spi-s3c64xx.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/spi/spi.h>
  29. #include <mach/dma.h>
  30. #include <plat/s3c64xx-spi.h>
  31. /* Registers and bit-fields */
  32. #define S3C64XX_SPI_CH_CFG 0x00
  33. #define S3C64XX_SPI_CLK_CFG 0x04
  34. #define S3C64XX_SPI_MODE_CFG 0x08
  35. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  36. #define S3C64XX_SPI_INT_EN 0x10
  37. #define S3C64XX_SPI_STATUS 0x14
  38. #define S3C64XX_SPI_TX_DATA 0x18
  39. #define S3C64XX_SPI_RX_DATA 0x1C
  40. #define S3C64XX_SPI_PACKET_CNT 0x20
  41. #define S3C64XX_SPI_PENDING_CLR 0x24
  42. #define S3C64XX_SPI_SWAP_CFG 0x28
  43. #define S3C64XX_SPI_FB_CLK 0x2C
  44. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  45. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  46. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  47. #define S3C64XX_SPI_CPOL_L (1<<3)
  48. #define S3C64XX_SPI_CPHA_B (1<<2)
  49. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  50. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  51. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  52. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  53. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  54. #define S3C64XX_SPI_PSR_MASK 0xff
  55. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  58. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  62. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  63. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  64. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  65. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  66. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  67. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  68. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  69. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  70. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  71. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  72. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  73. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  74. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  75. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  76. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  77. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  78. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  79. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  80. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  81. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  82. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  83. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  84. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  85. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  86. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  87. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  88. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  89. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  90. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  91. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  92. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  93. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  94. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  95. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  96. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  97. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  98. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  99. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  100. (((i)->fifo_lvl_mask + 1))) \
  101. ? 1 : 0)
  102. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & (1 << (i)->tx_st_done)) ? 1 : 0)
  103. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  104. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  105. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  106. #define S3C64XX_SPI_TRAILCNT_OFF 19
  107. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  108. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  109. #define RXBUSY (1<<2)
  110. #define TXBUSY (1<<3)
  111. struct s3c64xx_spi_dma_data {
  112. unsigned ch;
  113. enum dma_data_direction direction;
  114. enum dma_ch dmach;
  115. };
  116. /**
  117. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  118. * @clk: Pointer to the spi clock.
  119. * @src_clk: Pointer to the clock used to generate SPI signals.
  120. * @master: Pointer to the SPI Protocol master.
  121. * @cntrlr_info: Platform specific data for the controller this driver manages.
  122. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  123. * @queue: To log SPI xfer requests.
  124. * @lock: Controller specific lock.
  125. * @state: Set of FLAGS to indicate status.
  126. * @rx_dmach: Controller's DMA channel for Rx.
  127. * @tx_dmach: Controller's DMA channel for Tx.
  128. * @sfr_start: BUS address of SPI controller regs.
  129. * @regs: Pointer to ioremap'ed controller registers.
  130. * @irq: interrupt
  131. * @xfer_completion: To indicate completion of xfer task.
  132. * @cur_mode: Stores the active configuration of the controller.
  133. * @cur_bpw: Stores the active bits per word settings.
  134. * @cur_speed: Stores the active xfer clock speed.
