if (slot != nritems) {
  1043. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  1044. lower->ptrs + slot,
  1045. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1046. }
  1047. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  1048. key, sizeof(struct btrfs_disk_key));
  1049. btrfs_set_node_blockptr(lower, slot, blocknr);
  1050. btrfs_set_header_nritems(&lower->header, nritems + 1);
  1051. btrfs_mark_buffer_dirty(path->nodes[level]);
  1052. check_node(root, path, level);
  1053. return 0;
  1054. }
  1055. /*
  1056. * split the node at the specified level in path in two.
  1057. * The path is corrected to point to the appropriate node after the split
  1058. *
  1059. * Before splitting this tries to make some room in the node by pushing
  1060. * left and right, if either one works, it returns right away.
  1061. *
  1062. * returns 0 on success and < 0 on failure
  1063. */
  1064. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1065. *root, struct btrfs_path *path, int level)
  1066. {
  1067. struct buffer_head *t;
  1068. struct btrfs_node *c;
  1069. struct buffer_head *split_buffer;
  1070. struct btrfs_node *split;
  1071. int mid;
  1072. int ret;
  1073. int wret;
  1074. u32 c_nritems;
  1075. t = path->nodes[level];
  1076. c = btrfs_buffer_node(t);
  1077. if (t == root->node) {
  1078. /* trying to split the root, lets make a new one */
  1079. ret = insert_new_root(trans, root, path, level + 1);
  1080. if (ret)
  1081. return ret;
  1082. } else {
  1083. ret = push_nodes_for_insert(trans, root, path, level);
  1084. t = path->nodes[level];
  1085. c = btrfs_buffer_node(t);
  1086. if (!ret &&
  1087. btrfs_header_nritems(&c->header) <
  1088. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1089. return 0;
  1090. if (ret < 0)
  1091. return ret;
  1092. }
  1093. c_nritems = btrfs_header_nritems(&c->header);
  1094. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
  1095. if (IS_ERR(split_buffer))
  1096. return PTR_ERR(split_buffer);
  1097. split = btrfs_buffer_node(split_buffer);
  1098. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  1099. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  1100. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  1101. btrfs_set_header_generation(&split->header, trans->transid);
  1102. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  1103. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  1104. sizeof(split->header.fsid));
  1105. mid = (c_nritems + 1) / 2;
  1106. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  1107. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1108. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  1109. btrfs_set_header_nritems(&c->header, mid);
  1110. ret = 0;
  1111. btrfs_mark_buffer_dirty(t);
  1112. btrfs_mark_buffer_dirty(split_buffer);
  1113. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  1114. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  1115. level + 1);
  1116. if (wret)
  1117. ret = wret;
  1118. if (path->slots[level] >= mid) {
  1119. path->slots[level] -= mid;
  1120. btrfs_block_release(root, t);
  1121. path->nodes[level] = split_buffer;
  1122. path->slots[level + 1] += 1;
  1123. } else {
  1124. btrfs_block_release(root, split_buffer);
  1125. }
  1126. return ret;
  1127. }
  1128. /*
  1129. * how many bytes are required to store the items in a leaf. start
  1130. * and nr indicate which items in the leaf to check. This totals up the
  1131. * space used both by the item structs and the item data
  1132. */
  1133. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  1134. {
  1135. int data_len;
  1136. int nritems = btrfs_header_nritems(&l->header);
  1137. int end = min(nritems, start + nr) - 1;
  1138. if (!nr)
  1139. return 0;
  1140. data_len = btrfs_item_end(l->items + start);
  1141. data_len = data_len - btrfs_item_offset(l->items + end);
  1142. data_len += sizeof(struct btrfs_item) * nr;
  1143. WARN_ON(data_len < 0);
  1144. return data_len;
  1145. }
  1146. /*
  1147. * The space between the end of the leaf items and
  1148. * the start of the leaf data. IOW, how much room
  1149. * the leaf has left for both items and data
  1150. */
  1151. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  1152. {
  1153. int nritems = btrfs_header_nritems(&leaf->header);
  1154. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1155. }
  1156. /*
  1157. * push some data in the path leaf to the right, trying to free up at
  1158. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1159. *
  1160. * returns 1 if the push failed because the other node didn't have enough
  1161. * room, 0 if everything worked out and < 0 if there were major errors.
