dma-mapping.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/slab.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <asm/memory.h>
  21. #include <asm/highmem.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/tlbflush.h>
  24. #include <asm/sizes.h>
  25. /* Sanity check size */
  26. #if (CONSISTENT_DMA_SIZE % SZ_2M)
  27. #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
  28. #endif
  29. #define CONSISTENT_END (0xffe00000)
  30. #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
  31. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  32. #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
  33. #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
  34. static u64 get_coherent_dma_mask(struct device *dev)
  35. {
  36. u64 mask = ISA_DMA_THRESHOLD;
  37. if (dev) {
  38. mask = dev->coherent_dma_mask;
  39. /*
  40. * Sanity check the DMA mask - it must be non-zero, and
  41. * must be able to be satisfied by a DMA allocation.
  42. */
  43. if (mask == 0) {
  44. dev_warn(dev, "coherent DMA mask is unset\n");
  45. return 0;
  46. }
  47. if ((~mask) & ISA_DMA_THRESHOLD) {
  48. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  49. "than system GFP_DMA mask %#llx\n",
  50. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  51. return 0;
  52. }
  53. }
  54. return mask;
  55. }
  56. /*
  57. * Allocate a DMA buffer for 'dev' of size 'size' using the
  58. * specified gfp mask. Note that 'size' must be page aligned.
  59. */
  60. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  61. {
  62. unsigned long order = get_order(size);
  63. struct page *page, *p, *e;
  64. void *ptr;
  65. u64 mask = get_coherent_dma_mask(dev);
  66. #ifdef CONFIG_DMA_API_DEBUG
  67. u64 limit = (mask + 1) & ~mask;
  68. if (limit && size >= limit) {
  69. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  70. size, mask);
  71. return NULL;
  72. }
  73. #endif
  74. if (!mask)
  75. return NULL;
  76. if (mask < 0xffffffffULL)
  77. gfp |= GFP_DMA;
  78. page = alloc_pages(gfp, order);
  79. if (!page)
  80. return NULL;
  81. /*
  82. * Now split the huge page and free the excess pages
  83. */
  84. split_page(page, order);
  85. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  86. __free_page(p);
  87. /*
  88. * Ensure that the allocated pages are zeroed, and that any data
  89. * lurking in the kernel direct-mapped region is invalidated.
  90. */
  91. ptr = page_address(page);
  92. memset(ptr, 0, size);
  93. dmac_flush_range(ptr, ptr + size);
  94. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  95. return page;
  96. }
  97. /*
  98. * Free a DMA buffer. 'size' must be page aligned.
  99. */
  100. static void __dma_free_buffer(struct page *page, size_t size)
  101. {
  102. struct page *e = page + (size >> PAGE_SHIFT);
  103. while (page < e) {
  104. __free_page(page);
  105. page++;
  106. }
  107. }
  108. #ifdef CONFIG_MMU
  109. /*
  110. * These are the page tables (2MB each) covering uncached, DMA consistent allocations
  111. */
  112. static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
  113. #include "vmregion.h"
  114. static struct arm_vmregion_head consistent_head = {
  115. .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
  116. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  117. .vm_start = CONSISTENT_BASE,
  118. .vm_end = CONSISTENT_END,
  119. };
  120. #ifdef CONFIG_HUGETLB_PAGE
  121. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  122. #endif
  123. /*
  124. * Initialise the consistent memory allocation.
  125. */
  126. static int __init consistent_init(void)
  127. {
  128. int ret = 0;
  129. pgd_t *pgd;
  130. pmd_t *pmd;
  131. pte_t *pte;
  132. int i = 0;
  133. u32 base = CONSISTENT_BASE;
  134. do {
  135. pgd = pgd_offset(&init_mm, base);
  136. pmd = pmd_alloc(&init_mm, pgd, base);
  137. if (!pmd) {
  138. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  139. ret = -ENOMEM;
  140. break;
  141. }
  142. WARN_ON(!pmd_none(*pmd));
  143. pte = pte_alloc_kernel(pmd, base);
  144. if (!pte) {
  145. printk(KERN_ERR "%s: no pte tables\n", __func__);
  146. ret = -ENOMEM;
  147. break;
  148. }
  149. consistent_pte[i++] = pte;
  150. base += (1 << PGDIR_SHIFT);
  151. } while (base < CONSISTENT_END);
  152. return ret;
  153. }
  154. core_initcall(consistent_init);
  155. static void *
  156. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
  157. {
  158. struct arm_vmregion *c;
  159. if (!consistent_pte[0]) {
  160. printk(KERN_ERR "%s: not initialised\n", __func__);
  161. dump_stack();
  162. return NULL;
  163. }
  164. /*
  165. * Allocate a virtual address in the consistent mapping region.