  135. */
  136. struct s3c64xx_spi_driver_data {
  137. void __iomem *regs;
  138. struct clk *clk;
  139. struct clk *src_clk;
  140. struct platform_device *pdev;
  141. struct spi_master *master;
  142. struct s3c64xx_spi_info *cntrlr_info;
  143. struct spi_device *tgl_spi;
  144. struct list_head queue;
  145. spinlock_t lock;
  146. unsigned long sfr_start;
  147. struct completion xfer_completion;
  148. unsigned state;
  149. unsigned cur_mode, cur_bpw;
  150. unsigned cur_speed;
  151. struct s3c64xx_spi_dma_data rx_dma;
  152. struct s3c64xx_spi_dma_data tx_dma;
  153. struct samsung_dma_ops *ops;
  154. };
  155. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  156. .name = "samsung-spi-dma",
  157. };
  158. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  159. {
  160. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  161. void __iomem *regs = sdd->regs;
  162. unsigned long loops;
  163. u32 val;
  164. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  165. val = readl(regs + S3C64XX_SPI_CH_CFG);
  166. val |= S3C64XX_SPI_CH_SW_RST;
  167. val &= ~S3C64XX_SPI_CH_HS_EN;
  168. writel(val, regs + S3C64XX_SPI_CH_CFG);
  169. /* Flush TxFIFO*/
  170. loops = msecs_to_loops(1);
  171. do {
  172. val = readl(regs + S3C64XX_SPI_STATUS);
  173. } while (TX_FIFO_LVL(val, sci) && loops--);
  174. if (loops == 0)
  175. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  176. /* Flush RxFIFO*/
  177. loops = msecs_to_loops(1);
  178. do {
  179. val = readl(regs + S3C64XX_SPI_STATUS);
  180. if (RX_FIFO_LVL(val, sci))
  181. readl(regs + S3C64XX_SPI_RX_DATA);
  182. else
  183. break;
  184. } while (loops--);
  185. if (loops == 0)
  186. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  187. val = readl(regs + S3C64XX_SPI_CH_CFG);
  188. val &= ~S3C64XX_SPI_CH_SW_RST;
  189. writel(val, regs + S3C64XX_SPI_CH_CFG);
  190. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  191. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  192. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  193. val = readl(regs + S3C64XX_SPI_CH_CFG);
  194. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  195. writel(val, regs + S3C64XX_SPI_CH_CFG);
  196. }
  197. static void s3c64xx_spi_dmacb(void *data)
  198. {
  199. struct s3c64xx_spi_driver_data *sdd;
  200. struct s3c64xx_spi_dma_data *dma = data;
  201. unsigned long flags;
  202. if (dma->direction == DMA_DEV_TO_MEM)
  203. sdd = container_of(data,
  204. struct s3c64xx_spi_driver_data, rx_dma);
  205. else
  206. sdd = container_of(data,
  207. struct s3c64xx_spi_driver_data, tx_dma);
  208. spin_lock_irqsave(&sdd->lock, flags);
  209. if (dma->direction == DMA_DEV_TO_MEM) {
  210. sdd->state &= ~RXBUSY;
  211. if (!(sdd->state & TXBUSY))
  212. complete(&sdd->xfer_completion);
  213. } else {
  214. sdd->state &= ~TXBUSY;
  215. if (!(sdd->state & RXBUSY))
  216. complete(&sdd->xfer_completion);
  217. }
  218. spin_unlock_irqrestore(&sdd->lock, flags);
  219. }
  220. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  221. unsigned len, dma_addr_t buf)
  222. {
  223. struct s3c64xx_spi_driver_data *sdd;
  224. struct samsung_dma_prep info;
  225. struct samsung_dma_config config;
  226. if (dma->direction == DMA_DEV_TO_MEM) {
  227. sdd = container_of((void *)dma,
  228. struct s3c64xx_spi_driver_data, rx_dma);
  229. config.direction = sdd->rx_dma.direction;
  230. config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  231. config.width = sdd->cur_bpw / 8;
  232. sdd->ops->config(sdd->rx_dma.ch, &config);
  233. } else {
  234. sdd = container_of((void *)dma,
  235. struct s3c64xx_spi_driver_data, tx_dma);
  236. config.direction = sdd->tx_dma.direction;
  237. config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  238. config.width = sdd->cur_bpw / 8;
  239. sdd->ops->config(sdd->tx_dma.ch, &config);
  240. }
  241. info.cap = DMA_SLAVE;
  242. info.len = len;
  243. info.fp = s3c64xx_spi_dmacb;
  244. info.fp_param = dma;
  245. info.direction = dma->direction;
  246. info.buf = buf;
  247. sdd->ops->prepare(dma->ch, &info);
  248. sdd->ops->trigger(dma->ch);
  249. }
  250. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  251. {
  252. struct samsung_dma_req req;
  253. sdd->ops = samsung_dma_get_ops();
  254. req.cap = DMA_SLAVE;
  255. req.client = &s3c64xx_spi_dma_client;
  256. sdd->rx_dma.ch = sdd->ops->request(sdd->rx_dma.dmach, &req);
  257. sdd->tx_dma.ch = sdd->ops->request(sdd->tx_dma.dmach, &req);
  258. return 1;
  259. }
  260. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  261. struct spi_device *spi,
  262. struct spi_transfer *xfer, int dma_mode)
  263. {
  264. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  265. void __iomem *regs = sdd->regs;
  266. u32 modecfg, chcfg;
  267. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  268. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  269. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  270. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  271. if (dma_mode) {
  272. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  273. } else {
  274. /* Always shift in data in FIFO, even if xfer is Tx only,
  275. * this helps setting PCKT_CNT value for generating clocks
  276. * as exactly needed.
