x86.c 93 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "halt_exits", VCPU_STAT(halt_exits) },
  67. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  68. { "hypercalls", VCPU_STAT(hypercalls) },
  69. { "request_irq", VCPU_STAT(request_irq_exits) },
  70. { "irq_exits", VCPU_STAT(irq_exits) },
  71. { "host_state_reload", VCPU_STAT(host_state_reload) },
  72. { "efer_reload", VCPU_STAT(efer_reload) },
  73. { "fpu_reload", VCPU_STAT(fpu_reload) },
  74. { "insn_emulation", VCPU_STAT(insn_emulation) },
  75. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  76. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  77. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  78. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  79. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  80. { "mmu_flooded", VM_STAT(mmu_flooded) },
  81. { "mmu_recycled", VM_STAT(mmu_recycled) },
  82. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  83. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  84. { "largepages", VM_STAT(lpages) },
  85. { NULL }
  86. };
  87. unsigned long segment_base(u16 selector)
  88. {
  89. struct descriptor_table gdt;
  90. struct desc_struct *d;
  91. unsigned long table_base;
  92. unsigned long v;
  93. if (selector == 0)
  94. return 0;
  95. asm("sgdt %0" : "=m"(gdt));
  96. table_base = gdt.base;
  97. if (selector & 4) { /* from ldt */
  98. u16 ldt_selector;
  99. asm("sldt %0" : "=g"(ldt_selector));
  100. table_base = segment_base(ldt_selector);
  101. }
  102. d = (struct desc_struct *)(table_base + (selector & ~7));
  103. v = d->base0 | ((unsigned long)d->base1 << 16) |
  104. ((unsigned long)d->base2 << 24);
  105. #ifdef CONFIG_X86_64
  106. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  107. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  108. #endif
  109. return v;
  110. }
  111. EXPORT_SYMBOL_GPL(segment_base);
  112. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  113. {
  114. if (irqchip_in_kernel(vcpu->kvm))
  115. return vcpu->arch.apic_base;
  116. else
  117. return vcpu->arch.apic_base;
  118. }
  119. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  120. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  121. {
  122. /* TODO: reserve bits check */
  123. if (irqchip_in_kernel(vcpu->kvm))
  124. kvm_lapic_set_base(vcpu, data);
  125. else
  126. vcpu->arch.apic_base = data;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  129. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  130. {
  131. WARN_ON(vcpu->arch.exception.pending);
  132. vcpu->arch.exception.pending = true;
  133. vcpu->arch.exception.has_error_code = false;
  134. vcpu->arch.exception.nr = nr;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  137. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  138. u32 error_code)
  139. {
  140. ++vcpu->stat.pf_guest;
  141. if (vcpu->arch.exception.pending) {
  142. if (vcpu->arch.exception.nr == PF_VECTOR) {
  143. printk(KERN_DEBUG "kvm: inject_page_fault:"
  144. " double fault 0x%lx\n", addr);
  145. vcpu->arch.exception.nr = DF_VECTOR;
  146. vcpu->arch.exception.error_code = 0;
  147. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  148. /* triple fault -> shutdown */
  149. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  150. }
  151. return;
  152. }
  153. vcpu->arch.cr2 = addr;
  154. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  155. }
  156. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  157. {
  158. WARN_ON(vcpu->arch.exception.pending);
  159. vcpu->arch.exception.pending = true;
  160. vcpu->arch.exception.has_error_code = true;
  161. vcpu->arch.exception.nr = nr;
  162. vcpu->arch.exception.error_code = error_code;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  165. static void __queue_exception(struct kvm_vcpu *vcpu)
  166. {
  167. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  168. vcpu->arch.exception.has_error_code,
  169. vcpu->arch.exception.error_code);
  170. }
  171. /*
  172. * Load the pae pdptrs. Return true is they are all valid.
  173. */
  174. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  175. {
  176. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  177. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  178. int i;
  179. int ret;
  180. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  181. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  182. offset * sizeof(u64), sizeof(pdpte));
  183. if (ret < 0) {
  184. ret = 0;
  185. goto out;
  186. }
  187. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  188. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  189. ret = 0;
  190. goto out;
  191. }
  192. }
  193. ret = 1;
  194. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  195. out:
  196. return ret;
  197. }
  198. EXPORT_SYMBOL_GPL(load_pdptrs);
  199. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  200. {
  201. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  202. bool changed = true;
  203. int r;
  204. if (is_long_mode(vcpu) || !is_pae(vcpu))
  205. return false;
  206. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  207. if (r < 0)
  208. goto out;
  209. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  210. out:
  211. return changed;
  212. }
  213. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  214. {
  215. if (cr0 & CR0_RESERVED_BITS) {
  216. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  217. cr0, vcpu->arch.cr0);
  218. kvm_inject_gp(vcpu, 0);
  219. return;
  220. }
  221. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  222. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  223. kvm_inject_gp(vcpu, 0);
  224. return;
  225. }
  226. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  227. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  228. "and a clear PE flag\n");
  229. kvm_inject_gp(vcpu, 0);
  230. return;
  231. }
  232. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  233. #ifdef CONFIG_X86_64
  234. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  235. int cs_db, cs_l;
  236. if (!is_pae(vcpu)) {
  237. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  238. "in long mode while PAE is disabled\n");
  239. kvm_inject_gp(vcpu, 0);
  240. return;
  241. }
  242. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  243. if (cs_l) {
  244. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  245. "in long mode while CS.L == 1\n");
  246. kvm_inject_gp(vcpu, 0);
  247. return;
  248. }
  249. } else
  250. #endif
  251. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  253. "reserved bits\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. }
  258. kvm_x86_ops->set_cr0(vcpu, cr0);
  259. vcpu->arch.cr0 = cr0;
  260. kvm_mmu_reset_context(vcpu);
  261. return;
  262. }
  263. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  264. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  265. {
  266. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  267. }
  268. EXPORT_SYMBOL_GPL(kvm_lmsw);
  269. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  270. {
  271. if (cr4 & CR4_RESERVED_BITS) {
  272. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. if (is_long_mode(vcpu)) {
  277. if (!(cr4 & X86_CR4_PAE)) {
  278. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  279. "in long mode\n");
  280. kvm_inject_gp(vcpu, 0);
  281. return;
  282. }
  283. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  284. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  285. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  286. kvm_inject_gp(vcpu, 0);
  287. return;
  288. }
  289. if (cr4 & X86_CR4_VMXE) {
  290. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  291. kvm_inject_gp(vcpu, 0);
  292. return;
  293. }
  294. kvm_x86_ops->set_cr4(vcpu, cr4);
  295. vcpu->arch.cr4 = cr4;
  296. kvm_mmu_reset_context(vcpu);
  297. }
  298. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  299. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  300. {
  301. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  302. kvm_mmu_flush_tlb(vcpu);
  303. return;
  304. }
  305. if (is_long_mode(vcpu)) {
  306. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  307. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  308. kvm_inject_gp(vcpu, 0);
  309. return;
  310. }
  311. } else {
  312. if (is_pae(vcpu)) {
  313. if (cr3 & CR3_PAE_RESERVED_BITS) {
  314. printk(KERN_DEBUG
  315. "set_cr3: #GP, reserved bits\n");
  316. kvm_inject_gp(vcpu, 0);
  317. return;
  318. }
  319. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  320. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  321. "reserved bits\n");
  322. kvm_inject_gp(vcpu, 0);
  323. return;
  324. }
  325. }
  326. /*
  327. * We don't check reserved bits in nonpae mode, because
  328. * this isn't enforced, and VMware depends on this.
  329. */
  330. }
  331. /*
  332. * Does the new cr3 value map to physical memory? (Note, we
  333. * catch an invalid cr3 even in real-mode, because it would
  334. * cause trouble later on when we turn on paging anyway.)
  335. *
  336. * A real CPU would silently accept an invalid cr3 and would
  337. * attempt to use it - with largely undefined (and often hard
  338. * to debug) behavior on the guest side.
  339. */
  340. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  341. kvm_inject_gp(vcpu, 0);
  342. else {
  343. vcpu->arch.cr3 = cr3;
  344. vcpu->arch.mmu.new_cr3(vcpu);
  345. }
  346. }
  347. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  348. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  349. {
  350. if (cr8 & CR8_RESERVED_BITS) {
  351. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  352. kvm_inject_gp(vcpu, 0);
  353. return;
  354. }
  355. if (irqchip_in_kernel(vcpu->kvm))
  356. kvm_lapic_set_tpr(vcpu, cr8);
  357. else
  358. vcpu->arch.cr8 = cr8;
  359. }
  360. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  361. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  362. {
  363. if (irqchip_in_kernel(vcpu->kvm))
  364. return kvm_lapic_get_cr8(vcpu);
  365. else
  366. return vcpu->arch.cr8;
  367. }
  368. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  369. /*
  370. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  371. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  372. *
  373. * This list is modified at module load time to reflect the
  374. * capabilities of the host cpu.
  375. */
  376. static u32 msrs_to_save[] = {
  377. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  378. MSR_K6_STAR,
  379. #ifdef CONFIG_X86_64
  380. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  381. #endif
  382. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  383. MSR_IA32_PERF_STATUS,
  384. };
  385. static unsigned num_msrs_to_save;
  386. static u32 emulated_msrs[] = {
  387. MSR_IA32_MISC_ENABLE,
  388. };
  389. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  390. {
  391. if (efer & efer_reserved_bits) {
  392. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  393. efer);
  394. kvm_inject_gp(vcpu, 0);
  395. return;
  396. }
  397. if (is_paging(vcpu)
  398. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  399. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  400. kvm_inject_gp(vcpu, 0);
  401. return;
  402. }
  403. kvm_x86_ops->set_efer(vcpu, efer);
  404. efer &= ~EFER_LMA;
  405. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  406. vcpu->arch.shadow_efer = efer;
  407. }
  408. void kvm_enable_efer_bits(u64 mask)
  409. {
  410. efer_reserved_bits &= ~mask;
  411. }
  412. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  413. /*
  414. * Writes msr value into into the appropriate "register".
  415. * Returns 0 on success, non-0 otherwise.
  416. * Assumes vcpu_load() was already called.
  417. */
  418. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  419. {
  420. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  421. }
  422. /*
  423. * Adapt set_msr() to msr_io()'s calling convention
  424. */
  425. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  426. {
  427. return kvm_set_msr(vcpu, index, *data);
  428. }
  429. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  430. {
  431. static int version;
  432. struct kvm_wall_clock wc;
  433. struct timespec wc_ts;
  434. if (!wall_clock)
  435. return;
  436. version++;
  437. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  438. wc_ts = current_kernel_time();
  439. wc.wc_sec = wc_ts.tv_sec;
  440. wc.wc_nsec = wc_ts.tv_nsec;
  441. wc.wc_version = version;
  442. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  443. version++;
  444. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  445. }
  446. static void kvm_write_guest_time(struct kvm_vcpu *v)
  447. {
  448. struct timespec ts;
  449. unsigned long flags;
  450. struct kvm_vcpu_arch *vcpu = &v->arch;
  451. void *shared_kaddr;
  452. if ((!vcpu->time_page))
  453. return;
  454. /* Keep irq disabled to prevent changes to the clock */
  455. local_irq_save(flags);
  456. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  457. &vcpu->hv_clock.tsc_timestamp);
  458. ktime_get_ts(&ts);
  459. local_irq_restore(flags);
  460. /* With all the info we got, fill in the values */
  461. vcpu->hv_clock.system_time = ts.tv_nsec +
  462. (NSEC_PER_SEC * (u64)ts.tv_sec);
  463. /*
  464. * The interface expects us to write an even number signaling that the
  465. * update is finished. Since the guest won't see the intermediate
  466. * state, we just write "2" at the end
  467. */
  468. vcpu->hv_clock.version = 2;
  469. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  470. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  471. sizeof(vcpu->hv_clock));
  472. kunmap_atomic(shared_kaddr, KM_USER0);
  473. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  474. }
  475. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  476. {
  477. switch (msr) {
  478. case MSR_EFER:
  479. set_efer(vcpu, data);
  480. break;
  481. case MSR_IA32_MC0_STATUS:
  482. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  483. __func__, data);
  484. break;
  485. case MSR_IA32_MCG_STATUS:
  486. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  487. __func__, data);
  488. break;
  489. case MSR_IA32_MCG_CTL:
  490. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  491. __func__, data);
  492. break;
  493. case MSR_IA32_UCODE_REV:
  494. case MSR_IA32_UCODE_WRITE:
  495. case 0x200 ... 0x2ff: /* MTRRs */
  496. break;
  497. case MSR_IA32_APICBASE:
  498. kvm_set_apic_base(vcpu, data);
  499. break;
  500. case MSR_IA32_MISC_ENABLE:
  501. vcpu->arch.ia32_misc_enable_msr = data;
  502. break;
  503. case MSR_KVM_WALL_CLOCK:
  504. vcpu->kvm->arch.wall_clock = data;
  505. kvm_write_wall_clock(vcpu->kvm, data);
  506. break;
  507. case MSR_KVM_SYSTEM_TIME: {
  508. if (vcpu->arch.time_page) {
  509. kvm_release_page_dirty(vcpu->arch.time_page);
  510. vcpu->arch.time_page = NULL;
  511. }
  512. vcpu->arch.time = data;
  513. /* we verify if the enable bit is set... */
  514. if (!(data & 1))
  515. break;
  516. /* ...but clean it before doing the actual write */
  517. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  518. vcpu->arch.hv_clock.tsc_to_system_mul =
  519. clocksource_khz2mult(tsc_khz, 22);
  520. vcpu->arch.hv_clock.tsc_shift = 22;
  521. down_read(&current->mm->mmap_sem);
  522. vcpu->arch.time_page =
  523. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  524. up_read(&current->mm->mmap_sem);
  525. if (is_error_page(vcpu->arch.time_page)) {
  526. kvm_release_page_clean(vcpu->arch.time_page);
  527. vcpu->arch.time_page = NULL;
  528. }
  529. kvm_write_guest_time(vcpu);
  530. break;
  531. }
  532. default:
  533. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  534. return 1;
  535. }
  536. return 0;
  537. }
  538. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  539. /*
  540. * Reads an msr value (of 'msr_index') into 'pdata'.