  1162. */
  1163. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1164. *root, struct btrfs_path *path, int data_size)
  1165. {
  1166. struct buffer_head *left_buf = path->nodes[0];
  1167. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  1168. struct btrfs_leaf *right;
  1169. struct buffer_head *right_buf;
  1170. struct buffer_head *upper;
  1171. struct btrfs_node *upper_node;
  1172. int slot;
  1173. int i;
  1174. int free_space;
  1175. int push_space = 0;
  1176. int push_items = 0;
  1177. struct btrfs_item *item;
  1178. u32 left_nritems;
  1179. u32 right_nritems;
  1180. int ret;
  1181. slot = path->slots[1];
  1182. if (!path->nodes[1]) {
  1183. return 1;
  1184. }
  1185. upper = path->nodes[1];
  1186. upper_node = btrfs_buffer_node(upper);
  1187. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1188. return 1;
  1189. }
  1190. right_buf = read_tree_block(root,
  1191. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1192. right = btrfs_buffer_leaf(right_buf);
  1193. free_space = btrfs_leaf_free_space(root, right);
  1194. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1195. btrfs_block_release(root, right_buf);
  1196. return 1;
  1197. }
  1198. /* cow and double check */
  1199. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1200. slot + 1, &right_buf);
  1201. if (ret) {
  1202. btrfs_block_release(root, right_buf);
  1203. return 1;
  1204. }
  1205. right = btrfs_buffer_leaf(right_buf);
  1206. free_space = btrfs_leaf_free_space(root, right);
  1207. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1208. btrfs_block_release(root, right_buf);
  1209. return 1;
  1210. }
  1211. left_nritems = btrfs_header_nritems(&left->header);
  1212. if (left_nritems == 0) {
  1213. btrfs_block_release(root, right_buf);
  1214. return 1;
  1215. }
  1216. for (i = left_nritems - 1; i >= 1; i--) {
  1217. item = left->items + i;
  1218. if (path->slots[0] == i)
  1219. push_space += data_size + sizeof(*item);
  1220. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1221. free_space)
  1222. break;
  1223. push_items++;
  1224. push_space += btrfs_item_size(item) + sizeof(*item);
  1225. }
  1226. if (push_items == 0) {
  1227. btrfs_block_release(root, right_buf);
  1228. return 1;
  1229. }
  1230. if (push_items == left_nritems)
  1231. WARN_ON(1);
  1232. right_nritems = btrfs_header_nritems(&right->header);
  1233. /* push left to right */
  1234. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1235. push_space -= leaf_data_end(root, left);
  1236. /* make room in the right data area */
  1237. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1238. leaf_data_end(root, right) - push_space,
  1239. btrfs_leaf_data(right) +
  1240. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1241. leaf_data_end(root, right));
  1242. /* copy from the left data area */
  1243. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1244. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1245. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1246. push_space);
  1247. btrfs_memmove(root, right, right->items + push_items, right->items,
  1248. right_nritems * sizeof(struct btrfs_item));
  1249. /* copy the items from left to right */
  1250. btrfs_memcpy(root, right, right->items, left->items +
  1251. left_nritems - push_items,
  1252. push_items * sizeof(struct btrfs_item));
  1253. /* update the item pointers */
  1254. right_nritems += push_items;
  1255. btrfs_set_header_nritems(&right->header, right_nritems);
  1256. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1257. for (i = 0; i < right_nritems; i++) {
  1258. btrfs_set_item_offset(right->items + i, push_space -
  1259. btrfs_item_size(right->items + i));
  1260. push_space = btrfs_item_offset(right->items + i);
  1261. }
  1262. left_nritems -= push_items;
  1263. btrfs_set_header_nritems(&left->header, left_nritems);
  1264. btrfs_mark_buffer_dirty(left_buf);
  1265. btrfs_mark_buffer_dirty(right_buf);
  1266. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1267. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1268. btrfs_mark_buffer_dirty(upper);
  1269. /* then fixup the leaf pointer in the path */
  1270. if (path->slots[0] >= left_nritems) {
  1271. path->slots[0] -= left_nritems;
  1272. btrfs_block_release(root, path->nodes[0]);
  1273. path->nodes[0] = right_buf;
  1274. path->slots[1] += 1;
  1275. } else {
  1276. btrfs_block_release(root, right_buf);
  1277. }
  1278. if (path->nodes[1])
  1279. check_node(root, path, 1);
  1280. return 0;
  1281. }
  1282. /*
  1283. * push some data in the path leaf to the left, trying to free up at
  1284. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1285. */
