perf_event_intel.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. #ifdef CONFIG_CPU_SUP_INTEL
  2. /*
  3. * Intel PerfMon, used on Core and later.
  4. */
  5. static const u64 intel_perfmon_event_map[] =
  6. {
  7. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  8. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  9. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  10. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  11. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  12. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  13. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  14. };
  15. static struct event_constraint intel_core_event_constraints[] =
  16. {
  17. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  18. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  19. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  20. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  21. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  22. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  23. EVENT_CONSTRAINT_END
  24. };
  25. static struct event_constraint intel_core2_event_constraints[] =
  26. {
  27. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  28. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  29. /*
  30. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  31. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  32. * ratio between these counters.
  33. */
  34. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  35. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  36. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  37. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  38. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  39. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  40. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  41. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  42. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  43. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  44. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  45. EVENT_CONSTRAINT_END
  46. };
  47. static struct event_constraint intel_nehalem_event_constraints[] =
  48. {
  49. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  50. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  51. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  52. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  53. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  54. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  55. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  56. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  57. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  58. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  59. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  60. EVENT_CONSTRAINT_END
  61. };
  62. static struct event_constraint intel_westmere_event_constraints[] =
  63. {
  64. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  65. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  66. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  67. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  68. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  69. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  70. EVENT_CONSTRAINT_END
  71. };
  72. static struct event_constraint intel_gen_event_constraints[] =
  73. {
  74. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  75. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  76. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  77. EVENT_CONSTRAINT_END
  78. };
  79. static u64 intel_pmu_event_map(int hw_event)
  80. {
  81. return intel_perfmon_event_map[hw_event];
  82. }
  83. static __initconst const u64 westmere_hw_cache_event_ids
  84. [PERF_COUNT_HW_CACHE_MAX]
  85. [PERF_COUNT_HW_CACHE_OP_MAX]
  86. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  87. {
  88. [ C(L1D) ] = {
  89. [ C(OP_READ) ] = {
  90. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  91. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  92. },
  93. [ C(OP_WRITE) ] = {
  94. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  95. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  96. },
  97. [ C(OP_PREFETCH) ] = {
  98. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  99. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  100. },