  541. * Returns 0 on success, non-0 otherwise.
  542. * Assumes vcpu_load() was already called.
  543. */
  544. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  545. {
  546. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  547. }
  548. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  549. {
  550. u64 data;
  551. switch (msr) {
  552. case 0xc0010010: /* SYSCFG */
  553. case 0xc0010015: /* HWCR */
  554. case MSR_IA32_PLATFORM_ID:
  555. case MSR_IA32_P5_MC_ADDR:
  556. case MSR_IA32_P5_MC_TYPE:
  557. case MSR_IA32_MC0_CTL:
  558. case MSR_IA32_MCG_STATUS:
  559. case MSR_IA32_MCG_CAP:
  560. case MSR_IA32_MCG_CTL:
  561. case MSR_IA32_MC0_MISC:
  562. case MSR_IA32_MC0_MISC+4:
  563. case MSR_IA32_MC0_MISC+8:
  564. case MSR_IA32_MC0_MISC+12:
  565. case MSR_IA32_MC0_MISC+16:
  566. case MSR_IA32_UCODE_REV:
  567. case MSR_IA32_EBL_CR_POWERON:
  568. /* MTRR registers */
  569. case 0xfe:
  570. case 0x200 ... 0x2ff:
  571. data = 0;
  572. break;
  573. case 0xcd: /* fsb frequency */
  574. data = 3;
  575. break;
  576. case MSR_IA32_APICBASE:
  577. data = kvm_get_apic_base(vcpu);
  578. break;
  579. case MSR_IA32_MISC_ENABLE:
  580. data = vcpu->arch.ia32_misc_enable_msr;
  581. break;
  582. case MSR_IA32_PERF_STATUS:
  583. /* TSC increment by tick */
  584. data = 1000ULL;
  585. /* CPU multiplier */
  586. data |= (((uint64_t)4ULL) << 40);
  587. break;
  588. case MSR_EFER:
  589. data = vcpu->arch.shadow_efer;
  590. break;
  591. case MSR_KVM_WALL_CLOCK:
  592. data = vcpu->kvm->arch.wall_clock;
  593. break;
  594. case MSR_KVM_SYSTEM_TIME:
  595. data = vcpu->arch.time;
  596. break;
  597. default:
  598. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  599. return 1;
  600. }
  601. *pdata = data;
  602. return 0;
  603. }
  604. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  605. /*
  606. * Read or write a bunch of msrs. All parameters are kernel addresses.
  607. *
  608. * @return number of msrs set successfully.
  609. */
  610. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  611. struct kvm_msr_entry *entries,
  612. int (*do_msr)(struct kvm_vcpu *vcpu,
  613. unsigned index, u64 *data))
  614. {
  615. int i;
  616. vcpu_load(vcpu);
  617. down_read(&vcpu->kvm->slots_lock);
  618. for (i = 0; i < msrs->nmsrs; ++i)
  619. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  620. break;
  621. up_read(&vcpu->kvm->slots_lock);
  622. vcpu_put(vcpu);
  623. return i;
  624. }
  625. /*
  626. * Read or write a bunch of msrs. Parameters are user addresses.
  627. *
  628. * @return number of msrs set successfully.
  629. */
  630. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  631. int (*do_msr)(struct kvm_vcpu *vcpu,
  632. unsigned index, u64 *data),
  633. int writeback)
  634. {
  635. struct kvm_msrs msrs;
  636. struct kvm_msr_entry *entries;
  637. int r, n;
  638. unsigned size;
  639. r = -EFAULT;
  640. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  641. goto out;
  642. r = -E2BIG;
  643. if (msrs.nmsrs >= MAX_IO_MSRS)
  644. goto out;
  645. r = -ENOMEM;
  646. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  647. entries = vmalloc(size);
  648. if (!entries)
  649. goto out;
  650. r = -EFAULT;
  651. if (copy_from_user(entries, user_msrs->entries, size))
  652. goto out_free;
  653. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  654. if (r < 0)
  655. goto out_free;
  656. r = -EFAULT;
  657. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  658. goto out_free;
  659. r = n;
  660. out_free:
  661. vfree(entries);
  662. out:
  663. return r;
  664. }
  665. /*
  666. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  667. * cached on it.
  668. */
  669. void decache_vcpus_on_cpu(int cpu)
  670. {
  671. struct kvm *vm;
  672. struct kvm_vcpu *vcpu;
  673. int i;
  674. spin_lock(&kvm_lock);
  675. list_for_each_entry(vm, &vm_list, vm_list)
  676. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  677. vcpu = vm->vcpus[i];
  678. if (!vcpu)
  679. continue;
  680. /*
  681. * If the vcpu is locked, then it is running on some
  682. * other cpu and therefore it is not cached on the
  683. * cpu in question.
  684. *
  685. * If it's not locked, check the last cpu it executed
  686. * on.
  687. */
  688. if (mutex_trylock(&vcpu->mutex)) {
  689. if (vcpu->cpu == cpu) {
  690. kvm_x86_ops->vcpu_decache(vcpu);
  691. vcpu->cpu = -1;
  692. }
  693. mutex_unlock(&vcpu->mutex);
  694. }
  695. }
  696. spin_unlock(&kvm_lock);
  697. }
  698. int kvm_dev_ioctl_check_extension(long ext)
  699. {
  700. int r;
  701. switch (ext) {
  702. case KVM_CAP_IRQCHIP:
  703. case KVM_CAP_HLT:
  704. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  705. case KVM_CAP_USER_MEMORY:
  706. case KVM_CAP_SET_TSS_ADDR:
  707. case KVM_CAP_EXT_CPUID:
  708. case KVM_CAP_CLOCKSOURCE:
  709. case KVM_CAP_PIT:
  710. case KVM_CAP_NOP_IO_DELAY:
  711. r = 1;
  712. break;
  713. case KVM_CAP_VAPIC:
  714. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  715. break;
  716. case KVM_CAP_NR_VCPUS:
  717. r = KVM_MAX_VCPUS;
  718. break;
  719. case KVM_CAP_NR_MEMSLOTS:
  720. r = KVM_MEMORY_SLOTS;
  721. break;
  722. case KVM_CAP_PV_MMU:
  723. r = !tdp_enabled;
  724. break;
  725. default:
  726. r = 0;
  727. break;
  728. }
  729. return r;
  730. }
  731. long kvm_arch_dev_ioctl(struct file *filp,
  732. unsigned int ioctl, unsigned long arg)
  733. {
  734. void __user *argp = (void __user *)arg;
  735. long r;
  736. switch (ioctl) {
  737. case KVM_GET_MSR_INDEX_LIST: {
  738. struct kvm_msr_list __user *user_msr_list = argp;
  739. struct kvm_msr_list msr_list;
  740. unsigned n;
  741. r = -EFAULT;
  742. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  743. goto out;
  744. n = msr_list.nmsrs;
  745. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  746. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  747. goto out;
  748. r = -E2BIG;
  749. if (n < num_msrs_to_save)
  750. goto out;
  751. r = -EFAULT;
  752. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  753. num_msrs_to_save * sizeof(u32)))
  754. goto out;
  755. if (copy_to_user(user_msr_list->indices
  756. + num_msrs_to_save * sizeof(u32),
  757. &emulated_msrs,
  758. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  759. goto out;
  760. r = 0;
  761. break;
  762. }
  763. case KVM_GET_SUPPORTED_CPUID: {
  764. struct kvm_cpuid2 __user *cpuid_arg = argp;
  765. struct kvm_cpuid2 cpuid;
  766. r = -EFAULT;
  767. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  768. goto out;
  769. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  770. cpuid_arg->entries);
  771. if (r)
  772. goto out;
  773. r = -EFAULT;
  774. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  775. goto out;
  776. r = 0;
  777. break;
  778. }
  779. default:
  780. r = -EINVAL;
  781. }
  782. out:
  783. return r;
  784. }
  785. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  786. {
  787. kvm_x86_ops->vcpu_load(vcpu, cpu);
  788. kvm_write_guest_time(vcpu);
  789. }
  790. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  791. {
  792. kvm_x86_ops->vcpu_put(vcpu);
  793. kvm_put_guest_fpu(vcpu);
  794. }
  795. static int is_efer_nx(void)
  796. {
  797. u64 efer;
  798. rdmsrl(MSR_EFER, efer);
  799. return efer & EFER_NX;
  800. }
  801. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  802. {
  803. int i;
  804. struct kvm_cpuid_entry2 *e, *entry;
  805. entry = NULL;
  806. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  807. e = &vcpu->arch.cpuid_entries[i];
  808. if (e->function == 0x80000001) {
  809. entry = e;
  810. break;
  811. }
  812. }
  813. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  814. entry->edx &= ~(1 << 20);
  815. printk(KERN_INFO "kvm: guest NX capability removed\n");
  816. }
  817. }
  818. /* when an old userspace process fills a new kernel module */
  819. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  820. struct kvm_cpuid *cpuid,
  821. struct kvm_cpuid_entry __user *entries)
  822. {
  823. int r, i;
  824. struct kvm_cpuid_entry *cpuid_entries;
  825. r = -E2BIG;
  826. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  827. goto out;
  828. r = -ENOMEM;
  829. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  830. if (!cpuid_entries)
  831. goto out;
  832. r = -EFAULT;
  833. if (copy_from_user(cpuid_entries, entries,
  834. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  835. goto out_free;
  836. for (i = 0; i < cpuid->nent; i++) {
  837. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  838. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  839. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  840. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  841. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  842. vcpu->arch.cpuid_entries[i].index = 0;
  843. vcpu->arch.cpuid_entries[i].flags = 0;
  844. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  845. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  846. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  847. }
  848. vcpu->arch.cpuid_nent = cpuid->nent;
  849. cpuid_fix_nx_cap(vcpu);
  850. r = 0;
  851. out_free:
  852. vfree(cpuid_entries);
  853. out:
  854. return r;
  855. }
  856. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  857. struct kvm_cpuid2 *cpuid,
  858. struct kvm_cpuid_entry2 __user *entries)
  859. {
  860. int r;
  861. r = -E2BIG;
  862. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  863. goto out;
  864. r = -EFAULT;
  865. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  866. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  867. goto out;
  868. vcpu->arch.cpuid_nent = cpuid->nent;
  869. return 0;
  870. out:
  871. return r;
  872. }
  873. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  874. struct kvm_cpuid2 *cpuid,
  875. struct kvm_cpuid_entry2 __user *entries)
  876. {
  877. int r;
  878. r = -E2BIG;
  879. if (cpuid->nent < vcpu->arch.cpuid_nent)
  880. goto out;
  881. r = -EFAULT;
  882. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  883. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  884. goto out;
  885. return 0;
  886. out:
  887. cpuid->nent = vcpu->arch.cpuid_nent;
  888. return r;
  889. }
  890. static inline u32 bit(int bitno)
  891. {
  892. return 1 << (bitno & 31);
  893. }
  894. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  895. u32 index)
  896. {
  897. entry->function = function;
  898. entry->index = index;
  899. cpuid_count(entry->function, entry->index,
  900. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  901. entry->flags = 0;
  902. }
  903. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  904. u32 index, int *nent, int maxnent)
  905. {
  906. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  907. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  908. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  909. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  910. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  911. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  912. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  913. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  914. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  915. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  916. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  917. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  918. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  919. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  920. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  921. bit(X86_FEATURE_PGE) |
  922. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  923. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  924. bit(X86_FEATURE_SYSCALL) |
  925. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  926. #ifdef CONFIG_X86_64
  927. bit(X86_FEATURE_LM) |
  928. #endif
  929. bit(X86_FEATURE_MMXEXT) |
  930. bit(X86_FEATURE_3DNOWEXT) |
  931. bit(X86_FEATURE_3DNOW);
  932. const u32 kvm_supported_word3_x86_features =
  933. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  934. const u32 kvm_supported_word6_x86_features =
  935. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  936. /* all func 2 cpuid_count() should be called on the same cpu */