  277. */
  278. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  279. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  280. | S3C64XX_SPI_PACKET_CNT_EN,
  281. regs + S3C64XX_SPI_PACKET_CNT);
  282. }
  283. if (xfer->tx_buf != NULL) {
  284. sdd->state |= TXBUSY;
  285. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  286. if (dma_mode) {
  287. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  288. prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
  289. } else {
  290. switch (sdd->cur_bpw) {
  291. case 32:
  292. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  293. xfer->tx_buf, xfer->len / 4);
  294. break;
  295. case 16:
  296. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  297. xfer->tx_buf, xfer->len / 2);
  298. break;
  299. default:
  300. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  301. xfer->tx_buf, xfer->len);
  302. break;
  303. }
  304. }
  305. }
  306. if (xfer->rx_buf != NULL) {
  307. sdd->state |= RXBUSY;
  308. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  309. && !(sdd->cur_mode & SPI_CPHA))
  310. chcfg |= S3C64XX_SPI_CH_HS_EN;
  311. if (dma_mode) {
  312. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  313. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  314. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  315. | S3C64XX_SPI_PACKET_CNT_EN,
  316. regs + S3C64XX_SPI_PACKET_CNT);
  317. prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
  318. }
  319. }
  320. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  321. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  322. }
  323. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  324. struct spi_device *spi)
  325. {
  326. struct s3c64xx_spi_csinfo *cs;
  327. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  328. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  329. /* Deselect the last toggled device */
  330. cs = sdd->tgl_spi->controller_data;
  331. cs->set_level(cs->line,
  332. spi->mode & SPI_CS_HIGH ? 0 : 1);
  333. }
  334. sdd->tgl_spi = NULL;
  335. }
  336. cs = spi->controller_data;
  337. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  338. }
  339. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  340. struct spi_transfer *xfer, int dma_mode)
  341. {
  342. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  343. void __iomem *regs = sdd->regs;
  344. unsigned long val;
  345. int ms;
  346. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  347. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  348. ms += 10; /* some tolerance */
  349. if (dma_mode) {
  350. val = msecs_to_jiffies(ms) + 10;
  351. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  352. } else {
  353. u32 status;
  354. val = msecs_to_loops(ms);
  355. do {
  356. status = readl(regs + S3C64XX_SPI_STATUS);
  357. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  358. }
  359. if (!val)
  360. return -EIO;
  361. if (dma_mode) {
  362. u32 status;
  363. /*
  364. * DmaTx returns after simply writing data in the FIFO,
  365. * w/o waiting for real transmission on the bus to finish.
  366. * DmaRx returns only after Dma read data from FIFO which
  367. * needs bus transmission to finish, so we don't worry if
  368. * Xfer involved Rx(with or without Tx).
  369. */
  370. if (xfer->rx_buf == NULL) {
  371. val = msecs_to_loops(10);
  372. status = readl(regs + S3C64XX_SPI_STATUS);
  373. while ((TX_FIFO_LVL(status, sci)
  374. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  375. && --val) {
  376. cpu_relax();
  377. status = readl(regs + S3C64XX_SPI_STATUS);
  378. }
  379. if (!val)
  380. return -EIO;
  381. }
  382. } else {
  383. /* If it was only Tx */
  384. if (xfer->rx_buf == NULL) {
  385. sdd->state &= ~TXBUSY;
  386. return 0;
  387. }
  388. switch (sdd->cur_bpw) {
  389. case 32:
  390. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  391. xfer->rx_buf, xfer->len / 4);
  392. break;
  393. case 16:
  394. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  395. xfer->rx_buf, xfer->len / 2);
  396. break;
  397. default:
  398. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  399. xfer->rx_buf, xfer->len);
  400. break;
  401. }
  402. sdd->state &= ~RXBUSY;
  403. }
  404. return 0;
  405. }
  406. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  407. struct spi_device *spi)
  408. {
  409. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  410. if (sdd->tgl_spi == spi)
  411. sdd->tgl_spi = NULL;
  412. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  413. }