  101. },
  102. [ C(L1I ) ] = {
  103. [ C(OP_READ) ] = {
  104. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  105. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  106. },
  107. [ C(OP_WRITE) ] = {
  108. [ C(RESULT_ACCESS) ] = -1,
  109. [ C(RESULT_MISS) ] = -1,
  110. },
  111. [ C(OP_PREFETCH) ] = {
  112. [ C(RESULT_ACCESS) ] = 0x0,
  113. [ C(RESULT_MISS) ] = 0x0,
  114. },
  115. },
  116. [ C(LL ) ] = {
  117. [ C(OP_READ) ] = {
  118. [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
  119. [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
  120. },
  121. [ C(OP_WRITE) ] = {
  122. [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
  123. [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
  124. },
  125. [ C(OP_PREFETCH) ] = {
  126. [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
  127. [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
  128. },
  129. },
  130. [ C(DTLB) ] = {
  131. [ C(OP_READ) ] = {
  132. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  133. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  134. },
  135. [ C(OP_WRITE) ] = {
  136. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  137. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  138. },
  139. [ C(OP_PREFETCH) ] = {
  140. [ C(RESULT_ACCESS) ] = 0x0,
  141. [ C(RESULT_MISS) ] = 0x0,
  142. },
  143. },
  144. [ C(ITLB) ] = {
  145. [ C(OP_READ) ] = {
  146. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  147. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  148. },
  149. [ C(OP_WRITE) ] = {
  150. [ C(RESULT_ACCESS) ] = -1,
  151. [ C(RESULT_MISS) ] = -1,
  152. },
  153. [ C(OP_PREFETCH) ] = {
  154. [ C(RESULT_ACCESS) ] = -1,
  155. [ C(RESULT_MISS) ] = -1,
  156. },
  157. },
  158. [ C(BPU ) ] = {
  159. [ C(OP_READ) ] = {
  160. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  161. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  162. },
  163. [ C(OP_WRITE) ] = {
  164. [ C(RESULT_ACCESS) ] = -1,
  165. [ C(RESULT_MISS) ] = -1,
  166. },
  167. [ C(OP_PREFETCH) ] = {
  168. [ C(RESULT_ACCESS) ] = -1,
  169. [ C(RESULT_MISS) ] = -1,
  170. },
  171. },
  172. };
  173. static __initconst const u64 nehalem_hw_cache_event_ids
  174. [PERF_COUNT_HW_CACHE_MAX]
  175. [PERF_COUNT_HW_CACHE_OP_MAX]
  176. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  177. {
  178. [ C(L1D) ] = {
  179. [ C(OP_READ) ] = {
  180. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  181. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  182. },
  183. [ C(OP_WRITE) ] = {
  184. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  185. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  186. },
  187. [ C(OP_PREFETCH) ] = {
  188. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  189. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  190. },
  191. },
  192. [ C(L1I ) ] = {
  193. [ C(OP_READ) ] = {
  194. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  195. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  196. },
  197. [ C(OP_WRITE) ] = {
  198. [ C(RESULT_ACCESS) ] = -1,
  199. [ C(RESULT_MISS) ] = -1,
  200. },
  201. [ C(OP_PREFETCH) ] = {
  202. [ C(RESULT_ACCESS) ] = 0x0,
  203. [ C(RESULT_MISS) ] = 0x0,
  204. },
  205. },
  206. [ C(LL ) ] = {
  207. [ C(OP_READ) ] = {
  208. [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
  209. [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
  210. },
  211. [ C(OP_WRITE) ] = {
  212. [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
  213. [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
  214. },
  215. [ C(OP_PREFETCH) ] = {
  216. [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
  217. [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
  218. },
  219. },
  220. [ C(DTLB) ] = {
  221. [ C(OP_READ) ] = {
  222. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  223. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  224. },
  225. [ C(OP_WRITE) ] = {
  226. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  227. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  228. },
  229. [ C(OP_PREFETCH) ] = {
  230. [ C(RESULT_ACCESS) ] = 0x0,
  231. [ C(RESULT_MISS) ] = 0x0,
  232. },
  233. },
  234. [ C(ITLB) ] = {
  235. [ C(OP_READ) ] = {
  236. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  237. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  238. },