  937. get_cpu();
  938. do_cpuid_1_ent(entry, function, index);
  939. ++*nent;
  940. switch (function) {
  941. case 0:
  942. entry->eax = min(entry->eax, (u32)0xb);
  943. break;
  944. case 1:
  945. entry->edx &= kvm_supported_word0_x86_features;
  946. entry->ecx &= kvm_supported_word3_x86_features;
  947. break;
  948. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  949. * may return different values. This forces us to get_cpu() before
  950. * issuing the first command, and also to emulate this annoying behavior
  951. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  952. case 2: {
  953. int t, times = entry->eax & 0xff;
  954. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  955. for (t = 1; t < times && *nent < maxnent; ++t) {
  956. do_cpuid_1_ent(&entry[t], function, 0);
  957. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  958. ++*nent;
  959. }
  960. break;
  961. }
  962. /* function 4 and 0xb have additional index. */
  963. case 4: {
  964. int i, cache_type;
  965. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  966. /* read more entries until cache_type is zero */
  967. for (i = 1; *nent < maxnent; ++i) {
  968. cache_type = entry[i - 1].eax & 0x1f;
  969. if (!cache_type)
  970. break;
  971. do_cpuid_1_ent(&entry[i], function, i);
  972. entry[i].flags |=
  973. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  974. ++*nent;
  975. }
  976. break;
  977. }
  978. case 0xb: {
  979. int i, level_type;
  980. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  981. /* read more entries until level_type is zero */
  982. for (i = 1; *nent < maxnent; ++i) {
  983. level_type = entry[i - 1].ecx & 0xff;
  984. if (!level_type)
  985. break;
  986. do_cpuid_1_ent(&entry[i], function, i);
  987. entry[i].flags |=
  988. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  989. ++*nent;
  990. }
  991. break;
  992. }
  993. case 0x80000000:
  994. entry->eax = min(entry->eax, 0x8000001a);
  995. break;
  996. case 0x80000001:
  997. entry->edx &= kvm_supported_word1_x86_features;
  998. entry->ecx &= kvm_supported_word6_x86_features;
  999. break;
  1000. }
  1001. put_cpu();
  1002. }
  1003. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1004. struct kvm_cpuid_entry2 __user *entries)
  1005. {
  1006. struct kvm_cpuid_entry2 *cpuid_entries;
  1007. int limit, nent = 0, r = -E2BIG;
  1008. u32 func;
  1009. if (cpuid->nent < 1)
  1010. goto out;
  1011. r = -ENOMEM;
  1012. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1013. if (!cpuid_entries)
  1014. goto out;
  1015. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1016. limit = cpuid_entries[0].eax;
  1017. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1018. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1019. &nent, cpuid->nent);
  1020. r = -E2BIG;
  1021. if (nent >= cpuid->nent)
  1022. goto out_free;
  1023. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1024. limit = cpuid_entries[nent - 1].eax;
  1025. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1026. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1027. &nent, cpuid->nent);
  1028. r = -EFAULT;
  1029. if (copy_to_user(entries, cpuid_entries,
  1030. nent * sizeof(struct kvm_cpuid_entry2)))
  1031. goto out_free;
  1032. cpuid->nent = nent;
  1033. r = 0;
  1034. out_free:
  1035. vfree(cpuid_entries);
  1036. out:
  1037. return r;
  1038. }
  1039. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1040. struct kvm_lapic_state *s)
  1041. {
  1042. vcpu_load(vcpu);
  1043. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1044. vcpu_put(vcpu);
  1045. return 0;
  1046. }
  1047. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1048. struct kvm_lapic_state *s)
  1049. {
  1050. vcpu_load(vcpu);
  1051. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1052. kvm_apic_post_state_restore(vcpu);
  1053. vcpu_put(vcpu);
  1054. return 0;
  1055. }
  1056. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1057. struct kvm_interrupt *irq)
  1058. {
  1059. if (irq->irq < 0 || irq->irq >= 256)
  1060. return -EINVAL;
  1061. if (irqchip_in_kernel(vcpu->kvm))
  1062. return -ENXIO;
  1063. vcpu_load(vcpu);
  1064. set_bit(irq->irq, vcpu->arch.irq_pending);
  1065. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1066. vcpu_put(vcpu);
  1067. return 0;
  1068. }
  1069. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1070. struct kvm_tpr_access_ctl *tac)
  1071. {
  1072. if (tac->flags)
  1073. return -EINVAL;
  1074. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1075. return 0;
  1076. }
  1077. long kvm_arch_vcpu_ioctl(struct file *filp,
  1078. unsigned int ioctl, unsigned long arg)
  1079. {
  1080. struct kvm_vcpu *vcpu = filp->private_data;
  1081. void __user *argp = (void __user *)arg;
  1082. int r;
  1083. switch (ioctl) {
  1084. case KVM_GET_LAPIC: {
  1085. struct kvm_lapic_state lapic;
  1086. memset(&lapic, 0, sizeof lapic);
  1087. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1088. if (r)
  1089. goto out;
  1090. r = -EFAULT;
  1091. if (copy_to_user(argp, &lapic, sizeof lapic))
  1092. goto out;
  1093. r = 0;
  1094. break;
  1095. }
  1096. case KVM_SET_LAPIC: {
  1097. struct kvm_lapic_state lapic;
  1098. r = -EFAULT;
  1099. if (copy_from_user(&lapic, argp, sizeof lapic))
  1100. goto out;
  1101. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1102. if (r)
  1103. goto out;
  1104. r = 0;
  1105. break;
  1106. }
  1107. case KVM_INTERRUPT: {
  1108. struct kvm_interrupt irq;
  1109. r = -EFAULT;
  1110. if (copy_from_user(&irq, argp, sizeof irq))
  1111. goto out;
  1112. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1113. if (r)
  1114. goto out;
  1115. r = 0;
  1116. break;
  1117. }
  1118. case KVM_SET_CPUID: {
  1119. struct kvm_cpuid __user *cpuid_arg = argp;
  1120. struct kvm_cpuid cpuid;
  1121. r = -EFAULT;
  1122. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1123. goto out;
  1124. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1125. if (r)
  1126. goto out;
  1127. break;
  1128. }
  1129. case KVM_SET_CPUID2: {
  1130. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1131. struct kvm_cpuid2 cpuid;
  1132. r = -EFAULT;
  1133. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1134. goto out;
  1135. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1136. cpuid_arg->entries);
  1137. if (r)
  1138. goto out;
  1139. break;
  1140. }
  1141. case KVM_GET_CPUID2: {
  1142. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1143. struct kvm_cpuid2 cpuid;
  1144. r = -EFAULT;
  1145. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1146. goto out;
  1147. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1148. cpuid_arg->entries);
  1149. if (r)
  1150. goto out;
  1151. r = -EFAULT;
  1152. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1153. goto out;
  1154. r = 0;
  1155. break;
  1156. }
  1157. case KVM_GET_MSRS:
  1158. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1159. break;
  1160. case KVM_SET_MSRS:
  1161. r = msr_io(vcpu, argp, do_set_msr, 0);
  1162. break;
  1163. case KVM_TPR_ACCESS_REPORTING: {
  1164. struct kvm_tpr_access_ctl tac;
  1165. r = -EFAULT;
  1166. if (copy_from_user(&tac, argp, sizeof tac))
  1167. goto out;
  1168. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1169. if (r)
  1170. goto out;
  1171. r = -EFAULT;
  1172. if (copy_to_user(argp, &tac, sizeof tac))
  1173. goto out;
  1174. r = 0;
  1175. break;
  1176. };
  1177. case KVM_SET_VAPIC_ADDR: {
  1178. struct kvm_vapic_addr va;
  1179. r = -EINVAL;
  1180. if (!irqchip_in_kernel(vcpu->kvm))
  1181. goto out;
  1182. r = -EFAULT;
  1183. if (copy_from_user(&va, argp, sizeof va))
  1184. goto out;
  1185. r = 0;
  1186. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1187. break;
  1188. }
  1189. default:
  1190. r = -EINVAL;
  1191. }
  1192. out:
  1193. return r;
  1194. }
  1195. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1196. {
  1197. int ret;
  1198. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1199. return -1;
  1200. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1201. return ret;
  1202. }
  1203. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1204. u32 kvm_nr_mmu_pages)
  1205. {
  1206. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1207. return -EINVAL;
  1208. down_write(&kvm->slots_lock);
  1209. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1210. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1211. up_write(&kvm->slots_lock);
  1212. return 0;
  1213. }
  1214. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1215. {
  1216. return kvm->arch.n_alloc_mmu_pages;
  1217. }
  1218. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1219. {
  1220. int i;
  1221. struct kvm_mem_alias *alias;
  1222. for (i = 0; i < kvm->arch.naliases; ++i) {
  1223. alias = &kvm->arch.aliases[i];
  1224. if (gfn >= alias->base_gfn
  1225. && gfn < alias->base_gfn + alias->npages)
  1226. return alias->target_gfn + gfn - alias->base_gfn;
  1227. }
  1228. return gfn;
  1229. }
  1230. /*
  1231. * Set a new alias region. Aliases map a portion of physical memory into
  1232. * another portion. This is useful for memory windows, for example the PC
  1233. * VGA region.
  1234. */
  1235. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1236. struct kvm_memory_alias *alias)
  1237. {
  1238. int r, n;
  1239. struct kvm_mem_alias *p;
  1240. r = -EINVAL;
  1241. /* General sanity checks */
  1242. if (alias->memory_size & (PAGE_SIZE - 1))
  1243. goto out;
  1244. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1245. goto out;
  1246. if (alias->slot >= KVM_ALIAS_SLOTS)
  1247. goto out;
  1248. if (alias->guest_phys_addr + alias->memory_size
  1249. < alias->guest_phys_addr)
  1250. goto out;
  1251. if (alias->target_phys_addr + alias->memory_size
  1252. < alias->target_phys_addr)
  1253. goto out;
  1254. down_write(&kvm->slots_lock);
  1255. p = &kvm->arch.aliases[alias->slot];
  1256. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1257. p->npages = alias->memory_size >> PAGE_SHIFT;
  1258. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1259. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1260. if (kvm->arch.aliases[n - 1].npages)
  1261. break;
  1262. kvm->arch.naliases = n;
  1263. kvm_mmu_zap_all(kvm);
  1264. up_write(&kvm->slots_lock);
  1265. return 0;
  1266. out:
  1267. return r;
  1268. }
  1269. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1270. {
  1271. int r;
  1272. r = 0;
  1273. switch (chip->chip_id) {
  1274. case KVM_IRQCHIP_PIC_MASTER:
  1275. memcpy(&chip->chip.pic,
  1276. &pic_irqchip(kvm)->pics[0],
  1277. sizeof(struct kvm_pic_state));
  1278. break;
  1279. case KVM_IRQCHIP_PIC_SLAVE:
  1280. memcpy(&chip->chip.pic,
  1281. &pic_irqchip(kvm)->pics[1],
  1282. sizeof(struct kvm_pic_state));
  1283. break;
  1284. case KVM_IRQCHIP_IOAPIC:
  1285. memcpy(&chip->chip.ioapic,
  1286. ioapic_irqchip(kvm),
  1287. sizeof(struct kvm_ioapic_state));
  1288. break;
  1289. default:
  1290. r = -EINVAL;
  1291. break;
  1292. }
  1293. return r;
  1294. }
  1295. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1296. {
  1297. int r;
  1298. r = 0;
  1299. switch (chip->chip_id) {
  1300. case KVM_IRQCHIP_PIC_MASTER:
  1301. memcpy(&pic_irqchip(kvm)->pics[0],
  1302. &chip->chip.pic,
  1303. sizeof(struct kvm_pic_state));
  1304. break;
  1305. case KVM_IRQCHIP_PIC_SLAVE:
  1306. memcpy(&pic_irqchip(kvm)->pics[1],
  1307. &chip->chip.pic,
  1308. sizeof(struct kvm_pic_state));
  1309. break;
  1310. case KVM_IRQCHIP_IOAPIC:
  1311. memcpy(ioapic_irqchip(kvm),
  1312. &chip->chip.ioapic,
  1313. sizeof(struct kvm_ioapic_state));
  1314. break;
  1315. default:
  1316. r = -EINVAL;
  1317. break;
  1318. }
  1319. kvm_pic_update_irq(pic_irqchip(kvm));
  1320. return r;
  1321. }
  1322. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1323. {
  1324. int r = 0;
  1325. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1326. return r;
  1327. }
  1328. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1329. {
  1330. int r = 0;
  1331. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1332. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1333. return r;
  1334. }
  1335. /*
  1336. * Get (and clear) the dirty memory log for a memory slot.
