page_alloc.c 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <asm/sections.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/div64.h>
  65. #include "internal.h"
  66. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  67. static DEFINE_MUTEX(pcp_batch_high_lock);
  68. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  69. DEFINE_PER_CPU(int, numa_node);
  70. EXPORT_PER_CPU_SYMBOL(numa_node);
  71. #endif
  72. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  73. /*
  74. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  75. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  76. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  77. * defined in <linux/topology.h>.
  78. */
  79. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  80. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  81. #endif
  82. /*
  83. * Array of node states.
  84. */
  85. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  86. [N_POSSIBLE] = NODE_MASK_ALL,
  87. [N_ONLINE] = { { [0] = 1UL } },
  88. #ifndef CONFIG_NUMA
  89. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  90. #ifdef CONFIG_HIGHMEM
  91. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  92. #endif
  93. #ifdef CONFIG_MOVABLE_NODE
  94. [N_MEMORY] = { { [0] = 1UL } },
  95. #endif
  96. [N_CPU] = { { [0] = 1UL } },
  97. #endif /* NUMA */
  98. };
  99. EXPORT_SYMBOL(node_states);
  100. /* Protect totalram_pages and zone->managed_pages */
  101. static DEFINE_SPINLOCK(managed_page_count_lock);
  102. unsigned long totalram_pages __read_mostly;
  103. unsigned long totalreserve_pages __read_mostly;
  104. /*
  105. * When calculating the number of globally allowed dirty pages, there
  106. * is a certain number of per-zone reserves that should not be
  107. * considered dirtyable memory. This is the sum of those reserves
  108. * over all existing zones that contribute dirtyable memory.
  109. */
  110. unsigned long dirty_balance_reserve __read_mostly;
  111. int percpu_pagelist_fraction;
  112. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  113. #ifdef CONFIG_PM_SLEEP
  114. /*
  115. * The following functions are used by the suspend/hibernate code to temporarily
  116. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  117. * while devices are suspended. To avoid races with the suspend/hibernate code,
  118. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  119. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  120. * guaranteed not to run in parallel with that modification).
  121. */
  122. static gfp_t saved_gfp_mask;
  123. void pm_restore_gfp_mask(void)
  124. {
  125. WARN_ON(!mutex_is_locked(&pm_mutex));
  126. if (saved_gfp_mask) {
  127. gfp_allowed_mask = saved_gfp_mask;
  128. saved_gfp_mask = 0;
  129. }
  130. }
  131. void pm_restrict_gfp_mask(void)
  132. {
  133. WARN_ON(!mutex_is_locked(&pm_mutex));
  134. WARN_ON(saved_gfp_mask);
  135. saved_gfp_mask = gfp_allowed_mask;
  136. gfp_allowed_mask &= ~GFP_IOFS;
  137. }
  138. bool pm_suspended_storage(void)
  139. {
  140. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  141. return false;
  142. return true;
  143. }
  144. #endif /* CONFIG_PM_SLEEP */
  145. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  146. int pageblock_order __read_mostly;
  147. #endif
  148. static void __free_pages_ok(struct page *page, unsigned int order);
  149. /*
  150. * results with 256, 32 in the lowmem_reserve sysctl:
  151. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  152. * 1G machine -> (16M dma, 784M normal, 224M high)
  153. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  154. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  155. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  156. *
  157. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  158. * don't need any ZONE_NORMAL reservation
  159. */
  160. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  161. #ifdef CONFIG_ZONE_DMA
  162. 256,
  163. #endif
  164. #ifdef CONFIG_ZONE_DMA32
  165. 256,
  166. #endif
  167. #ifdef CONFIG_HIGHMEM
  168. 32,
  169. #endif
  170. 32,
  171. };
  172. EXPORT_SYMBOL(totalram_pages);
  173. static char * const zone_names[MAX_NR_ZONES] = {
  174. #ifdef CONFIG_ZONE_DMA
  175. "DMA",
  176. #endif
  177. #ifdef CONFIG_ZONE_DMA32
  178. "DMA32",
  179. #endif
  180. "Normal",
  181. #ifdef CONFIG_HIGHMEM
  182. "HighMem",
  183. #endif
  184. "Movable",
  185. };
  186. int min_free_kbytes = 1024;
  187. int user_min_free_kbytes;
  188. static unsigned long __meminitdata nr_kernel_pages;
  189. static unsigned long __meminitdata nr_all_pages;
  190. static unsigned long __meminitdata dma_reserve;
  191. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  192. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  193. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  194. static unsigned long __initdata required_kernelcore;
  195. static unsigned long __initdata required_movablecore;
  196. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  197. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  198. int movable_zone;
  199. EXPORT_SYMBOL(movable_zone);
  200. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  201. #if MAX_NUMNODES > 1
  202. int nr_node_ids __read_mostly = MAX_NUMNODES;
  203. int nr_online_nodes __read_mostly = 1;
  204. EXPORT_SYMBOL(nr_node_ids);
  205. EXPORT_SYMBOL(nr_online_nodes);
  206. #endif
  207. int page_group_by_mobility_disabled __read_mostly;
  208. void set_pageblock_migratetype(struct page *page, int migratetype)
  209. {
  210. if (unlikely(page_group_by_mobility_disabled))
  211. migratetype = MIGRATE_UNMOVABLE;
  212. set_pageblock_flags_group(page, (unsigned long)migratetype,
  213. PB_migrate, PB_migrate_end);
  214. }
  215. bool oom_killer_disabled __read_mostly;
  216. #ifdef CONFIG_DEBUG_VM
  217. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  218. {
  219. int ret = 0;
  220. unsigned seq;
  221. unsigned long pfn = page_to_pfn(page);
  222. unsigned long sp, start_pfn;
  223. do {
  224. seq = zone_span_seqbegin(zone);
  225. start_pfn = zone->zone_start_pfn;
  226. sp = zone->spanned_pages;
  227. if (!zone_spans_pfn(zone, pfn))
  228. ret = 1;
  229. } while (zone_span_seqretry(zone, seq));
  230. if (ret)
  231. pr_err("page %lu outside zone [ %lu - %lu ]\n",
  232. pfn, start_pfn, start_pfn + sp);
  233. return ret;
  234. }
  235. static int page_is_consistent(struct zone *zone, struct page *page)
  236. {
  237. if (!pfn_valid_within(page_to_pfn(page)))
  238. return 0;
  239. if (zone != page_zone(page))
  240. return 0;
  241. return 1;
  242. }
  243. /*
  244. * Temporary debugging check for pages not lying within a given zone.
  245. */
  246. static int bad_range(struct zone *zone, struct page *page)
  247. {
  248. if (page_outside_zone_boundaries(zone, page))
  249. return 1;
  250. if (!page_is_consistent(zone, page))
  251. return 1;
  252. return 0;
  253. }
  254. #else
  255. static inline int bad_range(struct zone *zone, struct page *page)
  256. {
  257. return 0;
  258. }
  259. #endif
  260. static void bad_page(struct page *page)
  261. {
  262. static unsigned long resume;
  263. static unsigned long nr_shown;
  264. static unsigned long nr_unshown;
  265. /* Don't complain about poisoned pages */
  266. if (PageHWPoison(page)) {
  267. page_mapcount_reset(page); /* remove PageBuddy */
  268. return;
  269. }
  270. /*
  271. * Allow a burst of 60 reports, then keep quiet for that minute;
  272. * or allow a steady drip of one report per second.
  273. */
  274. if (nr_shown == 60) {
  275. if (time_before(jiffies, resume)) {
  276. nr_unshown++;
  277. goto out;
  278. }
  279. if (nr_unshown) {
  280. printk(KERN_ALERT
  281. "BUG: Bad page state: %lu messages suppressed\n",
  282. nr_unshown);
  283. nr_unshown = 0;
  284. }
  285. nr_shown = 0;
  286. }
  287. if (nr_shown++ == 0)
  288. resume = jiffies + 60 * HZ;
  289. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  290. current->comm, page_to_pfn(page));
  291. dump_page(page);
  292. print_modules();
  293. dump_stack();
  294. out:
  295. /* Leave bad fields for debug, except PageBuddy could make trouble */
  296. page_mapcount_reset(page); /* remove PageBuddy */
  297. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  298. }
  299. /*
  300. * Higher-order pages are called "compound pages". They are structured thusly:
  301. *
  302. * The first PAGE_SIZE page is called the "head page".
  303. *
  304. * The remaining PAGE_SIZE pages are called "tail pages".
  305. *
  306. * All pages have PG_compound set. All tail pages have their ->first_page
  307. * pointing at the head page.
  308. *
  309. * The first tail page's ->lru.next holds the address of the compound page's
  310. * put_page() function. Its ->lru.prev holds the order of allocation.
  311. * This usage means that zero-order pages may not be compound.
  312. */
  313. static void free_compound_page(struct page *page)
  314. {
  315. __free_pages_ok(page, compound_order(page));
  316. }
  317. void prep_compound_page(struct page *page, unsigned long order)
  318. {
  319. int i;
  320. int nr_pages = 1 << order;
  321. set_compound_page_dtor(page, free_compound_page);
  322. set_compound_order(page, order);
  323. __SetPageHead(page);
  324. for (i = 1; i < nr_pages; i++) {
  325. struct page *p = page + i;
  326. __SetPageTail(p);
  327. set_page_count(p, 0);
  328. p->first_page = page;
  329. }
  330. }
  331. /* update __split_huge_page_refcount if you change this function */
  332. static int destroy_compound_page(struct page *page, unsigned long order)
  333. {
  334. int i;
  335. int nr_pages = 1 << order;
  336. int bad = 0;
  337. if (unlikely(compound_order(page) != order)) {
  338. bad_page(page);
  339. bad++;
  340. }
  341. __ClearPageHead(page);
  342. for (i = 1; i < nr_pages; i++) {
  343. struct page *p = page + i;
  344. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  345. bad_page(page);
  346. bad++;
  347. }
  348. __ClearPageTail(p);
  349. }
  350. return bad;
  351. }
  352. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  353. {
  354. int i;
  355. /*
  356. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  357. * and __GFP_HIGHMEM from hard or soft interrupt context.
  358. */
  359. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  360. for (i = 0; i < (1 << order); i++)
  361. clear_highpage(page + i);
  362. }
  363. #ifdef CONFIG_DEBUG_PAGEALLOC
  364. unsigned int _debug_guardpage_minorder;
  365. static int __init debug_guardpage_minorder_setup(char *buf)
  366. {
  367. unsigned long res;
  368. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  369. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  370. return 0;
  371. }
  372. _debug_guardpage_minorder = res;
  373. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  374. return 0;
  375. }
  376. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  377. static inline void set_page_guard_flag(struct page *page)
  378. {
  379. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  380. }
  381. static inline void clear_page_guard_flag(struct page *page)
  382. {
  383. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  384. }
  385. #else
  386. static inline void set_page_guard_flag(struct page *page) { }
  387. static inline void clear_page_guard_flag(struct page *page) { }
  388. #endif
  389. static inline void set_page_order(struct page *page, int order)
  390. {
  391. set_page_private(page, order);
  392. __SetPageBuddy(page);
  393. }
  394. static inline void rmv_page_order(struct page *page)
  395. {
  396. __ClearPageBuddy(page);
  397. set_page_private(page, 0);
  398. }
  399. /*
  400. * Locate the struct page for both the matching buddy in our
  401. * pair (buddy1) and the combined O(n+1) page they form (page).
  402. *
  403. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  404. * the following equation:
  405. * B2 = B1 ^ (1 << O)
  406. * For example, if the starting buddy (buddy2) is #8 its order
  407. * 1 buddy is #10:
  408. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  409. *
  410. * 2) Any buddy B will have an order O+1 parent P which
  411. * satisfies the following equation:
  412. * P = B & ~(1 << O)
  413. *
  414. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  415. */
  416. static inline unsigned long
  417. __find_buddy_index(unsigned long page_idx, unsigned int order)
  418. {
  419. return page_idx ^ (1 << order);
  420. }
  421. /*
  422. * This function checks whether a page is free && is the buddy
  423. * we can do coalesce a page and its buddy if
  424. * (a) the buddy is not in a hole &&
  425. * (b) the buddy is in the buddy system &&
  426. * (c) a page and its buddy have the same order &&
  427. * (d) a page and its buddy are in the same zone.
  428. *
  429. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  430. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  431. *
  432. * For recording page's order, we use page_private(page).
  433. */
  434. static inline int page_is_buddy(struct page *page, struct page *buddy,
  435. int order)
  436. {
  437. if (!pfn_valid_within(page_to_pfn(buddy)))
  438. return 0;
  439. if (page_zone_id(page) != page_zone_id(buddy))
  440. return 0;
  441. if (page_is_guard(buddy) && page_order(buddy) == order) {
  442. VM_BUG_ON(page_count(buddy) != 0);
  443. return 1;
  444. }
  445. if (PageBuddy(buddy) && page_order(buddy) == order) {
  446. VM_BUG_ON(page_count(buddy) != 0);
  447. return 1;
  448. }
  449. return 0;
  450. }
  451. /*
  452. * Freeing function for a buddy system allocator.
  453. *
  454. * The concept of a buddy system is to maintain direct-mapped table
  455. * (containing bit values) for memory blocks of various "orders".
  456. * The bottom level table contains the map for the smallest allocatable
  457. * units of memory (here, pages), and each level above it describes
  458. * pairs of units from the levels below, hence, "buddies".
  459. * At a high level, all that happens here is marking the table entry
  460. * at the bottom level available, and propagating the changes upward
  461. * as necessary, plus some accounting needed to play nicely with other
  462. * parts of the VM system.
  463. * At each level, we keep a list of pages, which are heads of continuous
  464. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  465. * order is recorded in page_private(page) field.
  466. * So when we are allocating or freeing one, we can derive the state of the
  467. * other. That is, if we allocate a small block, and both were
  468. * free, the remainder of the region must be split into blocks.
  469. * If a block is freed, and its buddy is also free, then this
  470. * triggers coalescing into a block of larger size.
  471. *
  472. * -- nyc
  473. */
  474. static inline void __free_one_page(struct page *page,
  475. struct zone *zone, unsigned int order,
  476. int migratetype)
  477. {
  478. unsigned long page_idx;
  479. unsigned long combined_idx;
  480. unsigned long uninitialized_var(buddy_idx);
  481. struct page *buddy;
  482. VM_BUG_ON(!zone_is_initialized(zone));
  483. if (unlikely(PageCompound(page)))
  484. if (unlikely(destroy_compound_page(page, order)))
  485. return;
  486. VM_BUG_ON(migratetype == -1);
  487. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  488. VM_BUG_ON(page_idx & ((1 << order) - 1));
  489. VM_BUG_ON(bad_range(zone, page));
  490. while (order < MAX_ORDER-1) {
  491. buddy_idx = __find_buddy_index(page_idx, order);
  492. buddy = page + (buddy_idx - page_idx);
  493. if (!page_is_buddy(page, buddy, order))
  494. break;
  495. /*
  496. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  497. * merge with it and move up one order.
  498. */
  499. if (page_is_guard(buddy)) {
  500. clear_page_guard_flag(buddy);
  501. set_page_private(page, 0);
  502. __mod_zone_freepage_state(zone, 1 << order,
  503. migratetype);
  504. } else {
  505. list_del(&buddy->lru);
  506. zone->free_area[order].nr_free--;
  507. rmv_page_order(buddy);
  508. }
  509. combined_idx = buddy_idx & page_idx;
  510. page = page + (combined_idx - page_idx);
  511. page_idx = combined_idx;
  512. order++;
  513. }
  514. set_page_order(page, order);
  515. /*
  516. * If this is not the largest possible page, check if the buddy
  517. * of the next-highest order is free. If it is, it's possible
  518. * that pages are being freed that will coalesce soon. In case,
  519. * that is happening, add the free page to the tail of the list
  520. * so it's less likely to be used soon and more likely to be merged
  521. * as a higher order page
  522. */
  523. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  524. struct page *higher_page, *higher_buddy;
  525. combined_idx = buddy_idx & page_idx;
  526. higher_page = page + (combined_idx - page_idx);
  527. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  528. higher_buddy = higher_page + (buddy_idx - combined_idx);
  529. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  530. list_add_tail(&page->lru,
  531. &zone->free_area[order].free_list[migratetype]);
  532. goto out;
  533. }
  534. }
  535. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  536. out:
  537. zone->free_area[order].nr_free++;
  538. }
  539. static inline int free_pages_check(struct page *page)
  540. {
  541. if (unlikely(page_mapcount(page) |
  542. (page->mapping != NULL) |
  543. (atomic_read(&page->_count) != 0) |
  544. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  545. (mem_cgroup_bad_page_check(page)))) {
  546. bad_page(page);
  547. return 1;
  548. }
  549. page_nid_reset_last(page);
  550. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  551. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  552. return 0;
  553. }
  554. /*
  555. * Frees a number of pages from the PCP lists
  556. * Assumes all pages on list are in same zone, and of same order.
  557. * count is the number of pages to free.
  558. *
  559. * If the zone was previously in an "all pages pinned" state then look to
  560. * see if this freeing clears that state.
  561. *
  562. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  563. * pinned" detection logic.
  564. */
  565. static void free_pcppages_bulk(struct zone *zone, int count,
  566. struct per_cpu_pages *pcp)
  567. {
  568. int migratetype = 0;
  569. int batch_free = 0;
  570. int to_free = count;
  571. spin_lock(&zone->lock);
  572. zone->all_unreclaimable = 0;
  573. zone->pages_scanned = 0;
  574. while (to_free) {
  575. struct page *page;
  576. struct list_head *list;
  577. /*
  578. * Remove pages from lists in a round-robin fashion. A
  579. * batch_free count is maintained that is incremented when an
  580. * empty list is encountered. This is so more pages are freed
  581. * off fuller lists instead of spinning excessively around empty
  582. * lists
  583. */
  584. do {
  585. batch_free++;
  586. if (++migratetype == MIGRATE_PCPTYPES)
  587. migratetype = 0;
  588. list = &pcp->lists[migratetype];
  589. } while (list_empty(list));
  590. /* This is the only non-empty list. Free them all. */
  591. if (batch_free == MIGRATE_PCPTYPES)
  592. batch_free = to_free;
  593. do {
  594. int mt; /* migratetype of the to-be-freed page */
  595. page = list_entry(list->prev, struct page, lru);
  596. /* must delete as __free_one_page list manipulates */
  597. list_del(&page->lru);
  598. mt = get_freepage_migratetype(page);
  599. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  600. __free_one_page(page, zone, 0, mt);
  601. trace_mm_page_pcpu_drain(page, 0, mt);
  602. if (likely(!is_migrate_isolate_page(page))) {
  603. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  604. if (is_migrate_cma(mt))
  605. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  606. }
  607. } while (--to_free && --batch_free && !list_empty(list));
  608. }
  609. spin_unlock(&zone->lock);
  610. }
  611. static void free_one_page(struct zone *zone, struct page *page, int order,
  612. int migratetype)
  613. {
  614. spin_lock(&zone->lock);
  615. zone->all_unreclaimable = 0;
  616. zone->pages_scanned = 0;
  617. __free_one_page(page, zone, order, migratetype);
  618. if (unlikely(!is_migrate_isolate(migratetype)))
  619. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  620. spin_unlock(&zone->lock);
  621. }
  622. static bool free_pages_prepare(struct page *page, unsigned int order)
  623. {
  624. int i;
  625. int bad = 0;
  626. trace_mm_page_free(page, order);
  627. kmemcheck_free_shadow(page, order);
  628. if (PageAnon(page))
  629. page->mapping = NULL;
  630. for (i = 0; i < (1 << order); i++)
  631. bad += free_pages_check(page + i);
  632. if (bad)
  633. return false;
  634. if (!PageHighMem(page)) {
  635. debug_check_no_locks_freed(page_address(page),
  636. PAGE_SIZE << order);
  637. debug_check_no_obj_freed(page_address(page),
  638. PAGE_SIZE << order);
  639. }
  640. arch_free_page(page, order);
  641. kernel_map_pages(page, 1 << order, 0);
  642. return true;
  643. }
  644. static void __free_pages_ok(struct page *page, unsigned int order)
  645. {
  646. unsigned long flags;
  647. int migratetype;
  648. if (!free_pages_prepare(page, order))
  649. return;
  650. local_irq_save(flags);
  651. __count_vm_events(PGFREE, 1 << order);
  652. migratetype = get_pageblock_migratetype(page);
  653. set_freepage_migratetype(page, migratetype);
  654. free_one_page(page_zone(page), page, order, migratetype);
  655. local_irq_restore(flags);
  656. }
  657. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  658. {
  659. unsigned int nr_pages = 1 << order;
  660. struct page *p = page;
  661. unsigned int loop;
  662. prefetchw(p);
  663. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  664. prefetchw(p + 1);
  665. __ClearPageReserved(p);
  666. set_page_count(p, 0);
  667. }
  668. __ClearPageReserved(p);
  669. set_page_count(p, 0);
  670. page_zone(page)->managed_pages += nr_pages;
  671. set_page_refcounted(page);
  672. __free_pages(page, order);
  673. }
  674. #ifdef CONFIG_CMA
  675. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  676. void __init init_cma_reserved_pageblock(struct page *page)
  677. {
  678. unsigned i = pageblock_nr_pages;
  679. struct page *p = page;
  680. do {
  681. __ClearPageReserved(p);
  682. set_page_count(p, 0);
  683. } while (++p, --i);
  684. set_page_refcounted(page);
  685. set_pageblock_migratetype(page, MIGRATE_CMA);
  686. __free_pages(page, pageblock_order);
  687. adjust_managed_page_count(page, pageblock_nr_pages);
  688. }
  689. #endif
  690. /*
  691. * The order of subdivision here is critical for the IO subsystem.
  692. * Please do not alter this order without good reasons and regression
  693. * testing. Specifically, as large blocks of memory are subdivided,
  694. * the order in which smaller blocks are delivered depends on the order
  695. * they're subdivided in this function. This is the primary factor
  696. * influencing the order in which pages are delivered to the IO
  697. * subsystem according to empirical testing, and this is also justified
  698. * by considering the behavior of a buddy system containing a single
  699. * large block of memory acted on by a series of small allocations.