  166. */
  167. c = arm_vmregion_alloc(&consistent_head, size,
  168. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  169. if (c) {
  170. pte_t *pte;
  171. int idx = CONSISTENT_PTE_INDEX(c->vm_start);
  172. u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  173. pte = consistent_pte[idx] + off;
  174. c->vm_pages = page;
  175. do {
  176. BUG_ON(!pte_none(*pte));
  177. /*
  178. * x86 does not mark the pages reserved...
  179. */
  180. SetPageReserved(page);
  181. set_pte_ext(pte, mk_pte(page, prot), 0);
  182. page++;
  183. pte++;
  184. off++;
  185. if (off >= PTRS_PER_PTE) {
  186. off = 0;
  187. pte = consistent_pte[++idx];
  188. }
  189. } while (size -= PAGE_SIZE);
  190. return (void *)c->vm_start;
  191. }
  192. return NULL;
  193. }
  194. static void __dma_free_remap(void *cpu_addr, size_t size)
  195. {
  196. struct arm_vmregion *c;
  197. unsigned long addr;
  198. pte_t *ptep;
  199. int idx;
  200. u32 off;
  201. c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
  202. if (!c) {
  203. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  204. __func__, cpu_addr);
  205. dump_stack();
  206. return;
  207. }
  208. if ((c->vm_end - c->vm_start) != size) {
  209. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  210. __func__, c->vm_end - c->vm_start, size);
  211. dump_stack();
  212. size = c->vm_end - c->vm_start;
  213. }
  214. idx = CONSISTENT_PTE_INDEX(c->vm_start);
  215. off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  216. ptep = consistent_pte[idx] + off;
  217. addr = c->vm_start;
  218. do {
  219. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  220. unsigned long pfn;
  221. ptep++;
  222. addr += PAGE_SIZE;
  223. off++;
  224. if (off >= PTRS_PER_PTE) {
  225. off = 0;
  226. ptep = consistent_pte[++idx];
  227. }
  228. if (!pte_none(pte) && pte_present(pte)) {
  229. pfn = pte_pfn(pte);
  230. if (pfn_valid(pfn)) {
  231. struct page *page = pfn_to_page(pfn);
  232. /*
  233. * x86 does not mark the pages reserved...
  234. */
  235. ClearPageReserved(page);
  236. continue;
  237. }
  238. }
  239. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  240. __func__);
  241. } while (size -= PAGE_SIZE);
  242. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  243. arm_vmregion_free(&consistent_head, c);
  244. }
  245. #else /* !CONFIG_MMU */
  246. #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
  247. #define __dma_free_remap(addr, size) do { } while (0)
  248. #endif /* CONFIG_MMU */
  249. static void *
  250. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
  251. pgprot_t prot)
  252. {
  253. struct page *page;
  254. void *addr;
  255. *handle = ~0;
  256. size = PAGE_ALIGN(size);
  257. page = __dma_alloc_buffer(dev, size, gfp);
  258. if (!page)
  259. return NULL;
  260. if (!arch_is_coherent())
  261. addr = __dma_alloc_remap(page, size, gfp, prot);
  262. else
  263. addr = page_address(page);
  264. if (addr)
  265. *handle = page_to_dma(dev, page);
  266. return addr;
  267. }
  268. /*
  269. * Allocate DMA-coherent memory space and return both the kernel remapped
  270. * virtual and bus address for that space.