  1337. */
  1338. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1339. struct kvm_dirty_log *log)
  1340. {
  1341. int r;
  1342. int n;
  1343. struct kvm_memory_slot *memslot;
  1344. int is_dirty = 0;
  1345. down_write(&kvm->slots_lock);
  1346. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1347. if (r)
  1348. goto out;
  1349. /* If nothing is dirty, don't bother messing with page tables. */
  1350. if (is_dirty) {
  1351. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1352. kvm_flush_remote_tlbs(kvm);
  1353. memslot = &kvm->memslots[log->slot];
  1354. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1355. memset(memslot->dirty_bitmap, 0, n);
  1356. }
  1357. r = 0;
  1358. out:
  1359. up_write(&kvm->slots_lock);
  1360. return r;
  1361. }
  1362. long kvm_arch_vm_ioctl(struct file *filp,
  1363. unsigned int ioctl, unsigned long arg)
  1364. {
  1365. struct kvm *kvm = filp->private_data;
  1366. void __user *argp = (void __user *)arg;
  1367. int r = -EINVAL;
  1368. switch (ioctl) {
  1369. case KVM_SET_TSS_ADDR:
  1370. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1371. if (r < 0)
  1372. goto out;
  1373. break;
  1374. case KVM_SET_MEMORY_REGION: {
  1375. struct kvm_memory_region kvm_mem;
  1376. struct kvm_userspace_memory_region kvm_userspace_mem;
  1377. r = -EFAULT;
  1378. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1379. goto out;
  1380. kvm_userspace_mem.slot = kvm_mem.slot;
  1381. kvm_userspace_mem.flags = kvm_mem.flags;
  1382. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1383. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1384. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1385. if (r)
  1386. goto out;
  1387. break;
  1388. }
  1389. case KVM_SET_NR_MMU_PAGES:
  1390. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1391. if (r)
  1392. goto out;
  1393. break;
  1394. case KVM_GET_NR_MMU_PAGES:
  1395. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1396. break;
  1397. case KVM_SET_MEMORY_ALIAS: {
  1398. struct kvm_memory_alias alias;
  1399. r = -EFAULT;
  1400. if (copy_from_user(&alias, argp, sizeof alias))
  1401. goto out;
  1402. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1403. if (r)
  1404. goto out;
  1405. break;
  1406. }
  1407. case KVM_CREATE_IRQCHIP:
  1408. r = -ENOMEM;
  1409. kvm->arch.vpic = kvm_create_pic(kvm);
  1410. if (kvm->arch.vpic) {
  1411. r = kvm_ioapic_init(kvm);
  1412. if (r) {
  1413. kfree(kvm->arch.vpic);
  1414. kvm->arch.vpic = NULL;
  1415. goto out;
  1416. }
  1417. } else
  1418. goto out;
  1419. break;
  1420. case KVM_CREATE_PIT:
  1421. r = -ENOMEM;
  1422. kvm->arch.vpit = kvm_create_pit(kvm);
  1423. if (kvm->arch.vpit)
  1424. r = 0;
  1425. break;
  1426. case KVM_IRQ_LINE: {
  1427. struct kvm_irq_level irq_event;
  1428. r = -EFAULT;
  1429. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1430. goto out;
  1431. if (irqchip_in_kernel(kvm)) {
  1432. mutex_lock(&kvm->lock);
  1433. if (irq_event.irq < 16)
  1434. kvm_pic_set_irq(pic_irqchip(kvm),
  1435. irq_event.irq,
  1436. irq_event.level);
  1437. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1438. irq_event.irq,
  1439. irq_event.level);
  1440. mutex_unlock(&kvm->lock);
  1441. r = 0;
  1442. }
  1443. break;
  1444. }
  1445. case KVM_GET_IRQCHIP: {
  1446. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1447. struct kvm_irqchip chip;
  1448. r = -EFAULT;
  1449. if (copy_from_user(&chip, argp, sizeof chip))
  1450. goto out;
  1451. r = -ENXIO;
  1452. if (!irqchip_in_kernel(kvm))
  1453. goto out;
  1454. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1455. if (r)
  1456. goto out;
  1457. r = -EFAULT;
  1458. if (copy_to_user(argp, &chip, sizeof chip))
  1459. goto out;
  1460. r = 0;
  1461. break;
  1462. }
  1463. case KVM_SET_IRQCHIP: {
  1464. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1465. struct kvm_irqchip chip;
  1466. r = -EFAULT;
  1467. if (copy_from_user(&chip, argp, sizeof chip))
  1468. goto out;
  1469. r = -ENXIO;
  1470. if (!irqchip_in_kernel(kvm))
  1471. goto out;
  1472. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1473. if (r)
  1474. goto out;
  1475. r = 0;
  1476. break;
  1477. }
  1478. case KVM_GET_PIT: {
  1479. struct kvm_pit_state ps;
  1480. r = -EFAULT;
  1481. if (copy_from_user(&ps, argp, sizeof ps))
  1482. goto out;
  1483. r = -ENXIO;
  1484. if (!kvm->arch.vpit)
  1485. goto out;
  1486. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1487. if (r)
  1488. goto out;
  1489. r = -EFAULT;
  1490. if (copy_to_user(argp, &ps, sizeof ps))
  1491. goto out;
  1492. r = 0;
  1493. break;
  1494. }
  1495. case KVM_SET_PIT: {
  1496. struct kvm_pit_state ps;
  1497. r = -EFAULT;
  1498. if (copy_from_user(&ps, argp, sizeof ps))
  1499. goto out;
  1500. r = -ENXIO;
  1501. if (!kvm->arch.vpit)
  1502. goto out;
  1503. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1504. if (r)
  1505. goto out;
  1506. r = 0;
  1507. break;
  1508. }
  1509. default:
  1510. ;
  1511. }
  1512. out:
  1513. return r;
  1514. }
  1515. static void kvm_init_msr_list(void)
  1516. {
  1517. u32 dummy[2];
  1518. unsigned i, j;
  1519. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1520. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1521. continue;
  1522. if (j < i)
  1523. msrs_to_save[j] = msrs_to_save[i];
  1524. j++;
  1525. }
  1526. num_msrs_to_save = j;
  1527. }
  1528. /*
  1529. * Only apic need an MMIO device hook, so shortcut now..
  1530. */
  1531. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1532. gpa_t addr)
  1533. {
  1534. struct kvm_io_device *dev;
  1535. if (vcpu->arch.apic) {
  1536. dev = &vcpu->arch.apic->dev;
  1537. if (dev->in_range(dev, addr))
  1538. return dev;
  1539. }
  1540. return NULL;
  1541. }
  1542. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1543. gpa_t addr)
  1544. {
  1545. struct kvm_io_device *dev;
  1546. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1547. if (dev == NULL)
  1548. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1549. return dev;
  1550. }
  1551. int emulator_read_std(unsigned long addr,
  1552. void *val,
  1553. unsigned int bytes,
  1554. struct kvm_vcpu *vcpu)
  1555. {
  1556. void *data = val;
  1557. int r = X86EMUL_CONTINUE;
  1558. while (bytes) {
  1559. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1560. unsigned offset = addr & (PAGE_SIZE-1);
  1561. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1562. int ret;
  1563. if (gpa == UNMAPPED_GVA) {
  1564. r = X86EMUL_PROPAGATE_FAULT;
  1565. goto out;
  1566. }
  1567. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1568. if (ret < 0) {
  1569. r = X86EMUL_UNHANDLEABLE;
  1570. goto out;
  1571. }
  1572. bytes -= tocopy;
  1573. data += tocopy;
  1574. addr += tocopy;
  1575. }
  1576. out:
  1577. return r;
  1578. }
  1579. EXPORT_SYMBOL_GPL(emulator_read_std);
  1580. static int emulator_read_emulated(unsigned long addr,
  1581. void *val,
  1582. unsigned int bytes,
  1583. struct kvm_vcpu *vcpu)
  1584. {
  1585. struct kvm_io_device *mmio_dev;
  1586. gpa_t gpa;
  1587. if (vcpu->mmio_read_completed) {
  1588. memcpy(val, vcpu->mmio_data, bytes);
  1589. vcpu->mmio_read_completed = 0;
  1590. return X86EMUL_CONTINUE;
  1591. }
  1592. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1593. /* For APIC access vmexit */
  1594. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1595. goto mmio;
  1596. if (emulator_read_std(addr, val, bytes, vcpu)
  1597. == X86EMUL_CONTINUE)
  1598. return X86EMUL_CONTINUE;
  1599. if (gpa == UNMAPPED_GVA)
  1600. return X86EMUL_PROPAGATE_FAULT;
  1601. mmio:
  1602. /*
  1603. * Is this MMIO handled locally?
  1604. */
  1605. mutex_lock(&vcpu->kvm->lock);
  1606. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1607. if (mmio_dev) {
  1608. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1609. mutex_unlock(&vcpu->kvm->lock);
  1610. return X86EMUL_CONTINUE;
  1611. }
  1612. mutex_unlock(&vcpu->kvm->lock);
  1613. vcpu->mmio_needed = 1;
  1614. vcpu->mmio_phys_addr = gpa;
  1615. vcpu->mmio_size = bytes;
  1616. vcpu->mmio_is_write = 0;
  1617. return X86EMUL_UNHANDLEABLE;
  1618. }
  1619. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1620. const void *val, int bytes)
  1621. {
  1622. int ret;
  1623. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1624. if (ret < 0)
  1625. return 0;
  1626. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1627. return 1;
  1628. }
  1629. static int emulator_write_emulated_onepage(unsigned long addr,
  1630. const void *val,
  1631. unsigned int bytes,
  1632. struct kvm_vcpu *vcpu)
  1633. {
  1634. struct kvm_io_device *mmio_dev;
  1635. gpa_t gpa;
  1636. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1637. if (gpa == UNMAPPED_GVA) {
  1638. kvm_inject_page_fault(vcpu, addr, 2);
  1639. return X86EMUL_PROPAGATE_FAULT;
  1640. }
  1641. /* For APIC access vmexit */
  1642. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1643. goto mmio;
  1644. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1645. return X86EMUL_CONTINUE;
  1646. mmio:
  1647. /*
  1648. * Is this MMIO handled locally?