  239. [ C(OP_WRITE) ] = {
  240. [ C(RESULT_ACCESS) ] = -1,
  241. [ C(RESULT_MISS) ] = -1,
  242. },
  243. [ C(OP_PREFETCH) ] = {
  244. [ C(RESULT_ACCESS) ] = -1,
  245. [ C(RESULT_MISS) ] = -1,
  246. },
  247. },
  248. [ C(BPU ) ] = {
  249. [ C(OP_READ) ] = {
  250. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  251. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  252. },
  253. [ C(OP_WRITE) ] = {
  254. [ C(RESULT_ACCESS) ] = -1,
  255. [ C(RESULT_MISS) ] = -1,
  256. },
  257. [ C(OP_PREFETCH) ] = {
  258. [ C(RESULT_ACCESS) ] = -1,
  259. [ C(RESULT_MISS) ] = -1,
  260. },
  261. },
  262. };
  263. static __initconst const u64 core2_hw_cache_event_ids
  264. [PERF_COUNT_HW_CACHE_MAX]
  265. [PERF_COUNT_HW_CACHE_OP_MAX]
  266. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  267. {
  268. [ C(L1D) ] = {
  269. [ C(OP_READ) ] = {
  270. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  271. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  272. },
  273. [ C(OP_WRITE) ] = {
  274. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  275. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  276. },
  277. [ C(OP_PREFETCH) ] = {
  278. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  279. [ C(RESULT_MISS) ] = 0,
  280. },
  281. },
  282. [ C(L1I ) ] = {
  283. [ C(OP_READ) ] = {
  284. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  285. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  286. },
  287. [ C(OP_WRITE) ] = {
  288. [ C(RESULT_ACCESS) ] = -1,
  289. [ C(RESULT_MISS) ] = -1,
  290. },
  291. [ C(OP_PREFETCH) ] = {
  292. [ C(RESULT_ACCESS) ] = 0,
  293. [ C(RESULT_MISS) ] = 0,
  294. },
  295. },
  296. [ C(LL ) ] = {
  297. [ C(OP_READ) ] = {
  298. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  299. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  300. },
  301. [ C(OP_WRITE) ] = {
  302. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  303. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  304. },
  305. [ C(OP_PREFETCH) ] = {
  306. [ C(RESULT_ACCESS) ] = 0,
  307. [ C(RESULT_MISS) ] = 0,
  308. },
  309. },
  310. [ C(DTLB) ] = {
  311. [ C(OP_READ) ] = {
  312. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  313. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  314. },
  315. [ C(OP_WRITE) ] = {
  316. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  317. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  318. },
  319. [ C(OP_PREFETCH) ] = {
  320. [ C(RESULT_ACCESS) ] = 0,
  321. [ C(RESULT_MISS) ] = 0,
  322. },
  323. },
  324. [ C(ITLB) ] = {
  325. [ C(OP_READ) ] = {
  326. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  327. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  328. },
  329. [ C(OP_WRITE) ] = {
  330. [ C(RESULT_ACCESS) ] = -1,
  331. [ C(RESULT_MISS) ] = -1,
  332. },
  333. [ C(OP_PREFETCH) ] = {
  334. [ C(RESULT_ACCESS) ] = -1,
  335. [ C(RESULT_MISS) ] = -1,
  336. },
  337. },
  338. [ C(BPU ) ] = {
  339. [ C(OP_READ) ] = {
  340. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  341. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  342. },
  343. [ C(OP_WRITE) ] = {
  344. [ C(RESULT_ACCESS) ] = -1,
  345. [ C(RESULT_MISS) ] = -1,
  346. },
  347. [ C(OP_PREFETCH) ] = {
  348. [ C(RESULT_ACCESS) ] = -1,
  349. [ C(RESULT_MISS) ] = -1,
  350. },
  351. },
  352. };
  353. static __initconst const u64 atom_hw_cache_event_ids
  354. [PERF_COUNT_HW_CACHE_MAX]
  355. [PERF_COUNT_HW_CACHE_OP_MAX]
  356. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  357. {
  358. [ C(L1D) ] = {
  359. [ C(OP_READ) ] = {
  360. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  361. [ C(RESULT_MISS) ] = 0,
  362. },
  363. [ C(OP_WRITE) ] = {
  364. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  365. [ C(RESULT_MISS) ] = 0,
  366. },
  367. [ C(OP_PREFETCH) ] = {
  368. [ C(RESULT_ACCESS) ] = 0x0,
  369. [ C(RESULT_MISS) ] = 0,
  370. },
  371. },
  372. [ C(L1I ) ] = {
  373. [ C(OP_READ) ] = {
  374. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  375. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  376. },
  377. [ C(OP_WRITE) ] = {
  378. [ C(RESULT_ACCESS) ] = -1,
  379. [ C(RESULT_MISS) ] = -1,
  380. },
  381. [ C(OP_PREFETCH) ] = {
  382. [ C(RESULT_ACCESS) ] = 0,
  383. [ C(RESULT_MISS) ] = 0,