  700. * This behavior is a critical factor in sglist merging's success.
  701. *
  702. * -- nyc
  703. */
  704. static inline void expand(struct zone *zone, struct page *page,
  705. int low, int high, struct free_area *area,
  706. int migratetype)
  707. {
  708. unsigned long size = 1 << high;
  709. while (high > low) {
  710. area--;
  711. high--;
  712. size >>= 1;
  713. VM_BUG_ON(bad_range(zone, &page[size]));
  714. #ifdef CONFIG_DEBUG_PAGEALLOC
  715. if (high < debug_guardpage_minorder()) {
  716. /*
  717. * Mark as guard pages (or page), that will allow to
  718. * merge back to allocator when buddy will be freed.
  719. * Corresponding page table entries will not be touched,
  720. * pages will stay not present in virtual address space
  721. */
  722. INIT_LIST_HEAD(&page[size].lru);
  723. set_page_guard_flag(&page[size]);
  724. set_page_private(&page[size], high);
  725. /* Guard pages are not available for any usage */
  726. __mod_zone_freepage_state(zone, -(1 << high),
  727. migratetype);
  728. continue;
  729. }
  730. #endif
  731. list_add(&page[size].lru, &area->free_list[migratetype]);
  732. area->nr_free++;
  733. set_page_order(&page[size], high);
  734. }
  735. }
  736. /*
  737. * This page is about to be returned from the page allocator
  738. */
  739. static inline int check_new_page(struct page *page)
  740. {
  741. if (unlikely(page_mapcount(page) |
  742. (page->mapping != NULL) |
  743. (atomic_read(&page->_count) != 0) |
  744. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  745. (mem_cgroup_bad_page_check(page)))) {
  746. bad_page(page);
  747. return 1;
  748. }
  749. return 0;
  750. }
  751. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  752. {
  753. int i;
  754. for (i = 0; i < (1 << order); i++) {
  755. struct page *p = page + i;
  756. if (unlikely(check_new_page(p)))
  757. return 1;
  758. }
  759. set_page_private(page, 0);
  760. set_page_refcounted(page);
  761. arch_alloc_page(page, order);
  762. kernel_map_pages(page, 1 << order, 1);
  763. if (gfp_flags & __GFP_ZERO)
  764. prep_zero_page(page, order, gfp_flags);
  765. if (order && (gfp_flags & __GFP_COMP))
  766. prep_compound_page(page, order);
  767. return 0;
  768. }
  769. /*
  770. * Go through the free lists for the given migratetype and remove
  771. * the smallest available page from the freelists
  772. */
  773. static inline
  774. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  775. int migratetype)
  776. {
  777. unsigned int current_order;
  778. struct free_area *area;
  779. struct page *page;
  780. /* Find a page of the appropriate size in the preferred list */
  781. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  782. area = &(zone->free_area[current_order]);
  783. if (list_empty(&area->free_list[migratetype]))
  784. continue;
  785. page = list_entry(area->free_list[migratetype].next,
  786. struct page, lru);
  787. list_del(&page->lru);
  788. rmv_page_order(page);
  789. area->nr_free--;
  790. expand(zone, page, order, current_order, area, migratetype);
  791. return page;
  792. }
  793. return NULL;
  794. }
  795. /*
  796. * This array describes the order lists are fallen back to when
  797. * the free lists for the desirable migrate type are depleted
  798. */
  799. static int fallbacks[MIGRATE_TYPES][4] = {
  800. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  801. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  802. #ifdef CONFIG_CMA
  803. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  804. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  805. #else
  806. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  807. #endif
  808. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  809. #ifdef CONFIG_MEMORY_ISOLATION
  810. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  811. #endif
  812. };
  813. /*
  814. * Move the free pages in a range to the free lists of the requested type.
  815. * Note that start_page and end_pages are not aligned on a pageblock
  816. * boundary. If alignment is required, use move_freepages_block()
  817. */
  818. int move_freepages(struct zone *zone,
  819. struct page *start_page, struct page *end_page,
  820. int migratetype)
  821. {
  822. struct page *page;
  823. unsigned long order;
  824. int pages_moved = 0;
  825. #ifndef CONFIG_HOLES_IN_ZONE
  826. /*
  827. * page_zone is not safe to call in this context when
  828. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  829. * anyway as we check zone boundaries in move_freepages_block().
  830. * Remove at a later date when no bug reports exist related to
  831. * grouping pages by mobility
  832. */
  833. BUG_ON(page_zone(start_page) != page_zone(end_page));
  834. #endif
  835. for (page = start_page; page <= end_page;) {
  836. /* Make sure we are not inadvertently changing nodes */
  837. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  838. if (!pfn_valid_within(page_to_pfn(page))) {
  839. page++;
  840. continue;
  841. }
  842. if (!PageBuddy(page)) {
  843. page++;
  844. continue;
  845. }
  846. order = page_order(page);
  847. list_move(&page->lru,
  848. &zone->free_area[order].free_list[migratetype]);
  849. set_freepage_migratetype(page, migratetype);
  850. page += 1 << order;
  851. pages_moved += 1 << order;
  852. }
  853. return pages_moved;
  854. }
  855. int move_freepages_block(struct zone *zone, struct page *page,
  856. int migratetype)
  857. {
  858. unsigned long start_pfn, end_pfn;
  859. struct page *start_page, *end_page;
  860. start_pfn = page_to_pfn(page);
  861. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  862. start_page = pfn_to_page(start_pfn);
  863. end_page = start_page + pageblock_nr_pages - 1;
  864. end_pfn = start_pfn + pageblock_nr_pages - 1;
  865. /* Do not cross zone boundaries */
  866. if (!zone_spans_pfn(zone, start_pfn))
  867. start_page = page;
  868. if (!zone_spans_pfn(zone, end_pfn))
  869. return 0;
  870. return move_freepages(zone, start_page, end_page, migratetype);
  871. }
  872. static void change_pageblock_range(struct page *pageblock_page,
  873. int start_order, int migratetype)
  874. {
  875. int nr_pageblocks = 1 << (start_order - pageblock_order);
  876. while (nr_pageblocks--) {
  877. set_pageblock_migratetype(pageblock_page, migratetype);
  878. pageblock_page += pageblock_nr_pages;
  879. }
  880. }
  881. /*
  882. * If breaking a large block of pages, move all free pages to the preferred
  883. * allocation list. If falling back for a reclaimable kernel allocation, be
  884. * more aggressive about taking ownership of free pages.
  885. *
  886. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  887. * nor move CMA pages to different free lists. We don't want unmovable pages
  888. * to be allocated from MIGRATE_CMA areas.
  889. *
  890. * Returns the new migratetype of the pageblock (or the same old migratetype
  891. * if it was unchanged).
  892. */
  893. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  894. int start_type, int fallback_type)
  895. {
  896. int current_order = page_order(page);
  897. if (is_migrate_cma(fallback_type))
  898. return fallback_type;
  899. /* Take ownership for orders >= pageblock_order */
  900. if (current_order >= pageblock_order) {
  901. change_pageblock_range(page, current_order, start_type);
  902. return start_type;
  903. }
  904. if (current_order >= pageblock_order / 2 ||
  905. start_type == MIGRATE_RECLAIMABLE ||
  906. page_group_by_mobility_disabled) {
  907. int pages;
  908. pages = move_freepages_block(zone, page, start_type);
  909. /* Claim the whole block if over half of it is free */
  910. if (pages >= (1 << (pageblock_order-1)) ||
  911. page_group_by_mobility_disabled) {
  912. set_pageblock_migratetype(page, start_type);
  913. return start_type;
  914. }
  915. }
  916. return fallback_type;
  917. }
  918. /* Remove an element from the buddy allocator from the fallback list */
  919. static inline struct page *
  920. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  921. {
  922. struct free_area *area;
  923. int current_order;
  924. struct page *page;
  925. int migratetype, new_type, i;
  926. /* Find the largest possible block of pages in the other list */
  927. for (current_order = MAX_ORDER-1; current_order >= order;
  928. --current_order) {
  929. for (i = 0;; i++) {
  930. migratetype = fallbacks[start_migratetype][i];
  931. /* MIGRATE_RESERVE handled later if necessary */
  932. if (migratetype == MIGRATE_RESERVE)
  933. break;
  934. area = &(zone->free_area[current_order]);
  935. if (list_empty(&area->free_list[migratetype]))
  936. continue;
  937. page = list_entry(area->free_list[migratetype].next,
  938. struct page, lru);
  939. area->nr_free--;
  940. new_type = try_to_steal_freepages(zone, page,
  941. start_migratetype,
  942. migratetype);
  943. /* Remove the page from the freelists */
  944. list_del(&page->lru);
  945. rmv_page_order(page);
  946. /*
  947. * Borrow the excess buddy pages as well, irrespective
  948. * of whether we stole freepages, or took ownership of
  949. * the pageblock or not.
  950. *
  951. * Exception: When borrowing from MIGRATE_CMA, release
  952. * the excess buddy pages to CMA itself.
  953. */
  954. expand(zone, page, order, current_order, area,
  955. is_migrate_cma(migratetype)
  956. ? migratetype : start_migratetype);
  957. trace_mm_page_alloc_extfrag(page, order,
  958. current_order, start_migratetype, migratetype,
  959. new_type == start_migratetype);
  960. return page;
  961. }
  962. }
  963. return NULL;
  964. }
  965. /*
  966. * Do the hard work of removing an element from the buddy allocator.
  967. * Call me with the zone->lock already held.
  968. */
  969. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  970. int migratetype)
  971. {
  972. struct page *page;
  973. retry_reserve:
  974. page = __rmqueue_smallest(zone, order, migratetype);
  975. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  976. page = __rmqueue_fallback(zone, order, migratetype);
  977. /*
  978. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  979. * is used because __rmqueue_smallest is an inline function
  980. * and we want just one call site
  981. */
  982. if (!page) {
  983. migratetype = MIGRATE_RESERVE;
  984. goto retry_reserve;
  985. }
  986. }
  987. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  988. return page;
  989. }
  990. /*
  991. * Obtain a specified number of elements from the buddy allocator, all under
  992. * a single hold of the lock, for efficiency. Add them to the supplied list.
  993. * Returns the number of new pages which were placed at *list.
  994. */
  995. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  996. unsigned long count, struct list_head *list,
  997. int migratetype, int cold)
  998. {
  999. int mt = migratetype, i;
  1000. spin_lock(&zone->lock);
  1001. for (i = 0; i < count; ++i) {
  1002. struct page *page = __rmqueue(zone, order, migratetype);
  1003. if (unlikely(page == NULL))
  1004. break;
  1005. /*
  1006. * Split buddy pages returned by expand() are received here
  1007. * in physical page order. The page is added to the callers and
  1008. * list and the list head then moves forward. From the callers
  1009. * perspective, the linked list is ordered by page number in
  1010. * some conditions. This is useful for IO devices that can
  1011. * merge IO requests if the physical pages are ordered
  1012. * properly.
  1013. */
  1014. if (likely(cold == 0))
  1015. list_add(&page->lru, list);
  1016. else
  1017. list_add_tail(&page->lru, list);
  1018. if (IS_ENABLED(CONFIG_CMA)) {
  1019. mt = get_pageblock_migratetype(page);
  1020. if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
  1021. mt = migratetype;
  1022. }
  1023. set_freepage_migratetype(page, mt);
  1024. list = &page->lru;
  1025. if (is_migrate_cma(mt))
  1026. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1027. -(1 << order));
  1028. }
  1029. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1030. spin_unlock(&zone->lock);
  1031. return i;
  1032. }
  1033. #ifdef CONFIG_NUMA
  1034. /*
  1035. * Called from the vmstat counter updater to drain pagesets of this
  1036. * currently executing processor on remote nodes after they have
  1037. * expired.
  1038. *
  1039. * Note that this function must be called with the thread pinned to
  1040. * a single processor.
  1041. */
  1042. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1043. {
  1044. unsigned long flags;
  1045. int to_drain;
  1046. unsigned long batch;
  1047. local_irq_save(flags);
  1048. batch = ACCESS_ONCE(pcp->batch);
  1049. if (pcp->count >= batch)
  1050. to_drain = batch;
  1051. else
  1052. to_drain = pcp->count;
  1053. if (to_drain > 0) {
  1054. free_pcppages_bulk(zone, to_drain, pcp);
  1055. pcp->count -= to_drain;
  1056. }
  1057. local_irq_restore(flags);
  1058. }
  1059. #endif
  1060. /*
  1061. * Drain pages of the indicated processor.
  1062. *
  1063. * The processor must either be the current processor and the
  1064. * thread pinned to the current processor or a processor that
  1065. * is not online.
  1066. */
  1067. static void drain_pages(unsigned int cpu)
  1068. {
  1069. unsigned long flags;
  1070. struct zone *zone;
  1071. for_each_populated_zone(zone) {
  1072. struct per_cpu_pageset *pset;
  1073. struct per_cpu_pages *pcp;
  1074. local_irq_save(flags);
  1075. pset = per_cpu_ptr(zone->pageset, cpu);
  1076. pcp = &pset->pcp;
  1077. if (pcp->count) {
  1078. free_pcppages_bulk(zone, pcp->count, pcp);
  1079. pcp->count = 0;
  1080. }
  1081. local_irq_restore(flags);
  1082. }
  1083. }
  1084. /*
  1085. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1086. */
  1087. void drain_local_pages(void *arg)
  1088. {
  1089. drain_pages(smp_processor_id());
  1090. }
  1091. /*
  1092. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1093. *
  1094. * Note that this code is protected against sending an IPI to an offline
  1095. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1096. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1097. * nothing keeps CPUs from showing up after we populated the cpumask and
  1098. * before the call to on_each_cpu_mask().
  1099. */
  1100. void drain_all_pages(void)
  1101. {
  1102. int cpu;
  1103. struct per_cpu_pageset *pcp;
  1104. struct zone *zone;
  1105. /*
  1106. * Allocate in the BSS so we wont require allocation in
  1107. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1108. */
  1109. static cpumask_t cpus_with_pcps;
  1110. /*
  1111. * We don't care about racing with CPU hotplug event
  1112. * as offline notification will cause the notified
  1113. * cpu to drain that CPU pcps and on_each_cpu_mask
  1114. * disables preemption as part of its processing
  1115. */
  1116. for_each_online_cpu(cpu) {
  1117. bool has_pcps = false;
  1118. for_each_populated_zone(zone) {
  1119. pcp = per_cpu_ptr(zone->pageset, cpu);
  1120. if (pcp->pcp.count) {
  1121. has_pcps = true;
  1122. break;
  1123. }
  1124. }
  1125. if (has_pcps)
  1126. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1127. else
  1128. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1129. }
  1130. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1131. }
  1132. #ifdef CONFIG_HIBERNATION
  1133. void mark_free_pages(struct zone *zone)
  1134. {
  1135. unsigned long pfn, max_zone_pfn;
  1136. unsigned long flags;
  1137. int order, t;
  1138. struct list_head *curr;
  1139. if (zone_is_empty(zone))
  1140. return;
  1141. spin_lock_irqsave(&zone->lock, flags);
  1142. max_zone_pfn = zone_end_pfn(zone);
  1143. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1144. if (pfn_valid(pfn)) {
  1145. struct page *page = pfn_to_page(pfn);
  1146. if (!swsusp_page_is_forbidden(page))
  1147. swsusp_unset_page_free(page);
  1148. }
  1149. for_each_migratetype_order(order, t) {
  1150. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1151. unsigned long i;
  1152. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1153. for (i = 0; i < (1UL << order); i++)
  1154. swsusp_set_page_free(pfn_to_page(pfn + i));
  1155. }
  1156. }
  1157. spin_unlock_irqrestore(&zone->lock, flags);
  1158. }
  1159. #endif /* CONFIG_PM */
  1160. /*
  1161. * Free a 0-order page
  1162. * cold == 1 ? free a cold page : free a hot page
  1163. */
  1164. void free_hot_cold_page(struct page *page, int cold)
  1165. {
  1166. struct zone *zone = page_zone(page);
  1167. struct per_cpu_pages *pcp;
  1168. unsigned long flags;
  1169. int migratetype;
  1170. if (!free_pages_prepare(page, 0))
  1171. return;
  1172. migratetype = get_pageblock_migratetype(page);
  1173. set_freepage_migratetype(page, migratetype);
  1174. local_irq_save(flags);
  1175. __count_vm_event(PGFREE);
  1176. /*
  1177. * We only track unmovable, reclaimable and movable on pcp lists.
  1178. * Free ISOLATE pages back to the allocator because they are being
  1179. * offlined but treat RESERVE as movable pages so we can get those
  1180. * areas back if necessary. Otherwise, we may have to free
  1181. * excessively into the page allocator
  1182. */
  1183. if (migratetype >= MIGRATE_PCPTYPES) {
  1184. if (unlikely(is_migrate_isolate(migratetype))) {
  1185. free_one_page(zone, page, 0, migratetype);
  1186. goto out;
  1187. }
  1188. migratetype = MIGRATE_MOVABLE;
  1189. }
  1190. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1191. if (cold)
  1192. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1193. else
  1194. list_add(&page->lru, &pcp->lists[migratetype]);
  1195. pcp->count++;
  1196. if (pcp->count >= pcp->high) {
  1197. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1198. free_pcppages_bulk(zone, batch, pcp);
  1199. pcp->count -= batch;
  1200. }
  1201. out:
  1202. local_irq_restore(flags);
  1203. }
  1204. /*
  1205. * Free a list of 0-order pages
  1206. */
  1207. void free_hot_cold_page_list(struct list_head *list, int cold)
  1208. {
  1209. struct page *page, *next;
  1210. list_for_each_entry_safe(page, next, list, lru) {
  1211. trace_mm_page_free_batched(page, cold);
  1212. free_hot_cold_page(page, cold);
  1213. }
  1214. }
  1215. /*
  1216. * split_page takes a non-compound higher-order page, and splits it into
  1217. * n (1<<order) sub-pages: page[0..n]
  1218. * Each sub-page must be freed individually.
  1219. *
  1220. * Note: this is probably too low level an operation for use in drivers.
  1221. * Please consult with lkml before using this in your driver.
  1222. */
  1223. void split_page(struct page *page, unsigned int order)
  1224. {
  1225. int i;
  1226. VM_BUG_ON(PageCompound(page));
  1227. VM_BUG_ON(!page_count(page));
  1228. #ifdef CONFIG_KMEMCHECK
  1229. /*
  1230. * Split shadow pages too, because free(page[0]) would
  1231. * otherwise free the whole shadow.
  1232. */
  1233. if (kmemcheck_page_is_tracked(page))
  1234. split_page(virt_to_page(page[0].shadow), order);
  1235. #endif
  1236. for (i = 1; i < (1 << order); i++)
  1237. set_page_refcounted(page + i);
  1238. }
  1239. EXPORT_SYMBOL_GPL(split_page);
  1240. static int __isolate_free_page(struct page *page, unsigned int order)
  1241. {
  1242. unsigned long watermark;
  1243. struct zone *zone;
  1244. int mt;
  1245. BUG_ON(!PageBuddy(page));
  1246. zone = page_zone(page);
  1247. mt = get_pageblock_migratetype(page);
  1248. if (!is_migrate_isolate(mt)) {
  1249. /* Obey watermarks as if the page was being allocated */
  1250. watermark = low_wmark_pages(zone) + (1 << order);
  1251. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1252. return 0;
  1253. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1254. }
  1255. /* Remove page from free list */
  1256. list_del(&page->lru);
  1257. zone->free_area[order].nr_free--;
  1258. rmv_page_order(page);
  1259. /* Set the pageblock if the isolated page is at least a pageblock */
  1260. if (order >= pageblock_order - 1) {
  1261. struct page *endpage = page + (1 << order) - 1;
  1262. for (; page < endpage; page += pageblock_nr_pages) {
  1263. int mt = get_pageblock_migratetype(page);
  1264. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1265. set_pageblock_migratetype(page,
  1266. MIGRATE_MOVABLE);
  1267. }
  1268. }
  1269. return 1UL << order;
  1270. }
  1271. /*
  1272. * Similar to split_page except the page is already free. As this is only
  1273. * being used for migration, the migratetype of the block also changes.
  1274. * As this is called with interrupts disabled, the caller is responsible
  1275. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1276. * are enabled.
  1277. *
  1278. * Note: this is probably too low level an operation for use in drivers.
  1279. * Please consult with lkml before using this in your driver.
  1280. */
  1281. int split_free_page(struct page *page)
  1282. {
  1283. unsigned int order;
  1284. int nr_pages;
  1285. order = page_order(page);
  1286. nr_pages = __isolate_free_page(page, order);
  1287. if (!nr_pages)
  1288. return 0;
  1289. /* Split into individual pages */
  1290. set_page_refcounted(page);
  1291. split_page(page, order);
  1292. return nr_pages;
  1293. }
  1294. /*
  1295. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1296. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1297. * or two.
  1298. */
  1299. static inline
  1300. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1301. struct zone *zone, int order, gfp_t gfp_flags,
  1302. int migratetype)
  1303. {
  1304. unsigned long flags;
  1305. struct page *page;
  1306. int cold = !!(gfp_flags & __GFP_COLD);
  1307. again:
  1308. if (likely(order == 0)) {
  1309. struct per_cpu_pages *pcp;
  1310. struct list_head *list;
  1311. local_irq_save(flags);
  1312. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1313. list = &pcp->lists[migratetype];
  1314. if (list_empty(list)) {
  1315. pcp->count += rmqueue_bulk(zone, 0,
  1316. pcp->batch, list,
  1317. migratetype, cold);
  1318. if (unlikely(list_empty(list)))
  1319. goto failed;
  1320. }
  1321. if (cold)
  1322. page = list_entry(list->prev, struct page, lru);
  1323. else
  1324. page = list_entry(list->next, struct page, lru);
  1325. list_del(&page->lru);
  1326. pcp->count--;
  1327. } else {
  1328. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1329. /*
  1330. * __GFP_NOFAIL is not to be used in new code.