  1649. */
  1650. mutex_lock(&vcpu->kvm->lock);
  1651. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1652. if (mmio_dev) {
  1653. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1654. mutex_unlock(&vcpu->kvm->lock);
  1655. return X86EMUL_CONTINUE;
  1656. }
  1657. mutex_unlock(&vcpu->kvm->lock);
  1658. vcpu->mmio_needed = 1;
  1659. vcpu->mmio_phys_addr = gpa;
  1660. vcpu->mmio_size = bytes;
  1661. vcpu->mmio_is_write = 1;
  1662. memcpy(vcpu->mmio_data, val, bytes);
  1663. return X86EMUL_CONTINUE;
  1664. }
  1665. int emulator_write_emulated(unsigned long addr,
  1666. const void *val,
  1667. unsigned int bytes,
  1668. struct kvm_vcpu *vcpu)
  1669. {
  1670. /* Crossing a page boundary? */
  1671. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1672. int rc, now;
  1673. now = -addr & ~PAGE_MASK;
  1674. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1675. if (rc != X86EMUL_CONTINUE)
  1676. return rc;
  1677. addr += now;
  1678. val += now;
  1679. bytes -= now;
  1680. }
  1681. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1682. }
  1683. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1684. static int emulator_cmpxchg_emulated(unsigned long addr,
  1685. const void *old,
  1686. const void *new,
  1687. unsigned int bytes,
  1688. struct kvm_vcpu *vcpu)
  1689. {
  1690. static int reported;
  1691. if (!reported) {
  1692. reported = 1;
  1693. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1694. }
  1695. #ifndef CONFIG_X86_64
  1696. /* guests cmpxchg8b have to be emulated atomically */
  1697. if (bytes == 8) {
  1698. gpa_t gpa;
  1699. struct page *page;
  1700. char *kaddr;
  1701. u64 val;
  1702. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1703. if (gpa == UNMAPPED_GVA ||
  1704. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1705. goto emul_write;
  1706. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1707. goto emul_write;
  1708. val = *(u64 *)new;
  1709. down_read(&current->mm->mmap_sem);
  1710. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1711. up_read(&current->mm->mmap_sem);
  1712. kaddr = kmap_atomic(page, KM_USER0);
  1713. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1714. kunmap_atomic(kaddr, KM_USER0);
  1715. kvm_release_page_dirty(page);
  1716. }
  1717. emul_write:
  1718. #endif
  1719. return emulator_write_emulated(addr, new, bytes, vcpu);
  1720. }
  1721. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1722. {
  1723. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1724. }
  1725. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1726. {
  1727. return X86EMUL_CONTINUE;
  1728. }
  1729. int emulate_clts(struct kvm_vcpu *vcpu)
  1730. {
  1731. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1732. return X86EMUL_CONTINUE;
  1733. }
  1734. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1735. {
  1736. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1737. switch (dr) {
  1738. case 0 ... 3:
  1739. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1740. return X86EMUL_CONTINUE;
  1741. default:
  1742. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1743. return X86EMUL_UNHANDLEABLE;
  1744. }
  1745. }
  1746. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1747. {
  1748. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1749. int exception;
  1750. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1751. if (exception) {
  1752. /* FIXME: better handling */
  1753. return X86EMUL_UNHANDLEABLE;
  1754. }
  1755. return X86EMUL_CONTINUE;
  1756. }
  1757. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1758. {
  1759. static int reported;
  1760. u8 opcodes[4];
  1761. unsigned long rip = vcpu->arch.rip;
  1762. unsigned long rip_linear;
  1763. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1764. if (reported)
  1765. return;
  1766. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1767. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1768. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1769. reported = 1;
  1770. }
  1771. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1772. static struct x86_emulate_ops emulate_ops = {
  1773. .read_std = emulator_read_std,
  1774. .read_emulated = emulator_read_emulated,
  1775. .write_emulated = emulator_write_emulated,
  1776. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1777. };
  1778. int emulate_instruction(struct kvm_vcpu *vcpu,
  1779. struct kvm_run *run,
  1780. unsigned long cr2,
  1781. u16 error_code,
  1782. int emulation_type)
  1783. {
  1784. int r;
  1785. struct decode_cache *c;
  1786. vcpu->arch.mmio_fault_cr2 = cr2;
  1787. kvm_x86_ops->cache_regs(vcpu);
  1788. vcpu->mmio_is_write = 0;
  1789. vcpu->arch.pio.string = 0;
  1790. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1791. int cs_db, cs_l;
  1792. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1793. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1794. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1795. vcpu->arch.emulate_ctxt.mode =
  1796. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1797. ? X86EMUL_MODE_REAL : cs_l
  1798. ? X86EMUL_MODE_PROT64 : cs_db
  1799. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1800. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1801. vcpu->arch.emulate_ctxt.cs_base = 0;
  1802. vcpu->arch.emulate_ctxt.ds_base = 0;
  1803. vcpu->arch.emulate_ctxt.es_base = 0;
  1804. vcpu->arch.emulate_ctxt.ss_base = 0;
  1805. } else {
  1806. vcpu->arch.emulate_ctxt.cs_base =
  1807. get_segment_base(vcpu, VCPU_SREG_CS);
  1808. vcpu->arch.emulate_ctxt.ds_base =
  1809. get_segment_base(vcpu, VCPU_SREG_DS);
  1810. vcpu->arch.emulate_ctxt.es_base =
  1811. get_segment_base(vcpu, VCPU_SREG_ES);
  1812. vcpu->arch.emulate_ctxt.ss_base =
  1813. get_segment_base(vcpu, VCPU_SREG_SS);
  1814. }
  1815. vcpu->arch.emulate_ctxt.gs_base =
  1816. get_segment_base(vcpu, VCPU_SREG_GS);
  1817. vcpu->arch.emulate_ctxt.fs_base =
  1818. get_segment_base(vcpu, VCPU_SREG_FS);
  1819. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1820. /* Reject the instructions other than VMCALL/VMMCALL when
  1821. * try to emulate invalid opcode */
  1822. c = &vcpu->arch.emulate_ctxt.decode;
  1823. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1824. (!(c->twobyte && c->b == 0x01 &&
  1825. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1826. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1827. return EMULATE_FAIL;
  1828. ++vcpu->stat.insn_emulation;
  1829. if (r) {
  1830. ++vcpu->stat.insn_emulation_fail;
  1831. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1832. return EMULATE_DONE;
  1833. return EMULATE_FAIL;
  1834. }
  1835. }
  1836. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1837. if (vcpu->arch.pio.string)
  1838. return EMULATE_DO_MMIO;
  1839. if ((r || vcpu->mmio_is_write) && run) {
  1840. run->exit_reason = KVM_EXIT_MMIO;
  1841. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1842. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1843. run->mmio.len = vcpu->mmio_size;
  1844. run->mmio.is_write = vcpu->mmio_is_write;
  1845. }
  1846. if (r) {
  1847. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1848. return EMULATE_DONE;
  1849. if (!vcpu->mmio_needed) {
  1850. kvm_report_emulation_failure(vcpu, "mmio");
  1851. return EMULATE_FAIL;
  1852. }
  1853. return EMULATE_DO_MMIO;
  1854. }
  1855. kvm_x86_ops->decache_regs(vcpu);
  1856. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1857. if (vcpu->mmio_is_write) {
  1858. vcpu->mmio_needed = 0;
  1859. return EMULATE_DO_MMIO;
  1860. }
  1861. return EMULATE_DONE;
  1862. }
  1863. EXPORT_SYMBOL_GPL(emulate_instruction);
  1864. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1865. {
  1866. int i;
  1867. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1868. if (vcpu->arch.pio.guest_pages[i]) {
  1869. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1870. vcpu->arch.pio.guest_pages[i] = NULL;
  1871. }
  1872. }
  1873. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1874. {
  1875. void *p = vcpu->arch.pio_data;
  1876. void *q;
  1877. unsigned bytes;
  1878. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1879. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1880. PAGE_KERNEL);
  1881. if (!q) {
  1882. free_pio_guest_pages(vcpu);
  1883. return -ENOMEM;
  1884. }
  1885. q += vcpu->arch.pio.guest_page_offset;
  1886. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1887. if (vcpu->arch.pio.in)
  1888. memcpy(q, p, bytes);
  1889. else
  1890. memcpy(p, q, bytes);
  1891. q -= vcpu->arch.pio.guest_page_offset;
  1892. vunmap(q);
  1893. free_pio_guest_pages(vcpu);
  1894. return 0;
  1895. }
  1896. int complete_pio(struct kvm_vcpu *vcpu)
  1897. {
  1898. struct kvm_pio_request *io = &vcpu->arch.pio;
  1899. long delta;
  1900. int r;
  1901. kvm_x86_ops->cache_regs(vcpu);
  1902. if (!io->string) {
  1903. if (io->in)
  1904. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1905. io->size);
  1906. } else {
  1907. if (io->in) {
  1908. r = pio_copy_data(vcpu);
  1909. if (r) {
  1910. kvm_x86_ops->cache_regs(vcpu);
  1911. return r;
  1912. }
  1913. }
  1914. delta = 1;
  1915. if (io->rep) {
  1916. delta *= io->cur_count;
  1917. /*
  1918. * The size of the register should really depend on
  1919. * current address size.
  1920. */
  1921. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1922. }
  1923. if (io->down)
  1924. delta = -delta;
  1925. delta *= io->size;
  1926. if (io->in)
  1927. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1928. else
  1929. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1930. }
  1931. kvm_x86_ops->decache_regs(vcpu);
  1932. io->count -= io->cur_count;
  1933. io->cur_count = 0;
  1934. return 0;
  1935. }
  1936. static void kernel_pio(struct kvm_io_device *pio_dev,
  1937. struct kvm_vcpu *vcpu,
  1938. void *pd)
  1939. {
  1940. /* TODO: String I/O for in kernel device */
  1941. mutex_lock(&vcpu->kvm->lock);
  1942. if (vcpu->arch.pio.in)
  1943. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1944. vcpu->arch.pio.size,
  1945. pd);
  1946. else
  1947. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1948. vcpu->arch.pio.size,
  1949. pd);
  1950. mutex_unlock(&vcpu->kvm->lock);
  1951. }
  1952. static void pio_string_write(struct kvm_io_device *pio_dev,
  1953. struct kvm_vcpu *vcpu)
  1954. {
  1955. struct kvm_pio_request *io = &vcpu->arch.pio;
  1956. void *pd = vcpu->arch.pio_data;
  1957. int i;
  1958. mutex_lock(&vcpu->kvm->lock);
  1959. for (i = 0; i < io->cur_count; i++) {
  1960. kvm_iodevice_write(pio_dev, io->port,
  1961. io->size,
  1962. pd);
  1963. pd += io->size;
  1964. }
  1965. mutex_unlock(&vcpu->kvm->lock);
  1966. }
  1967. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1968. gpa_t addr)
  1969. {
  1970. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1971. }
  1972. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1973. int size, unsigned port)
  1974. {
  1975. struct kvm_io_device *pio_dev;
  1976. vcpu->run->exit_reason = KVM_EXIT_IO;
  1977. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1978. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1979. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1980. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1981. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1982. vcpu->arch.pio.in = in;
  1983. vcpu->arch.pio.string = 0;
  1984. vcpu->arch.pio.down = 0;
  1985. vcpu->arch.pio.guest_page_offset = 0;
  1986. vcpu->arch.pio.rep = 0;
  1987. kvm_x86_ops->cache_regs(vcpu);
  1988. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1989. kvm_x86_ops->decache_regs(vcpu);
  1990. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1991. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1992. if (pio_dev) {
  1993. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  1994. complete_pio(vcpu);
  1995. return 1;
  1996. }
  1997. return 0;
  1998. }
  1999. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2000. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2001. int size, unsigned long count, int down,
  2002. gva_t address, int rep, unsigned port)
  2003. {
  2004. unsigned now, in_page;
  2005. int i, ret = 0;
  2006. int nr_pages = 1;
  2007. struct page *page;
  2008. struct kvm_io_device *pio_dev;
  2009. vcpu->run->exit_reason = KVM_EXIT_IO;
  2010. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2011. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2012. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2013. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2014. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2015. vcpu->arch.pio.in = in;
  2016. vcpu->arch.pio.string = 1;
  2017. vcpu->arch.pio.down = down;
  2018. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2019. vcpu->arch.pio.rep = rep;
  2020. if (!count) {
  2021. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2022. return 1;
  2023. }
  2024. if (!down)
  2025. in_page = PAGE_SIZE - offset_in_page(address);
  2026. else
  2027. in_page = offset_in_page(address) + size;
  2028. now = min(count, (unsigned long)in_page / size);
  2029. if (!now) {
  2030. /*
  2031. * String I/O straddles page boundary. Pin two guest pages
  2032. * so that we satisfy atomicity constraints. Do just one
  2033. * transaction to avoid complexity.
  2034. */
  2035. nr_pages = 2;
  2036. now = 1;
  2037. }
  2038. if (down) {
  2039. /*
  2040. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2041. */
  2042. pr_unimpl(vcpu, "guest string pio down\n");
  2043. kvm_inject_gp(vcpu, 0);
  2044. return 1;
  2045. }
  2046. vcpu->run->io.count = now;
  2047. vcpu->arch.pio.cur_count = now;
  2048. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2049. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2050. for (i = 0; i < nr_pages; ++i) {
  2051. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2052. vcpu->arch.pio.guest_pages[i] = page;
  2053. if (!page) {
  2054. kvm_inject_gp(vcpu, 0);
  2055. free_pio_guest_pages(vcpu);
  2056. return 1;
  2057. }
  2058. }
  2059. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2060. if (!vcpu->arch.pio.in) {
  2061. /* string PIO write */
  2062. ret = pio_copy_data(vcpu);
  2063. if (ret >= 0 && pio_dev) {
  2064. pio_string_write(pio_dev, vcpu);
  2065. complete_pio(vcpu);
  2066. if (vcpu->arch.pio.count == 0)
  2067. ret = 1;
  2068. }
  2069. } else if (pio_dev)
  2070. pr_unimpl(vcpu, "no string pio read support yet, "
  2071. "port %x size %d count %ld\n",
  2072. port, size, count);
  2073. return ret;
  2074. }
  2075. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2076. int kvm_arch_init(void *opaque)
  2077. {
  2078. int r;
  2079. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2080. if (kvm_x86_ops) {
  2081. printk(KERN_ERR "kvm: already loaded the other module\n");
  2082. r = -EEXIST;
  2083. goto out;
  2084. }
  2085. if (!ops->cpu_has_kvm_support()) {
  2086. printk(KERN_ERR "kvm: no hardware support\n");
  2087. r = -EOPNOTSUPP;
  2088. goto out;
  2089. }
  2090. if (ops->disabled_by_bios()) {
  2091. printk(KERN_ERR "kvm: disabled by bios\n");
  2092. r = -EOPNOTSUPP;
  2093. goto out;
  2094. }
  2095. r = kvm_mmu_module_init();
  2096. if (r)
  2097. goto out;
  2098. kvm_init_msr_list();
  2099. kvm_x86_ops = ops;
  2100. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2101. return 0;
  2102. out:
  2103. return r;
  2104. }
  2105. void kvm_arch_exit(void)
  2106. {
  2107. kvm_x86_ops = NULL;
  2108. kvm_mmu_module_exit();
  2109. }
  2110. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2111. {
  2112. ++vcpu->stat.halt_exits;
  2113. if (irqchip_in_kernel(vcpu->kvm)) {
  2114. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2115. up_read(&vcpu->kvm->slots_lock);
  2116. kvm_vcpu_block(vcpu);
  2117. down_read(&vcpu->kvm->slots_lock);
  2118. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2119. return -EINTR;
  2120. return 1;
  2121. } else {
  2122. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2123. return 0;
  2124. }
  2125. }
  2126. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2127. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2128. unsigned long a1)
  2129. {
  2130. if (is_long_mode(vcpu))
  2131. return a0;
  2132. else
  2133. return a0 | ((gpa_t)a1 << 32);
  2134. }
  2135. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2136. {
  2137. unsigned long nr, a0, a1, a2, a3, ret;
  2138. int r = 1;
  2139. kvm_x86_ops->cache_regs(vcpu);
  2140. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2141. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2142. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2143. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2144. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2145. if (!is_long_mode(vcpu)) {
  2146. nr &= 0xFFFFFFFF;
  2147. a0 &= 0xFFFFFFFF;
  2148. a1 &= 0xFFFFFFFF;
  2149. a2 &= 0xFFFFFFFF;
  2150. a3 &= 0xFFFFFFFF;
  2151. }
  2152. switch (nr) {
  2153. case KVM_HC_VAPIC_POLL_IRQ:
  2154. ret = 0;
  2155. break;
  2156. case KVM_HC_MMU_OP:
  2157. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2158. break;
  2159. default:
  2160. ret = -KVM_ENOSYS;
  2161. break;
  2162. }
  2163. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2164. kvm_x86_ops->decache_regs(vcpu);
  2165. ++vcpu->stat.hypercalls;
  2166. return r;
  2167. }
  2168. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2169. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2170. {
  2171. char instruction[3];
  2172. int ret = 0;
  2173. /*
  2174. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2175. * to ensure that the updated hypercall appears atomically across all
  2176. * VCPUs.