  414. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  415. {
  416. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  417. void __iomem *regs = sdd->regs;
  418. u32 val;
  419. /* Disable Clock */
  420. if (sci->clk_from_cmu) {
  421. clk_disable(sdd->src_clk);
  422. } else {
  423. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  424. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  425. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  426. }
  427. /* Set Polarity and Phase */
  428. val = readl(regs + S3C64XX_SPI_CH_CFG);
  429. val &= ~(S3C64XX_SPI_CH_SLAVE |
  430. S3C64XX_SPI_CPOL_L |
  431. S3C64XX_SPI_CPHA_B);
  432. if (sdd->cur_mode & SPI_CPOL)
  433. val |= S3C64XX_SPI_CPOL_L;
  434. if (sdd->cur_mode & SPI_CPHA)
  435. val |= S3C64XX_SPI_CPHA_B;
  436. writel(val, regs + S3C64XX_SPI_CH_CFG);
  437. /* Set Channel & DMA Mode */
  438. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  439. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  440. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  441. switch (sdd->cur_bpw) {
  442. case 32:
  443. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  444. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  445. break;
  446. case 16:
  447. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  448. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  449. break;
  450. default:
  451. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  452. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  453. break;
  454. }
  455. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  456. if (sci->clk_from_cmu) {
  457. /* Configure Clock */
  458. /* There is half-multiplier before the SPI */
  459. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  460. /* Enable Clock */
  461. clk_enable(sdd->src_clk);
  462. } else {
  463. /* Configure Clock */
  464. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  465. val &= ~S3C64XX_SPI_PSR_MASK;
  466. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  467. & S3C64XX_SPI_PSR_MASK);
  468. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  469. /* Enable Clock */
  470. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  471. val |= S3C64XX_SPI_ENCLK_ENABLE;
  472. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  473. }
  474. }
  475. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  476. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  477. struct spi_message *msg)
  478. {
  479. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  480. struct device *dev = &sdd->pdev->dev;
  481. struct spi_transfer *xfer;
  482. if (msg->is_dma_mapped)
  483. return 0;
  484. /* First mark all xfer unmapped */
  485. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  486. xfer->rx_dma = XFER_DMAADDR_INVALID;
  487. xfer->tx_dma = XFER_DMAADDR_INVALID;
  488. }
  489. /* Map until end or first fail */
  490. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  491. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  492. continue;
  493. if (xfer->tx_buf != NULL) {
  494. xfer->tx_dma = dma_map_single(dev,
  495. (void *)xfer->tx_buf, xfer->len,
  496. DMA_TO_DEVICE);
  497. if (dma_mapping_error(dev, xfer->tx_dma)) {
  498. dev_err(dev, "dma_map_single Tx failed\n");
  499. xfer->tx_dma = XFER_DMAADDR_INVALID;
  500. return -ENOMEM;
  501. }
  502. }
  503. if (xfer->rx_buf != NULL) {
  504. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  505. xfer->len, DMA_FROM_DEVICE);
  506. if (dma_mapping_error(dev, xfer->rx_dma)) {
  507. dev_err(dev, "dma_map_single Rx failed\n");
  508. dma_unmap_single(dev, xfer->tx_dma,
  509. xfer->len, DMA_TO_DEVICE);
  510. xfer->tx_dma = XFER_DMAADDR_INVALID;
  511. xfer->rx_dma = XFER_DMAADDR_INVALID;
  512. return -ENOMEM;
  513. }
  514. }
  515. }
  516. return 0;
  517. }
  518. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  519. struct spi_message *msg)
  520. {
  521. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  522. struct device *dev = &sdd->pdev->dev;
  523. struct spi_transfer *xfer;
  524. if (msg->is_dma_mapped)
  525. return;
  526. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  527. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  528. continue;
  529. if (xfer->rx_buf != NULL
  530. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  531. dma_unmap_single(dev, xfer->rx_dma,
  532. xfer->len, DMA_FROM_DEVICE);
  533. if (xfer->tx_buf != NULL
  534. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  535. dma_unmap_single(dev, xfer->tx_dma,