  1331. *
  1332. * All __GFP_NOFAIL callers should be fixed so that they
  1333. * properly detect and handle allocation failures.
  1334. *
  1335. * We most definitely don't want callers attempting to
  1336. * allocate greater than order-1 page units with
  1337. * __GFP_NOFAIL.
  1338. */
  1339. WARN_ON_ONCE(order > 1);
  1340. }
  1341. spin_lock_irqsave(&zone->lock, flags);
  1342. page = __rmqueue(zone, order, migratetype);
  1343. spin_unlock(&zone->lock);
  1344. if (!page)
  1345. goto failed;
  1346. __mod_zone_freepage_state(zone, -(1 << order),
  1347. get_pageblock_migratetype(page));
  1348. }
  1349. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1350. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1351. zone_statistics(preferred_zone, zone, gfp_flags);
  1352. local_irq_restore(flags);
  1353. VM_BUG_ON(bad_range(zone, page));
  1354. if (prep_new_page(page, order, gfp_flags))
  1355. goto again;
  1356. return page;
  1357. failed:
  1358. local_irq_restore(flags);
  1359. return NULL;
  1360. }
  1361. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1362. static struct {
  1363. struct fault_attr attr;
  1364. u32 ignore_gfp_highmem;
  1365. u32 ignore_gfp_wait;
  1366. u32 min_order;
  1367. } fail_page_alloc = {
  1368. .attr = FAULT_ATTR_INITIALIZER,
  1369. .ignore_gfp_wait = 1,
  1370. .ignore_gfp_highmem = 1,
  1371. .min_order = 1,
  1372. };
  1373. static int __init setup_fail_page_alloc(char *str)
  1374. {
  1375. return setup_fault_attr(&fail_page_alloc.attr, str);
  1376. }
  1377. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1378. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1379. {
  1380. if (order < fail_page_alloc.min_order)
  1381. return false;
  1382. if (gfp_mask & __GFP_NOFAIL)
  1383. return false;
  1384. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1385. return false;
  1386. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1387. return false;
  1388. return should_fail(&fail_page_alloc.attr, 1 << order);
  1389. }
  1390. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1391. static int __init fail_page_alloc_debugfs(void)
  1392. {
  1393. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1394. struct dentry *dir;
  1395. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1396. &fail_page_alloc.attr);
  1397. if (IS_ERR(dir))
  1398. return PTR_ERR(dir);
  1399. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1400. &fail_page_alloc.ignore_gfp_wait))
  1401. goto fail;
  1402. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1403. &fail_page_alloc.ignore_gfp_highmem))
  1404. goto fail;
  1405. if (!debugfs_create_u32("min-order", mode, dir,
  1406. &fail_page_alloc.min_order))
  1407. goto fail;
  1408. return 0;
  1409. fail:
  1410. debugfs_remove_recursive(dir);
  1411. return -ENOMEM;
  1412. }
  1413. late_initcall(fail_page_alloc_debugfs);
  1414. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1415. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1416. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1417. {
  1418. return false;
  1419. }
  1420. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1421. /*
  1422. * Return true if free pages are above 'mark'. This takes into account the order
  1423. * of the allocation.
  1424. */
  1425. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1426. int classzone_idx, int alloc_flags, long free_pages)
  1427. {
  1428. /* free_pages my go negative - that's OK */
  1429. long min = mark;
  1430. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1431. int o;
  1432. long free_cma = 0;
  1433. free_pages -= (1 << order) - 1;
  1434. if (alloc_flags & ALLOC_HIGH)
  1435. min -= min / 2;
  1436. if (alloc_flags & ALLOC_HARDER)
  1437. min -= min / 4;
  1438. #ifdef CONFIG_CMA
  1439. /* If allocation can't use CMA areas don't use free CMA pages */
  1440. if (!(alloc_flags & ALLOC_CMA))
  1441. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1442. #endif
  1443. if (free_pages - free_cma <= min + lowmem_reserve)
  1444. return false;
  1445. for (o = 0; o < order; o++) {
  1446. /* At the next order, this order's pages become unavailable */
  1447. free_pages -= z->free_area[o].nr_free << o;
  1448. /* Require fewer higher order pages to be free */
  1449. min >>= 1;
  1450. if (free_pages <= min)
  1451. return false;
  1452. }
  1453. return true;
  1454. }
  1455. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1456. int classzone_idx, int alloc_flags)
  1457. {
  1458. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1459. zone_page_state(z, NR_FREE_PAGES));
  1460. }
  1461. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1462. int classzone_idx, int alloc_flags)
  1463. {
  1464. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1465. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1466. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1467. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1468. free_pages);
  1469. }
  1470. #ifdef CONFIG_NUMA
  1471. /*
  1472. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1473. * skip over zones that are not allowed by the cpuset, or that have
  1474. * been recently (in last second) found to be nearly full. See further
  1475. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1476. * that have to skip over a lot of full or unallowed zones.
  1477. *
  1478. * If the zonelist cache is present in the passed in zonelist, then
  1479. * returns a pointer to the allowed node mask (either the current
  1480. * tasks mems_allowed, or node_states[N_MEMORY].)
  1481. *
  1482. * If the zonelist cache is not available for this zonelist, does
  1483. * nothing and returns NULL.
  1484. *
  1485. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1486. * a second since last zap'd) then we zap it out (clear its bits.)
  1487. *
  1488. * We hold off even calling zlc_setup, until after we've checked the
  1489. * first zone in the zonelist, on the theory that most allocations will
  1490. * be satisfied from that first zone, so best to examine that zone as
  1491. * quickly as we can.
  1492. */
  1493. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1494. {
  1495. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1496. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1497. zlc = zonelist->zlcache_ptr;
  1498. if (!zlc)
  1499. return NULL;
  1500. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1501. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1502. zlc->last_full_zap = jiffies;
  1503. }
  1504. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1505. &cpuset_current_mems_allowed :
  1506. &node_states[N_MEMORY];
  1507. return allowednodes;
  1508. }
  1509. /*
  1510. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1511. * if it is worth looking at further for free memory:
  1512. * 1) Check that the zone isn't thought to be full (doesn't have its
  1513. * bit set in the zonelist_cache fullzones BITMAP).
  1514. * 2) Check that the zones node (obtained from the zonelist_cache
  1515. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1516. * Return true (non-zero) if zone is worth looking at further, or
  1517. * else return false (zero) if it is not.
  1518. *
  1519. * This check -ignores- the distinction between various watermarks,
  1520. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1521. * found to be full for any variation of these watermarks, it will
  1522. * be considered full for up to one second by all requests, unless
  1523. * we are so low on memory on all allowed nodes that we are forced
  1524. * into the second scan of the zonelist.
  1525. *
  1526. * In the second scan we ignore this zonelist cache and exactly
  1527. * apply the watermarks to all zones, even it is slower to do so.
  1528. * We are low on memory in the second scan, and should leave no stone
  1529. * unturned looking for a free page.
  1530. */
  1531. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1532. nodemask_t *allowednodes)
  1533. {
  1534. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1535. int i; /* index of *z in zonelist zones */
  1536. int n; /* node that zone *z is on */
  1537. zlc = zonelist->zlcache_ptr;
  1538. if (!zlc)
  1539. return 1;
  1540. i = z - zonelist->_zonerefs;
  1541. n = zlc->z_to_n[i];
  1542. /* This zone is worth trying if it is allowed but not full */
  1543. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1544. }
  1545. /*
  1546. * Given 'z' scanning a zonelist, set the corresponding bit in
  1547. * zlc->fullzones, so that subsequent attempts to allocate a page
  1548. * from that zone don't waste time re-examining it.
  1549. */
  1550. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1551. {
  1552. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1553. int i; /* index of *z in zonelist zones */
  1554. zlc = zonelist->zlcache_ptr;
  1555. if (!zlc)
  1556. return;
  1557. i = z - zonelist->_zonerefs;
  1558. set_bit(i, zlc->fullzones);
  1559. }
  1560. /*
  1561. * clear all zones full, called after direct reclaim makes progress so that
  1562. * a zone that was recently full is not skipped over for up to a second
  1563. */
  1564. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1565. {
  1566. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1567. zlc = zonelist->zlcache_ptr;
  1568. if (!zlc)
  1569. return;
  1570. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1571. }
  1572. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1573. {
  1574. return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
  1575. }
  1576. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1577. {
  1578. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1579. }
  1580. static void __paginginit init_zone_allows_reclaim(int nid)
  1581. {
  1582. int i;
  1583. for_each_online_node(i)
  1584. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1585. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1586. else
  1587. zone_reclaim_mode = 1;
  1588. }
  1589. #else /* CONFIG_NUMA */
  1590. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1591. {
  1592. return NULL;
  1593. }
  1594. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1595. nodemask_t *allowednodes)
  1596. {
  1597. return 1;
  1598. }
  1599. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1600. {
  1601. }
  1602. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1603. {
  1604. }
  1605. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1606. {
  1607. return true;
  1608. }
  1609. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1610. {
  1611. return true;
  1612. }
  1613. static inline void init_zone_allows_reclaim(int nid)
  1614. {
  1615. }
  1616. #endif /* CONFIG_NUMA */
  1617. /*
  1618. * get_page_from_freelist goes through the zonelist trying to allocate
  1619. * a page.
  1620. */
  1621. static struct page *
  1622. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1623. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1624. struct zone *preferred_zone, int migratetype)
  1625. {
  1626. struct zoneref *z;
  1627. struct page *page = NULL;
  1628. int classzone_idx;
  1629. struct zone *zone;
  1630. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1631. int zlc_active = 0; /* set if using zonelist_cache */
  1632. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1633. classzone_idx = zone_idx(preferred_zone);
  1634. zonelist_scan:
  1635. /*
  1636. * Scan zonelist, looking for a zone with enough free.
  1637. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1638. */
  1639. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1640. high_zoneidx, nodemask) {
  1641. unsigned long mark;
  1642. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1643. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1644. continue;
  1645. if ((alloc_flags & ALLOC_CPUSET) &&
  1646. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1647. continue;
  1648. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1649. if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
  1650. goto try_this_zone;
  1651. /*
  1652. * Distribute pages in proportion to the individual
  1653. * zone size to ensure fair page aging. The zone a
  1654. * page was allocated in should have no effect on the
  1655. * time the page has in memory before being reclaimed.
  1656. *
  1657. * When zone_reclaim_mode is enabled, try to stay in
  1658. * local zones in the fastpath. If that fails, the
  1659. * slowpath is entered, which will do another pass
  1660. * starting with the local zones, but ultimately fall
  1661. * back to remote zones that do not partake in the
  1662. * fairness round-robin cycle of this zonelist.
  1663. */
  1664. if (alloc_flags & ALLOC_WMARK_LOW) {
  1665. if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
  1666. continue;
  1667. if (zone_reclaim_mode &&
  1668. !zone_local(preferred_zone, zone))
  1669. continue;
  1670. }
  1671. /*
  1672. * When allocating a page cache page for writing, we
  1673. * want to get it from a zone that is within its dirty
  1674. * limit, such that no single zone holds more than its
  1675. * proportional share of globally allowed dirty pages.
  1676. * The dirty limits take into account the zone's
  1677. * lowmem reserves and high watermark so that kswapd
  1678. * should be able to balance it without having to
  1679. * write pages from its LRU list.
  1680. *
  1681. * This may look like it could increase pressure on
  1682. * lower zones by failing allocations in higher zones
  1683. * before they are full. But the pages that do spill
  1684. * over are limited as the lower zones are protected
  1685. * by this very same mechanism. It should not become
  1686. * a practical burden to them.
  1687. *
  1688. * XXX: For now, allow allocations to potentially
  1689. * exceed the per-zone dirty limit in the slowpath
  1690. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1691. * which is important when on a NUMA setup the allowed
  1692. * zones are together not big enough to reach the
  1693. * global limit. The proper fix for these situations
  1694. * will require awareness of zones in the
  1695. * dirty-throttling and the flusher threads.
  1696. */
  1697. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1698. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1699. goto this_zone_full;
  1700. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1701. if (!zone_watermark_ok(zone, order, mark,
  1702. classzone_idx, alloc_flags)) {
  1703. int ret;
  1704. if (IS_ENABLED(CONFIG_NUMA) &&
  1705. !did_zlc_setup && nr_online_nodes > 1) {
  1706. /*
  1707. * we do zlc_setup if there are multiple nodes
  1708. * and before considering the first zone allowed
  1709. * by the cpuset.
  1710. */
  1711. allowednodes = zlc_setup(zonelist, alloc_flags);
  1712. zlc_active = 1;
  1713. did_zlc_setup = 1;
  1714. }
  1715. if (zone_reclaim_mode == 0 ||
  1716. !zone_allows_reclaim(preferred_zone, zone))
  1717. goto this_zone_full;
  1718. /*
  1719. * As we may have just activated ZLC, check if the first
  1720. * eligible zone has failed zone_reclaim recently.
  1721. */
  1722. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1723. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1724. continue;
  1725. ret = zone_reclaim(zone, gfp_mask, order);
  1726. switch (ret) {
  1727. case ZONE_RECLAIM_NOSCAN:
  1728. /* did not scan */
  1729. continue;
  1730. case ZONE_RECLAIM_FULL:
  1731. /* scanned but unreclaimable */
  1732. continue;
  1733. default:
  1734. /* did we reclaim enough */
  1735. if (zone_watermark_ok(zone, order, mark,
  1736. classzone_idx, alloc_flags))
  1737. goto try_this_zone;
  1738. /*
  1739. * Failed to reclaim enough to meet watermark.
  1740. * Only mark the zone full if checking the min
  1741. * watermark or if we failed to reclaim just
  1742. * 1<<order pages or else the page allocator
  1743. * fastpath will prematurely mark zones full
  1744. * when the watermark is between the low and
  1745. * min watermarks.
  1746. */
  1747. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1748. ret == ZONE_RECLAIM_SOME)
  1749. goto this_zone_full;
  1750. continue;
  1751. }
  1752. }
  1753. try_this_zone:
  1754. page = buffered_rmqueue(preferred_zone, zone, order,
  1755. gfp_mask, migratetype);
  1756. if (page)
  1757. break;
  1758. this_zone_full:
  1759. if (IS_ENABLED(CONFIG_NUMA))
  1760. zlc_mark_zone_full(zonelist, z);
  1761. }
  1762. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1763. /* Disable zlc cache for second zonelist scan */
  1764. zlc_active = 0;
  1765. goto zonelist_scan;
  1766. }
  1767. if (page)
  1768. /*
  1769. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1770. * necessary to allocate the page. The expectation is
  1771. * that the caller is taking steps that will free more
  1772. * memory. The caller should avoid the page being used
  1773. * for !PFMEMALLOC purposes.
  1774. */
  1775. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1776. return page;
  1777. }
  1778. /*
  1779. * Large machines with many possible nodes should not always dump per-node
  1780. * meminfo in irq context.
  1781. */
  1782. static inline bool should_suppress_show_mem(void)
  1783. {
  1784. bool ret = false;
  1785. #if NODES_SHIFT > 8
  1786. ret = in_interrupt();
  1787. #endif
  1788. return ret;
  1789. }
  1790. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1791. DEFAULT_RATELIMIT_INTERVAL,
  1792. DEFAULT_RATELIMIT_BURST);
  1793. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1794. {
  1795. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1796. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1797. debug_guardpage_minorder() > 0)
  1798. return;
  1799. /*
  1800. * Walking all memory to count page types is very expensive and should
  1801. * be inhibited in non-blockable contexts.
  1802. */
  1803. if (!(gfp_mask & __GFP_WAIT))
  1804. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1805. /*
  1806. * This documents exceptions given to allocations in certain
  1807. * contexts that are allowed to allocate outside current's set
  1808. * of allowed nodes.
  1809. */
  1810. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1811. if (test_thread_flag(TIF_MEMDIE) ||
  1812. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1813. filter &= ~SHOW_MEM_FILTER_NODES;
  1814. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1815. filter &= ~SHOW_MEM_FILTER_NODES;
  1816. if (fmt) {
  1817. struct va_format vaf;
  1818. va_list args;
  1819. va_start(args, fmt);
  1820. vaf.fmt = fmt;
  1821. vaf.va = &args;
  1822. pr_warn("%pV", &vaf);
  1823. va_end(args);
  1824. }
  1825. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1826. current->comm, order, gfp_mask);
  1827. dump_stack();
  1828. if (!should_suppress_show_mem())
  1829. show_mem(filter);
  1830. }
  1831. static inline int
  1832. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1833. unsigned long did_some_progress,
  1834. unsigned long pages_reclaimed)
  1835. {
  1836. /* Do not loop if specifically requested */
  1837. if (gfp_mask & __GFP_NORETRY)
  1838. return 0;
  1839. /* Always retry if specifically requested */
  1840. if (gfp_mask & __GFP_NOFAIL)
  1841. return 1;
  1842. /*
  1843. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1844. * making forward progress without invoking OOM. Suspend also disables
  1845. * storage devices so kswapd will not help. Bail if we are suspending.
  1846. */
  1847. if (!did_some_progress && pm_suspended_storage())
  1848. return 0;
  1849. /*
  1850. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1851. * means __GFP_NOFAIL, but that may not be true in other
  1852. * implementations.
  1853. */
  1854. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1855. return 1;
  1856. /*
  1857. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1858. * specified, then we retry until we no longer reclaim any pages
  1859. * (above), or we've reclaimed an order of pages at least as
  1860. * large as the allocation's order. In both cases, if the
  1861. * allocation still fails, we stop retrying.
  1862. */
  1863. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1864. return 1;
  1865. return 0;
  1866. }
  1867. static inline struct page *
  1868. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1869. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1870. nodemask_t *nodemask, struct zone *preferred_zone,
  1871. int migratetype)
  1872. {
  1873. struct page *page;
  1874. /* Acquire the OOM killer lock for the zones in zonelist */
  1875. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1876. schedule_timeout_uninterruptible(1);
  1877. return NULL;
  1878. }
  1879. /*
  1880. * Go through the zonelist yet one more time, keep very high watermark
  1881. * here, this is only to catch a parallel oom killing, we must fail if
  1882. * we're still under heavy pressure.
  1883. */
  1884. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1885. order, zonelist, high_zoneidx,
  1886. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1887. preferred_zone, migratetype);
  1888. if (page)
  1889. goto out;
  1890. if (!(gfp_mask & __GFP_NOFAIL)) {
  1891. /* The OOM killer will not help higher order allocs */
  1892. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1893. goto out;
  1894. /* The OOM killer does not needlessly kill tasks for lowmem */
  1895. if (high_zoneidx < ZONE_NORMAL)
  1896. goto out;
  1897. /*
  1898. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1899. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1900. * The caller should handle page allocation failure by itself if
  1901. * it specifies __GFP_THISNODE.
  1902. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1903. */
  1904. if (gfp_mask & __GFP_THISNODE)
  1905. goto out;
  1906. }
  1907. /* Exhausted what can be done so it's blamo time */
  1908. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1909. out:
  1910. clear_zonelist_oom(zonelist, gfp_mask);
  1911. return page;
  1912. }
  1913. #ifdef CONFIG_COMPACTION
  1914. /* Try memory compaction for high-order allocations before reclaim */
  1915. static struct page *
  1916. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1917. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1918. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1919. int migratetype, bool sync_migration,
  1920. bool *contended_compaction, bool *deferred_compaction,
  1921. unsigned long *did_some_progress)
  1922. {
  1923. if (!order)
  1924. return NULL;
  1925. if (compaction_deferred(preferred_zone, order)) {
  1926. *deferred_compaction = true;
  1927. return NULL;
  1928. }
  1929. current->flags |= PF_MEMALLOC;
  1930. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1931. nodemask, sync_migration,
  1932. contended_compaction);
  1933. current->flags &= ~PF_MEMALLOC;
  1934. if (*did_some_progress != COMPACT_SKIPPED) {
  1935. struct page *page;
  1936. /* Page migration frees to the PCP lists but we want merging */
  1937. drain_pages(get_cpu());
  1938. put_cpu();
  1939. page = get_page_from_freelist(gfp_mask, nodemask,
  1940. order, zonelist, high_zoneidx,
  1941. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1942. preferred_zone, migratetype);
  1943. if (page) {
  1944. preferred_zone->compact_blockskip_flush = false;
  1945. preferred_zone->compact_considered = 0;
  1946. preferred_zone->compact_defer_shift = 0;
  1947. if (order >= preferred_zone->compact_order_failed)
  1948. preferred_zone->compact_order_failed = order + 1;
  1949. count_vm_event(COMPACTSUCCESS);
  1950. return page;
  1951. }
  1952. /*
  1953. * It's bad if compaction run occurs and fails.
  1954. * The most likely reason is that pages exist,
  1955. * but not enough to satisfy watermarks.
  1956. */
  1957. count_vm_event(COMPACTFAIL);
  1958. /*
  1959. * As async compaction considers a subset of pageblocks, only
  1960. * defer if the failure was a sync compaction failure.