  2177. */
  2178. kvm_mmu_zap_all(vcpu->kvm);
  2179. kvm_x86_ops->cache_regs(vcpu);
  2180. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2181. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2182. != X86EMUL_CONTINUE)
  2183. ret = -EFAULT;
  2184. return ret;
  2185. }
  2186. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2187. {
  2188. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2189. }
  2190. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2191. {
  2192. struct descriptor_table dt = { limit, base };
  2193. kvm_x86_ops->set_gdt(vcpu, &dt);
  2194. }
  2195. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2196. {
  2197. struct descriptor_table dt = { limit, base };
  2198. kvm_x86_ops->set_idt(vcpu, &dt);
  2199. }
  2200. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2201. unsigned long *rflags)
  2202. {
  2203. kvm_lmsw(vcpu, msw);
  2204. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2205. }
  2206. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2207. {
  2208. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2209. switch (cr) {
  2210. case 0:
  2211. return vcpu->arch.cr0;
  2212. case 2:
  2213. return vcpu->arch.cr2;
  2214. case 3:
  2215. return vcpu->arch.cr3;
  2216. case 4:
  2217. return vcpu->arch.cr4;
  2218. case 8:
  2219. return kvm_get_cr8(vcpu);
  2220. default:
  2221. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2222. return 0;
  2223. }
  2224. }
  2225. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2226. unsigned long *rflags)
  2227. {
  2228. switch (cr) {
  2229. case 0:
  2230. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2231. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2232. break;
  2233. case 2:
  2234. vcpu->arch.cr2 = val;
  2235. break;
  2236. case 3:
  2237. kvm_set_cr3(vcpu, val);
  2238. break;
  2239. case 4:
  2240. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2241. break;
  2242. case 8:
  2243. kvm_set_cr8(vcpu, val & 0xfUL);
  2244. break;
  2245. default:
  2246. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2247. }
  2248. }
  2249. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2250. {
  2251. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2252. int j, nent = vcpu->arch.cpuid_nent;
  2253. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2254. /* when no next entry is found, the current entry[i] is reselected */
  2255. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2256. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2257. if (ej->function == e->function) {
  2258. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2259. return j;
  2260. }
  2261. }
  2262. return 0; /* silence gcc, even though control never reaches here */
  2263. }
  2264. /* find an entry with matching function, matching index (if needed), and that
  2265. * should be read next (if it's stateful) */
  2266. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2267. u32 function, u32 index)
  2268. {
  2269. if (e->function != function)
  2270. return 0;
  2271. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2272. return 0;
  2273. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2274. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2275. return 0;
  2276. return 1;
  2277. }
  2278. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2279. {
  2280. int i;
  2281. u32 function, index;
  2282. struct kvm_cpuid_entry2 *e, *best;
  2283. kvm_x86_ops->cache_regs(vcpu);
  2284. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2285. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2286. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2287. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2288. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2289. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2290. best = NULL;
  2291. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2292. e = &vcpu->arch.cpuid_entries[i];
  2293. if (is_matching_cpuid_entry(e, function, index)) {
  2294. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2295. move_to_next_stateful_cpuid_entry(vcpu, i);
  2296. best = e;
  2297. break;
  2298. }
  2299. /*
  2300. * Both basic or both extended?
  2301. */
  2302. if (((e->function ^ function) & 0x80000000) == 0)
  2303. if (!best || e->function > best->function)
  2304. best = e;
  2305. }
  2306. if (best) {
  2307. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2308. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2309. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2310. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2311. }
  2312. kvm_x86_ops->decache_regs(vcpu);
  2313. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2314. }
  2315. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2316. /*
  2317. * Check if userspace requested an interrupt window, and that the
  2318. * interrupt window is open.
  2319. *
  2320. * No need to exit to userspace if we already have an interrupt queued.
  2321. */
  2322. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2323. struct kvm_run *kvm_run)
  2324. {
  2325. return (!vcpu->arch.irq_summary &&
  2326. kvm_run->request_interrupt_window &&
  2327. vcpu->arch.interrupt_window_open &&
  2328. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2329. }
  2330. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2331. struct kvm_run *kvm_run)
  2332. {
  2333. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2334. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2335. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2336. if (irqchip_in_kernel(vcpu->kvm))
  2337. kvm_run->ready_for_interrupt_injection = 1;
  2338. else
  2339. kvm_run->ready_for_interrupt_injection =
  2340. (vcpu->arch.interrupt_window_open &&
  2341. vcpu->arch.irq_summary == 0);
  2342. }
  2343. static void vapic_enter(struct kvm_vcpu *vcpu)
  2344. {
  2345. struct kvm_lapic *apic = vcpu->arch.apic;
  2346. struct page *page;
  2347. if (!apic || !apic->vapic_addr)
  2348. return;
  2349. down_read(&current->mm->mmap_sem);
  2350. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2351. up_read(&current->mm->mmap_sem);
  2352. vcpu->arch.apic->vapic_page = page;
  2353. }
  2354. static void vapic_exit(struct kvm_vcpu *vcpu)
  2355. {
  2356. struct kvm_lapic *apic = vcpu->arch.apic;
  2357. if (!apic || !apic->vapic_addr)
  2358. return;
  2359. kvm_release_page_dirty(apic->vapic_page);
  2360. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2361. }
  2362. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2363. {
  2364. int r;
  2365. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2366. pr_debug("vcpu %d received sipi with vector # %x\n",
  2367. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2368. kvm_lapic_reset(vcpu);
  2369. r = kvm_x86_ops->vcpu_reset(vcpu);
  2370. if (r)
  2371. return r;
  2372. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2373. }
  2374. down_read(&vcpu->kvm->slots_lock);
  2375. vapic_enter(vcpu);
  2376. preempted:
  2377. if (vcpu->guest_debug.enabled)
  2378. kvm_x86_ops->guest_debug_pre(vcpu);
  2379. again:
  2380. if (vcpu->requests)
  2381. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2382. kvm_mmu_unload(vcpu);
  2383. r = kvm_mmu_reload(vcpu);
  2384. if (unlikely(r))
  2385. goto out;
  2386. if (vcpu->requests) {
  2387. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2388. __kvm_migrate_apic_timer(vcpu);
  2389. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2390. &vcpu->requests)) {
  2391. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2392. r = 0;
  2393. goto out;
  2394. }
  2395. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2396. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2397. r = 0;
  2398. goto out;
  2399. }
  2400. }
  2401. kvm_inject_pending_timer_irqs(vcpu);
  2402. preempt_disable();
  2403. kvm_x86_ops->prepare_guest_switch(vcpu);
  2404. kvm_load_guest_fpu(vcpu);
  2405. local_irq_disable();
  2406. if (need_resched()) {
  2407. local_irq_enable();
  2408. preempt_enable();
  2409. r = 1;
  2410. goto out;
  2411. }
  2412. if (vcpu->requests)
  2413. if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
  2414. local_irq_enable();
  2415. preempt_enable();
  2416. r = 1;
  2417. goto out;
  2418. }
  2419. if (signal_pending(current)) {
  2420. local_irq_enable();
  2421. preempt_enable();
  2422. r = -EINTR;
  2423. kvm_run->exit_reason = KVM_EXIT_INTR;
  2424. ++vcpu->stat.signal_exits;
  2425. goto out;
  2426. }
  2427. if (vcpu->arch.exception.pending)
  2428. __queue_exception(vcpu);
  2429. else if (irqchip_in_kernel(vcpu->kvm))
  2430. kvm_x86_ops->inject_pending_irq(vcpu);
  2431. else
  2432. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2433. kvm_lapic_sync_to_vapic(vcpu);
  2434. up_read(&vcpu->kvm->slots_lock);
  2435. vcpu->guest_mode = 1;
  2436. kvm_guest_enter();
  2437. if (vcpu->requests)
  2438. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2439. kvm_x86_ops->tlb_flush(vcpu);
  2440. kvm_x86_ops->run(vcpu, kvm_run);
  2441. vcpu->guest_mode = 0;
  2442. local_irq_enable();
  2443. ++vcpu->stat.exits;
  2444. /*
  2445. * We must have an instruction between local_irq_enable() and
  2446. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2447. * the interrupt shadow. The stat.exits increment will do nicely.
  2448. * But we need to prevent reordering, hence this barrier():
  2449. */
  2450. barrier();
  2451. kvm_guest_exit();
  2452. preempt_enable();
  2453. down_read(&vcpu->kvm->slots_lock);
  2454. /*
  2455. * Profile KVM exit RIPs:
  2456. */
  2457. if (unlikely(prof_on == KVM_PROFILING)) {
  2458. kvm_x86_ops->cache_regs(vcpu);
  2459. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2460. }
  2461. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2462. vcpu->arch.exception.pending = false;
  2463. kvm_lapic_sync_from_vapic(vcpu);
  2464. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2465. if (r > 0) {
  2466. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2467. r = -EINTR;
  2468. kvm_run->exit_reason = KVM_EXIT_INTR;
  2469. ++vcpu->stat.request_irq_exits;
  2470. goto out;
  2471. }
  2472. if (!need_resched())
  2473. goto again;
  2474. }
  2475. out:
  2476. up_read(&vcpu->kvm->slots_lock);
  2477. if (r > 0) {
  2478. kvm_resched(vcpu);
  2479. down_read(&vcpu->kvm->slots_lock);
  2480. goto preempted;
  2481. }
  2482. post_kvm_run_save(vcpu, kvm_run);
  2483. down_read(&vcpu->kvm->slots_lock);
  2484. vapic_exit(vcpu);
  2485. up_read(&vcpu->kvm->slots_lock);
  2486. return r;
  2487. }
  2488. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2489. {
  2490. int r;
  2491. sigset_t sigsaved;
  2492. vcpu_load(vcpu);
  2493. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2494. kvm_vcpu_block(vcpu);
  2495. vcpu_put(vcpu);
  2496. return -EAGAIN;
  2497. }
  2498. if (vcpu->sigset_active)
  2499. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2500. /* re-sync apic's tpr */
  2501. if (!irqchip_in_kernel(vcpu->kvm))
  2502. kvm_set_cr8(vcpu, kvm_run->cr8);
  2503. if (vcpu->arch.pio.cur_count) {
  2504. r = complete_pio(vcpu);
  2505. if (r)
  2506. goto out;
  2507. }
  2508. #if CONFIG_HAS_IOMEM
  2509. if (vcpu->mmio_needed) {
  2510. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2511. vcpu->mmio_read_completed = 1;
  2512. vcpu->mmio_needed = 0;
  2513. down_read(&vcpu->kvm->slots_lock);
  2514. r = emulate_instruction(vcpu, kvm_run,
  2515. vcpu->arch.mmio_fault_cr2, 0,
  2516. EMULTYPE_NO_DECODE);
  2517. up_read(&vcpu->kvm->slots_lock);
  2518. if (r == EMULATE_DO_MMIO) {
  2519. /*
  2520. * Read-modify-write. Back to userspace.