  1286. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1287. *root, struct btrfs_path *path, int data_size)
  1288. {
  1289. struct buffer_head *right_buf = path->nodes[0];
  1290. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1291. struct buffer_head *t;
  1292. struct btrfs_leaf *left;
  1293. int slot;
  1294. int i;
  1295. int free_space;
  1296. int push_space = 0;
  1297. int push_items = 0;
  1298. struct btrfs_item *item;
  1299. u32 old_left_nritems;
  1300. int ret = 0;
  1301. int wret;
  1302. slot = path->slots[1];
  1303. if (slot == 0) {
  1304. return 1;
  1305. }
  1306. if (!path->nodes[1]) {
  1307. return 1;
  1308. }
  1309. t = read_tree_block(root,
  1310. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1311. left = btrfs_buffer_leaf(t);
  1312. free_space = btrfs_leaf_free_space(root, left);
  1313. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1314. btrfs_block_release(root, t);
  1315. return 1;
  1316. }
  1317. /* cow and double check */
  1318. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1319. if (ret) {
  1320. /* we hit -ENOSPC, but it isn't fatal here */
  1321. return 1;
  1322. }
  1323. left = btrfs_buffer_leaf(t);
  1324. free_space = btrfs_leaf_free_space(root, left);
  1325. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1326. btrfs_block_release(root, t);
  1327. return 1;
  1328. }
  1329. if (btrfs_header_nritems(&right->header) == 0) {
  1330. btrfs_block_release(root, t);
  1331. return 1;
  1332. }
  1333. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1334. item = right->items + i;
  1335. if (path->slots[0] == i)
  1336. push_space += data_size + sizeof(*item);
  1337. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1338. free_space)
  1339. break;
  1340. push_items++;
  1341. push_space += btrfs_item_size(item) + sizeof(*item);
  1342. }
  1343. if (push_items == 0) {
  1344. btrfs_block_release(root, t);
  1345. return 1;
  1346. }
  1347. if (push_items == btrfs_header_nritems(&right->header))
  1348. WARN_ON(1);
  1349. /* push data from right to left */
  1350. btrfs_memcpy(root, left, left->items +
  1351. btrfs_header_nritems(&left->header),
  1352. right->items, push_items * sizeof(struct btrfs_item));
  1353. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1354. btrfs_item_offset(right->items + push_items -1);
  1355. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1356. leaf_data_end(root, left) - push_space,
  1357. btrfs_leaf_data(right) +
  1358. btrfs_item_offset(right->items + push_items - 1),
  1359. push_space);
  1360. old_left_nritems = btrfs_header_nritems(&left->header);
  1361. BUG_ON(old_left_nritems < 0);
  1362. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1363. u32 ioff = btrfs_item_offset(left->items + i);
  1364. btrfs_set_item_offset(left->items + i, ioff -
  1365. (BTRFS_LEAF_DATA_SIZE(root) -
  1366. btrfs_item_offset(left->items +
  1367. old_left_nritems - 1)));
  1368. }
  1369. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1370. /* fixup right node */
  1371. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1372. leaf_data_end(root, right);
  1373. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1374. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1375. btrfs_leaf_data(right) +
  1376. leaf_data_end(root, right), push_space);
  1377. btrfs_memmove(root, right, right->items, right->items + push_items,
  1378. (btrfs_header_nritems(&right->header) - push_items) *
  1379. sizeof(struct btrfs_item));
  1380. btrfs_set_header_nritems(&right->header,
  1381. btrfs_header_nritems(&right->header) -
  1382. push_items);
  1383. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1384. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1385. btrfs_set_item_offset(right->items + i, push_space -
  1386. btrfs_item_size(right->items + i));
  1387. push_space = btrfs_item_offset(right->items + i);
  1388. }
  1389. btrfs_mark_buffer_dirty(t);
  1390. btrfs_mark_buffer_dirty(right_buf);
  1391. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1392. if (wret)
  1393. ret = wret;
  1394. /* then fixup the leaf pointer in the path */
  1395. if (path->slots[0] < push_items) {
  1396. path->slots[0] += old_left_nritems;
  1397. btrfs_block_release(root, path->nodes[0]);
  1398. path->nodes[0] = t;
  1399. path->slots[1] -= 1;
  1400. } else {
  1401. btrfs_block_release(root, t);
  1402. path->slots[0] -= push_items;
  1403. }
  1404. BUG_ON(path->slots[0] < 0);
  1405. if (path->nodes[1])
  1406. check_node(root, path, 1);
  1407. return ret;
  1408. }
  1409. /*
  1410. * split the path's leaf in two, making sure there is at least data_size
  1411. * available for the resulting leaf level of the path.