  1961. */
  1962. if (sync_migration)
  1963. defer_compaction(preferred_zone, order);
  1964. cond_resched();
  1965. }
  1966. return NULL;
  1967. }
  1968. #else
  1969. static inline struct page *
  1970. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1971. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1972. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1973. int migratetype, bool sync_migration,
  1974. bool *contended_compaction, bool *deferred_compaction,
  1975. unsigned long *did_some_progress)
  1976. {
  1977. return NULL;
  1978. }
  1979. #endif /* CONFIG_COMPACTION */
  1980. /* Perform direct synchronous page reclaim */
  1981. static int
  1982. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1983. nodemask_t *nodemask)
  1984. {
  1985. struct reclaim_state reclaim_state;
  1986. int progress;
  1987. cond_resched();
  1988. /* We now go into synchronous reclaim */
  1989. cpuset_memory_pressure_bump();
  1990. current->flags |= PF_MEMALLOC;
  1991. lockdep_set_current_reclaim_state(gfp_mask);
  1992. reclaim_state.reclaimed_slab = 0;
  1993. current->reclaim_state = &reclaim_state;
  1994. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1995. current->reclaim_state = NULL;
  1996. lockdep_clear_current_reclaim_state();
  1997. current->flags &= ~PF_MEMALLOC;
  1998. cond_resched();
  1999. return progress;
  2000. }
  2001. /* The really slow allocator path where we enter direct reclaim */
  2002. static inline struct page *
  2003. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2004. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2005. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2006. int migratetype, unsigned long *did_some_progress)
  2007. {
  2008. struct page *page = NULL;
  2009. bool drained = false;
  2010. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2011. nodemask);
  2012. if (unlikely(!(*did_some_progress)))
  2013. return NULL;
  2014. /* After successful reclaim, reconsider all zones for allocation */
  2015. if (IS_ENABLED(CONFIG_NUMA))
  2016. zlc_clear_zones_full(zonelist);
  2017. retry:
  2018. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2019. zonelist, high_zoneidx,
  2020. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2021. preferred_zone, migratetype);
  2022. /*
  2023. * If an allocation failed after direct reclaim, it could be because
  2024. * pages are pinned on the per-cpu lists. Drain them and try again
  2025. */
  2026. if (!page && !drained) {
  2027. drain_all_pages();
  2028. drained = true;
  2029. goto retry;
  2030. }
  2031. return page;
  2032. }
  2033. /*
  2034. * This is called in the allocator slow-path if the allocation request is of
  2035. * sufficient urgency to ignore watermarks and take other desperate measures
  2036. */
  2037. static inline struct page *
  2038. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2039. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2040. nodemask_t *nodemask, struct zone *preferred_zone,
  2041. int migratetype)
  2042. {
  2043. struct page *page;
  2044. do {
  2045. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2046. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2047. preferred_zone, migratetype);
  2048. if (!page && gfp_mask & __GFP_NOFAIL)
  2049. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2050. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2051. return page;
  2052. }
  2053. static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
  2054. struct zonelist *zonelist,
  2055. enum zone_type high_zoneidx,
  2056. struct zone *preferred_zone)
  2057. {
  2058. struct zoneref *z;
  2059. struct zone *zone;
  2060. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2061. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2062. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2063. /*
  2064. * Only reset the batches of zones that were actually
  2065. * considered in the fast path, we don't want to
  2066. * thrash fairness information for zones that are not
  2067. * actually part of this zonelist's round-robin cycle.
  2068. */
  2069. if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
  2070. continue;
  2071. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2072. high_wmark_pages(zone) -
  2073. low_wmark_pages(zone) -
  2074. zone_page_state(zone, NR_ALLOC_BATCH));
  2075. }
  2076. }
  2077. static inline int
  2078. gfp_to_alloc_flags(gfp_t gfp_mask)
  2079. {
  2080. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2081. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2082. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2083. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2084. /*
  2085. * The caller may dip into page reserves a bit more if the caller
  2086. * cannot run direct reclaim, or if the caller has realtime scheduling
  2087. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2088. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2089. */
  2090. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2091. if (!wait) {
  2092. /*
  2093. * Not worth trying to allocate harder for
  2094. * __GFP_NOMEMALLOC even if it can't schedule.
  2095. */
  2096. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2097. alloc_flags |= ALLOC_HARDER;
  2098. /*
  2099. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2100. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2101. */
  2102. alloc_flags &= ~ALLOC_CPUSET;
  2103. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2104. alloc_flags |= ALLOC_HARDER;
  2105. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2106. if (gfp_mask & __GFP_MEMALLOC)
  2107. alloc_flags |= ALLOC_NO_WATERMARKS;
  2108. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2109. alloc_flags |= ALLOC_NO_WATERMARKS;
  2110. else if (!in_interrupt() &&
  2111. ((current->flags & PF_MEMALLOC) ||
  2112. unlikely(test_thread_flag(TIF_MEMDIE))))
  2113. alloc_flags |= ALLOC_NO_WATERMARKS;
  2114. }
  2115. #ifdef CONFIG_CMA
  2116. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2117. alloc_flags |= ALLOC_CMA;
  2118. #endif
  2119. return alloc_flags;
  2120. }
  2121. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2122. {
  2123. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2124. }
  2125. static inline struct page *
  2126. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2127. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2128. nodemask_t *nodemask, struct zone *preferred_zone,
  2129. int migratetype)
  2130. {
  2131. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2132. struct page *page = NULL;
  2133. int alloc_flags;
  2134. unsigned long pages_reclaimed = 0;
  2135. unsigned long did_some_progress;
  2136. bool sync_migration = false;
  2137. bool deferred_compaction = false;
  2138. bool contended_compaction = false;
  2139. /*
  2140. * In the slowpath, we sanity check order to avoid ever trying to
  2141. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2142. * be using allocators in order of preference for an area that is
  2143. * too large.
  2144. */
  2145. if (order >= MAX_ORDER) {
  2146. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2147. return NULL;
  2148. }
  2149. /*
  2150. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2151. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2152. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2153. * using a larger set of nodes after it has established that the
  2154. * allowed per node queues are empty and that nodes are
  2155. * over allocated.
  2156. */
  2157. if (IS_ENABLED(CONFIG_NUMA) &&
  2158. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2159. goto nopage;
  2160. restart:
  2161. prepare_slowpath(gfp_mask, order, zonelist,
  2162. high_zoneidx, preferred_zone);
  2163. /*
  2164. * OK, we're below the kswapd watermark and have kicked background
  2165. * reclaim. Now things get more complex, so set up alloc_flags according
  2166. * to how we want to proceed.
  2167. */
  2168. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2169. /*
  2170. * Find the true preferred zone if the allocation is unconstrained by
  2171. * cpusets.
  2172. */
  2173. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2174. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2175. &preferred_zone);
  2176. rebalance:
  2177. /* This is the last chance, in general, before the goto nopage. */
  2178. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2179. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2180. preferred_zone, migratetype);
  2181. if (page)
  2182. goto got_pg;
  2183. /* Allocate without watermarks if the context allows */
  2184. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2185. /*
  2186. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2187. * the allocation is high priority and these type of
  2188. * allocations are system rather than user orientated
  2189. */
  2190. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2191. page = __alloc_pages_high_priority(gfp_mask, order,
  2192. zonelist, high_zoneidx, nodemask,
  2193. preferred_zone, migratetype);
  2194. if (page) {
  2195. goto got_pg;
  2196. }
  2197. }
  2198. /* Atomic allocations - we can't balance anything */
  2199. if (!wait)
  2200. goto nopage;
  2201. /* Avoid recursion of direct reclaim */
  2202. if (current->flags & PF_MEMALLOC)
  2203. goto nopage;
  2204. /* Avoid allocations with no watermarks from looping endlessly */
  2205. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2206. goto nopage;
  2207. /*
  2208. * Try direct compaction. The first pass is asynchronous. Subsequent
  2209. * attempts after direct reclaim are synchronous
  2210. */
  2211. page = __alloc_pages_direct_compact(gfp_mask, order,
  2212. zonelist, high_zoneidx,
  2213. nodemask,
  2214. alloc_flags, preferred_zone,
  2215. migratetype, sync_migration,
  2216. &contended_compaction,
  2217. &deferred_compaction,
  2218. &did_some_progress);
  2219. if (page)
  2220. goto got_pg;
  2221. sync_migration = true;
  2222. /*
  2223. * If compaction is deferred for high-order allocations, it is because
  2224. * sync compaction recently failed. In this is the case and the caller
  2225. * requested a movable allocation that does not heavily disrupt the
  2226. * system then fail the allocation instead of entering direct reclaim.
  2227. */
  2228. if ((deferred_compaction || contended_compaction) &&
  2229. (gfp_mask & __GFP_NO_KSWAPD))
  2230. goto nopage;
  2231. /* Try direct reclaim and then allocating */
  2232. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2233. zonelist, high_zoneidx,
  2234. nodemask,
  2235. alloc_flags, preferred_zone,
  2236. migratetype, &did_some_progress);
  2237. if (page)
  2238. goto got_pg;
  2239. /*
  2240. * If we failed to make any progress reclaiming, then we are
  2241. * running out of options and have to consider going OOM
  2242. */
  2243. if (!did_some_progress) {
  2244. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2245. if (oom_killer_disabled)
  2246. goto nopage;
  2247. /* Coredumps can quickly deplete all memory reserves */
  2248. if ((current->flags & PF_DUMPCORE) &&
  2249. !(gfp_mask & __GFP_NOFAIL))
  2250. goto nopage;
  2251. page = __alloc_pages_may_oom(gfp_mask, order,
  2252. zonelist, high_zoneidx,
  2253. nodemask, preferred_zone,
  2254. migratetype);
  2255. if (page)
  2256. goto got_pg;
  2257. if (!(gfp_mask & __GFP_NOFAIL)) {
  2258. /*
  2259. * The oom killer is not called for high-order
  2260. * allocations that may fail, so if no progress
  2261. * is being made, there are no other options and
  2262. * retrying is unlikely to help.
  2263. */
  2264. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2265. goto nopage;
  2266. /*
  2267. * The oom killer is not called for lowmem
  2268. * allocations to prevent needlessly killing
  2269. * innocent tasks.
  2270. */
  2271. if (high_zoneidx < ZONE_NORMAL)
  2272. goto nopage;
  2273. }
  2274. goto restart;
  2275. }
  2276. }
  2277. /* Check if we should retry the allocation */
  2278. pages_reclaimed += did_some_progress;
  2279. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2280. pages_reclaimed)) {
  2281. /* Wait for some write requests to complete then retry */
  2282. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2283. goto rebalance;
  2284. } else {
  2285. /*
  2286. * High-order allocations do not necessarily loop after
  2287. * direct reclaim and reclaim/compaction depends on compaction
  2288. * being called after reclaim so call directly if necessary
  2289. */
  2290. page = __alloc_pages_direct_compact(gfp_mask, order,
  2291. zonelist, high_zoneidx,
  2292. nodemask,
  2293. alloc_flags, preferred_zone,
  2294. migratetype, sync_migration,
  2295. &contended_compaction,
  2296. &deferred_compaction,
  2297. &did_some_progress);
  2298. if (page)
  2299. goto got_pg;
  2300. }
  2301. nopage:
  2302. warn_alloc_failed(gfp_mask, order, NULL);
  2303. return page;
  2304. got_pg:
  2305. if (kmemcheck_enabled)
  2306. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2307. return page;
  2308. }
  2309. /*
  2310. * This is the 'heart' of the zoned buddy allocator.
  2311. */
  2312. struct page *
  2313. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2314. struct zonelist *zonelist, nodemask_t *nodemask)
  2315. {
  2316. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2317. struct zone *preferred_zone;
  2318. struct page *page = NULL;
  2319. int migratetype = allocflags_to_migratetype(gfp_mask);
  2320. unsigned int cpuset_mems_cookie;
  2321. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2322. struct mem_cgroup *memcg = NULL;
  2323. gfp_mask &= gfp_allowed_mask;
  2324. lockdep_trace_alloc(gfp_mask);
  2325. might_sleep_if(gfp_mask & __GFP_WAIT);
  2326. if (should_fail_alloc_page(gfp_mask, order))
  2327. return NULL;
  2328. /*
  2329. * Check the zones suitable for the gfp_mask contain at least one
  2330. * valid zone. It's possible to have an empty zonelist as a result
  2331. * of GFP_THISNODE and a memoryless node
  2332. */
  2333. if (unlikely(!zonelist->_zonerefs->zone))
  2334. return NULL;
  2335. /*
  2336. * Will only have any effect when __GFP_KMEMCG is set. This is
  2337. * verified in the (always inline) callee
  2338. */
  2339. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2340. return NULL;
  2341. retry_cpuset:
  2342. cpuset_mems_cookie = get_mems_allowed();
  2343. /* The preferred zone is used for statistics later */
  2344. first_zones_zonelist(zonelist, high_zoneidx,
  2345. nodemask ? : &cpuset_current_mems_allowed,
  2346. &preferred_zone);
  2347. if (!preferred_zone)
  2348. goto out;
  2349. #ifdef CONFIG_CMA
  2350. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2351. alloc_flags |= ALLOC_CMA;
  2352. #endif
  2353. /* First allocation attempt */
  2354. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2355. zonelist, high_zoneidx, alloc_flags,
  2356. preferred_zone, migratetype);
  2357. if (unlikely(!page)) {
  2358. /*
  2359. * Runtime PM, block IO and its error handling path
  2360. * can deadlock because I/O on the device might not
  2361. * complete.
  2362. */
  2363. gfp_mask = memalloc_noio_flags(gfp_mask);
  2364. page = __alloc_pages_slowpath(gfp_mask, order,
  2365. zonelist, high_zoneidx, nodemask,
  2366. preferred_zone, migratetype);
  2367. }
  2368. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2369. out:
  2370. /*
  2371. * When updating a task's mems_allowed, it is possible to race with
  2372. * parallel threads in such a way that an allocation can fail while
  2373. * the mask is being updated. If a page allocation is about to fail,
  2374. * check if the cpuset changed during allocation and if so, retry.
  2375. */
  2376. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2377. goto retry_cpuset;
  2378. memcg_kmem_commit_charge(page, memcg, order);
  2379. return page;
  2380. }
  2381. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2382. /*
  2383. * Common helper functions.
  2384. */
  2385. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2386. {
  2387. struct page *page;
  2388. /*
  2389. * __get_free_pages() returns a 32-bit address, which cannot represent
  2390. * a highmem page
  2391. */
  2392. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2393. page = alloc_pages(gfp_mask, order);
  2394. if (!page)
  2395. return 0;
  2396. return (unsigned long) page_address(page);
  2397. }
  2398. EXPORT_SYMBOL(__get_free_pages);
  2399. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2400. {
  2401. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2402. }
  2403. EXPORT_SYMBOL(get_zeroed_page);
  2404. void __free_pages(struct page *page, unsigned int order)
  2405. {
  2406. if (put_page_testzero(page)) {
  2407. if (order == 0)
  2408. free_hot_cold_page(page, 0);
  2409. else
  2410. __free_pages_ok(page, order);
  2411. }
  2412. }
  2413. EXPORT_SYMBOL(__free_pages);
  2414. void free_pages(unsigned long addr, unsigned int order)
  2415. {
  2416. if (addr != 0) {
  2417. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2418. __free_pages(virt_to_page((void *)addr), order);
  2419. }
  2420. }
  2421. EXPORT_SYMBOL(free_pages);
  2422. /*
  2423. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2424. * pages allocated with __GFP_KMEMCG.
  2425. *
  2426. * Those pages are accounted to a particular memcg, embedded in the
  2427. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2428. * for that information only to find out that it is NULL for users who have no
  2429. * interest in that whatsoever, we provide these functions.
  2430. *
  2431. * The caller knows better which flags it relies on.
  2432. */
  2433. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2434. {
  2435. memcg_kmem_uncharge_pages(page, order);
  2436. __free_pages(page, order);
  2437. }
  2438. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2439. {
  2440. if (addr != 0) {
  2441. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2442. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2443. }
  2444. }
  2445. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2446. {
  2447. if (addr) {
  2448. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2449. unsigned long used = addr + PAGE_ALIGN(size);
  2450. split_page(virt_to_page((void *)addr), order);
  2451. while (used < alloc_end) {
  2452. free_page(used);
  2453. used += PAGE_SIZE;
  2454. }
  2455. }
  2456. return (void *)addr;
  2457. }
  2458. /**
  2459. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2460. * @size: the number of bytes to allocate
  2461. * @gfp_mask: GFP flags for the allocation
  2462. *
  2463. * This function is similar to alloc_pages(), except that it allocates the
  2464. * minimum number of pages to satisfy the request. alloc_pages() can only
  2465. * allocate memory in power-of-two pages.
  2466. *
  2467. * This function is also limited by MAX_ORDER.
  2468. *
  2469. * Memory allocated by this function must be released by free_pages_exact().
  2470. */
  2471. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2472. {
  2473. unsigned int order = get_order(size);
  2474. unsigned long addr;
  2475. addr = __get_free_pages(gfp_mask, order);
  2476. return make_alloc_exact(addr, order, size);
  2477. }
  2478. EXPORT_SYMBOL(alloc_pages_exact);
  2479. /**
  2480. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2481. * pages on a node.
  2482. * @nid: the preferred node ID where memory should be allocated
  2483. * @size: the number of bytes to allocate
  2484. * @gfp_mask: GFP flags for the allocation
  2485. *
  2486. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2487. * back.
  2488. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2489. * but is not exact.
  2490. */
  2491. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2492. {
  2493. unsigned order = get_order(size);
  2494. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2495. if (!p)
  2496. return NULL;
  2497. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2498. }
  2499. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2500. /**
  2501. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2502. * @virt: the value returned by alloc_pages_exact.
  2503. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2504. *
  2505. * Release the memory allocated by a previous call to alloc_pages_exact.
  2506. */
  2507. void free_pages_exact(void *virt, size_t size)
  2508. {
  2509. unsigned long addr = (unsigned long)virt;
  2510. unsigned long end = addr + PAGE_ALIGN(size);
  2511. while (addr < end) {
  2512. free_page(addr);
  2513. addr += PAGE_SIZE;
  2514. }
  2515. }
  2516. EXPORT_SYMBOL(free_pages_exact);
  2517. /**
  2518. * nr_free_zone_pages - count number of pages beyond high watermark
  2519. * @offset: The zone index of the highest zone
  2520. *
  2521. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2522. * high watermark within all zones at or below a given zone index. For each
  2523. * zone, the number of pages is calculated as:
  2524. * managed_pages - high_pages
  2525. */
  2526. static unsigned long nr_free_zone_pages(int offset)
  2527. {
  2528. struct zoneref *z;
  2529. struct zone *zone;
  2530. /* Just pick one node, since fallback list is circular */
  2531. unsigned long sum = 0;
  2532. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2533. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2534. unsigned long size = zone->managed_pages;
  2535. unsigned long high = high_wmark_pages(zone);
  2536. if (size > high)
  2537. sum += size - high;
  2538. }
  2539. return sum;
  2540. }
  2541. /**
  2542. * nr_free_buffer_pages - count number of pages beyond high watermark
  2543. *
  2544. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2545. * watermark within ZONE_DMA and ZONE_NORMAL.
  2546. */
  2547. unsigned long nr_free_buffer_pages(void)
  2548. {
  2549. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2550. }
  2551. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2552. /**
  2553. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2554. *
  2555. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2556. * high watermark within all zones.
  2557. */
  2558. unsigned long nr_free_pagecache_pages(void)
  2559. {
  2560. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2561. }
  2562. static inline void show_node(struct zone *zone)
  2563. {
  2564. if (IS_ENABLED(CONFIG_NUMA))
  2565. printk("Node %d ", zone_to_nid(zone));
  2566. }
  2567. void si_meminfo(struct sysinfo *val)
  2568. {
  2569. val->totalram = totalram_pages;
  2570. val->sharedram = 0;
  2571. val->freeram = global_page_state(NR_FREE_PAGES);
  2572. val->bufferram = nr_blockdev_pages();
  2573. val->totalhigh = totalhigh_pages;
  2574. val->freehigh = nr_free_highpages();
  2575. val->mem_unit = PAGE_SIZE;
  2576. }
  2577. EXPORT_SYMBOL(si_meminfo);
  2578. #ifdef CONFIG_NUMA
  2579. void si_meminfo_node(struct sysinfo *val, int nid)
  2580. {
  2581. int zone_type; /* needs to be signed */
  2582. unsigned long managed_pages = 0;
  2583. pg_data_t *pgdat = NODE_DATA(nid);
  2584. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2585. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2586. val->totalram = managed_pages;
  2587. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2588. #ifdef CONFIG_HIGHMEM
  2589. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2590. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2591. NR_FREE_PAGES);
  2592. #else
  2593. val->totalhigh = 0;
  2594. val->freehigh = 0;
  2595. #endif
  2596. val->mem_unit = PAGE_SIZE;
  2597. }
  2598. #endif
  2599. /*
  2600. * Determine whether the node should be displayed or not, depending on whether
  2601. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2602. */
  2603. bool skip_free_areas_node(unsigned int flags, int nid)
  2604. {
  2605. bool ret = false;
  2606. unsigned int cpuset_mems_cookie;
  2607. if (!(flags & SHOW_MEM_FILTER_NODES))
  2608. goto out;
  2609. do {
  2610. cpuset_mems_cookie = get_mems_allowed();
  2611. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2612. } while (!put_mems_allowed(cpuset_mems_cookie));
  2613. out:
  2614. return ret;
  2615. }
  2616. #define K(x) ((x) << (PAGE_SHIFT-10))
  2617. static void show_migration_types(unsigned char type)
  2618. {
  2619. static const char types[MIGRATE_TYPES] = {
  2620. [MIGRATE_UNMOVABLE] = 'U',
  2621. [MIGRATE_RECLAIMABLE] = 'E',
  2622. [MIGRATE_MOVABLE] = 'M',
  2623. [MIGRATE_RESERVE] = 'R',
  2624. #ifdef CONFIG_CMA
  2625. [MIGRATE_CMA] = 'C',
  2626. #endif
  2627. #ifdef CONFIG_MEMORY_ISOLATION
  2628. [MIGRATE_ISOLATE] = 'I',
  2629. #endif
  2630. };
  2631. char tmp[MIGRATE_TYPES + 1];
  2632. char *p = tmp;
  2633. int i;
  2634. for (i = 0; i < MIGRATE_TYPES; i++) {
  2635. if (type & (1 << i))
  2636. *p++ = types[i];
  2637. }
  2638. *p = '\0';
  2639. printk("(%s) ", tmp);
  2640. }
  2641. /*
  2642. * Show free area list (used inside shift_scroll-lock stuff)
  2643. * We also calculate the percentage fragmentation. We do this by counting the
  2644. * memory on each free list with the exception of the first item on the list.
  2645. * Suppresses nodes that are not allowed by current's cpuset if
  2646. * SHOW_MEM_FILTER_NODES is passed.