  271. */
  272. void *
  273. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  274. {
  275. void *memory;
  276. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  277. return memory;
  278. return __dma_alloc(dev, size, handle, gfp,
  279. pgprot_noncached(pgprot_kernel));
  280. }
  281. EXPORT_SYMBOL(dma_alloc_coherent);
  282. /*
  283. * Allocate a writecombining region, in much the same way as
  284. * dma_alloc_coherent above.
  285. */
  286. void *
  287. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  288. {
  289. return __dma_alloc(dev, size, handle, gfp,
  290. pgprot_writecombine(pgprot_kernel));
  291. }
  292. EXPORT_SYMBOL(dma_alloc_writecombine);
  293. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  294. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  295. {
  296. int ret = -ENXIO;
  297. #ifdef CONFIG_MMU
  298. unsigned long user_size, kern_size;
  299. struct arm_vmregion *c;
  300. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  301. c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
  302. if (c) {
  303. unsigned long off = vma->vm_pgoff;
  304. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  305. if (off < kern_size &&
  306. user_size <= (kern_size - off)) {
  307. ret = remap_pfn_range(vma, vma->vm_start,
  308. page_to_pfn(c->vm_pages) + off,
  309. user_size << PAGE_SHIFT,
  310. vma->vm_page_prot);
  311. }
  312. }
  313. #endif /* CONFIG_MMU */
  314. return ret;
  315. }
  316. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  317. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  318. {
  319. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  320. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  321. }
  322. EXPORT_SYMBOL(dma_mmap_coherent);
  323. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  324. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  325. {
  326. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  327. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  328. }
  329. EXPORT_SYMBOL(dma_mmap_writecombine);
  330. /*
  331. * free a page as defined by the above mapping.
  332. * Must not be called with IRQs disabled.
  333. */
  334. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  335. {
  336. WARN_ON(irqs_disabled());
  337. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  338. return;
  339. size = PAGE_ALIGN(size);
  340. if (!arch_is_coherent())
  341. __dma_free_remap(cpu_addr, size);
  342. __dma_free_buffer(dma_to_page(dev, handle), size);
  343. }
  344. EXPORT_SYMBOL(dma_free_coherent);
  345. /*
  346. * Make an area consistent for devices.
  347. * Note: Drivers should NOT use this function directly, as it will break
  348. * platforms with CONFIG_DMABOUNCE.
  349. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  350. */
  351. void dma_cache_maint(const void *start, size_t size, int direction)
  352. {
  353. void (*inner_op)(const void *, const void *);
  354. void (*outer_op)(unsigned long, unsigned long);
  355. BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
  356. switch (direction) {
  357. case DMA_FROM_DEVICE: /* invalidate only */
  358. inner_op = dmac_inv_range;
  359. outer_op = outer_inv_range;
  360. break;
  361. case DMA_TO_DEVICE: /* writeback only */
  362. inner_op = dmac_clean_range;
  363. outer_op = outer_clean_range;
  364. break;
  365. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  366. inner_op = dmac_flush_range;
  367. outer_op = outer_flush_range;
  368. break;
  369. default:
  370. BUG();
  371. }
  372. inner_op(start, start + size);
  373. outer_op(__pa(start), __pa(start) + size);
  374. }
  375. EXPORT_SYMBOL(dma_cache_maint);
  376. static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
  377. size_t size, int direction)
  378. {
  379. void *vaddr;
  380. unsigned long paddr;
  381. void (*inner_op)(const void *, const void *);
  382. void (*outer_op)(unsigned long, unsigned long);
  383. switch (direction) {
  384. case DMA_FROM_DEVICE: /* invalidate only */
  385. inner_op = dmac_inv_range;
  386. outer_op = outer_inv_range;
  387. break;
  388. case DMA_TO_DEVICE: /* writeback only */
  389. inner_op = dmac_clean_range;
  390. outer_op = outer_clean_range;
  391. break;
  392. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  393. inner_op = dmac_flush_range;
  394. outer_op = outer_flush_range;
  395. break;
  396. default:
  397. BUG();
  398. }
  399. if (!PageHighMem(page)) {
  400. vaddr = page_address(page) + offset;
  401. inner_op(vaddr, vaddr + size);
  402. } else {
  403. vaddr = kmap_high_get(page);
  404. if (vaddr) {
  405. vaddr += offset;
  406. inner_op(vaddr, vaddr + size);
  407. kunmap_high(page);
  408. }
  409. }
  410. paddr = page_to_phys(page) + offset;
  411. outer_op(paddr, paddr + size);
  412. }
  413. void dma_cache_maint_page(struct page *page, unsigned long offset,
  414. size_t size, int dir)
  415. {
  416. /*
  417. * A single sg entry may refer to multiple physically contiguous
  418. * pages. But we still need to process highmem pages individually.