  536. xfer->len, DMA_TO_DEVICE);
  537. }
  538. }
  539. static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
  540. struct spi_message *msg)
  541. {
  542. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  543. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  544. struct spi_device *spi = msg->spi;
  545. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  546. struct spi_transfer *xfer;
  547. int status = 0, cs_toggle = 0;
  548. u32 speed;
  549. u8 bpw;
  550. /* If Master's(controller) state differs from that needed by Slave */
  551. if (sdd->cur_speed != spi->max_speed_hz
  552. || sdd->cur_mode != spi->mode
  553. || sdd->cur_bpw != spi->bits_per_word) {
  554. sdd->cur_bpw = spi->bits_per_word;
  555. sdd->cur_speed = spi->max_speed_hz;
  556. sdd->cur_mode = spi->mode;
  557. s3c64xx_spi_config(sdd);
  558. }
  559. /* Map all the transfers if needed */
  560. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  561. dev_err(&spi->dev,
  562. "Xfer: Unable to map message buffers!\n");
  563. status = -ENOMEM;
  564. goto out;
  565. }
  566. /* Configure feedback delay */
  567. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  568. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  569. unsigned long flags;
  570. int use_dma;
  571. INIT_COMPLETION(sdd->xfer_completion);
  572. /* Only BPW and Speed may change across transfers */
  573. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  574. speed = xfer->speed_hz ? : spi->max_speed_hz;
  575. if (xfer->len % (bpw / 8)) {
  576. dev_err(&spi->dev,
  577. "Xfer length(%u) not a multiple of word size(%u)\n",
  578. xfer->len, bpw / 8);
  579. status = -EIO;
  580. goto out;
  581. }
  582. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  583. sdd->cur_bpw = bpw;
  584. sdd->cur_speed = speed;
  585. s3c64xx_spi_config(sdd);
  586. }
  587. /* Polling method for xfers not bigger than FIFO capacity */
  588. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  589. use_dma = 0;
  590. else
  591. use_dma = 1;
  592. spin_lock_irqsave(&sdd->lock, flags);
  593. /* Pending only which is to be done */
  594. sdd->state &= ~RXBUSY;
  595. sdd->state &= ~TXBUSY;
  596. enable_datapath(sdd, spi, xfer, use_dma);
  597. /* Slave Select */
  598. enable_cs(sdd, spi);
  599. /* Start the signals */
  600. S3C64XX_SPI_ACT(sdd);
  601. spin_unlock_irqrestore(&sdd->lock, flags);
  602. status = wait_for_xfer(sdd, xfer, use_dma);
  603. /* Quiese the signals */
  604. S3C64XX_SPI_DEACT(sdd);
  605. if (status) {
  606. dev_err(&spi->dev, "I/O Error: "
  607. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  608. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  609. (sdd->state & RXBUSY) ? 'f' : 'p',
  610. (sdd->state & TXBUSY) ? 'f' : 'p',
  611. xfer->len);
  612. if (use_dma) {
  613. if (xfer->tx_buf != NULL
  614. && (sdd->state & TXBUSY))
  615. sdd->ops->stop(sdd->tx_dma.ch);
  616. if (xfer->rx_buf != NULL
  617. && (sdd->state & RXBUSY))
  618. sdd->ops->stop(sdd->rx_dma.ch);
  619. }
  620. goto out;
  621. }
  622. if (xfer->delay_usecs)
  623. udelay(xfer->delay_usecs);
  624. if (xfer->cs_change) {
  625. /* Hint that the next mssg is gonna be
  626. for the same device */
  627. if (list_is_last(&xfer->transfer_list,
  628. &msg->transfers))
  629. cs_toggle = 1;
  630. else
  631. disable_cs(sdd, spi);
  632. }
  633. msg->actual_length += xfer->len;
  634. flush_fifo(sdd);
  635. }
  636. out:
  637. if (!cs_toggle || status)
  638. disable_cs(sdd, spi);
  639. else
  640. sdd->tgl_spi = spi;
  641. s3c64xx_spi_unmap_mssg(sdd, msg);
  642. msg->status = status;
  643. spi_finalize_current_message(master);
  644. return 0;
  645. }
  646. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  647. {
  648. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  649. /* Acquire DMA channels */
  650. while (!acquire_dma(sdd))
  651. msleep(10);
  652. pm_runtime_get_sync(&sdd->pdev->dev);
  653. return 0;
  654. }
  655. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  656. {
  657. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  658. /* Free DMA channels */
  659. sdd->ops->release(sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
  660. sdd->ops->release(sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
  661. pm_runtime_put(&sdd->pdev->dev);
  662. return 0;
  663. }
  664. /*
  665. * Here we only check the validity of requested configuration
  666. * and save the configuration in a local data-structure.