  2647. */
  2648. void show_free_areas(unsigned int filter)
  2649. {
  2650. int cpu;
  2651. struct zone *zone;
  2652. for_each_populated_zone(zone) {
  2653. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2654. continue;
  2655. show_node(zone);
  2656. printk("%s per-cpu:\n", zone->name);
  2657. for_each_online_cpu(cpu) {
  2658. struct per_cpu_pageset *pageset;
  2659. pageset = per_cpu_ptr(zone->pageset, cpu);
  2660. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2661. cpu, pageset->pcp.high,
  2662. pageset->pcp.batch, pageset->pcp.count);
  2663. }
  2664. }
  2665. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2666. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2667. " unevictable:%lu"
  2668. " dirty:%lu writeback:%lu unstable:%lu\n"
  2669. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2670. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2671. " free_cma:%lu\n",
  2672. global_page_state(NR_ACTIVE_ANON),
  2673. global_page_state(NR_INACTIVE_ANON),
  2674. global_page_state(NR_ISOLATED_ANON),
  2675. global_page_state(NR_ACTIVE_FILE),
  2676. global_page_state(NR_INACTIVE_FILE),
  2677. global_page_state(NR_ISOLATED_FILE),
  2678. global_page_state(NR_UNEVICTABLE),
  2679. global_page_state(NR_FILE_DIRTY),
  2680. global_page_state(NR_WRITEBACK),
  2681. global_page_state(NR_UNSTABLE_NFS),
  2682. global_page_state(NR_FREE_PAGES),
  2683. global_page_state(NR_SLAB_RECLAIMABLE),
  2684. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2685. global_page_state(NR_FILE_MAPPED),
  2686. global_page_state(NR_SHMEM),
  2687. global_page_state(NR_PAGETABLE),
  2688. global_page_state(NR_BOUNCE),
  2689. global_page_state(NR_FREE_CMA_PAGES));
  2690. for_each_populated_zone(zone) {
  2691. int i;
  2692. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2693. continue;
  2694. show_node(zone);
  2695. printk("%s"
  2696. " free:%lukB"
  2697. " min:%lukB"
  2698. " low:%lukB"
  2699. " high:%lukB"
  2700. " active_anon:%lukB"
  2701. " inactive_anon:%lukB"
  2702. " active_file:%lukB"
  2703. " inactive_file:%lukB"
  2704. " unevictable:%lukB"
  2705. " isolated(anon):%lukB"
  2706. " isolated(file):%lukB"
  2707. " present:%lukB"
  2708. " managed:%lukB"
  2709. " mlocked:%lukB"
  2710. " dirty:%lukB"
  2711. " writeback:%lukB"
  2712. " mapped:%lukB"
  2713. " shmem:%lukB"
  2714. " slab_reclaimable:%lukB"
  2715. " slab_unreclaimable:%lukB"
  2716. " kernel_stack:%lukB"
  2717. " pagetables:%lukB"
  2718. " unstable:%lukB"
  2719. " bounce:%lukB"
  2720. " free_cma:%lukB"
  2721. " writeback_tmp:%lukB"
  2722. " pages_scanned:%lu"
  2723. " all_unreclaimable? %s"
  2724. "\n",
  2725. zone->name,
  2726. K(zone_page_state(zone, NR_FREE_PAGES)),
  2727. K(min_wmark_pages(zone)),
  2728. K(low_wmark_pages(zone)),
  2729. K(high_wmark_pages(zone)),
  2730. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2731. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2732. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2733. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2734. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2735. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2736. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2737. K(zone->present_pages),
  2738. K(zone->managed_pages),
  2739. K(zone_page_state(zone, NR_MLOCK)),
  2740. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2741. K(zone_page_state(zone, NR_WRITEBACK)),
  2742. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2743. K(zone_page_state(zone, NR_SHMEM)),
  2744. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2745. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2746. zone_page_state(zone, NR_KERNEL_STACK) *
  2747. THREAD_SIZE / 1024,
  2748. K(zone_page_state(zone, NR_PAGETABLE)),
  2749. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2750. K(zone_page_state(zone, NR_BOUNCE)),
  2751. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2752. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2753. zone->pages_scanned,
  2754. (zone->all_unreclaimable ? "yes" : "no")
  2755. );
  2756. printk("lowmem_reserve[]:");
  2757. for (i = 0; i < MAX_NR_ZONES; i++)
  2758. printk(" %lu", zone->lowmem_reserve[i]);
  2759. printk("\n");
  2760. }
  2761. for_each_populated_zone(zone) {
  2762. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2763. unsigned char types[MAX_ORDER];
  2764. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2765. continue;
  2766. show_node(zone);
  2767. printk("%s: ", zone->name);
  2768. spin_lock_irqsave(&zone->lock, flags);
  2769. for (order = 0; order < MAX_ORDER; order++) {
  2770. struct free_area *area = &zone->free_area[order];
  2771. int type;
  2772. nr[order] = area->nr_free;
  2773. total += nr[order] << order;
  2774. types[order] = 0;
  2775. for (type = 0; type < MIGRATE_TYPES; type++) {
  2776. if (!list_empty(&area->free_list[type]))
  2777. types[order] |= 1 << type;
  2778. }
  2779. }
  2780. spin_unlock_irqrestore(&zone->lock, flags);
  2781. for (order = 0; order < MAX_ORDER; order++) {
  2782. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2783. if (nr[order])
  2784. show_migration_types(types[order]);
  2785. }
  2786. printk("= %lukB\n", K(total));
  2787. }
  2788. hugetlb_show_meminfo();
  2789. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2790. show_swap_cache_info();
  2791. }
  2792. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2793. {
  2794. zoneref->zone = zone;
  2795. zoneref->zone_idx = zone_idx(zone);
  2796. }
  2797. /*
  2798. * Builds allocation fallback zone lists.
  2799. *
  2800. * Add all populated zones of a node to the zonelist.
  2801. */
  2802. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2803. int nr_zones)
  2804. {
  2805. struct zone *zone;
  2806. enum zone_type zone_type = MAX_NR_ZONES;
  2807. do {
  2808. zone_type--;
  2809. zone = pgdat->node_zones + zone_type;
  2810. if (populated_zone(zone)) {
  2811. zoneref_set_zone(zone,
  2812. &zonelist->_zonerefs[nr_zones++]);
  2813. check_highest_zone(zone_type);
  2814. }
  2815. } while (zone_type);
  2816. return nr_zones;
  2817. }
  2818. /*
  2819. * zonelist_order:
  2820. * 0 = automatic detection of better ordering.
  2821. * 1 = order by ([node] distance, -zonetype)
  2822. * 2 = order by (-zonetype, [node] distance)
  2823. *
  2824. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2825. * the same zonelist. So only NUMA can configure this param.
  2826. */
  2827. #define ZONELIST_ORDER_DEFAULT 0
  2828. #define ZONELIST_ORDER_NODE 1
  2829. #define ZONELIST_ORDER_ZONE 2
  2830. /* zonelist order in the kernel.
  2831. * set_zonelist_order() will set this to NODE or ZONE.
  2832. */
  2833. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2834. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2835. #ifdef CONFIG_NUMA
  2836. /* The value user specified ....changed by config */
  2837. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2838. /* string for sysctl */
  2839. #define NUMA_ZONELIST_ORDER_LEN 16
  2840. char numa_zonelist_order[16] = "default";
  2841. /*
  2842. * interface for configure zonelist ordering.
  2843. * command line option "numa_zonelist_order"
  2844. * = "[dD]efault - default, automatic configuration.
  2845. * = "[nN]ode - order by node locality, then by zone within node
  2846. * = "[zZ]one - order by zone, then by locality within zone
  2847. */
  2848. static int __parse_numa_zonelist_order(char *s)
  2849. {
  2850. if (*s == 'd' || *s == 'D') {
  2851. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2852. } else if (*s == 'n' || *s == 'N') {
  2853. user_zonelist_order = ZONELIST_ORDER_NODE;
  2854. } else if (*s == 'z' || *s == 'Z') {
  2855. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2856. } else {
  2857. printk(KERN_WARNING
  2858. "Ignoring invalid numa_zonelist_order value: "
  2859. "%s\n", s);
  2860. return -EINVAL;
  2861. }
  2862. return 0;
  2863. }
  2864. static __init int setup_numa_zonelist_order(char *s)
  2865. {
  2866. int ret;
  2867. if (!s)
  2868. return 0;
  2869. ret = __parse_numa_zonelist_order(s);
  2870. if (ret == 0)
  2871. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2872. return ret;
  2873. }
  2874. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2875. /*
  2876. * sysctl handler for numa_zonelist_order
  2877. */
  2878. int numa_zonelist_order_handler(ctl_table *table, int write,
  2879. void __user *buffer, size_t *length,
  2880. loff_t *ppos)
  2881. {
  2882. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2883. int ret;
  2884. static DEFINE_MUTEX(zl_order_mutex);
  2885. mutex_lock(&zl_order_mutex);
  2886. if (write) {
  2887. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2888. ret = -EINVAL;
  2889. goto out;
  2890. }
  2891. strcpy(saved_string, (char *)table->data);
  2892. }
  2893. ret = proc_dostring(table, write, buffer, length, ppos);
  2894. if (ret)
  2895. goto out;
  2896. if (write) {
  2897. int oldval = user_zonelist_order;
  2898. ret = __parse_numa_zonelist_order((char *)table->data);
  2899. if (ret) {
  2900. /*
  2901. * bogus value. restore saved string
  2902. */
  2903. strncpy((char *)table->data, saved_string,
  2904. NUMA_ZONELIST_ORDER_LEN);
  2905. user_zonelist_order = oldval;
  2906. } else if (oldval != user_zonelist_order) {
  2907. mutex_lock(&zonelists_mutex);
  2908. build_all_zonelists(NULL, NULL);
  2909. mutex_unlock(&zonelists_mutex);
  2910. }
  2911. }
  2912. out:
  2913. mutex_unlock(&zl_order_mutex);
  2914. return ret;
  2915. }
  2916. #define MAX_NODE_LOAD (nr_online_nodes)
  2917. static int node_load[MAX_NUMNODES];
  2918. /**
  2919. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2920. * @node: node whose fallback list we're appending
  2921. * @used_node_mask: nodemask_t of already used nodes
  2922. *
  2923. * We use a number of factors to determine which is the next node that should
  2924. * appear on a given node's fallback list. The node should not have appeared
  2925. * already in @node's fallback list, and it should be the next closest node
  2926. * according to the distance array (which contains arbitrary distance values
  2927. * from each node to each node in the system), and should also prefer nodes
  2928. * with no CPUs, since presumably they'll have very little allocation pressure
  2929. * on them otherwise.
  2930. * It returns -1 if no node is found.
  2931. */
  2932. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2933. {
  2934. int n, val;
  2935. int min_val = INT_MAX;
  2936. int best_node = NUMA_NO_NODE;
  2937. const struct cpumask *tmp = cpumask_of_node(0);
  2938. /* Use the local node if we haven't already */
  2939. if (!node_isset(node, *used_node_mask)) {
  2940. node_set(node, *used_node_mask);
  2941. return node;
  2942. }
  2943. for_each_node_state(n, N_MEMORY) {
  2944. /* Don't want a node to appear more than once */
  2945. if (node_isset(n, *used_node_mask))
  2946. continue;
  2947. /* Use the distance array to find the distance */
  2948. val = node_distance(node, n);
  2949. /* Penalize nodes under us ("prefer the next node") */
  2950. val += (n < node);
  2951. /* Give preference to headless and unused nodes */
  2952. tmp = cpumask_of_node(n);
  2953. if (!cpumask_empty(tmp))
  2954. val += PENALTY_FOR_NODE_WITH_CPUS;
  2955. /* Slight preference for less loaded node */
  2956. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2957. val += node_load[n];
  2958. if (val < min_val) {
  2959. min_val = val;
  2960. best_node = n;
  2961. }
  2962. }
  2963. if (best_node >= 0)
  2964. node_set(best_node, *used_node_mask);
  2965. return best_node;
  2966. }
  2967. /*
  2968. * Build zonelists ordered by node and zones within node.
  2969. * This results in maximum locality--normal zone overflows into local
  2970. * DMA zone, if any--but risks exhausting DMA zone.
  2971. */
  2972. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2973. {
  2974. int j;
  2975. struct zonelist *zonelist;
  2976. zonelist = &pgdat->node_zonelists[0];
  2977. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2978. ;
  2979. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  2980. zonelist->_zonerefs[j].zone = NULL;
  2981. zonelist->_zonerefs[j].zone_idx = 0;
  2982. }
  2983. /*
  2984. * Build gfp_thisnode zonelists
  2985. */
  2986. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2987. {
  2988. int j;
  2989. struct zonelist *zonelist;
  2990. zonelist = &pgdat->node_zonelists[1];
  2991. j = build_zonelists_node(pgdat, zonelist, 0);
  2992. zonelist->_zonerefs[j].zone = NULL;
  2993. zonelist->_zonerefs[j].zone_idx = 0;
  2994. }
  2995. /*
  2996. * Build zonelists ordered by zone and nodes within zones.
  2997. * This results in conserving DMA zone[s] until all Normal memory is
  2998. * exhausted, but results in overflowing to remote node while memory
  2999. * may still exist in local DMA zone.
  3000. */
  3001. static int node_order[MAX_NUMNODES];
  3002. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3003. {
  3004. int pos, j, node;
  3005. int zone_type; /* needs to be signed */
  3006. struct zone *z;
  3007. struct zonelist *zonelist;
  3008. zonelist = &pgdat->node_zonelists[0];
  3009. pos = 0;
  3010. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3011. for (j = 0; j < nr_nodes; j++) {
  3012. node = node_order[j];
  3013. z = &NODE_DATA(node)->node_zones[zone_type];
  3014. if (populated_zone(z)) {
  3015. zoneref_set_zone(z,
  3016. &zonelist->_zonerefs[pos++]);
  3017. check_highest_zone(zone_type);
  3018. }
  3019. }
  3020. }
  3021. zonelist->_zonerefs[pos].zone = NULL;
  3022. zonelist->_zonerefs[pos].zone_idx = 0;
  3023. }
  3024. static int default_zonelist_order(void)
  3025. {
  3026. int nid, zone_type;
  3027. unsigned long low_kmem_size, total_size;
  3028. struct zone *z;
  3029. int average_size;
  3030. /*
  3031. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  3032. * If they are really small and used heavily, the system can fall
  3033. * into OOM very easily.
  3034. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  3035. */
  3036. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  3037. low_kmem_size = 0;
  3038. total_size = 0;
  3039. for_each_online_node(nid) {
  3040. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3041. z = &NODE_DATA(nid)->node_zones[zone_type];
  3042. if (populated_zone(z)) {
  3043. if (zone_type < ZONE_NORMAL)
  3044. low_kmem_size += z->managed_pages;
  3045. total_size += z->managed_pages;
  3046. } else if (zone_type == ZONE_NORMAL) {
  3047. /*
  3048. * If any node has only lowmem, then node order
  3049. * is preferred to allow kernel allocations
  3050. * locally; otherwise, they can easily infringe
  3051. * on other nodes when there is an abundance of
  3052. * lowmem available to allocate from.
  3053. */
  3054. return ZONELIST_ORDER_NODE;
  3055. }
  3056. }
  3057. }
  3058. if (!low_kmem_size || /* there are no DMA area. */
  3059. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  3060. return ZONELIST_ORDER_NODE;
  3061. /*
  3062. * look into each node's config.
  3063. * If there is a node whose DMA/DMA32 memory is very big area on
  3064. * local memory, NODE_ORDER may be suitable.
  3065. */
  3066. average_size = total_size /
  3067. (nodes_weight(node_states[N_MEMORY]) + 1);
  3068. for_each_online_node(nid) {
  3069. low_kmem_size = 0;
  3070. total_size = 0;
  3071. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3072. z = &NODE_DATA(nid)->node_zones[zone_type];
  3073. if (populated_zone(z)) {
  3074. if (zone_type < ZONE_NORMAL)
  3075. low_kmem_size += z->present_pages;
  3076. total_size += z->present_pages;
  3077. }
  3078. }
  3079. if (low_kmem_size &&
  3080. total_size > average_size && /* ignore small node */
  3081. low_kmem_size > total_size * 70/100)
  3082. return ZONELIST_ORDER_NODE;
  3083. }
  3084. return ZONELIST_ORDER_ZONE;
  3085. }
  3086. static void set_zonelist_order(void)
  3087. {
  3088. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3089. current_zonelist_order = default_zonelist_order();
  3090. else
  3091. current_zonelist_order = user_zonelist_order;
  3092. }
  3093. static void build_zonelists(pg_data_t *pgdat)
  3094. {
  3095. int j, node, load;
  3096. enum zone_type i;
  3097. nodemask_t used_mask;
  3098. int local_node, prev_node;
  3099. struct zonelist *zonelist;
  3100. int order = current_zonelist_order;
  3101. /* initialize zonelists */
  3102. for (i = 0; i < MAX_ZONELISTS; i++) {
  3103. zonelist = pgdat->node_zonelists + i;
  3104. zonelist->_zonerefs[0].zone = NULL;
  3105. zonelist->_zonerefs[0].zone_idx = 0;
  3106. }
  3107. /* NUMA-aware ordering of nodes */
  3108. local_node = pgdat->node_id;
  3109. load = nr_online_nodes;
  3110. prev_node = local_node;
  3111. nodes_clear(used_mask);
  3112. memset(node_order, 0, sizeof(node_order));
  3113. j = 0;
  3114. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3115. /*
  3116. * We don't want to pressure a particular node.
  3117. * So adding penalty to the first node in same
  3118. * distance group to make it round-robin.
  3119. */
  3120. if (node_distance(local_node, node) !=
  3121. node_distance(local_node, prev_node))
  3122. node_load[node] = load;
  3123. prev_node = node;
  3124. load--;
  3125. if (order == ZONELIST_ORDER_NODE)
  3126. build_zonelists_in_node_order(pgdat, node);
  3127. else
  3128. node_order[j++] = node; /* remember order */
  3129. }
  3130. if (order == ZONELIST_ORDER_ZONE) {
  3131. /* calculate node order -- i.e., DMA last! */
  3132. build_zonelists_in_zone_order(pgdat, j);
  3133. }
  3134. build_thisnode_zonelists(pgdat);
  3135. }
  3136. /* Construct the zonelist performance cache - see further mmzone.h */
  3137. static void build_zonelist_cache(pg_data_t *pgdat)
  3138. {
  3139. struct zonelist *zonelist;
  3140. struct zonelist_cache *zlc;
  3141. struct zoneref *z;
  3142. zonelist = &pgdat->node_zonelists[0];
  3143. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3144. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3145. for (z = zonelist->_zonerefs; z->zone; z++)
  3146. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3147. }
  3148. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3149. /*
  3150. * Return node id of node used for "local" allocations.
  3151. * I.e., first node id of first zone in arg node's generic zonelist.
  3152. * Used for initializing percpu 'numa_mem', which is used primarily
  3153. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3154. */
  3155. int local_memory_node(int node)
  3156. {
  3157. struct zone *zone;
  3158. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3159. gfp_zone(GFP_KERNEL),
  3160. NULL,
  3161. &zone);
  3162. return zone->node;
  3163. }
  3164. #endif
  3165. #else /* CONFIG_NUMA */
  3166. static void set_zonelist_order(void)
  3167. {
  3168. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3169. }
  3170. static void build_zonelists(pg_data_t *pgdat)
  3171. {
  3172. int node, local_node;
  3173. enum zone_type j;
  3174. struct zonelist *zonelist;
  3175. local_node = pgdat->node_id;
  3176. zonelist = &pgdat->node_zonelists[0];
  3177. j = build_zonelists_node(pgdat, zonelist, 0);
  3178. /*
  3179. * Now we build the zonelist so that it contains the zones
  3180. * of all the other nodes.
  3181. * We don't want to pressure a particular node, so when
  3182. * building the zones for node N, we make sure that the
  3183. * zones coming right after the local ones are those from
  3184. * node N+1 (modulo N)
  3185. */
  3186. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3187. if (!node_online(node))
  3188. continue;
  3189. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3190. }
  3191. for (node = 0; node < local_node; node++) {
  3192. if (!node_online(node))
  3193. continue;
  3194. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3195. }
  3196. zonelist->_zonerefs[j].zone = NULL;
  3197. zonelist->_zonerefs[j].zone_idx = 0;
  3198. }
  3199. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3200. static void build_zonelist_cache(pg_data_t *pgdat)
  3201. {
  3202. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3203. }
  3204. #endif /* CONFIG_NUMA */
  3205. /*
  3206. * Boot pageset table. One per cpu which is going to be used for all
  3207. * zones and all nodes. The parameters will be set in such a way
  3208. * that an item put on a list will immediately be handed over to
  3209. * the buddy list. This is safe since pageset manipulation is done
  3210. * with interrupts disabled.
  3211. *
  3212. * The boot_pagesets must be kept even after bootup is complete for
  3213. * unused processors and/or zones. They do play a role for bootstrapping
  3214. * hotplugged processors.
  3215. *
  3216. * zoneinfo_show() and maybe other functions do
  3217. * not check if the processor is online before following the pageset pointer.
  3218. * Other parts of the kernel may not check if the zone is available.
  3219. */
  3220. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3221. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3222. static void setup_zone_pageset(struct zone *zone);
  3223. /*
  3224. * Global mutex to protect against size modification of zonelists
  3225. * as well as to serialize pageset setup for the new populated zone.
  3226. */
  3227. DEFINE_MUTEX(zonelists_mutex);
  3228. /* return values int ....just for stop_machine() */
  3229. static int __build_all_zonelists(void *data)
  3230. {
  3231. int nid;
  3232. int cpu;
  3233. pg_data_t *self = data;
  3234. #ifdef CONFIG_NUMA
  3235. memset(node_load, 0, sizeof(node_load));
  3236. #endif
  3237. if (self && !node_online(self->node_id)) {
  3238. build_zonelists(self);
  3239. build_zonelist_cache(self);
  3240. }
  3241. for_each_online_node(nid) {
  3242. pg_data_t *pgdat = NODE_DATA(nid);
  3243. build_zonelists(pgdat);
  3244. build_zonelist_cache(pgdat);
  3245. }
  3246. /*
  3247. * Initialize the boot_pagesets that are going to be used
  3248. * for bootstrapping processors. The real pagesets for
  3249. * each zone will be allocated later when the per cpu
  3250. * allocator is available.