  1412. *
  1413. * returns 0 if all went well and < 0 on failure.
  1414. */
  1415. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1416. *root, struct btrfs_key *ins_key,
  1417. struct btrfs_path *path, int data_size)
  1418. {
  1419. struct buffer_head *l_buf;
  1420. struct btrfs_leaf *l;
  1421. u32 nritems;
  1422. int mid;
  1423. int slot;
  1424. struct btrfs_leaf *right;
  1425. struct buffer_head *right_buffer;
  1426. int space_needed = data_size + sizeof(struct btrfs_item);
  1427. int data_copy_size;
  1428. int rt_data_off;
  1429. int i;
  1430. int ret = 0;
  1431. int wret;
  1432. int double_split = 0;
  1433. struct btrfs_disk_key disk_key;
  1434. /* first try to make some room by pushing left and right */
  1435. wret = push_leaf_left(trans, root, path, data_size);
  1436. if (wret < 0)
  1437. return wret;
  1438. if (wret) {
  1439. wret = push_leaf_right(trans, root, path, data_size);
  1440. if (wret < 0)
  1441. return wret;
  1442. }
  1443. l_buf = path->nodes[0];
  1444. l = btrfs_buffer_leaf(l_buf);
  1445. /* did the pushes work? */
  1446. if (btrfs_leaf_free_space(root, l) >=
  1447. sizeof(struct btrfs_item) + data_size)
  1448. return 0;
  1449. if (!path->nodes[1]) {
  1450. ret = insert_new_root(trans, root, path, 1);
  1451. if (ret)
  1452. return ret;
  1453. }
  1454. slot = path->slots[0];
  1455. nritems = btrfs_header_nritems(&l->header);
  1456. mid = (nritems + 1)/ 2;
  1457. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1458. if (IS_ERR(right_buffer))
  1459. return PTR_ERR(right_buffer);
  1460. right = btrfs_buffer_leaf(right_buffer);
  1461. memset(&right->header, 0, sizeof(right->header));
  1462. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1463. btrfs_set_header_generation(&right->header, trans->transid);
  1464. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1465. btrfs_set_header_level(&right->header, 0);
  1466. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1467. sizeof(right->header.fsid));
  1468. if (mid <= slot) {
  1469. if (nritems == 1 ||
  1470. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1471. BTRFS_LEAF_DATA_SIZE(root)) {
  1472. if (slot >= nritems) {
  1473. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1474. btrfs_set_header_nritems(&right->header, 0);
  1475. wret = insert_ptr(trans, root, path,
  1476. &disk_key,
  1477. bh_blocknr(right_buffer),
  1478. path->slots[1] + 1, 1);
  1479. if (wret)
  1480. ret = wret;
  1481. btrfs_block_release(root, path->nodes[0]);
  1482. path->nodes[0] = right_buffer;
  1483. path->slots[0] = 0;
  1484. path->slots[1] += 1;
  1485. return ret;
  1486. }
  1487. mid = slot;
  1488. double_split = 1;
  1489. }
  1490. } else {
  1491. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1492. BTRFS_LEAF_DATA_SIZE(root)) {
  1493. if (slot == 0) {
  1494. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1495. btrfs_set_header_nritems(&right->header, 0);
  1496. wret = insert_ptr(trans, root, path,
  1497. &disk_key,
  1498. bh_blocknr(right_buffer),
  1499. path->slots[1], 1);
  1500. if (wret)
  1501. ret = wret;
  1502. btrfs_block_release(root, path->nodes[0]);
  1503. path->nodes[0] = right_buffer;
  1504. path->slots[0] = 0;
  1505. if (path->slots[1] == 0) {
  1506. wret = fixup_low_keys(trans, root,
  1507. path, &disk_key, 1);
  1508. if (wret)
  1509. ret = wret;
  1510. }
  1511. return ret;
  1512. }
  1513. mid = slot;
  1514. double_split = 1;
  1515. }
  1516. }
  1517. btrfs_set_header_nritems(&right->header, nritems - mid);
  1518. data_copy_size = btrfs_item_end(l->items + mid) -
  1519. leaf_data_end(root, l);
  1520. btrfs_memcpy(root, right, right->items, l->items + mid,
  1521. (nritems - mid) * sizeof(struct btrfs_item));
  1522. btrfs_memcpy(root, right,
  1523. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1524. data_copy_size, btrfs_leaf_data(l) +
  1525. leaf_data_end(root, l), data_copy_size);
  1526. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1527. btrfs_item_end(l->items + mid);