  667. * The controller is actually configured only just before we
  668. * get a message to transfer.
  669. */
  670. static int s3c64xx_spi_setup(struct spi_device *spi)
  671. {
  672. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  673. struct s3c64xx_spi_driver_data *sdd;
  674. struct s3c64xx_spi_info *sci;
  675. struct spi_message *msg;
  676. unsigned long flags;
  677. int err = 0;
  678. if (cs == NULL || cs->set_level == NULL) {
  679. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  680. return -ENODEV;
  681. }
  682. sdd = spi_master_get_devdata(spi->master);
  683. sci = sdd->cntrlr_info;
  684. spin_lock_irqsave(&sdd->lock, flags);
  685. list_for_each_entry(msg, &sdd->queue, queue) {
  686. /* Is some mssg is already queued for this device */
  687. if (msg->spi == spi) {
  688. dev_err(&spi->dev,
  689. "setup: attempt while mssg in queue!\n");
  690. spin_unlock_irqrestore(&sdd->lock, flags);
  691. return -EBUSY;
  692. }
  693. }
  694. spin_unlock_irqrestore(&sdd->lock, flags);
  695. if (spi->bits_per_word != 8
  696. && spi->bits_per_word != 16
  697. && spi->bits_per_word != 32) {
  698. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  699. spi->bits_per_word);
  700. err = -EINVAL;
  701. goto setup_exit;
  702. }
  703. pm_runtime_get_sync(&sdd->pdev->dev);
  704. /* Check if we can provide the requested rate */
  705. if (!sci->clk_from_cmu) {
  706. u32 psr, speed;
  707. /* Max possible */
  708. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  709. if (spi->max_speed_hz > speed)
  710. spi->max_speed_hz = speed;
  711. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  712. psr &= S3C64XX_SPI_PSR_MASK;
  713. if (psr == S3C64XX_SPI_PSR_MASK)
  714. psr--;
  715. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  716. if (spi->max_speed_hz < speed) {
  717. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  718. psr++;
  719. } else {
  720. err = -EINVAL;
  721. goto setup_exit;
  722. }
  723. }
  724. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  725. if (spi->max_speed_hz >= speed)
  726. spi->max_speed_hz = speed;
  727. else
  728. err = -EINVAL;
  729. }
  730. pm_runtime_put(&sdd->pdev->dev);
  731. setup_exit:
  732. /* setup() returns with device de-selected */
  733. disable_cs(sdd, spi);
  734. return err;
  735. }
  736. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  737. {
  738. struct s3c64xx_spi_driver_data *sdd = data;
  739. struct spi_master *spi = sdd->master;
  740. unsigned int val;
  741. val = readl(sdd->regs + S3C64XX_SPI_PENDING_CLR);
  742. val &= S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  743. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  744. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  745. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  746. writel(val, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  747. if (val & S3C64XX_SPI_PND_RX_OVERRUN_CLR)
  748. dev_err(&spi->dev, "RX overrun\n");
  749. if (val & S3C64XX_SPI_PND_RX_UNDERRUN_CLR)
  750. dev_err(&spi->dev, "RX underrun\n");
  751. if (val & S3C64XX_SPI_PND_TX_OVERRUN_CLR)
  752. dev_err(&spi->dev, "TX overrun\n");
  753. if (val & S3C64XX_SPI_PND_TX_UNDERRUN_CLR)
  754. dev_err(&spi->dev, "TX underrun\n");
  755. return IRQ_HANDLED;
  756. }
  757. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  758. {
  759. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  760. void __iomem *regs = sdd->regs;
  761. unsigned int val;
  762. sdd->cur_speed = 0;
  763. S3C64XX_SPI_DEACT(sdd);
  764. /* Disable Interrupts - we use Polling if not DMA mode */
  765. writel(0, regs + S3C64XX_SPI_INT_EN);
  766. if (!sci->clk_from_cmu)
  767. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  768. regs + S3C64XX_SPI_CLK_CFG);
  769. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  770. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  771. /* Clear any irq pending bits */
  772. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  773. regs + S3C64XX_SPI_PENDING_CLR);
  774. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  775. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  776. val &= ~S3C64XX_SPI_MODE_4BURST;
  777. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  778. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  779. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  780. flush_fifo(sdd);