  419. * If highmem is not configured then the bulk of this loop gets
  420. * optimized out.
  421. */
  422. size_t left = size;
  423. do {
  424. size_t len = left;
  425. if (PageHighMem(page) && len + offset > PAGE_SIZE) {
  426. if (offset >= PAGE_SIZE) {
  427. page += offset / PAGE_SIZE;
  428. offset %= PAGE_SIZE;
  429. }
  430. len = PAGE_SIZE - offset;
  431. }
  432. dma_cache_maint_contiguous(page, offset, len, dir);
  433. offset = 0;
  434. page++;
  435. left -= len;
  436. } while (left);
  437. }
  438. EXPORT_SYMBOL(dma_cache_maint_page);
  439. /**
  440. * dma_map_sg - map a set of SG buffers for streaming mode DMA
  441. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  442. * @sg: list of buffers
  443. * @nents: number of buffers to map
  444. * @dir: DMA transfer direction
  445. *
  446. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  447. * This is the scatter-gather version of the dma_map_single interface.
  448. * Here the scatter gather list elements are each tagged with the
  449. * appropriate dma address and length. They are obtained via
  450. * sg_dma_{address,length}.
  451. *
  452. * Device ownership issues as mentioned for dma_map_single are the same
  453. * here.
  454. */
  455. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  456. enum dma_data_direction dir)
  457. {
  458. struct scatterlist *s;
  459. int i, j;
  460. for_each_sg(sg, s, nents, i) {
  461. s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
  462. s->length, dir);
  463. if (dma_mapping_error(dev, s->dma_address))
  464. goto bad_mapping;
  465. }
  466. return nents;
  467. bad_mapping:
  468. for_each_sg(sg, s, i, j)
  469. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  470. return 0;
  471. }
  472. EXPORT_SYMBOL(dma_map_sg);
  473. /**
  474. * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  475. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  476. * @sg: list of buffers
  477. * @nents: number of buffers to unmap (returned from dma_map_sg)
  478. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  479. *
  480. * Unmap a set of streaming mode DMA translations. Again, CPU access
  481. * rules concerning calls here are the same as for dma_unmap_single().
  482. */
  483. void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  484. enum dma_data_direction dir)
  485. {
  486. struct scatterlist *s;
  487. int i;
  488. for_each_sg(sg, s, nents, i)
  489. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  490. }
  491. EXPORT_SYMBOL(dma_unmap_sg);
  492. /**
  493. * dma_sync_sg_for_cpu
  494. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  495. * @sg: list of buffers
  496. * @nents: number of buffers to map (returned from dma_map_sg)
  497. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  498. */
  499. void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  500. int nents, enum dma_data_direction dir)
  501. {
  502. struct scatterlist *s;
  503. int i;
  504. for_each_sg(sg, s, nents, i) {
  505. dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
  506. sg_dma_len(s), dir);
  507. }
  508. }
  509. EXPORT_SYMBOL(dma_sync_sg_for_cpu);
  510. /**
  511. * dma_sync_sg_for_device
  512. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  513. * @sg: list of buffers
  514. * @nents: number of buffers to map (returned from dma_map_sg)
  515. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  516. */
  517. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  518. int nents, enum dma_data_direction dir)
  519. {
  520. struct scatterlist *s;
  521. int i;
  522. for_each_sg(sg, s, nents, i) {
  523. if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
  524. sg_dma_len(s), dir))
  525. continue;
  526. if (!arch_is_coherent())
  527. dma_cache_maint_page(sg_page(s), s->offset,
  528. s->length, dir);
  529. }
  530. }
  531. EXPORT_SYMBOL(dma_sync_sg_for_device);