  1528. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1529. u32 ioff = btrfs_item_offset(right->items + i);
  1530. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1531. }
  1532. btrfs_set_header_nritems(&l->header, mid);
  1533. ret = 0;
  1534. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1535. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1536. if (wret)
  1537. ret = wret;
  1538. btrfs_mark_buffer_dirty(right_buffer);
  1539. btrfs_mark_buffer_dirty(l_buf);
  1540. BUG_ON(path->slots[0] != slot);
  1541. if (mid <= slot) {
  1542. btrfs_block_release(root, path->nodes[0]);
  1543. path->nodes[0] = right_buffer;
  1544. path->slots[0] -= mid;
  1545. path->slots[1] += 1;
  1546. } else
  1547. btrfs_block_release(root, right_buffer);
  1548. BUG_ON(path->slots[0] < 0);
  1549. check_node(root, path, 1);
  1550. if (!double_split)
  1551. return ret;
  1552. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1553. if (IS_ERR(right_buffer))
  1554. return PTR_ERR(right_buffer);
  1555. right = btrfs_buffer_leaf(right_buffer);
  1556. memset(&right->header, 0, sizeof(right->header));
  1557. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1558. btrfs_set_header_generation(&right->header, trans->transid);
  1559. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1560. btrfs_set_header_level(&right->header, 0);
  1561. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1562. sizeof(right->header.fsid));
  1563. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1564. btrfs_set_header_nritems(&right->header, 0);
  1565. wret = insert_ptr(trans, root, path,
  1566. &disk_key,
  1567. bh_blocknr(right_buffer),
  1568. path->slots[1], 1);
  1569. if (wret)
  1570. ret = wret;
  1571. if (path->slots[1] == 0) {
  1572. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1573. if (wret)
  1574. ret = wret;
  1575. }
  1576. btrfs_block_release(root, path->nodes[0]);
  1577. path->nodes[0] = right_buffer;
  1578. path->slots[0] = 0;
  1579. check_node(root, path, 1);
  1580. check_leaf(root, path, 0);
  1581. return ret;
  1582. }
  1583. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1584. struct btrfs_root *root,
  1585. struct btrfs_path *path,
  1586. u32 new_size)
  1587. {
  1588. int ret = 0;
  1589. int slot;
  1590. int slot_orig;
  1591. struct btrfs_leaf *leaf;
  1592. struct buffer_head *leaf_buf;
  1593. u32 nritems;
  1594. unsigned int data_end;
  1595. unsigned int old_data_start;
  1596. unsigned int old_size;
  1597. unsigned int size_diff;
  1598. int i;
  1599. slot_orig = path->slots[0];
  1600. leaf_buf = path->nodes[0];
  1601. leaf = btrfs_buffer_leaf(leaf_buf);
  1602. nritems = btrfs_header_nritems(&leaf->header);
  1603. data_end = leaf_data_end(root, leaf);
  1604. slot = path->slots[0];
  1605. old_data_start = btrfs_item_offset(leaf->items + slot);
  1606. old_size = btrfs_item_size(leaf->items + slot);
  1607. BUG_ON(old_size <= new_size);
  1608. size_diff = old_size - new_size;
  1609. BUG_ON(slot < 0);
  1610. BUG_ON(slot >= nritems);
  1611. /*
  1612. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1613. */
  1614. /* first correct the data pointers */
  1615. for (i = slot; i < nritems; i++) {
  1616. u32 ioff = btrfs_item_offset(leaf->items + i);
  1617. btrfs_set_item_offset(leaf->items + i,
  1618. ioff + size_diff);
  1619. }
  1620. /* shift the data */
  1621. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1622. data_end + size_diff, btrfs_leaf_data(leaf) +
  1623. data_end, old_data_start + new_size - data_end);
  1624. btrfs_set_item_size(leaf->items + slot, new_size);
  1625. btrfs_mark_buffer_dirty(leaf_buf);
  1626. ret = 0;
  1627. if (btrfs_leaf_free_space(root, leaf) < 0)
  1628. BUG();
  1629. check_leaf(root, path, 0);
  1630. return ret;
  1631. }
  1632. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1633. *root, struct btrfs_path *path, u32 data_size)
  1634. {
  1635. int ret = 0;
  1636. int slot;
  1637. int slot_orig;
  1638. struct btrfs_leaf *leaf;
  1639. struct buffer_head *leaf_buf;
  1640. u32 nritems;
  1641. unsigned int data_end;