  781. }
  782. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  783. {
  784. struct resource *mem_res, *dmatx_res, *dmarx_res;
  785. struct s3c64xx_spi_driver_data *sdd;
  786. struct s3c64xx_spi_info *sci;
  787. struct spi_master *master;
  788. int ret, irq;
  789. char clk_name[16];
  790. if (pdev->id < 0) {
  791. dev_err(&pdev->dev,
  792. "Invalid platform device id-%d\n", pdev->id);
  793. return -ENODEV;
  794. }
  795. if (pdev->dev.platform_data == NULL) {
  796. dev_err(&pdev->dev, "platform_data missing!\n");
  797. return -ENODEV;
  798. }
  799. sci = pdev->dev.platform_data;
  800. /* Check for availability of necessary resource */
  801. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  802. if (dmatx_res == NULL) {
  803. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  804. return -ENXIO;
  805. }
  806. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  807. if (dmarx_res == NULL) {
  808. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  809. return -ENXIO;
  810. }
  811. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  812. if (mem_res == NULL) {
  813. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  814. return -ENXIO;
  815. }
  816. irq = platform_get_irq(pdev, 0);
  817. if (irq < 0) {
  818. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  819. return irq;
  820. }
  821. master = spi_alloc_master(&pdev->dev,
  822. sizeof(struct s3c64xx_spi_driver_data));
  823. if (master == NULL) {
  824. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  825. return -ENOMEM;
  826. }
  827. platform_set_drvdata(pdev, master);
  828. sdd = spi_master_get_devdata(master);
  829. sdd->master = master;
  830. sdd->cntrlr_info = sci;
  831. sdd->pdev = pdev;
  832. sdd->sfr_start = mem_res->start;
  833. sdd->tx_dma.dmach = dmatx_res->start;
  834. sdd->tx_dma.direction = DMA_MEM_TO_DEV;
  835. sdd->rx_dma.dmach = dmarx_res->start;
  836. sdd->rx_dma.direction = DMA_DEV_TO_MEM;
  837. sdd->cur_bpw = 8;
  838. master->bus_num = pdev->id;
  839. master->setup = s3c64xx_spi_setup;
  840. master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
  841. master->transfer_one_message = s3c64xx_spi_transfer_one_message;
  842. master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
  843. master->num_chipselect = sci->num_cs;
  844. master->dma_alignment = 8;
  845. /* the spi->mode bits understood by this driver: */
  846. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  847. if (request_mem_region(mem_res->start,
  848. resource_size(mem_res), pdev->name) == NULL) {
  849. dev_err(&pdev->dev, "Req mem region failed\n");
  850. ret = -ENXIO;
  851. goto err0;
  852. }
  853. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  854. if (sdd->regs == NULL) {
  855. dev_err(&pdev->dev, "Unable to remap IO\n");
  856. ret = -ENXIO;
  857. goto err1;
  858. }
  859. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  860. dev_err(&pdev->dev, "Unable to config gpio\n");
  861. ret = -EBUSY;
  862. goto err2;
  863. }
  864. /* Setup clocks */
  865. sdd->clk = clk_get(&pdev->dev, "spi");
  866. if (IS_ERR(sdd->clk)) {
  867. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  868. ret = PTR_ERR(sdd->clk);
  869. goto err3;
  870. }
  871. if (clk_enable(sdd->clk)) {
  872. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  873. ret = -EBUSY;
  874. goto err4;
  875. }
  876. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  877. sdd->src_clk = clk_get(&pdev->dev, clk_name);
  878. if (IS_ERR(sdd->src_clk)) {
  879. dev_err(&pdev->dev,
  880. "Unable to acquire clock '%s'\n", clk_name);
  881. ret = PTR_ERR(sdd->src_clk);
  882. goto err5;
  883. }
  884. if (clk_enable(sdd->src_clk)) {
  885. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  886. ret = -EBUSY;
  887. goto err6;
  888. }
  889. /* Setup Deufult Mode */
  890. s3c64xx_spi_hwinit(sdd, pdev->id);
  891. spin_lock_init(&sdd->lock);
  892. init_completion(&sdd->xfer_completion);
  893. INIT_LIST_HEAD(&sdd->queue);
  894. ret = request_irq(irq, s3c64xx_spi_irq, 0, "spi-s3c64xx", sdd);
  895. if (ret != 0) {
  896. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  897. irq, ret);
  898. goto err7;
  899. }
  900. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  901. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  902. sdd->regs + S3C64XX_SPI_INT_EN);