  3251. *
  3252. * boot_pagesets are used also for bootstrapping offline
  3253. * cpus if the system is already booted because the pagesets
  3254. * are needed to initialize allocators on a specific cpu too.
  3255. * F.e. the percpu allocator needs the page allocator which
  3256. * needs the percpu allocator in order to allocate its pagesets
  3257. * (a chicken-egg dilemma).
  3258. */
  3259. for_each_possible_cpu(cpu) {
  3260. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3261. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3262. /*
  3263. * We now know the "local memory node" for each node--
  3264. * i.e., the node of the first zone in the generic zonelist.
  3265. * Set up numa_mem percpu variable for on-line cpus. During
  3266. * boot, only the boot cpu should be on-line; we'll init the
  3267. * secondary cpus' numa_mem as they come on-line. During
  3268. * node/memory hotplug, we'll fixup all on-line cpus.
  3269. */
  3270. if (cpu_online(cpu))
  3271. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3272. #endif
  3273. }
  3274. return 0;
  3275. }
  3276. /*
  3277. * Called with zonelists_mutex held always
  3278. * unless system_state == SYSTEM_BOOTING.
  3279. */
  3280. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3281. {
  3282. set_zonelist_order();
  3283. if (system_state == SYSTEM_BOOTING) {
  3284. __build_all_zonelists(NULL);
  3285. mminit_verify_zonelist();
  3286. cpuset_init_current_mems_allowed();
  3287. } else {
  3288. #ifdef CONFIG_MEMORY_HOTPLUG
  3289. if (zone)
  3290. setup_zone_pageset(zone);
  3291. #endif
  3292. /* we have to stop all cpus to guarantee there is no user
  3293. of zonelist */
  3294. stop_machine(__build_all_zonelists, pgdat, NULL);
  3295. /* cpuset refresh routine should be here */
  3296. }
  3297. vm_total_pages = nr_free_pagecache_pages();
  3298. /*
  3299. * Disable grouping by mobility if the number of pages in the
  3300. * system is too low to allow the mechanism to work. It would be
  3301. * more accurate, but expensive to check per-zone. This check is
  3302. * made on memory-hotadd so a system can start with mobility
  3303. * disabled and enable it later
  3304. */
  3305. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3306. page_group_by_mobility_disabled = 1;
  3307. else
  3308. page_group_by_mobility_disabled = 0;
  3309. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3310. "Total pages: %ld\n",
  3311. nr_online_nodes,
  3312. zonelist_order_name[current_zonelist_order],
  3313. page_group_by_mobility_disabled ? "off" : "on",
  3314. vm_total_pages);
  3315. #ifdef CONFIG_NUMA
  3316. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3317. #endif
  3318. }
  3319. /*
  3320. * Helper functions to size the waitqueue hash table.
  3321. * Essentially these want to choose hash table sizes sufficiently
  3322. * large so that collisions trying to wait on pages are rare.
  3323. * But in fact, the number of active page waitqueues on typical
  3324. * systems is ridiculously low, less than 200. So this is even
  3325. * conservative, even though it seems large.
  3326. *
  3327. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3328. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3329. */
  3330. #define PAGES_PER_WAITQUEUE 256
  3331. #ifndef CONFIG_MEMORY_HOTPLUG
  3332. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3333. {
  3334. unsigned long size = 1;
  3335. pages /= PAGES_PER_WAITQUEUE;
  3336. while (size < pages)
  3337. size <<= 1;
  3338. /*
  3339. * Once we have dozens or even hundreds of threads sleeping
  3340. * on IO we've got bigger problems than wait queue collision.
  3341. * Limit the size of the wait table to a reasonable size.
  3342. */
  3343. size = min(size, 4096UL);
  3344. return max(size, 4UL);
  3345. }
  3346. #else
  3347. /*
  3348. * A zone's size might be changed by hot-add, so it is not possible to determine
  3349. * a suitable size for its wait_table. So we use the maximum size now.
  3350. *
  3351. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3352. *
  3353. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3354. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3355. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3356. *
  3357. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3358. * or more by the traditional way. (See above). It equals:
  3359. *
  3360. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3361. * ia64(16K page size) : = ( 8G + 4M)byte.
  3362. * powerpc (64K page size) : = (32G +16M)byte.
  3363. */
  3364. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3365. {
  3366. return 4096UL;
  3367. }
  3368. #endif
  3369. /*
  3370. * This is an integer logarithm so that shifts can be used later
  3371. * to extract the more random high bits from the multiplicative
  3372. * hash function before the remainder is taken.
  3373. */
  3374. static inline unsigned long wait_table_bits(unsigned long size)
  3375. {
  3376. return ffz(~size);
  3377. }
  3378. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3379. /*
  3380. * Check if a pageblock contains reserved pages
  3381. */
  3382. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3383. {
  3384. unsigned long pfn;
  3385. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3386. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3387. return 1;
  3388. }
  3389. return 0;
  3390. }
  3391. /*
  3392. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3393. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3394. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3395. * higher will lead to a bigger reserve which will get freed as contiguous
  3396. * blocks as reclaim kicks in
  3397. */
  3398. static void setup_zone_migrate_reserve(struct zone *zone)
  3399. {
  3400. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3401. struct page *page;
  3402. unsigned long block_migratetype;
  3403. int reserve;
  3404. /*
  3405. * Get the start pfn, end pfn and the number of blocks to reserve
  3406. * We have to be careful to be aligned to pageblock_nr_pages to
  3407. * make sure that we always check pfn_valid for the first page in
  3408. * the block.
  3409. */
  3410. start_pfn = zone->zone_start_pfn;
  3411. end_pfn = zone_end_pfn(zone);
  3412. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3413. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3414. pageblock_order;
  3415. /*
  3416. * Reserve blocks are generally in place to help high-order atomic
  3417. * allocations that are short-lived. A min_free_kbytes value that
  3418. * would result in more than 2 reserve blocks for atomic allocations
  3419. * is assumed to be in place to help anti-fragmentation for the
  3420. * future allocation of hugepages at runtime.
  3421. */
  3422. reserve = min(2, reserve);
  3423. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3424. if (!pfn_valid(pfn))
  3425. continue;
  3426. page = pfn_to_page(pfn);
  3427. /* Watch out for overlapping nodes */
  3428. if (page_to_nid(page) != zone_to_nid(zone))
  3429. continue;
  3430. block_migratetype = get_pageblock_migratetype(page);
  3431. /* Only test what is necessary when the reserves are not met */
  3432. if (reserve > 0) {
  3433. /*
  3434. * Blocks with reserved pages will never free, skip
  3435. * them.
  3436. */
  3437. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3438. if (pageblock_is_reserved(pfn, block_end_pfn))
  3439. continue;
  3440. /* If this block is reserved, account for it */
  3441. if (block_migratetype == MIGRATE_RESERVE) {
  3442. reserve--;
  3443. continue;
  3444. }
  3445. /* Suitable for reserving if this block is movable */
  3446. if (block_migratetype == MIGRATE_MOVABLE) {
  3447. set_pageblock_migratetype(page,
  3448. MIGRATE_RESERVE);
  3449. move_freepages_block(zone, page,
  3450. MIGRATE_RESERVE);
  3451. reserve--;
  3452. continue;
  3453. }
  3454. }
  3455. /*
  3456. * If the reserve is met and this is a previous reserved block,
  3457. * take it back
  3458. */
  3459. if (block_migratetype == MIGRATE_RESERVE) {
  3460. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3461. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3462. }
  3463. }
  3464. }
  3465. /*
  3466. * Initially all pages are reserved - free ones are freed
  3467. * up by free_all_bootmem() once the early boot process is
  3468. * done. Non-atomic initialization, single-pass.
  3469. */
  3470. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3471. unsigned long start_pfn, enum memmap_context context)
  3472. {
  3473. struct page *page;
  3474. unsigned long end_pfn = start_pfn + size;
  3475. unsigned long pfn;
  3476. struct zone *z;
  3477. if (highest_memmap_pfn < end_pfn - 1)
  3478. highest_memmap_pfn = end_pfn - 1;
  3479. z = &NODE_DATA(nid)->node_zones[zone];
  3480. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3481. /*
  3482. * There can be holes in boot-time mem_map[]s
  3483. * handed to this function. They do not
  3484. * exist on hotplugged memory.
  3485. */
  3486. if (context == MEMMAP_EARLY) {
  3487. if (!early_pfn_valid(pfn))
  3488. continue;
  3489. if (!early_pfn_in_nid(pfn, nid))
  3490. continue;
  3491. }
  3492. page = pfn_to_page(pfn);
  3493. set_page_links(page, zone, nid, pfn);
  3494. mminit_verify_page_links(page, zone, nid, pfn);
  3495. init_page_count(page);
  3496. page_mapcount_reset(page);
  3497. page_nid_reset_last(page);
  3498. SetPageReserved(page);
  3499. /*
  3500. * Mark the block movable so that blocks are reserved for
  3501. * movable at startup. This will force kernel allocations
  3502. * to reserve their blocks rather than leaking throughout
  3503. * the address space during boot when many long-lived
  3504. * kernel allocations are made. Later some blocks near
  3505. * the start are marked MIGRATE_RESERVE by
  3506. * setup_zone_migrate_reserve()
  3507. *
  3508. * bitmap is created for zone's valid pfn range. but memmap
  3509. * can be created for invalid pages (for alignment)
  3510. * check here not to call set_pageblock_migratetype() against
  3511. * pfn out of zone.
  3512. */
  3513. if ((z->zone_start_pfn <= pfn)
  3514. && (pfn < zone_end_pfn(z))
  3515. && !(pfn & (pageblock_nr_pages - 1)))
  3516. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3517. INIT_LIST_HEAD(&page->lru);
  3518. #ifdef WANT_PAGE_VIRTUAL
  3519. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3520. if (!is_highmem_idx(zone))
  3521. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3522. #endif
  3523. }
  3524. }
  3525. static void __meminit zone_init_free_lists(struct zone *zone)
  3526. {
  3527. int order, t;
  3528. for_each_migratetype_order(order, t) {
  3529. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3530. zone->free_area[order].nr_free = 0;
  3531. }
  3532. }
  3533. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3534. #define memmap_init(size, nid, zone, start_pfn) \
  3535. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3536. #endif
  3537. static int __meminit zone_batchsize(struct zone *zone)
  3538. {
  3539. #ifdef CONFIG_MMU
  3540. int batch;
  3541. /*
  3542. * The per-cpu-pages pools are set to around 1000th of the
  3543. * size of the zone. But no more than 1/2 of a meg.
  3544. *
  3545. * OK, so we don't know how big the cache is. So guess.
  3546. */
  3547. batch = zone->managed_pages / 1024;
  3548. if (batch * PAGE_SIZE > 512 * 1024)
  3549. batch = (512 * 1024) / PAGE_SIZE;
  3550. batch /= 4; /* We effectively *= 4 below */
  3551. if (batch < 1)
  3552. batch = 1;
  3553. /*
  3554. * Clamp the batch to a 2^n - 1 value. Having a power
  3555. * of 2 value was found to be more likely to have
  3556. * suboptimal cache aliasing properties in some cases.
  3557. *
  3558. * For example if 2 tasks are alternately allocating
  3559. * batches of pages, one task can end up with a lot
  3560. * of pages of one half of the possible page colors
  3561. * and the other with pages of the other colors.
  3562. */
  3563. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3564. return batch;
  3565. #else
  3566. /* The deferral and batching of frees should be suppressed under NOMMU
  3567. * conditions.
  3568. *
  3569. * The problem is that NOMMU needs to be able to allocate large chunks
  3570. * of contiguous memory as there's no hardware page translation to
  3571. * assemble apparent contiguous memory from discontiguous pages.
  3572. *
  3573. * Queueing large contiguous runs of pages for batching, however,
  3574. * causes the pages to actually be freed in smaller chunks. As there
  3575. * can be a significant delay between the individual batches being
  3576. * recycled, this leads to the once large chunks of space being
  3577. * fragmented and becoming unavailable for high-order allocations.
  3578. */
  3579. return 0;
  3580. #endif
  3581. }
  3582. /*
  3583. * pcp->high and pcp->batch values are related and dependent on one another:
  3584. * ->batch must never be higher then ->high.
  3585. * The following function updates them in a safe manner without read side
  3586. * locking.
  3587. *
  3588. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3589. * those fields changing asynchronously (acording the the above rule).
  3590. *
  3591. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3592. * outside of boot time (or some other assurance that no concurrent updaters
  3593. * exist).
  3594. */
  3595. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3596. unsigned long batch)
  3597. {
  3598. /* start with a fail safe value for batch */
  3599. pcp->batch = 1;
  3600. smp_wmb();
  3601. /* Update high, then batch, in order */
  3602. pcp->high = high;
  3603. smp_wmb();
  3604. pcp->batch = batch;
  3605. }
  3606. /* a companion to pageset_set_high() */
  3607. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3608. {
  3609. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3610. }
  3611. static void pageset_init(struct per_cpu_pageset *p)
  3612. {
  3613. struct per_cpu_pages *pcp;
  3614. int migratetype;
  3615. memset(p, 0, sizeof(*p));
  3616. pcp = &p->pcp;
  3617. pcp->count = 0;
  3618. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3619. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3620. }
  3621. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3622. {
  3623. pageset_init(p);
  3624. pageset_set_batch(p, batch);
  3625. }
  3626. /*
  3627. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3628. * to the value high for the pageset p.
  3629. */
  3630. static void pageset_set_high(struct per_cpu_pageset *p,
  3631. unsigned long high)
  3632. {
  3633. unsigned long batch = max(1UL, high / 4);
  3634. if ((high / 4) > (PAGE_SHIFT * 8))
  3635. batch = PAGE_SHIFT * 8;
  3636. pageset_update(&p->pcp, high, batch);
  3637. }
  3638. static void __meminit pageset_set_high_and_batch(struct zone *zone,
  3639. struct per_cpu_pageset *pcp)
  3640. {
  3641. if (percpu_pagelist_fraction)
  3642. pageset_set_high(pcp,
  3643. (zone->managed_pages /
  3644. percpu_pagelist_fraction));
  3645. else
  3646. pageset_set_batch(pcp, zone_batchsize(zone));
  3647. }
  3648. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3649. {
  3650. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3651. pageset_init(pcp);
  3652. pageset_set_high_and_batch(zone, pcp);
  3653. }
  3654. static void __meminit setup_zone_pageset(struct zone *zone)
  3655. {
  3656. int cpu;
  3657. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3658. for_each_possible_cpu(cpu)
  3659. zone_pageset_init(zone, cpu);
  3660. }
  3661. /*
  3662. * Allocate per cpu pagesets and initialize them.
  3663. * Before this call only boot pagesets were available.
  3664. */
  3665. void __init setup_per_cpu_pageset(void)
  3666. {
  3667. struct zone *zone;
  3668. for_each_populated_zone(zone)
  3669. setup_zone_pageset(zone);
  3670. }
  3671. static noinline __init_refok
  3672. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3673. {
  3674. int i;
  3675. struct pglist_data *pgdat = zone->zone_pgdat;
  3676. size_t alloc_size;
  3677. /*
  3678. * The per-page waitqueue mechanism uses hashed waitqueues
  3679. * per zone.
  3680. */
  3681. zone->wait_table_hash_nr_entries =
  3682. wait_table_hash_nr_entries(zone_size_pages);
  3683. zone->wait_table_bits =
  3684. wait_table_bits(zone->wait_table_hash_nr_entries);
  3685. alloc_size = zone->wait_table_hash_nr_entries
  3686. * sizeof(wait_queue_head_t);
  3687. if (!slab_is_available()) {
  3688. zone->wait_table = (wait_queue_head_t *)
  3689. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3690. } else {
  3691. /*
  3692. * This case means that a zone whose size was 0 gets new memory
  3693. * via memory hot-add.
  3694. * But it may be the case that a new node was hot-added. In
  3695. * this case vmalloc() will not be able to use this new node's
  3696. * memory - this wait_table must be initialized to use this new
  3697. * node itself as well.
  3698. * To use this new node's memory, further consideration will be
  3699. * necessary.
  3700. */
  3701. zone->wait_table = vmalloc(alloc_size);
  3702. }
  3703. if (!zone->wait_table)
  3704. return -ENOMEM;
  3705. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3706. init_waitqueue_head(zone->wait_table + i);
  3707. return 0;
  3708. }
  3709. static __meminit void zone_pcp_init(struct zone *zone)
  3710. {
  3711. /*
  3712. * per cpu subsystem is not up at this point. The following code
  3713. * relies on the ability of the linker to provide the
  3714. * offset of a (static) per cpu variable into the per cpu area.
  3715. */
  3716. zone->pageset = &boot_pageset;
  3717. if (zone->present_pages)
  3718. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3719. zone->name, zone->present_pages,
  3720. zone_batchsize(zone));
  3721. }
  3722. int __meminit init_currently_empty_zone(struct zone *zone,
  3723. unsigned long zone_start_pfn,
  3724. unsigned long size,
  3725. enum memmap_context context)
  3726. {
  3727. struct pglist_data *pgdat = zone->zone_pgdat;
  3728. int ret;
  3729. ret = zone_wait_table_init(zone, size);
  3730. if (ret)
  3731. return ret;
  3732. pgdat->nr_zones = zone_idx(zone) + 1;
  3733. zone->zone_start_pfn = zone_start_pfn;
  3734. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3735. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3736. pgdat->node_id,
  3737. (unsigned long)zone_idx(zone),
  3738. zone_start_pfn, (zone_start_pfn + size));
  3739. zone_init_free_lists(zone);
  3740. return 0;
  3741. }
  3742. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3743. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3744. /*
  3745. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3746. * Architectures may implement their own version but if add_active_range()
  3747. * was used and there are no special requirements, this is a convenient
  3748. * alternative
  3749. */
  3750. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3751. {
  3752. unsigned long start_pfn, end_pfn;
  3753. int i, nid;
  3754. /*
  3755. * NOTE: The following SMP-unsafe globals are only used early in boot
  3756. * when the kernel is running single-threaded.
  3757. */
  3758. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3759. static int __meminitdata last_nid;
  3760. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3761. return last_nid;
  3762. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3763. if (start_pfn <= pfn && pfn < end_pfn) {
  3764. last_start_pfn = start_pfn;
  3765. last_end_pfn = end_pfn;
  3766. last_nid = nid;
  3767. return nid;
  3768. }
  3769. /* This is a memory hole */
  3770. return -1;
  3771. }
  3772. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3773. int __meminit early_pfn_to_nid(unsigned long pfn)
  3774. {
  3775. int nid;
  3776. nid = __early_pfn_to_nid(pfn);
  3777. if (nid >= 0)
  3778. return nid;
  3779. /* just returns 0 */
  3780. return 0;
  3781. }
  3782. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3783. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3784. {
  3785. int nid;
  3786. nid = __early_pfn_to_nid(pfn);
  3787. if (nid >= 0 && nid != node)
  3788. return false;
  3789. return true;
  3790. }
  3791. #endif
  3792. /**
  3793. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3794. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3795. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3796. *
  3797. * If an architecture guarantees that all ranges registered with
  3798. * add_active_ranges() contain no holes and may be freed, this
  3799. * this function may be used instead of calling free_bootmem() manually.
  3800. */
  3801. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3802. {
  3803. unsigned long start_pfn, end_pfn;
  3804. int i, this_nid;
  3805. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3806. start_pfn = min(start_pfn, max_low_pfn);
  3807. end_pfn = min(end_pfn, max_low_pfn);
  3808. if (start_pfn < end_pfn)
  3809. free_bootmem_node(NODE_DATA(this_nid),
  3810. PFN_PHYS(start_pfn),
  3811. (end_pfn - start_pfn) << PAGE_SHIFT);
  3812. }
  3813. }
  3814. /**
  3815. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3816. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3817. *
  3818. * If an architecture guarantees that all ranges registered with
  3819. * add_active_ranges() contain no holes and may be freed, this
  3820. * function may be used instead of calling memory_present() manually.
  3821. */
  3822. void __init sparse_memory_present_with_active_regions(int nid)
  3823. {
  3824. unsigned long start_pfn, end_pfn;
  3825. int i, this_nid;
  3826. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3827. memory_present(this_nid, start_pfn, end_pfn);
  3828. }
  3829. /**
  3830. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3831. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3832. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3833. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3834. *
  3835. * It returns the start and end page frame of a node based on information
  3836. * provided by an arch calling add_active_range(). If called for a node
  3837. * with no available memory, a warning is printed and the start and end
  3838. * PFNs will be 0.