  1642. unsigned int old_data;
  1643. unsigned int old_size;
  1644. int i;
  1645. slot_orig = path->slots[0];
  1646. leaf_buf = path->nodes[0];
  1647. leaf = btrfs_buffer_leaf(leaf_buf);
  1648. nritems = btrfs_header_nritems(&leaf->header);
  1649. data_end = leaf_data_end(root, leaf);
  1650. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1651. BUG();
  1652. slot = path->slots[0];
  1653. old_data = btrfs_item_end(leaf->items + slot);
  1654. BUG_ON(slot < 0);
  1655. BUG_ON(slot >= nritems);
  1656. /*
  1657. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1658. */
  1659. /* first correct the data pointers */
  1660. for (i = slot; i < nritems; i++) {
  1661. u32 ioff = btrfs_item_offset(leaf->items + i);
  1662. btrfs_set_item_offset(leaf->items + i,
  1663. ioff - data_size);
  1664. }
  1665. /* shift the data */
  1666. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1667. data_end - data_size, btrfs_leaf_data(leaf) +
  1668. data_end, old_data - data_end);
  1669. data_end = old_data;
  1670. old_size = btrfs_item_size(leaf->items + slot);
  1671. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1672. btrfs_mark_buffer_dirty(leaf_buf);
  1673. ret = 0;
  1674. if (btrfs_leaf_free_space(root, leaf) < 0)
  1675. BUG();
  1676. check_leaf(root, path, 0);
  1677. return ret;
  1678. }
  1679. /*
  1680. * Given a key and some data, insert an item into the tree.
  1681. * This does all the path init required, making room in the tree if needed.
  1682. */
  1683. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1684. *root, struct btrfs_path *path, struct btrfs_key
  1685. *cpu_key, u32 data_size)
  1686. {
  1687. int ret = 0;
  1688. int slot;
  1689. int slot_orig;
  1690. struct btrfs_leaf *leaf;
  1691. struct buffer_head *leaf_buf;
  1692. u32 nritems;
  1693. unsigned int data_end;
  1694. struct btrfs_disk_key disk_key;
  1695. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1696. /* create a root if there isn't one */
  1697. if (!root->node)
  1698. BUG();
  1699. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1700. if (ret == 0) {
  1701. return -EEXIST;
  1702. }
  1703. if (ret < 0)
  1704. goto out;
  1705. slot_orig = path->slots[0];
  1706. leaf_buf = path->nodes[0];
  1707. leaf = btrfs_buffer_leaf(leaf_buf);
  1708. nritems = btrfs_header_nritems(&leaf->header);
  1709. data_end = leaf_data_end(root, leaf);
  1710. if (btrfs_leaf_free_space(root, leaf) <
  1711. sizeof(struct btrfs_item) + data_size) {
  1712. BUG();
  1713. }
  1714. slot = path->slots[0];
  1715. BUG_ON(slot < 0);
  1716. if (slot != nritems) {
  1717. int i;
  1718. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1719. /*
  1720. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1721. */
  1722. /* first correct the data pointers */
  1723. for (i = slot; i < nritems; i++) {
  1724. u32 ioff = btrfs_item_offset(leaf->items + i);
  1725. btrfs_set_item_offset(leaf->items + i,
  1726. ioff - data_size);
  1727. }
  1728. /* shift the items */
  1729. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1730. leaf->items + slot,
  1731. (nritems - slot) * sizeof(struct btrfs_item));
  1732. /* shift the data */
  1733. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1734. data_end - data_size, btrfs_leaf_data(leaf) +
  1735. data_end, old_data - data_end);
  1736. data_end = old_data;
  1737. }
  1738. /* setup the item for the new data */
  1739. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1740. sizeof(struct btrfs_disk_key));
  1741. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1742. btrfs_set_item_size(leaf->items + slot, data_size);
  1743. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1744. btrfs_mark_buffer_dirty(leaf_buf);
  1745. ret = 0;
  1746. if (slot == 0)
  1747. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1748. if (btrfs_leaf_free_space(root, leaf) < 0)
  1749. BUG();
  1750. check_leaf(root, path, 0);
  1751. out:
  1752. return ret;
  1753. }
  1754. /*
  1755. * Given a key and some data, insert an item into the tree.