  384. },
  385. },
  386. [ C(LL ) ] = {
  387. [ C(OP_READ) ] = {
  388. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  389. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  390. },
  391. [ C(OP_WRITE) ] = {
  392. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  393. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  394. },
  395. [ C(OP_PREFETCH) ] = {
  396. [ C(RESULT_ACCESS) ] = 0,
  397. [ C(RESULT_MISS) ] = 0,
  398. },
  399. },
  400. [ C(DTLB) ] = {
  401. [ C(OP_READ) ] = {
  402. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  403. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  404. },
  405. [ C(OP_WRITE) ] = {
  406. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  407. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  408. },
  409. [ C(OP_PREFETCH) ] = {
  410. [ C(RESULT_ACCESS) ] = 0,
  411. [ C(RESULT_MISS) ] = 0,
  412. },
  413. },
  414. [ C(ITLB) ] = {
  415. [ C(OP_READ) ] = {
  416. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  417. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  418. },
  419. [ C(OP_WRITE) ] = {
  420. [ C(RESULT_ACCESS) ] = -1,
  421. [ C(RESULT_MISS) ] = -1,
  422. },
  423. [ C(OP_PREFETCH) ] = {
  424. [ C(RESULT_ACCESS) ] = -1,
  425. [ C(RESULT_MISS) ] = -1,
  426. },
  427. },
  428. [ C(BPU ) ] = {
  429. [ C(OP_READ) ] = {
  430. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  431. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  432. },
  433. [ C(OP_WRITE) ] = {
  434. [ C(RESULT_ACCESS) ] = -1,
  435. [ C(RESULT_MISS) ] = -1,
  436. },
  437. [ C(OP_PREFETCH) ] = {
  438. [ C(RESULT_ACCESS) ] = -1,
  439. [ C(RESULT_MISS) ] = -1,
  440. },
  441. },
  442. };
  443. static void intel_pmu_disable_all(void)
  444. {
  445. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  446. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  447. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  448. intel_pmu_disable_bts();
  449. intel_pmu_pebs_disable_all();
  450. intel_pmu_lbr_disable_all();
  451. }
  452. static void intel_pmu_enable_all(int added)
  453. {
  454. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  455. intel_pmu_pebs_enable_all();
  456. intel_pmu_lbr_enable_all();
  457. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  458. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  459. struct perf_event *event =
  460. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  461. if (WARN_ON_ONCE(!event))
  462. return;
  463. intel_pmu_enable_bts(event->hw.config);
  464. }
  465. }
  466. /*
  467. * Workaround for:
  468. * Intel Errata AAK100 (model 26)
  469. * Intel Errata AAP53 (model 30)
  470. * Intel Errata BD53 (model 44)
  471. *
  472. * These chips need to be 'reset' when adding counters by programming
  473. * the magic three (non counting) events 0x4300D2, 0x4300B1 and 0x4300B5
  474. * either in sequence on the same PMC or on different PMCs.
  475. */
  476. static void intel_pmu_nhm_enable_all(int added)
  477. {
  478. if (added) {
  479. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  480. int i;
  481. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + 0, 0x4300D2);
  482. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + 1, 0x4300B1);
  483. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + 2, 0x4300B5);
  484. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x3);
  485. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  486. for (i = 0; i < 3; i++) {
  487. struct perf_event *event = cpuc->events[i];
  488. if (!event)
  489. continue;
  490. __x86_pmu_enable_event(&event->hw,
  491. ARCH_PERFMON_EVENTSEL_ENABLE);
  492. }
  493. }
  494. intel_pmu_enable_all(added);
  495. }
  496. static inline u64 intel_pmu_get_status(void)
  497. {
  498. u64 status;
  499. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  500. return status;
  501. }
  502. static inline void intel_pmu_ack_status(u64 ack)
  503. {
  504. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  505. }
  506. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  507. {
  508. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  509. u64 ctrl_val, mask;
  510. mask = 0xfULL << (idx * 4);
  511. rdmsrl(hwc->config_base, ctrl_val);
  512. ctrl_val &= ~mask;
  513. wrmsrl(hwc->config_base, ctrl_val);
  514. }
  515. static void intel_pmu_disable_event(struct perf_event *event)