  2521. */
  2522. r = 0;
  2523. goto out;
  2524. }
  2525. }
  2526. #endif
  2527. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2528. kvm_x86_ops->cache_regs(vcpu);
  2529. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2530. kvm_x86_ops->decache_regs(vcpu);
  2531. }
  2532. r = __vcpu_run(vcpu, kvm_run);
  2533. out:
  2534. if (vcpu->sigset_active)
  2535. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2536. vcpu_put(vcpu);
  2537. return r;
  2538. }
  2539. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2540. {
  2541. vcpu_load(vcpu);
  2542. kvm_x86_ops->cache_regs(vcpu);
  2543. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2544. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2545. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2546. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2547. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2548. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2549. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2550. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2551. #ifdef CONFIG_X86_64
  2552. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2553. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2554. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2555. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2556. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2557. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2558. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2559. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2560. #endif
  2561. regs->rip = vcpu->arch.rip;
  2562. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2563. /*
  2564. * Don't leak debug flags in case they were set for guest debugging
  2565. */
  2566. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2567. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2568. vcpu_put(vcpu);
  2569. return 0;
  2570. }
  2571. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2572. {
  2573. vcpu_load(vcpu);
  2574. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2575. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2576. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2577. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2578. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2579. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2580. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2581. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2582. #ifdef CONFIG_X86_64
  2583. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2584. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2585. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2586. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2587. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2588. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2589. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2590. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2591. #endif
  2592. vcpu->arch.rip = regs->rip;
  2593. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2594. kvm_x86_ops->decache_regs(vcpu);
  2595. vcpu_put(vcpu);
  2596. return 0;
  2597. }
  2598. static void get_segment(struct kvm_vcpu *vcpu,
  2599. struct kvm_segment *var, int seg)
  2600. {
  2601. kvm_x86_ops->get_segment(vcpu, var, seg);
  2602. }
  2603. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2604. {
  2605. struct kvm_segment cs;
  2606. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2607. *db = cs.db;
  2608. *l = cs.l;
  2609. }
  2610. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2611. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2612. struct kvm_sregs *sregs)
  2613. {
  2614. struct descriptor_table dt;
  2615. int pending_vec;
  2616. vcpu_load(vcpu);
  2617. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2618. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2619. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2620. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2621. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2622. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2623. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2624. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2625. kvm_x86_ops->get_idt(vcpu, &dt);
  2626. sregs->idt.limit = dt.limit;
  2627. sregs->idt.base = dt.base;
  2628. kvm_x86_ops->get_gdt(vcpu, &dt);
  2629. sregs->gdt.limit = dt.limit;
  2630. sregs->gdt.base = dt.base;
  2631. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2632. sregs->cr0 = vcpu->arch.cr0;
  2633. sregs->cr2 = vcpu->arch.cr2;
  2634. sregs->cr3 = vcpu->arch.cr3;
  2635. sregs->cr4 = vcpu->arch.cr4;
  2636. sregs->cr8 = kvm_get_cr8(vcpu);
  2637. sregs->efer = vcpu->arch.shadow_efer;
  2638. sregs->apic_base = kvm_get_apic_base(vcpu);
  2639. if (irqchip_in_kernel(vcpu->kvm)) {
  2640. memset(sregs->interrupt_bitmap, 0,
  2641. sizeof sregs->interrupt_bitmap);
  2642. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2643. if (pending_vec >= 0)
  2644. set_bit(pending_vec,
  2645. (unsigned long *)sregs->interrupt_bitmap);
  2646. } else
  2647. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2648. sizeof sregs->interrupt_bitmap);
  2649. vcpu_put(vcpu);
  2650. return 0;
  2651. }
  2652. static void set_segment(struct kvm_vcpu *vcpu,
  2653. struct kvm_segment *var, int seg)
  2654. {
  2655. kvm_x86_ops->set_segment(vcpu, var, seg);
  2656. }
  2657. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2658. struct kvm_segment *kvm_desct)
  2659. {
  2660. kvm_desct->base = seg_desc->base0;
  2661. kvm_desct->base |= seg_desc->base1 << 16;
  2662. kvm_desct->base |= seg_desc->base2 << 24;
  2663. kvm_desct->limit = seg_desc->limit0;
  2664. kvm_desct->limit |= seg_desc->limit << 16;
  2665. kvm_desct->selector = selector;
  2666. kvm_desct->type = seg_desc->type;
  2667. kvm_desct->present = seg_desc->p;
  2668. kvm_desct->dpl = seg_desc->dpl;
  2669. kvm_desct->db = seg_desc->d;
  2670. kvm_desct->s = seg_desc->s;
  2671. kvm_desct->l = seg_desc->l;
  2672. kvm_desct->g = seg_desc->g;
  2673. kvm_desct->avl = seg_desc->avl;
  2674. if (!selector)
  2675. kvm_desct->unusable = 1;
  2676. else
  2677. kvm_desct->unusable = 0;
  2678. kvm_desct->padding = 0;
  2679. }
  2680. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2681. u16 selector,
  2682. struct descriptor_table *dtable)
  2683. {
  2684. if (selector & 1 << 2) {
  2685. struct kvm_segment kvm_seg;
  2686. get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2687. if (kvm_seg.unusable)
  2688. dtable->limit = 0;
  2689. else
  2690. dtable->limit = kvm_seg.limit;
  2691. dtable->base = kvm_seg.base;
  2692. }
  2693. else
  2694. kvm_x86_ops->get_gdt(vcpu, dtable);
  2695. }
  2696. /* allowed just for 8 bytes segments */
  2697. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2698. struct desc_struct *seg_desc)
  2699. {
  2700. struct descriptor_table dtable;
  2701. u16 index = selector >> 3;
  2702. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2703. if (dtable.limit < index * 8 + 7) {
  2704. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2705. return 1;
  2706. }
  2707. return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2708. }
  2709. /* allowed just for 8 bytes segments */
  2710. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2711. struct desc_struct *seg_desc)
  2712. {
  2713. struct descriptor_table dtable;
  2714. u16 index = selector >> 3;
  2715. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2716. if (dtable.limit < index * 8 + 7)
  2717. return 1;
  2718. return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2719. }
  2720. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2721. struct desc_struct *seg_desc)
  2722. {
  2723. u32 base_addr;
  2724. base_addr = seg_desc->base0;
  2725. base_addr |= (seg_desc->base1 << 16);
  2726. base_addr |= (seg_desc->base2 << 24);
  2727. return base_addr;
  2728. }
  2729. static int load_tss_segment32(struct kvm_vcpu *vcpu,
  2730. struct desc_struct *seg_desc,
  2731. struct tss_segment_32 *tss)
  2732. {
  2733. u32 base_addr;
  2734. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2735. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2736. sizeof(struct tss_segment_32));
  2737. }
  2738. static int save_tss_segment32(struct kvm_vcpu *vcpu,
  2739. struct desc_struct *seg_desc,
  2740. struct tss_segment_32 *tss)
  2741. {
  2742. u32 base_addr;
  2743. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2744. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2745. sizeof(struct tss_segment_32));
  2746. }
  2747. static int load_tss_segment16(struct kvm_vcpu *vcpu,
  2748. struct desc_struct *seg_desc,
  2749. struct tss_segment_16 *tss)
  2750. {
  2751. u32 base_addr;
  2752. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2753. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2754. sizeof(struct tss_segment_16));
  2755. }
  2756. static int save_tss_segment16(struct kvm_vcpu *vcpu,
  2757. struct desc_struct *seg_desc,
  2758. struct tss_segment_16 *tss)
  2759. {
  2760. u32 base_addr;
  2761. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2762. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2763. sizeof(struct tss_segment_16));
  2764. }
  2765. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2766. {
  2767. struct kvm_segment kvm_seg;
  2768. get_segment(vcpu, &kvm_seg, seg);
  2769. return kvm_seg.selector;
  2770. }
  2771. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2772. u16 selector,
  2773. struct kvm_segment *kvm_seg)
  2774. {
  2775. struct desc_struct seg_desc;
  2776. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2777. return 1;
  2778. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2779. return 0;
  2780. }
  2781. static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2782. int type_bits, int seg)
  2783. {
  2784. struct kvm_segment kvm_seg;
  2785. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2786. return 1;
  2787. kvm_seg.type |= type_bits;
  2788. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2789. seg != VCPU_SREG_LDTR)
  2790. if (!kvm_seg.s)
  2791. kvm_seg.unusable = 1;
  2792. set_segment(vcpu, &kvm_seg, seg);
  2793. return 0;
  2794. }
  2795. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2796. struct tss_segment_32 *tss)
  2797. {
  2798. tss->cr3 = vcpu->arch.cr3;
  2799. tss->eip = vcpu->arch.rip;
  2800. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2801. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2802. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2803. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2804. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2805. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2806. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2807. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2808. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2809. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2810. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2811. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2812. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2813. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2814. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2815. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2816. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2817. }
  2818. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2819. struct tss_segment_32 *tss)
  2820. {
  2821. kvm_set_cr3(vcpu, tss->cr3);
  2822. vcpu->arch.rip = tss->eip;
  2823. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2824. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2825. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2826. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2827. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2828. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2829. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2830. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2831. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2832. if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2833. return 1;
  2834. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2835. return 1;
  2836. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2837. return 1;
  2838. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2839. return 1;
  2840. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2841. return 1;
  2842. if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2843. return 1;
  2844. if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2845. return 1;
  2846. return 0;
  2847. }
  2848. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2849. struct tss_segment_16 *tss)
  2850. {
  2851. tss->ip = vcpu->arch.rip;
  2852. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2853. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2854. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2855. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2856. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2857. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2858. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2859. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2860. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2861. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2862. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2863. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2864. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2865. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2866. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2867. }
  2868. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2869. struct tss_segment_16 *tss)
  2870. {
  2871. vcpu->arch.rip = tss->ip;
  2872. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2873. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2874. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2875. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2876. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2877. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2878. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2879. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2880. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2881. if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2882. return 1;
  2883. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2884. return 1;
  2885. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2886. return 1;
  2887. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2888. return 1;
  2889. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2890. return 1;
  2891. return 0;
  2892. }
  2893. int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  2894. struct desc_struct *cseg_desc,
  2895. struct desc_struct *nseg_desc)
  2896. {
  2897. struct tss_segment_16 tss_segment_16;
  2898. int ret = 0;
  2899. if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
  2900. goto out;
  2901. save_state_to_tss16(vcpu, &tss_segment_16);
  2902. save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
  2903. if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
  2904. goto out;
  2905. if (load_state_from_tss16(vcpu, &tss_segment_16))
  2906. goto out;
  2907. ret = 1;
  2908. out:
  2909. return ret;
  2910. }
  2911. int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  2912. struct desc_struct *cseg_desc,
  2913. struct desc_struct *nseg_desc)
  2914. {
  2915. struct tss_segment_32 tss_segment_32;
  2916. int ret = 0;
  2917. if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
  2918. goto out;
  2919. save_state_to_tss32(vcpu, &tss_segment_32);
  2920. save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
  2921. if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
  2922. goto out;
  2923. if (load_state_from_tss32(vcpu, &tss_segment_32))
  2924. goto out;
  2925. ret = 1;
  2926. out:
  2927. return ret;
  2928. }
  2929. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  2930. {
  2931. struct kvm_segment tr_seg;
  2932. struct desc_struct cseg_desc;
  2933. struct desc_struct nseg_desc;
  2934. int ret = 0;
  2935. get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2936. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  2937. goto out;
  2938. if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
  2939. goto out;
  2940. if (reason != TASK_SWITCH_IRET) {
  2941. int cpl;
  2942. cpl = kvm_x86_ops->get_cpl(vcpu);
  2943. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  2944. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2945. return 1;
  2946. }
  2947. }
  2948. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  2949. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  2950. return 1;
  2951. }
  2952. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2953. cseg_desc.type &= ~(1 << 8); //clear the B flag
  2954. save_guest_segment_descriptor(vcpu, tr_seg.selector,
  2955. &cseg_desc);
  2956. }
  2957. if (reason == TASK_SWITCH_IRET) {
  2958. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  2959. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  2960. }
  2961. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2962. kvm_x86_ops->cache_regs(vcpu);
  2963. if (nseg_desc.type & 8)
  2964. ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
  2965. &nseg_desc);
  2966. else
  2967. ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
  2968. &nseg_desc);
  2969. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  2970. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  2971. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  2972. }
  2973. if (reason != TASK_SWITCH_IRET) {
  2974. nseg_desc.type |= (1 << 8);
  2975. save_guest_segment_descriptor(vcpu, tss_selector,
  2976. &nseg_desc);
  2977. }
  2978. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  2979. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  2980. tr_seg.type = 11;
  2981. set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2982. out:
  2983. kvm_x86_ops->decache_regs(vcpu);
  2984. return ret;
  2985. }
  2986. EXPORT_SYMBOL_GPL(kvm_task_switch);
  2987. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2988. struct kvm_sregs *sregs)
  2989. {
  2990. int mmu_reset_needed = 0;
  2991. int i, pending_vec, max_bits;
  2992. struct descriptor_table dt;
  2993. vcpu_load(vcpu);
  2994. dt.limit = sregs->idt.limit;
  2995. dt.base = sregs->idt.base;
  2996. kvm_x86_ops->set_idt(vcpu, &dt);
  2997. dt.limit = sregs->gdt.limit;
  2998. dt.base = sregs->gdt.base;
  2999. kvm_x86_ops->set_gdt(vcpu, &dt);
  3000. vcpu->arch.cr2 = sregs->cr2;
  3001. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3002. vcpu->arch.cr3 = sregs->cr3;
  3003. kvm_set_cr8(vcpu, sregs->cr8);
  3004. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3005. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3006. kvm_set_apic_base(vcpu, sregs->apic_base);
  3007. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3008. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3009. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3010. vcpu->arch.cr0 = sregs->cr0;
  3011. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3012. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3013. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3014. load_pdptrs(vcpu, vcpu->arch.cr3);
  3015. if (mmu_reset_needed)
  3016. kvm_mmu_reset_context(vcpu);
  3017. if (!irqchip_in_kernel(vcpu->kvm)) {
  3018. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3019. sizeof vcpu->arch.irq_pending);
  3020. vcpu->arch.irq_summary = 0;
  3021. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3022. if (vcpu->arch.irq_pending[i])
  3023. __set_bit(i, &vcpu->arch.irq_summary);
  3024. } else {
  3025. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3026. pending_vec = find_first_bit(
  3027. (const unsigned long *)sregs->interrupt_bitmap,
  3028. max_bits);
  3029. /* Only pending external irq is handled here */
  3030. if (pending_vec < max_bits) {
  3031. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3032. pr_debug("Set back pending irq %d\n",
  3033. pending_vec);
  3034. }
  3035. }
  3036. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3037. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3038. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3039. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3040. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3041. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3042. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3043. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3044. vcpu_put(vcpu);
  3045. return 0;
  3046. }
  3047. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3048. struct kvm_debug_guest *dbg)
  3049. {
  3050. int r;
  3051. vcpu_load(vcpu);
  3052. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3053. vcpu_put(vcpu);
  3054. return r;
  3055. }
  3056. /*
  3057. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3058. * we have asm/x86/processor.h
  3059. */
  3060. struct fxsave {
  3061. u16 cwd;
  3062. u16 swd;
  3063. u16 twd;
  3064. u16 fop;
  3065. u64 rip;
  3066. u64 rdp;
  3067. u32 mxcsr;
  3068. u32 mxcsr_mask;
  3069. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3070. #ifdef CONFIG_X86_64
  3071. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3072. #else
  3073. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3074. #endif
  3075. };
  3076. /*
  3077. * Translate a guest virtual address to a guest physical address.