  1756. * This does all the path init required, making room in the tree if needed.
  1757. */
  1758. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1759. *root, struct btrfs_key *cpu_key, void *data, u32
  1760. data_size)
  1761. {
  1762. int ret = 0;
  1763. struct btrfs_path *path;
  1764. u8 *ptr;
  1765. path = btrfs_alloc_path();
  1766. BUG_ON(!path);
  1767. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1768. if (!ret) {
  1769. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1770. path->slots[0], u8);
  1771. btrfs_memcpy(root, path->nodes[0]->b_data,
  1772. ptr, data, data_size);
  1773. btrfs_mark_buffer_dirty(path->nodes[0]);
  1774. }
  1775. btrfs_free_path(path);
  1776. return ret;
  1777. }
  1778. /*
  1779. * delete the pointer from a given node.
  1780. *
  1781. * If the delete empties a node, the node is removed from the tree,
  1782. * continuing all the way the root if required. The root is converted into
  1783. * a leaf if all the nodes are emptied.
  1784. */
  1785. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1786. struct btrfs_path *path, int level, int slot)
  1787. {
  1788. struct btrfs_node *node;
  1789. struct buffer_head *parent = path->nodes[level];
  1790. u32 nritems;
  1791. int ret = 0;
  1792. int wret;
  1793. node = btrfs_buffer_node(parent);
  1794. nritems = btrfs_header_nritems(&node->header);
  1795. if (slot != nritems -1) {
  1796. btrfs_memmove(root, node, node->ptrs + slot,
  1797. node->ptrs + slot + 1,
  1798. sizeof(struct btrfs_key_ptr) *
  1799. (nritems - slot - 1));
  1800. }
  1801. nritems--;
  1802. btrfs_set_header_nritems(&node->header, nritems);
  1803. if (nritems == 0 && parent == root->node) {
  1804. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1805. BUG_ON(btrfs_header_level(header) != 1);
  1806. /* just turn the root into a leaf and break */
  1807. btrfs_set_header_level(header, 0);
  1808. } else if (slot == 0) {
  1809. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1810. level + 1);
  1811. if (wret)
  1812. ret = wret;
  1813. }
  1814. btrfs_mark_buffer_dirty(parent);
  1815. return ret;
  1816. }
  1817. /*
  1818. * delete the item at the leaf level in path. If that empties
  1819. * the leaf, remove it from the tree
  1820. */
  1821. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1822. struct btrfs_path *path)
  1823. {
  1824. int slot;
  1825. struct btrfs_leaf *leaf;
  1826. struct buffer_head *leaf_buf;
  1827. int doff;
  1828. int dsize;
  1829. int ret = 0;
  1830. int wret;
  1831. u32 nritems;
  1832. leaf_buf = path->nodes[0];
  1833. leaf = btrfs_buffer_leaf(leaf_buf);
  1834. slot = path->slots[0];
  1835. doff = btrfs_item_offset(leaf->items + slot);
  1836. dsize = btrfs_item_size(leaf->items + slot);
  1837. nritems = btrfs_header_nritems(&leaf->header);
  1838. if (slot != nritems - 1) {
  1839. int i;
  1840. int data_end = leaf_data_end(root, leaf);
  1841. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1842. data_end + dsize,
  1843. btrfs_leaf_data(leaf) + data_end,
  1844. doff - data_end);
  1845. for (i = slot + 1; i < nritems; i++) {
  1846. u32 ioff = btrfs_item_offset(leaf->items + i);
  1847. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1848. }
  1849. btrfs_memmove(root, leaf, leaf->items + slot,
  1850. leaf->items + slot + 1,
  1851. sizeof(struct btrfs_item) *
  1852. (nritems - slot - 1));
  1853. }
  1854. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1855. nritems--;
  1856. /* delete the leaf if we've emptied it */
  1857. if (nritems == 0) {
  1858. if (leaf_buf == root->node) {
  1859. btrfs_set_header_level(&leaf->header, 0);
  1860. } else {
  1861. clean_tree_block(trans, root, leaf_buf);
  1862. wait_on_buffer(leaf_buf);
  1863. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1864. if (wret)
  1865. ret = wret;
  1866. wret = btrfs_free_extent(trans, root,
  1867. bh_blocknr(leaf_buf), 1, 1);
  1868. if (wret)
  1869. ret = wret;
  1870. }
  1871. } else {
  1872. int used = leaf_space_used(leaf, 0, nritems);
  1873. if (slot == 0) {
  1874. wret = fixup_low_keys(trans, root, path,
  1875. &leaf->items[0].key, 1);
  1876. if (wret)
  1877. ret = wret;
  1878. }
  1879. /* delete the leaf if it is mostly empty */
  1880. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1881. /* push_leaf_left fixes the path.