  516. {
  517. struct hw_perf_event *hwc = &event->hw;
  518. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  519. intel_pmu_disable_bts();
  520. intel_pmu_drain_bts_buffer();
  521. return;
  522. }
  523. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  524. intel_pmu_disable_fixed(hwc);
  525. return;
  526. }
  527. x86_pmu_disable_event(event);
  528. if (unlikely(event->attr.precise))
  529. intel_pmu_pebs_disable(event);
  530. }
  531. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  532. {
  533. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  534. u64 ctrl_val, bits, mask;
  535. /*
  536. * Enable IRQ generation (0x8),
  537. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  538. * if requested:
  539. */
  540. bits = 0x8ULL;
  541. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  542. bits |= 0x2;
  543. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  544. bits |= 0x1;
  545. /*
  546. * ANY bit is supported in v3 and up
  547. */
  548. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  549. bits |= 0x4;
  550. bits <<= (idx * 4);
  551. mask = 0xfULL << (idx * 4);
  552. rdmsrl(hwc->config_base, ctrl_val);
  553. ctrl_val &= ~mask;
  554. ctrl_val |= bits;
  555. wrmsrl(hwc->config_base, ctrl_val);
  556. }
  557. static void intel_pmu_enable_event(struct perf_event *event)
  558. {
  559. struct hw_perf_event *hwc = &event->hw;
  560. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  561. if (!__get_cpu_var(cpu_hw_events).enabled)
  562. return;
  563. intel_pmu_enable_bts(hwc->config);
  564. return;
  565. }
  566. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  567. intel_pmu_enable_fixed(hwc);
  568. return;
  569. }
  570. if (unlikely(event->attr.precise))
  571. intel_pmu_pebs_enable(event);
  572. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  573. }
  574. /*
  575. * Save and restart an expired event. Called by NMI contexts,
  576. * so it has to be careful about preempting normal event ops:
  577. */
  578. static int intel_pmu_save_and_restart(struct perf_event *event)
  579. {
  580. x86_perf_event_update(event);
  581. return x86_perf_event_set_period(event);
  582. }
  583. static void intel_pmu_reset(void)
  584. {
  585. struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
  586. unsigned long flags;
  587. int idx;
  588. if (!x86_pmu.num_counters)
  589. return;
  590. local_irq_save(flags);
  591. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  592. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  593. checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
  594. checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
  595. }
  596. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  597. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  598. if (ds)
  599. ds->bts_index = ds->bts_buffer_base;
  600. local_irq_restore(flags);
  601. }
  602. /*
  603. * This handler is triggered by the local APIC, so the APIC IRQ handling
  604. * rules apply:
  605. */
  606. static int intel_pmu_handle_irq(struct pt_regs *regs)
  607. {
  608. struct perf_sample_data data;
  609. struct cpu_hw_events *cpuc;
  610. int bit, loops;
  611. u64 ack, status;
  612. perf_sample_data_init(&data, 0);
  613. cpuc = &__get_cpu_var(cpu_hw_events);
  614. intel_pmu_disable_all();
  615. intel_pmu_drain_bts_buffer();
  616. status = intel_pmu_get_status();
  617. if (!status) {
  618. intel_pmu_enable_all(0);
  619. return 0;
  620. }
  621. loops = 0;
  622. again:
  623. if (++loops > 100) {
  624. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  625. perf_event_print_debug();
  626. intel_pmu_reset();
  627. goto done;
  628. }
  629. inc_irq_stat(apic_perf_irqs);
  630. ack = status;
  631. intel_pmu_lbr_read();
  632. /*
  633. * PEBS overflow sets bit 62 in the global status register
  634. */
  635. if (__test_and_clear_bit(62, (unsigned long *)&status))
  636. x86_pmu.drain_pebs(regs);
  637. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  638. struct perf_event *event = cpuc->events[bit];
  639. if (!test_bit(bit, cpuc->active_mask))
  640. continue;
  641. if (!intel_pmu_save_and_restart(event))
  642. continue;
  643. data.period = event->hw.last_period;
  644. if (perf_event_overflow(event, 1, &data, regs))
  645. x86_pmu_stop(event);
  646. }
  647. intel_pmu_ack_status(ack);