  3839. */
  3840. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3841. unsigned long *start_pfn, unsigned long *end_pfn)
  3842. {
  3843. unsigned long this_start_pfn, this_end_pfn;
  3844. int i;
  3845. *start_pfn = -1UL;
  3846. *end_pfn = 0;
  3847. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3848. *start_pfn = min(*start_pfn, this_start_pfn);
  3849. *end_pfn = max(*end_pfn, this_end_pfn);
  3850. }
  3851. if (*start_pfn == -1UL)
  3852. *start_pfn = 0;
  3853. }
  3854. /*
  3855. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3856. * assumption is made that zones within a node are ordered in monotonic
  3857. * increasing memory addresses so that the "highest" populated zone is used
  3858. */
  3859. static void __init find_usable_zone_for_movable(void)
  3860. {
  3861. int zone_index;
  3862. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3863. if (zone_index == ZONE_MOVABLE)
  3864. continue;
  3865. if (arch_zone_highest_possible_pfn[zone_index] >
  3866. arch_zone_lowest_possible_pfn[zone_index])
  3867. break;
  3868. }
  3869. VM_BUG_ON(zone_index == -1);
  3870. movable_zone = zone_index;
  3871. }
  3872. /*
  3873. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3874. * because it is sized independent of architecture. Unlike the other zones,
  3875. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3876. * in each node depending on the size of each node and how evenly kernelcore
  3877. * is distributed. This helper function adjusts the zone ranges
  3878. * provided by the architecture for a given node by using the end of the
  3879. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3880. * zones within a node are in order of monotonic increases memory addresses
  3881. */
  3882. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3883. unsigned long zone_type,
  3884. unsigned long node_start_pfn,
  3885. unsigned long node_end_pfn,
  3886. unsigned long *zone_start_pfn,
  3887. unsigned long *zone_end_pfn)
  3888. {
  3889. /* Only adjust if ZONE_MOVABLE is on this node */
  3890. if (zone_movable_pfn[nid]) {
  3891. /* Size ZONE_MOVABLE */
  3892. if (zone_type == ZONE_MOVABLE) {
  3893. *zone_start_pfn = zone_movable_pfn[nid];
  3894. *zone_end_pfn = min(node_end_pfn,
  3895. arch_zone_highest_possible_pfn[movable_zone]);
  3896. /* Adjust for ZONE_MOVABLE starting within this range */
  3897. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3898. *zone_end_pfn > zone_movable_pfn[nid]) {
  3899. *zone_end_pfn = zone_movable_pfn[nid];
  3900. /* Check if this whole range is within ZONE_MOVABLE */
  3901. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3902. *zone_start_pfn = *zone_end_pfn;
  3903. }
  3904. }
  3905. /*
  3906. * Return the number of pages a zone spans in a node, including holes
  3907. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3908. */
  3909. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3910. unsigned long zone_type,
  3911. unsigned long node_start_pfn,
  3912. unsigned long node_end_pfn,
  3913. unsigned long *ignored)
  3914. {
  3915. unsigned long zone_start_pfn, zone_end_pfn;
  3916. /* Get the start and end of the zone */
  3917. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3918. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3919. adjust_zone_range_for_zone_movable(nid, zone_type,
  3920. node_start_pfn, node_end_pfn,
  3921. &zone_start_pfn, &zone_end_pfn);
  3922. /* Check that this node has pages within the zone's required range */
  3923. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3924. return 0;
  3925. /* Move the zone boundaries inside the node if necessary */
  3926. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3927. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3928. /* Return the spanned pages */
  3929. return zone_end_pfn - zone_start_pfn;
  3930. }
  3931. /*
  3932. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3933. * then all holes in the requested range will be accounted for.
  3934. */
  3935. unsigned long __meminit __absent_pages_in_range(int nid,
  3936. unsigned long range_start_pfn,
  3937. unsigned long range_end_pfn)
  3938. {
  3939. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3940. unsigned long start_pfn, end_pfn;
  3941. int i;
  3942. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3943. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3944. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3945. nr_absent -= end_pfn - start_pfn;
  3946. }
  3947. return nr_absent;
  3948. }
  3949. /**
  3950. * absent_pages_in_range - Return number of page frames in holes within a range
  3951. * @start_pfn: The start PFN to start searching for holes
  3952. * @end_pfn: The end PFN to stop searching for holes
  3953. *
  3954. * It returns the number of pages frames in memory holes within a range.
  3955. */
  3956. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3957. unsigned long end_pfn)
  3958. {
  3959. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3960. }
  3961. /* Return the number of page frames in holes in a zone on a node */
  3962. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3963. unsigned long zone_type,
  3964. unsigned long node_start_pfn,
  3965. unsigned long node_end_pfn,
  3966. unsigned long *ignored)
  3967. {
  3968. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3969. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3970. unsigned long zone_start_pfn, zone_end_pfn;
  3971. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3972. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3973. adjust_zone_range_for_zone_movable(nid, zone_type,
  3974. node_start_pfn, node_end_pfn,
  3975. &zone_start_pfn, &zone_end_pfn);
  3976. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3977. }
  3978. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3979. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3980. unsigned long zone_type,
  3981. unsigned long node_start_pfn,
  3982. unsigned long node_end_pfn,
  3983. unsigned long *zones_size)
  3984. {
  3985. return zones_size[zone_type];
  3986. }
  3987. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3988. unsigned long zone_type,
  3989. unsigned long node_start_pfn,
  3990. unsigned long node_end_pfn,
  3991. unsigned long *zholes_size)
  3992. {
  3993. if (!zholes_size)
  3994. return 0;
  3995. return zholes_size[zone_type];
  3996. }
  3997. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3998. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3999. unsigned long node_start_pfn,
  4000. unsigned long node_end_pfn,
  4001. unsigned long *zones_size,
  4002. unsigned long *zholes_size)
  4003. {
  4004. unsigned long realtotalpages, totalpages = 0;
  4005. enum zone_type i;
  4006. for (i = 0; i < MAX_NR_ZONES; i++)
  4007. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4008. node_start_pfn,
  4009. node_end_pfn,
  4010. zones_size);
  4011. pgdat->node_spanned_pages = totalpages;
  4012. realtotalpages = totalpages;
  4013. for (i = 0; i < MAX_NR_ZONES; i++)
  4014. realtotalpages -=
  4015. zone_absent_pages_in_node(pgdat->node_id, i,
  4016. node_start_pfn, node_end_pfn,
  4017. zholes_size);
  4018. pgdat->node_present_pages = realtotalpages;
  4019. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4020. realtotalpages);
  4021. }
  4022. #ifndef CONFIG_SPARSEMEM
  4023. /*
  4024. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4025. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4026. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4027. * round what is now in bits to nearest long in bits, then return it in
  4028. * bytes.
  4029. */
  4030. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4031. {
  4032. unsigned long usemapsize;
  4033. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4034. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4035. usemapsize = usemapsize >> pageblock_order;
  4036. usemapsize *= NR_PAGEBLOCK_BITS;
  4037. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4038. return usemapsize / 8;
  4039. }
  4040. static void __init setup_usemap(struct pglist_data *pgdat,
  4041. struct zone *zone,
  4042. unsigned long zone_start_pfn,
  4043. unsigned long zonesize)
  4044. {
  4045. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4046. zone->pageblock_flags = NULL;
  4047. if (usemapsize)
  4048. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  4049. usemapsize);
  4050. }
  4051. #else
  4052. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4053. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4054. #endif /* CONFIG_SPARSEMEM */
  4055. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4056. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4057. void __paginginit set_pageblock_order(void)
  4058. {
  4059. unsigned int order;
  4060. /* Check that pageblock_nr_pages has not already been setup */
  4061. if (pageblock_order)
  4062. return;
  4063. if (HPAGE_SHIFT > PAGE_SHIFT)
  4064. order = HUGETLB_PAGE_ORDER;
  4065. else
  4066. order = MAX_ORDER - 1;
  4067. /*
  4068. * Assume the largest contiguous order of interest is a huge page.
  4069. * This value may be variable depending on boot parameters on IA64 and
  4070. * powerpc.
  4071. */
  4072. pageblock_order = order;
  4073. }
  4074. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4075. /*
  4076. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4077. * is unused as pageblock_order is set at compile-time. See
  4078. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4079. * the kernel config
  4080. */
  4081. void __paginginit set_pageblock_order(void)
  4082. {
  4083. }
  4084. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4085. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4086. unsigned long present_pages)
  4087. {
  4088. unsigned long pages = spanned_pages;
  4089. /*
  4090. * Provide a more accurate estimation if there are holes within
  4091. * the zone and SPARSEMEM is in use. If there are holes within the
  4092. * zone, each populated memory region may cost us one or two extra
  4093. * memmap pages due to alignment because memmap pages for each
  4094. * populated regions may not naturally algined on page boundary.
  4095. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4096. */
  4097. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4098. IS_ENABLED(CONFIG_SPARSEMEM))
  4099. pages = present_pages;
  4100. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4101. }
  4102. /*
  4103. * Set up the zone data structures:
  4104. * - mark all pages reserved
  4105. * - mark all memory queues empty
  4106. * - clear the memory bitmaps
  4107. *
  4108. * NOTE: pgdat should get zeroed by caller.
  4109. */
  4110. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4111. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4112. unsigned long *zones_size, unsigned long *zholes_size)
  4113. {
  4114. enum zone_type j;
  4115. int nid = pgdat->node_id;
  4116. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4117. int ret;
  4118. pgdat_resize_init(pgdat);
  4119. #ifdef CONFIG_NUMA_BALANCING
  4120. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4121. pgdat->numabalancing_migrate_nr_pages = 0;
  4122. pgdat->numabalancing_migrate_next_window = jiffies;
  4123. #endif
  4124. init_waitqueue_head(&pgdat->kswapd_wait);
  4125. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4126. pgdat_page_cgroup_init(pgdat);
  4127. for (j = 0; j < MAX_NR_ZONES; j++) {
  4128. struct zone *zone = pgdat->node_zones + j;
  4129. unsigned long size, realsize, freesize, memmap_pages;
  4130. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4131. node_end_pfn, zones_size);
  4132. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4133. node_start_pfn,
  4134. node_end_pfn,
  4135. zholes_size);
  4136. /*
  4137. * Adjust freesize so that it accounts for how much memory
  4138. * is used by this zone for memmap. This affects the watermark
  4139. * and per-cpu initialisations
  4140. */
  4141. memmap_pages = calc_memmap_size(size, realsize);
  4142. if (freesize >= memmap_pages) {
  4143. freesize -= memmap_pages;
  4144. if (memmap_pages)
  4145. printk(KERN_DEBUG
  4146. " %s zone: %lu pages used for memmap\n",
  4147. zone_names[j], memmap_pages);
  4148. } else
  4149. printk(KERN_WARNING
  4150. " %s zone: %lu pages exceeds freesize %lu\n",
  4151. zone_names[j], memmap_pages, freesize);
  4152. /* Account for reserved pages */
  4153. if (j == 0 && freesize > dma_reserve) {
  4154. freesize -= dma_reserve;
  4155. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4156. zone_names[0], dma_reserve);
  4157. }
  4158. if (!is_highmem_idx(j))
  4159. nr_kernel_pages += freesize;
  4160. /* Charge for highmem memmap if there are enough kernel pages */
  4161. else if (nr_kernel_pages > memmap_pages * 2)
  4162. nr_kernel_pages -= memmap_pages;
  4163. nr_all_pages += freesize;
  4164. zone->spanned_pages = size;
  4165. zone->present_pages = realsize;
  4166. /*
  4167. * Set an approximate value for lowmem here, it will be adjusted
  4168. * when the bootmem allocator frees pages into the buddy system.
  4169. * And all highmem pages will be managed by the buddy system.
  4170. */
  4171. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4172. #ifdef CONFIG_NUMA
  4173. zone->node = nid;
  4174. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4175. / 100;
  4176. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4177. #endif
  4178. zone->name = zone_names[j];
  4179. spin_lock_init(&zone->lock);
  4180. spin_lock_init(&zone->lru_lock);
  4181. zone_seqlock_init(zone);
  4182. zone->zone_pgdat = pgdat;
  4183. zone_pcp_init(zone);
  4184. /* For bootup, initialized properly in watermark setup */
  4185. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4186. lruvec_init(&zone->lruvec);
  4187. if (!size)
  4188. continue;
  4189. set_pageblock_order();
  4190. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4191. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4192. size, MEMMAP_EARLY);
  4193. BUG_ON(ret);
  4194. memmap_init(size, nid, j, zone_start_pfn);
  4195. zone_start_pfn += size;
  4196. }
  4197. }
  4198. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4199. {
  4200. /* Skip empty nodes */
  4201. if (!pgdat->node_spanned_pages)
  4202. return;
  4203. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4204. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4205. if (!pgdat->node_mem_map) {
  4206. unsigned long size, start, end;
  4207. struct page *map;
  4208. /*
  4209. * The zone's endpoints aren't required to be MAX_ORDER
  4210. * aligned but the node_mem_map endpoints must be in order
  4211. * for the buddy allocator to function correctly.
  4212. */
  4213. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4214. end = pgdat_end_pfn(pgdat);
  4215. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4216. size = (end - start) * sizeof(struct page);
  4217. map = alloc_remap(pgdat->node_id, size);
  4218. if (!map)
  4219. map = alloc_bootmem_node_nopanic(pgdat, size);
  4220. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4221. }
  4222. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4223. /*
  4224. * With no DISCONTIG, the global mem_map is just set as node 0's
  4225. */
  4226. if (pgdat == NODE_DATA(0)) {
  4227. mem_map = NODE_DATA(0)->node_mem_map;
  4228. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4229. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4230. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4231. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4232. }
  4233. #endif
  4234. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4235. }
  4236. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4237. unsigned long node_start_pfn, unsigned long *zholes_size)
  4238. {
  4239. pg_data_t *pgdat = NODE_DATA(nid);
  4240. unsigned long start_pfn = 0;
  4241. unsigned long end_pfn = 0;
  4242. /* pg_data_t should be reset to zero when it's allocated */
  4243. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4244. pgdat->node_id = nid;
  4245. pgdat->node_start_pfn = node_start_pfn;
  4246. init_zone_allows_reclaim(nid);
  4247. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4248. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4249. #endif
  4250. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4251. zones_size, zholes_size);
  4252. alloc_node_mem_map(pgdat);
  4253. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4254. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4255. nid, (unsigned long)pgdat,
  4256. (unsigned long)pgdat->node_mem_map);
  4257. #endif
  4258. free_area_init_core(pgdat, start_pfn, end_pfn,
  4259. zones_size, zholes_size);
  4260. }
  4261. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4262. #if MAX_NUMNODES > 1
  4263. /*
  4264. * Figure out the number of possible node ids.
  4265. */
  4266. void __init setup_nr_node_ids(void)
  4267. {
  4268. unsigned int node;
  4269. unsigned int highest = 0;
  4270. for_each_node_mask(node, node_possible_map)
  4271. highest = node;
  4272. nr_node_ids = highest + 1;
  4273. }
  4274. #endif
  4275. /**
  4276. * node_map_pfn_alignment - determine the maximum internode alignment
  4277. *
  4278. * This function should be called after node map is populated and sorted.
  4279. * It calculates the maximum power of two alignment which can distinguish
  4280. * all the nodes.
  4281. *
  4282. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4283. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4284. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4285. * shifted, 1GiB is enough and this function will indicate so.
  4286. *
  4287. * This is used to test whether pfn -> nid mapping of the chosen memory
  4288. * model has fine enough granularity to avoid incorrect mapping for the
  4289. * populated node map.
  4290. *
  4291. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4292. * requirement (single node).
  4293. */
  4294. unsigned long __init node_map_pfn_alignment(void)
  4295. {
  4296. unsigned long accl_mask = 0, last_end = 0;
  4297. unsigned long start, end, mask;
  4298. int last_nid = -1;
  4299. int i, nid;
  4300. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4301. if (!start || last_nid < 0 || last_nid == nid) {
  4302. last_nid = nid;
  4303. last_end = end;
  4304. continue;
  4305. }
  4306. /*
  4307. * Start with a mask granular enough to pin-point to the
  4308. * start pfn and tick off bits one-by-one until it becomes
  4309. * too coarse to separate the current node from the last.
  4310. */
  4311. mask = ~((1 << __ffs(start)) - 1);
  4312. while (mask && last_end <= (start & (mask << 1)))
  4313. mask <<= 1;
  4314. /* accumulate all internode masks */
  4315. accl_mask |= mask;
  4316. }
  4317. /* convert mask to number of pages */
  4318. return ~accl_mask + 1;
  4319. }
  4320. /* Find the lowest pfn for a node */
  4321. static unsigned long __init find_min_pfn_for_node(int nid)
  4322. {
  4323. unsigned long min_pfn = ULONG_MAX;
  4324. unsigned long start_pfn;
  4325. int i;
  4326. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4327. min_pfn = min(min_pfn, start_pfn);
  4328. if (min_pfn == ULONG_MAX) {
  4329. printk(KERN_WARNING
  4330. "Could not find start_pfn for node %d\n", nid);
  4331. return 0;
  4332. }
  4333. return min_pfn;
  4334. }
  4335. /**
  4336. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4337. *
  4338. * It returns the minimum PFN based on information provided via
  4339. * add_active_range().
  4340. */
  4341. unsigned long __init find_min_pfn_with_active_regions(void)
  4342. {
  4343. return find_min_pfn_for_node(MAX_NUMNODES);
  4344. }
  4345. /*
  4346. * early_calculate_totalpages()
  4347. * Sum pages in active regions for movable zone.
  4348. * Populate N_MEMORY for calculating usable_nodes.
  4349. */
  4350. static unsigned long __init early_calculate_totalpages(void)
  4351. {
  4352. unsigned long totalpages = 0;
  4353. unsigned long start_pfn, end_pfn;
  4354. int i, nid;
  4355. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4356. unsigned long pages = end_pfn - start_pfn;
  4357. totalpages += pages;
  4358. if (pages)
  4359. node_set_state(nid, N_MEMORY);
  4360. }
  4361. return totalpages;
  4362. }
  4363. /*
  4364. * Find the PFN the Movable zone begins in each node. Kernel memory
  4365. * is spread evenly between nodes as long as the nodes have enough
  4366. * memory. When they don't, some nodes will have more kernelcore than
  4367. * others
  4368. */
  4369. static void __init find_zone_movable_pfns_for_nodes(void)
  4370. {
  4371. int i, nid;
  4372. unsigned long usable_startpfn;
  4373. unsigned long kernelcore_node, kernelcore_remaining;
  4374. /* save the state before borrow the nodemask */
  4375. nodemask_t saved_node_state = node_states[N_MEMORY];
  4376. unsigned long totalpages = early_calculate_totalpages();
  4377. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4378. /*
  4379. * If movablecore was specified, calculate what size of
  4380. * kernelcore that corresponds so that memory usable for
  4381. * any allocation type is evenly spread. If both kernelcore
  4382. * and movablecore are specified, then the value of kernelcore
  4383. * will be used for required_kernelcore if it's greater than
  4384. * what movablecore would have allowed.
  4385. */
  4386. if (required_movablecore) {
  4387. unsigned long corepages;
  4388. /*
  4389. * Round-up so that ZONE_MOVABLE is at least as large as what
  4390. * was requested by the user
  4391. */
  4392. required_movablecore =
  4393. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4394. corepages = totalpages - required_movablecore;
  4395. required_kernelcore = max(required_kernelcore, corepages);
  4396. }
  4397. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4398. if (!required_kernelcore)
  4399. goto out;
  4400. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4401. find_usable_zone_for_movable();
  4402. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4403. restart:
  4404. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4405. kernelcore_node = required_kernelcore / usable_nodes;
  4406. for_each_node_state(nid, N_MEMORY) {
  4407. unsigned long start_pfn, end_pfn;
  4408. /*
  4409. * Recalculate kernelcore_node if the division per node
  4410. * now exceeds what is necessary to satisfy the requested
  4411. * amount of memory for the kernel
  4412. */
  4413. if (required_kernelcore < kernelcore_node)
  4414. kernelcore_node = required_kernelcore / usable_nodes;
  4415. /*
  4416. * As the map is walked, we track how much memory is usable
  4417. * by the kernel using kernelcore_remaining. When it is
  4418. * 0, the rest of the node is usable by ZONE_MOVABLE
  4419. */
  4420. kernelcore_remaining = kernelcore_node;
  4421. /* Go through each range of PFNs within this node */
  4422. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4423. unsigned long size_pages;
  4424. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4425. if (start_pfn >= end_pfn)
  4426. continue;
  4427. /* Account for what is only usable for kernelcore */
  4428. if (start_pfn < usable_startpfn) {
  4429. unsigned long kernel_pages;
  4430. kernel_pages = min(end_pfn, usable_startpfn)
  4431. - start_pfn;
  4432. kernelcore_remaining -= min(kernel_pages,
  4433. kernelcore_remaining);
  4434. required_kernelcore -= min(kernel_pages,
  4435. required_kernelcore);
  4436. /* Continue if range is now fully accounted */
  4437. if (end_pfn <= usable_startpfn) {
  4438. /*
  4439. * Push zone_movable_pfn to the end so
  4440. * that if we have to rebalance
  4441. * kernelcore across nodes, we will
  4442. * not double account here
  4443. */
  4444. zone_movable_pfn[nid] = end_pfn;
  4445. continue;
  4446. }
  4447. start_pfn = usable_startpfn;
  4448. }
  4449. /*
  4450. * The usable PFN range for ZONE_MOVABLE is from
  4451. * start_pfn->end_pfn. Calculate size_pages as the
  4452. * number of pages used as kernelcore
  4453. */
  4454. size_pages = end_pfn - start_pfn;
  4455. if (size_pages > kernelcore_remaining)
  4456. size_pages = kernelcore_remaining;
  4457. zone_movable_pfn[nid] = start_pfn + size_pages;
  4458. /*
  4459. * Some kernelcore has been met, update counts and
  4460. * break if the kernelcore for this node has been
  4461. * satisfied
  4462. */
  4463. required_kernelcore -= min(required_kernelcore,
  4464. size_pages);
  4465. kernelcore_remaining -= size_pages;
  4466. if (!kernelcore_remaining)
  4467. break;
  4468. }
  4469. }
  4470. /*
  4471. * If there is still required_kernelcore, we do another pass with one
  4472. * less node in the count. This will push zone_movable_pfn[nid] further
  4473. * along on the nodes that still have memory until kernelcore is
  4474. * satisfied
  4475. */
  4476. usable_nodes--;
  4477. if (usable_nodes && required_kernelcore > usable_nodes)
  4478. goto restart;
  4479. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4480. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4481. zone_movable_pfn[nid] =
  4482. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4483. out:
  4484. /* restore the node_state */
  4485. node_states[N_MEMORY] = saved_node_state;
  4486. }
  4487. /* Any regular or high memory on that node ? */
  4488. static void check_for_memory(pg_data_t *pgdat, int nid)
  4489. {
  4490. enum zone_type zone_type;
  4491. if (N_MEMORY == N_NORMAL_MEMORY)
  4492. return;
  4493. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4494. struct zone *zone = &pgdat->node_zones[zone_type];
  4495. if (zone->present_pages) {
  4496. node_set_state(nid, N_HIGH_MEMORY);
  4497. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4498. zone_type <= ZONE_NORMAL)
  4499. node_set_state(nid, N_NORMAL_MEMORY);
  4500. break;
  4501. }
  4502. }
  4503. }
  4504. /**
  4505. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4506. * @max_zone_pfn: an array of max PFNs for each zone
  4507. *
  4508. * This will call free_area_init_node() for each active node in the system.