  3078. */
  3079. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3080. struct kvm_translation *tr)
  3081. {
  3082. unsigned long vaddr = tr->linear_address;
  3083. gpa_t gpa;
  3084. vcpu_load(vcpu);
  3085. down_read(&vcpu->kvm->slots_lock);
  3086. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3087. up_read(&vcpu->kvm->slots_lock);
  3088. tr->physical_address = gpa;
  3089. tr->valid = gpa != UNMAPPED_GVA;
  3090. tr->writeable = 1;
  3091. tr->usermode = 0;
  3092. vcpu_put(vcpu);
  3093. return 0;
  3094. }
  3095. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3096. {
  3097. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3098. vcpu_load(vcpu);
  3099. memcpy(fpu->fpr, fxsave->st_space, 128);
  3100. fpu->fcw = fxsave->cwd;
  3101. fpu->fsw = fxsave->swd;
  3102. fpu->ftwx = fxsave->twd;
  3103. fpu->last_opcode = fxsave->fop;
  3104. fpu->last_ip = fxsave->rip;
  3105. fpu->last_dp = fxsave->rdp;
  3106. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3107. vcpu_put(vcpu);
  3108. return 0;
  3109. }
  3110. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3111. {
  3112. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3113. vcpu_load(vcpu);
  3114. memcpy(fxsave->st_space, fpu->fpr, 128);
  3115. fxsave->cwd = fpu->fcw;
  3116. fxsave->swd = fpu->fsw;
  3117. fxsave->twd = fpu->ftwx;
  3118. fxsave->fop = fpu->last_opcode;
  3119. fxsave->rip = fpu->last_ip;
  3120. fxsave->rdp = fpu->last_dp;
  3121. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3122. vcpu_put(vcpu);
  3123. return 0;
  3124. }
  3125. void fx_init(struct kvm_vcpu *vcpu)
  3126. {
  3127. unsigned after_mxcsr_mask;
  3128. /* Initialize guest FPU by resetting ours and saving into guest's */
  3129. preempt_disable();
  3130. fx_save(&vcpu->arch.host_fx_image);
  3131. fpu_init();
  3132. fx_save(&vcpu->arch.guest_fx_image);
  3133. fx_restore(&vcpu->arch.host_fx_image);
  3134. preempt_enable();
  3135. vcpu->arch.cr0 |= X86_CR0_ET;
  3136. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3137. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3138. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3139. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3140. }
  3141. EXPORT_SYMBOL_GPL(fx_init);
  3142. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3143. {
  3144. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3145. return;
  3146. vcpu->guest_fpu_loaded = 1;
  3147. fx_save(&vcpu->arch.host_fx_image);
  3148. fx_restore(&vcpu->arch.guest_fx_image);
  3149. }
  3150. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3151. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3152. {
  3153. if (!vcpu->guest_fpu_loaded)
  3154. return;
  3155. vcpu->guest_fpu_loaded = 0;
  3156. fx_save(&vcpu->arch.guest_fx_image);
  3157. fx_restore(&vcpu->arch.host_fx_image);
  3158. ++vcpu->stat.fpu_reload;
  3159. }
  3160. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3161. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3162. {
  3163. kvm_x86_ops->vcpu_free(vcpu);
  3164. }
  3165. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3166. unsigned int id)
  3167. {
  3168. return kvm_x86_ops->vcpu_create(kvm, id);
  3169. }
  3170. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3171. {
  3172. int r;
  3173. /* We do fxsave: this must be aligned. */
  3174. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3175. vcpu_load(vcpu);
  3176. r = kvm_arch_vcpu_reset(vcpu);
  3177. if (r == 0)
  3178. r = kvm_mmu_setup(vcpu);
  3179. vcpu_put(vcpu);
  3180. if (r < 0)
  3181. goto free_vcpu;
  3182. return 0;
  3183. free_vcpu:
  3184. kvm_x86_ops->vcpu_free(vcpu);
  3185. return r;
  3186. }
  3187. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3188. {
  3189. vcpu_load(vcpu);
  3190. kvm_mmu_unload(vcpu);
  3191. vcpu_put(vcpu);
  3192. kvm_x86_ops->vcpu_free(vcpu);
  3193. }
  3194. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3195. {
  3196. return kvm_x86_ops->vcpu_reset(vcpu);
  3197. }
  3198. void kvm_arch_hardware_enable(void *garbage)
  3199. {
  3200. kvm_x86_ops->hardware_enable(garbage);
  3201. }
  3202. void kvm_arch_hardware_disable(void *garbage)
  3203. {
  3204. kvm_x86_ops->hardware_disable(garbage);
  3205. }
  3206. int kvm_arch_hardware_setup(void)
  3207. {
  3208. return kvm_x86_ops->hardware_setup();
  3209. }
  3210. void kvm_arch_hardware_unsetup(void)
  3211. {
  3212. kvm_x86_ops->hardware_unsetup();
  3213. }
  3214. void kvm_arch_check_processor_compat(void *rtn)
  3215. {
  3216. kvm_x86_ops->check_processor_compatibility(rtn);
  3217. }
  3218. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3219. {
  3220. struct page *page;
  3221. struct kvm *kvm;
  3222. int r;
  3223. BUG_ON(vcpu->kvm == NULL);
  3224. kvm = vcpu->kvm;
  3225. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3226. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3227. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  3228. else
  3229. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  3230. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3231. if (!page) {
  3232. r = -ENOMEM;
  3233. goto fail;
  3234. }
  3235. vcpu->arch.pio_data = page_address(page);
  3236. r = kvm_mmu_create(vcpu);
  3237. if (r < 0)
  3238. goto fail_free_pio_data;
  3239. if (irqchip_in_kernel(kvm)) {
  3240. r = kvm_create_lapic(vcpu);
  3241. if (r < 0)
  3242. goto fail_mmu_destroy;
  3243. }
  3244. return 0;
  3245. fail_mmu_destroy:
  3246. kvm_mmu_destroy(vcpu);
  3247. fail_free_pio_data:
  3248. free_page((unsigned long)vcpu->arch.pio_data);
  3249. fail:
  3250. return r;
  3251. }
  3252. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3253. {
  3254. kvm_free_lapic(vcpu);
  3255. down_read(&vcpu->kvm->slots_lock);
  3256. kvm_mmu_destroy(vcpu);
  3257. up_read(&vcpu->kvm->slots_lock);
  3258. free_page((unsigned long)vcpu->arch.pio_data);
  3259. }
  3260. struct kvm *kvm_arch_create_vm(void)
  3261. {
  3262. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3263. if (!kvm)
  3264. return ERR_PTR(-ENOMEM);
  3265. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3266. return kvm;
  3267. }
  3268. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3269. {
  3270. vcpu_load(vcpu);
  3271. kvm_mmu_unload(vcpu);
  3272. vcpu_put(vcpu);
  3273. }
  3274. static void kvm_free_vcpus(struct kvm *kvm)
  3275. {
  3276. unsigned int i;
  3277. /*
  3278. * Unpin any mmu pages first.
  3279. */
  3280. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3281. if (kvm->vcpus[i])
  3282. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3283. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3284. if (kvm->vcpus[i]) {
  3285. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3286. kvm->vcpus[i] = NULL;
  3287. }
  3288. }
  3289. }
  3290. void kvm_arch_destroy_vm(struct kvm *kvm)
  3291. {
  3292. kvm_free_pit(kvm);
  3293. kfree(kvm->arch.vpic);
  3294. kfree(kvm->arch.vioapic);
  3295. kvm_free_vcpus(kvm);
  3296. kvm_free_physmem(kvm);
  3297. kfree(kvm);
  3298. }
  3299. int kvm_arch_set_memory_region(struct kvm *kvm,
  3300. struct kvm_userspace_memory_region *mem,
  3301. struct kvm_memory_slot old,
  3302. int user_alloc)
  3303. {
  3304. int npages = mem->memory_size >> PAGE_SHIFT;
  3305. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3306. /*To keep backward compatibility with older userspace,
  3307. *x86 needs to hanlde !user_alloc case.
  3308. */
  3309. if (!user_alloc) {
  3310. if (npages && !old.rmap) {
  3311. down_write(&current->mm->mmap_sem);
  3312. memslot->userspace_addr = do_mmap(NULL, 0,
  3313. npages * PAGE_SIZE,
  3314. PROT_READ | PROT_WRITE,
  3315. MAP_SHARED | MAP_ANONYMOUS,
  3316. 0);
  3317. up_write(&current->mm->mmap_sem);
  3318. if (IS_ERR((void *)memslot->userspace_addr))
  3319. return PTR_ERR((void *)memslot->userspace_addr);
  3320. } else {
  3321. if (!old.user_alloc && old.rmap) {
  3322. int ret;
  3323. down_write(&current->mm->mmap_sem);
  3324. ret = do_munmap(current->mm, old.userspace_addr,
  3325. old.npages * PAGE_SIZE);
  3326. up_write(&current->mm->mmap_sem);
  3327. if (ret < 0)
  3328. printk(KERN_WARNING
  3329. "kvm_vm_ioctl_set_memory_region: "
  3330. "failed to munmap memory\n");
  3331. }
  3332. }
  3333. }
  3334. if (!kvm->arch.n_requested_mmu_pages) {
  3335. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3336. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3337. }
  3338. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3339. kvm_flush_remote_tlbs(kvm);
  3340. return 0;
  3341. }
  3342. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3343. {
  3344. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  3345. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  3346. }
  3347. static void vcpu_kick_intr(void *info)
  3348. {
  3349. #ifdef DEBUG
  3350. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3351. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3352. #endif
  3353. }
  3354. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3355. {
  3356. int ipi_pcpu = vcpu->cpu;
  3357. if (waitqueue_active(&vcpu->wq)) {
  3358. wake_up_interruptible(&vcpu->wq);
  3359. ++vcpu->stat.halt_wakeup;
  3360. }
  3361. if (vcpu->guest_mode)
  3362. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  3363. }