  648. /*
  649. * Repeat if there is more work to be done:
  650. */
  651. status = intel_pmu_get_status();
  652. if (status)
  653. goto again;
  654. done:
  655. intel_pmu_enable_all(0);
  656. return 1;
  657. }
  658. static struct event_constraint *
  659. intel_bts_constraints(struct perf_event *event)
  660. {
  661. struct hw_perf_event *hwc = &event->hw;
  662. unsigned int hw_event, bts_event;
  663. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  664. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  665. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  666. return &bts_constraint;
  667. return NULL;
  668. }
  669. static struct event_constraint *
  670. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  671. {
  672. struct event_constraint *c;
  673. c = intel_bts_constraints(event);
  674. if (c)
  675. return c;
  676. c = intel_pebs_constraints(event);
  677. if (c)
  678. return c;
  679. return x86_get_event_constraints(cpuc, event);
  680. }
  681. static int intel_pmu_hw_config(struct perf_event *event)
  682. {
  683. int ret = x86_pmu_hw_config(event);
  684. if (ret)
  685. return ret;
  686. if (event->attr.type != PERF_TYPE_RAW)
  687. return 0;
  688. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  689. return 0;
  690. if (x86_pmu.version < 3)
  691. return -EINVAL;
  692. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  693. return -EACCES;
  694. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  695. return 0;
  696. }
  697. static __initconst const struct x86_pmu core_pmu = {
  698. .name = "core",
  699. .handle_irq = x86_pmu_handle_irq,
  700. .disable_all = x86_pmu_disable_all,
  701. .enable_all = x86_pmu_enable_all,
  702. .enable = x86_pmu_enable_event,
  703. .disable = x86_pmu_disable_event,
  704. .hw_config = x86_pmu_hw_config,
  705. .schedule_events = x86_schedule_events,
  706. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  707. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  708. .event_map = intel_pmu_event_map,
  709. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  710. .apic = 1,
  711. /*
  712. * Intel PMCs cannot be accessed sanely above 32 bit width,
  713. * so we install an artificial 1<<31 period regardless of
  714. * the generic event period:
  715. */
  716. .max_period = (1ULL << 31) - 1,
  717. .get_event_constraints = intel_get_event_constraints,
  718. .event_constraints = intel_core_event_constraints,
  719. };
  720. static void intel_pmu_cpu_starting(int cpu)
  721. {
  722. init_debug_store_on_cpu(cpu);
  723. /*
  724. * Deal with CPUs that don't clear their LBRs on power-up.
  725. */
  726. intel_pmu_lbr_reset();
  727. }
  728. static void intel_pmu_cpu_dying(int cpu)
  729. {
  730. fini_debug_store_on_cpu(cpu);
  731. }
  732. static __initconst const struct x86_pmu intel_pmu = {
  733. .name = "Intel",
  734. .handle_irq = intel_pmu_handle_irq,
  735. .disable_all = intel_pmu_disable_all,
  736. .enable_all = intel_pmu_enable_all,
  737. .enable = intel_pmu_enable_event,
  738. .disable = intel_pmu_disable_event,
  739. .hw_config = intel_pmu_hw_config,
  740. .schedule_events = x86_schedule_events,
  741. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  742. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  743. .event_map = intel_pmu_event_map,
  744. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  745. .apic = 1,
  746. /*
  747. * Intel PMCs cannot be accessed sanely above 32 bit width,
  748. * so we install an artificial 1<<31 period regardless of
  749. * the generic event period:
  750. */
  751. .max_period = (1ULL << 31) - 1,
  752. .get_event_constraints = intel_get_event_constraints,
  753. .cpu_starting = intel_pmu_cpu_starting,
  754. .cpu_dying = intel_pmu_cpu_dying,
  755. };
  756. static void intel_clovertown_quirks(void)
  757. {
  758. /*
  759. * PEBS is unreliable due to:
  760. *
  761. * AJ67 - PEBS may experience CPL leaks
  762. * AJ68 - PEBS PMI may be delayed by one event
  763. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  764. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  765. *
  766. * AJ67 could be worked around by restricting the OS/USR flags.
  767. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  768. *
  769. * AJ106 could possibly be worked around by not allowing LBR
  770. * usage from PEBS, including the fixup.