  903. if (spi_register_master(master)) {
  904. dev_err(&pdev->dev, "cannot register SPI master\n");
  905. ret = -EBUSY;
  906. goto err8;
  907. }
  908. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  909. "with %d Slaves attached\n",
  910. pdev->id, master->num_chipselect);
  911. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  912. mem_res->end, mem_res->start,
  913. sdd->rx_dma.dmach, sdd->tx_dma.dmach);
  914. pm_runtime_enable(&pdev->dev);
  915. return 0;
  916. err8:
  917. free_irq(irq, sdd);
  918. err7:
  919. clk_disable(sdd->src_clk);
  920. err6:
  921. clk_put(sdd->src_clk);
  922. err5:
  923. clk_disable(sdd->clk);
  924. err4:
  925. clk_put(sdd->clk);
  926. err3:
  927. err2:
  928. iounmap((void *) sdd->regs);
  929. err1:
  930. release_mem_region(mem_res->start, resource_size(mem_res));
  931. err0:
  932. platform_set_drvdata(pdev, NULL);
  933. spi_master_put(master);
  934. return ret;
  935. }
  936. static int s3c64xx_spi_remove(struct platform_device *pdev)
  937. {
  938. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  939. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  940. struct resource *mem_res;
  941. pm_runtime_disable(&pdev->dev);
  942. spi_unregister_master(master);
  943. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  944. free_irq(platform_get_irq(pdev, 0), sdd);
  945. clk_disable(sdd->src_clk);
  946. clk_put(sdd->src_clk);
  947. clk_disable(sdd->clk);
  948. clk_put(sdd->clk);
  949. iounmap((void *) sdd->regs);
  950. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  951. if (mem_res != NULL)
  952. release_mem_region(mem_res->start, resource_size(mem_res));
  953. platform_set_drvdata(pdev, NULL);
  954. spi_master_put(master);
  955. return 0;
  956. }
  957. #ifdef CONFIG_PM
  958. static int s3c64xx_spi_suspend(struct device *dev)
  959. {
  960. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  961. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  962. spi_master_suspend(master);
  963. /* Disable the clock */
  964. clk_disable(sdd->src_clk);
  965. clk_disable(sdd->clk);
  966. sdd->cur_speed = 0; /* Output Clock is stopped */
  967. return 0;
  968. }
  969. static int s3c64xx_spi_resume(struct device *dev)
  970. {
  971. struct platform_device *pdev = to_platform_device(dev);
  972. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  973. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  974. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  975. sci->cfg_gpio(pdev);
  976. /* Enable the clock */
  977. clk_enable(sdd->src_clk);
  978. clk_enable(sdd->clk);
  979. s3c64xx_spi_hwinit(sdd, pdev->id);
  980. spi_master_resume(master);
  981. return 0;
  982. }
  983. #endif /* CONFIG_PM */
  984. #ifdef CONFIG_PM_RUNTIME
  985. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  986. {
  987. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  988. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  989. clk_disable(sdd->clk);
  990. clk_disable(sdd->src_clk);
  991. return 0;
  992. }
  993. static int s3c64xx_spi_runtime_resume(struct device *dev)
  994. {
  995. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  996. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  997. clk_enable(sdd->src_clk);
  998. clk_enable(sdd->clk);
  999. return 0;
  1000. }
  1001. #endif /* CONFIG_PM_RUNTIME */
  1002. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1003. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1004. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1005. s3c64xx_spi_runtime_resume, NULL)
  1006. };
  1007. static struct platform_driver s3c64xx_spi_driver = {
  1008. .driver = {
  1009. .name = "s3c64xx-spi",
  1010. .owner = THIS_MODULE,
  1011. .pm = &s3c64xx_spi_pm,
  1012. },
  1013. .remove = s3c64xx_spi_remove,
  1014. };
  1015. MODULE_ALIAS("platform:s3c64xx-spi");
  1016. static int __init s3c64xx_spi_init(void)
  1017. {
  1018. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  1019. }
  1020. subsys_initcall(s3c64xx_spi_init);
  1021. static void __exit s3c64xx_spi_exit(void)
  1022. {
  1023. platform_driver_unregister(&s3c64xx_spi_driver);
  1024. }
  1025. module_exit(s3c64xx_spi_exit);
  1026. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1027. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1028. MODULE_LICENSE("GPL");