  1882. * make sure the path still points to our leaf
  1883. * for possible call to del_ptr below
  1884. */
  1885. slot = path->slots[1];
  1886. get_bh(leaf_buf);
  1887. wret = push_leaf_left(trans, root, path, 1);
  1888. if (wret < 0 && wret != -ENOSPC)
  1889. ret = wret;
  1890. if (path->nodes[0] == leaf_buf &&
  1891. btrfs_header_nritems(&leaf->header)) {
  1892. wret = push_leaf_right(trans, root, path, 1);
  1893. if (wret < 0 && wret != -ENOSPC)
  1894. ret = wret;
  1895. }
  1896. if (btrfs_header_nritems(&leaf->header) == 0) {
  1897. u64 blocknr = bh_blocknr(leaf_buf);
  1898. clean_tree_block(trans, root, leaf_buf);
  1899. wait_on_buffer(leaf_buf);
  1900. wret = del_ptr(trans, root, path, 1, slot);
  1901. if (wret)
  1902. ret = wret;
  1903. btrfs_block_release(root, leaf_buf);
  1904. wret = btrfs_free_extent(trans, root, blocknr,
  1905. 1, 1);
  1906. if (wret)
  1907. ret = wret;
  1908. } else {
  1909. btrfs_mark_buffer_dirty(leaf_buf);
  1910. btrfs_block_release(root, leaf_buf);
  1911. }
  1912. } else {
  1913. btrfs_mark_buffer_dirty(leaf_buf);
  1914. }
  1915. }
  1916. return ret;
  1917. }
  1918. /*
  1919. * walk up the tree as far as required to find the next leaf.
  1920. * returns 0 if it found something or 1 if there are no greater leaves.
  1921. * returns < 0 on io errors.
  1922. */
  1923. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1924. {
  1925. int slot;
  1926. int level = 1;
  1927. u64 blocknr;
  1928. struct buffer_head *c;
  1929. struct btrfs_node *c_node;
  1930. struct buffer_head *next = NULL;
  1931. while(level < BTRFS_MAX_LEVEL) {
  1932. if (!path->nodes[level])
  1933. return 1;
  1934. slot = path->slots[level] + 1;
  1935. c = path->nodes[level];
  1936. c_node = btrfs_buffer_node(c);
  1937. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1938. level++;
  1939. continue;
  1940. }
  1941. blocknr = btrfs_node_blockptr(c_node, slot);
  1942. if (next)
  1943. btrfs_block_release(root, next);
  1944. if (path->reada)
  1945. reada_for_search(root, path, level, slot);
  1946. next = read_tree_block(root, blocknr);
  1947. break;
  1948. }
  1949. path->slots[level] = slot;
  1950. while(1) {
  1951. level--;
  1952. c = path->nodes[level];
  1953. btrfs_block_release(root, c);
  1954. path->nodes[level] = next;
  1955. path->slots[level] = 0;
  1956. if (!level)
  1957. break;
  1958. if (path->reada)
  1959. reada_for_search(root, path, level, 0);
  1960. next = read_tree_block(root,
  1961. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1962. }
  1963. return 0;
  1964. }