  771. * AJ68 could possibly be worked around by always programming
  772. * a pebs_event_reset[0] value and coping with the lost events.
  773. *
  774. * But taken together it might just make sense to not enable PEBS on
  775. * these chips.
  776. */
  777. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  778. x86_pmu.pebs = 0;
  779. x86_pmu.pebs_constraints = NULL;
  780. }
  781. static __init int intel_pmu_init(void)
  782. {
  783. union cpuid10_edx edx;
  784. union cpuid10_eax eax;
  785. unsigned int unused;
  786. unsigned int ebx;
  787. int version;
  788. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  789. switch (boot_cpu_data.x86) {
  790. case 0x6:
  791. return p6_pmu_init();
  792. case 0xf:
  793. return p4_pmu_init();
  794. }
  795. return -ENODEV;
  796. }
  797. /*
  798. * Check whether the Architectural PerfMon supports
  799. * Branch Misses Retired hw_event or not.
  800. */
  801. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  802. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  803. return -ENODEV;
  804. version = eax.split.version_id;
  805. if (version < 2)
  806. x86_pmu = core_pmu;
  807. else
  808. x86_pmu = intel_pmu;
  809. x86_pmu.version = version;
  810. x86_pmu.num_counters = eax.split.num_counters;
  811. x86_pmu.cntval_bits = eax.split.bit_width;
  812. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  813. /*
  814. * Quirk: v2 perfmon does not report fixed-purpose events, so
  815. * assume at least 3 events:
  816. */
  817. if (version > 1)
  818. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  819. /*
  820. * v2 and above have a perf capabilities MSR
  821. */
  822. if (version > 1) {
  823. u64 capabilities;
  824. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  825. x86_pmu.intel_cap.capabilities = capabilities;
  826. }
  827. intel_ds_init();
  828. /*
  829. * Install the hw-cache-events table:
  830. */
  831. switch (boot_cpu_data.x86_model) {
  832. case 14: /* 65 nm core solo/duo, "Yonah" */
  833. pr_cont("Core events, ");
  834. break;
  835. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  836. x86_pmu.quirks = intel_clovertown_quirks;
  837. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  838. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  839. case 29: /* six-core 45 nm xeon "Dunnington" */
  840. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  841. sizeof(hw_cache_event_ids));
  842. intel_pmu_lbr_init_core();
  843. x86_pmu.event_constraints = intel_core2_event_constraints;
  844. pr_cont("Core2 events, ");
  845. break;
  846. case 26: /* 45 nm nehalem, "Bloomfield" */
  847. case 30: /* 45 nm nehalem, "Lynnfield" */
  848. case 46: /* 45 nm nehalem-ex, "Beckton" */
  849. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  850. sizeof(hw_cache_event_ids));
  851. intel_pmu_lbr_init_nhm();
  852. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  853. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  854. pr_cont("Nehalem events, ");
  855. break;
  856. case 28: /* Atom */
  857. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  858. sizeof(hw_cache_event_ids));
  859. intel_pmu_lbr_init_atom();
  860. x86_pmu.event_constraints = intel_gen_event_constraints;
  861. pr_cont("Atom events, ");
  862. break;
  863. case 37: /* 32 nm nehalem, "Clarkdale" */
  864. case 44: /* 32 nm nehalem, "Gulftown" */
  865. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  866. sizeof(hw_cache_event_ids));
  867. intel_pmu_lbr_init_nhm();
  868. x86_pmu.event_constraints = intel_westmere_event_constraints;
  869. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  870. pr_cont("Westmere events, ");
  871. break;
  872. default:
  873. /*
  874. * default constraints for v2 and up
  875. */
  876. x86_pmu.event_constraints = intel_gen_event_constraints;
  877. pr_cont("generic architected perfmon, ");
  878. }
  879. return 0;
  880. }
  881. #else /* CONFIG_CPU_SUP_INTEL */
  882. static int intel_pmu_init(void)
  883. {
  884. return 0;
  885. }
  886. #endif /* CONFIG_CPU_SUP_INTEL */