  4509. * Using the page ranges provided by add_active_range(), the size of each
  4510. * zone in each node and their holes is calculated. If the maximum PFN
  4511. * between two adjacent zones match, it is assumed that the zone is empty.
  4512. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4513. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4514. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4515. * at arch_max_dma_pfn.
  4516. */
  4517. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4518. {
  4519. unsigned long start_pfn, end_pfn;
  4520. int i, nid;
  4521. /* Record where the zone boundaries are */
  4522. memset(arch_zone_lowest_possible_pfn, 0,
  4523. sizeof(arch_zone_lowest_possible_pfn));
  4524. memset(arch_zone_highest_possible_pfn, 0,
  4525. sizeof(arch_zone_highest_possible_pfn));
  4526. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4527. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4528. for (i = 1; i < MAX_NR_ZONES; i++) {
  4529. if (i == ZONE_MOVABLE)
  4530. continue;
  4531. arch_zone_lowest_possible_pfn[i] =
  4532. arch_zone_highest_possible_pfn[i-1];
  4533. arch_zone_highest_possible_pfn[i] =
  4534. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4535. }
  4536. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4537. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4538. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4539. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4540. find_zone_movable_pfns_for_nodes();
  4541. /* Print out the zone ranges */
  4542. printk("Zone ranges:\n");
  4543. for (i = 0; i < MAX_NR_ZONES; i++) {
  4544. if (i == ZONE_MOVABLE)
  4545. continue;
  4546. printk(KERN_CONT " %-8s ", zone_names[i]);
  4547. if (arch_zone_lowest_possible_pfn[i] ==
  4548. arch_zone_highest_possible_pfn[i])
  4549. printk(KERN_CONT "empty\n");
  4550. else
  4551. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4552. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4553. (arch_zone_highest_possible_pfn[i]
  4554. << PAGE_SHIFT) - 1);
  4555. }
  4556. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4557. printk("Movable zone start for each node\n");
  4558. for (i = 0; i < MAX_NUMNODES; i++) {
  4559. if (zone_movable_pfn[i])
  4560. printk(" Node %d: %#010lx\n", i,
  4561. zone_movable_pfn[i] << PAGE_SHIFT);
  4562. }
  4563. /* Print out the early node map */
  4564. printk("Early memory node ranges\n");
  4565. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4566. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4567. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4568. /* Initialise every node */
  4569. mminit_verify_pageflags_layout();
  4570. setup_nr_node_ids();
  4571. for_each_online_node(nid) {
  4572. pg_data_t *pgdat = NODE_DATA(nid);
  4573. free_area_init_node(nid, NULL,
  4574. find_min_pfn_for_node(nid), NULL);
  4575. /* Any memory on that node */
  4576. if (pgdat->node_present_pages)
  4577. node_set_state(nid, N_MEMORY);
  4578. check_for_memory(pgdat, nid);
  4579. }
  4580. }
  4581. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4582. {
  4583. unsigned long long coremem;
  4584. if (!p)
  4585. return -EINVAL;
  4586. coremem = memparse(p, &p);
  4587. *core = coremem >> PAGE_SHIFT;
  4588. /* Paranoid check that UL is enough for the coremem value */
  4589. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4590. return 0;
  4591. }
  4592. /*
  4593. * kernelcore=size sets the amount of memory for use for allocations that
  4594. * cannot be reclaimed or migrated.
  4595. */
  4596. static int __init cmdline_parse_kernelcore(char *p)
  4597. {
  4598. return cmdline_parse_core(p, &required_kernelcore);
  4599. }
  4600. /*
  4601. * movablecore=size sets the amount of memory for use for allocations that
  4602. * can be reclaimed or migrated.
  4603. */
  4604. static int __init cmdline_parse_movablecore(char *p)
  4605. {
  4606. return cmdline_parse_core(p, &required_movablecore);
  4607. }
  4608. early_param("kernelcore", cmdline_parse_kernelcore);
  4609. early_param("movablecore", cmdline_parse_movablecore);
  4610. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4611. void adjust_managed_page_count(struct page *page, long count)
  4612. {
  4613. spin_lock(&managed_page_count_lock);
  4614. page_zone(page)->managed_pages += count;
  4615. totalram_pages += count;
  4616. #ifdef CONFIG_HIGHMEM
  4617. if (PageHighMem(page))
  4618. totalhigh_pages += count;
  4619. #endif
  4620. spin_unlock(&managed_page_count_lock);
  4621. }
  4622. EXPORT_SYMBOL(adjust_managed_page_count);
  4623. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4624. {
  4625. void *pos;
  4626. unsigned long pages = 0;
  4627. start = (void *)PAGE_ALIGN((unsigned long)start);
  4628. end = (void *)((unsigned long)end & PAGE_MASK);
  4629. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4630. if ((unsigned int)poison <= 0xFF)
  4631. memset(pos, poison, PAGE_SIZE);
  4632. free_reserved_page(virt_to_page(pos));
  4633. }
  4634. if (pages && s)
  4635. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4636. s, pages << (PAGE_SHIFT - 10), start, end);
  4637. return pages;
  4638. }
  4639. EXPORT_SYMBOL(free_reserved_area);
  4640. #ifdef CONFIG_HIGHMEM
  4641. void free_highmem_page(struct page *page)
  4642. {
  4643. __free_reserved_page(page);
  4644. totalram_pages++;
  4645. page_zone(page)->managed_pages++;
  4646. totalhigh_pages++;
  4647. }
  4648. #endif
  4649. void __init mem_init_print_info(const char *str)
  4650. {
  4651. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4652. unsigned long init_code_size, init_data_size;
  4653. physpages = get_num_physpages();
  4654. codesize = _etext - _stext;
  4655. datasize = _edata - _sdata;
  4656. rosize = __end_rodata - __start_rodata;
  4657. bss_size = __bss_stop - __bss_start;
  4658. init_data_size = __init_end - __init_begin;
  4659. init_code_size = _einittext - _sinittext;
  4660. /*
  4661. * Detect special cases and adjust section sizes accordingly:
  4662. * 1) .init.* may be embedded into .data sections
  4663. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4664. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4665. * 3) .rodata.* may be embedded into .text or .data sections.
  4666. */
  4667. #define adj_init_size(start, end, size, pos, adj) \
  4668. do { \
  4669. if (start <= pos && pos < end && size > adj) \
  4670. size -= adj; \
  4671. } while (0)
  4672. adj_init_size(__init_begin, __init_end, init_data_size,
  4673. _sinittext, init_code_size);
  4674. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4675. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4676. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4677. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4678. #undef adj_init_size
  4679. printk("Memory: %luK/%luK available "
  4680. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4681. "%luK init, %luK bss, %luK reserved"
  4682. #ifdef CONFIG_HIGHMEM
  4683. ", %luK highmem"
  4684. #endif
  4685. "%s%s)\n",
  4686. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4687. codesize >> 10, datasize >> 10, rosize >> 10,
  4688. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4689. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4690. #ifdef CONFIG_HIGHMEM
  4691. totalhigh_pages << (PAGE_SHIFT-10),
  4692. #endif
  4693. str ? ", " : "", str ? str : "");
  4694. }
  4695. /**
  4696. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4697. * @new_dma_reserve: The number of pages to mark reserved
  4698. *
  4699. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4700. * In the DMA zone, a significant percentage may be consumed by kernel image
  4701. * and other unfreeable allocations which can skew the watermarks badly. This
  4702. * function may optionally be used to account for unfreeable pages in the
  4703. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4704. * smaller per-cpu batchsize.
  4705. */
  4706. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4707. {
  4708. dma_reserve = new_dma_reserve;
  4709. }
  4710. void __init free_area_init(unsigned long *zones_size)
  4711. {
  4712. free_area_init_node(0, zones_size,
  4713. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4714. }
  4715. static int page_alloc_cpu_notify(struct notifier_block *self,
  4716. unsigned long action, void *hcpu)
  4717. {
  4718. int cpu = (unsigned long)hcpu;
  4719. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4720. lru_add_drain_cpu(cpu);
  4721. drain_pages(cpu);
  4722. /*
  4723. * Spill the event counters of the dead processor
  4724. * into the current processors event counters.
  4725. * This artificially elevates the count of the current
  4726. * processor.
  4727. */
  4728. vm_events_fold_cpu(cpu);
  4729. /*
  4730. * Zero the differential counters of the dead processor
  4731. * so that the vm statistics are consistent.
  4732. *
  4733. * This is only okay since the processor is dead and cannot
  4734. * race with what we are doing.
  4735. */
  4736. cpu_vm_stats_fold(cpu);
  4737. }
  4738. return NOTIFY_OK;
  4739. }
  4740. void __init page_alloc_init(void)
  4741. {
  4742. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4743. }
  4744. /*
  4745. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4746. * or min_free_kbytes changes.
  4747. */
  4748. static void calculate_totalreserve_pages(void)
  4749. {
  4750. struct pglist_data *pgdat;
  4751. unsigned long reserve_pages = 0;
  4752. enum zone_type i, j;
  4753. for_each_online_pgdat(pgdat) {
  4754. for (i = 0; i < MAX_NR_ZONES; i++) {
  4755. struct zone *zone = pgdat->node_zones + i;
  4756. unsigned long max = 0;
  4757. /* Find valid and maximum lowmem_reserve in the zone */
  4758. for (j = i; j < MAX_NR_ZONES; j++) {
  4759. if (zone->lowmem_reserve[j] > max)
  4760. max = zone->lowmem_reserve[j];
  4761. }
  4762. /* we treat the high watermark as reserved pages. */
  4763. max += high_wmark_pages(zone);
  4764. if (max > zone->managed_pages)
  4765. max = zone->managed_pages;
  4766. reserve_pages += max;
  4767. /*
  4768. * Lowmem reserves are not available to
  4769. * GFP_HIGHUSER page cache allocations and
  4770. * kswapd tries to balance zones to their high
  4771. * watermark. As a result, neither should be
  4772. * regarded as dirtyable memory, to prevent a
  4773. * situation where reclaim has to clean pages
  4774. * in order to balance the zones.
  4775. */
  4776. zone->dirty_balance_reserve = max;
  4777. }
  4778. }
  4779. dirty_balance_reserve = reserve_pages;
  4780. totalreserve_pages = reserve_pages;
  4781. }
  4782. /*
  4783. * setup_per_zone_lowmem_reserve - called whenever
  4784. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4785. * has a correct pages reserved value, so an adequate number of
  4786. * pages are left in the zone after a successful __alloc_pages().
  4787. */
  4788. static void setup_per_zone_lowmem_reserve(void)
  4789. {
  4790. struct pglist_data *pgdat;
  4791. enum zone_type j, idx;
  4792. for_each_online_pgdat(pgdat) {
  4793. for (j = 0; j < MAX_NR_ZONES; j++) {
  4794. struct zone *zone = pgdat->node_zones + j;
  4795. unsigned long managed_pages = zone->managed_pages;
  4796. zone->lowmem_reserve[j] = 0;
  4797. idx = j;
  4798. while (idx) {
  4799. struct zone *lower_zone;
  4800. idx--;
  4801. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4802. sysctl_lowmem_reserve_ratio[idx] = 1;
  4803. lower_zone = pgdat->node_zones + idx;
  4804. lower_zone->lowmem_reserve[j] = managed_pages /
  4805. sysctl_lowmem_reserve_ratio[idx];
  4806. managed_pages += lower_zone->managed_pages;
  4807. }
  4808. }
  4809. }
  4810. /* update totalreserve_pages */
  4811. calculate_totalreserve_pages();
  4812. }
  4813. static void __setup_per_zone_wmarks(void)
  4814. {
  4815. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4816. unsigned long lowmem_pages = 0;
  4817. struct zone *zone;
  4818. unsigned long flags;
  4819. /* Calculate total number of !ZONE_HIGHMEM pages */
  4820. for_each_zone(zone) {
  4821. if (!is_highmem(zone))
  4822. lowmem_pages += zone->managed_pages;
  4823. }
  4824. for_each_zone(zone) {
  4825. u64 tmp;
  4826. spin_lock_irqsave(&zone->lock, flags);
  4827. tmp = (u64)pages_min * zone->managed_pages;
  4828. do_div(tmp, lowmem_pages);
  4829. if (is_highmem(zone)) {
  4830. /*
  4831. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4832. * need highmem pages, so cap pages_min to a small
  4833. * value here.
  4834. *
  4835. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4836. * deltas controls asynch page reclaim, and so should
  4837. * not be capped for highmem.
  4838. */
  4839. unsigned long min_pages;
  4840. min_pages = zone->managed_pages / 1024;
  4841. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4842. zone->watermark[WMARK_MIN] = min_pages;
  4843. } else {
  4844. /*
  4845. * If it's a lowmem zone, reserve a number of pages
  4846. * proportionate to the zone's size.
  4847. */
  4848. zone->watermark[WMARK_MIN] = tmp;
  4849. }
  4850. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4851. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4852. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4853. high_wmark_pages(zone) -
  4854. low_wmark_pages(zone) -
  4855. zone_page_state(zone, NR_ALLOC_BATCH));
  4856. setup_zone_migrate_reserve(zone);
  4857. spin_unlock_irqrestore(&zone->lock, flags);
  4858. }
  4859. /* update totalreserve_pages */
  4860. calculate_totalreserve_pages();
  4861. }
  4862. /**
  4863. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4864. * or when memory is hot-{added|removed}
  4865. *
  4866. * Ensures that the watermark[min,low,high] values for each zone are set
  4867. * correctly with respect to min_free_kbytes.
  4868. */
  4869. void setup_per_zone_wmarks(void)
  4870. {
  4871. mutex_lock(&zonelists_mutex);
  4872. __setup_per_zone_wmarks();
  4873. mutex_unlock(&zonelists_mutex);
  4874. }
  4875. /*
  4876. * The inactive anon list should be small enough that the VM never has to
  4877. * do too much work, but large enough that each inactive page has a chance
  4878. * to be referenced again before it is swapped out.
  4879. *
  4880. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4881. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4882. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4883. * the anonymous pages are kept on the inactive list.
  4884. *
  4885. * total target max
  4886. * memory ratio inactive anon
  4887. * -------------------------------------
  4888. * 10MB 1 5MB
  4889. * 100MB 1 50MB
  4890. * 1GB 3 250MB
  4891. * 10GB 10 0.9GB
  4892. * 100GB 31 3GB
  4893. * 1TB 101 10GB
  4894. * 10TB 320 32GB
  4895. */
  4896. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4897. {
  4898. unsigned int gb, ratio;
  4899. /* Zone size in gigabytes */
  4900. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4901. if (gb)
  4902. ratio = int_sqrt(10 * gb);
  4903. else
  4904. ratio = 1;
  4905. zone->inactive_ratio = ratio;
  4906. }
  4907. static void __meminit setup_per_zone_inactive_ratio(void)
  4908. {
  4909. struct zone *zone;
  4910. for_each_zone(zone)
  4911. calculate_zone_inactive_ratio(zone);
  4912. }
  4913. /*
  4914. * Initialise min_free_kbytes.
  4915. *
  4916. * For small machines we want it small (128k min). For large machines
  4917. * we want it large (64MB max). But it is not linear, because network
  4918. * bandwidth does not increase linearly with machine size. We use
  4919. *
  4920. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4921. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4922. *
  4923. * which yields
  4924. *
  4925. * 16MB: 512k
  4926. * 32MB: 724k
  4927. * 64MB: 1024k
  4928. * 128MB: 1448k
  4929. * 256MB: 2048k
  4930. * 512MB: 2896k
  4931. * 1024MB: 4096k
  4932. * 2048MB: 5792k
  4933. * 4096MB: 8192k
  4934. * 8192MB: 11584k
  4935. * 16384MB: 16384k
  4936. */
  4937. int __meminit init_per_zone_wmark_min(void)
  4938. {
  4939. unsigned long lowmem_kbytes;
  4940. int new_min_free_kbytes;
  4941. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4942. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4943. if (new_min_free_kbytes > user_min_free_kbytes) {
  4944. min_free_kbytes = new_min_free_kbytes;
  4945. if (min_free_kbytes < 128)
  4946. min_free_kbytes = 128;
  4947. if (min_free_kbytes > 65536)
  4948. min_free_kbytes = 65536;
  4949. } else {
  4950. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  4951. new_min_free_kbytes, user_min_free_kbytes);
  4952. }
  4953. setup_per_zone_wmarks();
  4954. refresh_zone_stat_thresholds();
  4955. setup_per_zone_lowmem_reserve();
  4956. setup_per_zone_inactive_ratio();
  4957. return 0;
  4958. }
  4959. module_init(init_per_zone_wmark_min)
  4960. /*
  4961. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4962. * that we can call two helper functions whenever min_free_kbytes
  4963. * changes.
  4964. */
  4965. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4966. void __user *buffer, size_t *length, loff_t *ppos)
  4967. {
  4968. proc_dointvec(table, write, buffer, length, ppos);
  4969. if (write) {
  4970. user_min_free_kbytes = min_free_kbytes;
  4971. setup_per_zone_wmarks();
  4972. }
  4973. return 0;
  4974. }
  4975. #ifdef CONFIG_NUMA
  4976. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4977. void __user *buffer, size_t *length, loff_t *ppos)
  4978. {
  4979. struct zone *zone;
  4980. int rc;
  4981. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4982. if (rc)
  4983. return rc;
  4984. for_each_zone(zone)
  4985. zone->min_unmapped_pages = (zone->managed_pages *
  4986. sysctl_min_unmapped_ratio) / 100;
  4987. return 0;
  4988. }
  4989. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4990. void __user *buffer, size_t *length, loff_t *ppos)
  4991. {
  4992. struct zone *zone;
  4993. int rc;
  4994. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4995. if (rc)
  4996. return rc;
  4997. for_each_zone(zone)
  4998. zone->min_slab_pages = (zone->managed_pages *
  4999. sysctl_min_slab_ratio) / 100;
  5000. return 0;
  5001. }
  5002. #endif
  5003. /*
  5004. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5005. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5006. * whenever sysctl_lowmem_reserve_ratio changes.
  5007. *
  5008. * The reserve ratio obviously has absolutely no relation with the
  5009. * minimum watermarks. The lowmem reserve ratio can only make sense
  5010. * if in function of the boot time zone sizes.
  5011. */
  5012. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  5013. void __user *buffer, size_t *length, loff_t *ppos)
  5014. {
  5015. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5016. setup_per_zone_lowmem_reserve();
  5017. return 0;
  5018. }
  5019. /*
  5020. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5021. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5022. * pagelist can have before it gets flushed back to buddy allocator.
  5023. */
  5024. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  5025. void __user *buffer, size_t *length, loff_t *ppos)
  5026. {
  5027. struct zone *zone;
  5028. unsigned int cpu;
  5029. int ret;
  5030. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5031. if (!write || (ret < 0))
  5032. return ret;
  5033. mutex_lock(&pcp_batch_high_lock);
  5034. for_each_populated_zone(zone) {
  5035. unsigned long high;
  5036. high = zone->managed_pages / percpu_pagelist_fraction;
  5037. for_each_possible_cpu(cpu)
  5038. pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
  5039. high);
  5040. }
  5041. mutex_unlock(&pcp_batch_high_lock);
  5042. return 0;
  5043. }
  5044. int hashdist = HASHDIST_DEFAULT;
  5045. #ifdef CONFIG_NUMA
  5046. static int __init set_hashdist(char *str)
  5047. {
  5048. if (!str)
  5049. return 0;
  5050. hashdist = simple_strtoul(str, &str, 0);
  5051. return 1;
  5052. }
  5053. __setup("hashdist=", set_hashdist);
  5054. #endif
  5055. /*
  5056. * allocate a large system hash table from bootmem
  5057. * - it is assumed that the hash table must contain an exact power-of-2
  5058. * quantity of entries
  5059. * - limit is the number of hash buckets, not the total allocation size
  5060. */
  5061. void *__init alloc_large_system_hash(const char *tablename,
  5062. unsigned long bucketsize,
  5063. unsigned long numentries,
  5064. int scale,
  5065. int flags,
  5066. unsigned int *_hash_shift,
  5067. unsigned int *_hash_mask,
  5068. unsigned long low_limit,
  5069. unsigned long high_limit)
  5070. {
  5071. unsigned long long max = high_limit;
  5072. unsigned long log2qty, size;
  5073. void *table = NULL;
  5074. /* allow the kernel cmdline to have a say */
  5075. if (!numentries) {
  5076. /* round applicable memory size up to nearest megabyte */
  5077. numentries = nr_kernel_pages;
  5078. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5079. if (PAGE_SHIFT < 20)
  5080. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5081. /* limit to 1 bucket per 2^scale bytes of low memory */
  5082. if (scale > PAGE_SHIFT)
  5083. numentries >>= (scale - PAGE_SHIFT);
  5084. else
  5085. numentries <<= (PAGE_SHIFT - scale);
  5086. /* Make sure we've got at least a 0-order allocation.. */
  5087. if (unlikely(flags & HASH_SMALL)) {
  5088. /* Makes no sense without HASH_EARLY */
  5089. WARN_ON(!(flags & HASH_EARLY));
  5090. if (!(numentries >> *_hash_shift)) {
  5091. numentries = 1UL << *_hash_shift;
  5092. BUG_ON(!numentries);
  5093. }
  5094. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5095. numentries = PAGE_SIZE / bucketsize;
  5096. }
  5097. numentries = roundup_pow_of_two(numentries);
  5098. /* limit allocation size to 1/16 total memory by default */
  5099. if (max == 0) {
  5100. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5101. do_div(max, bucketsize);
  5102. }
  5103. max = min(max, 0x80000000ULL);
  5104. if (numentries < low_limit)
  5105. numentries = low_limit;
  5106. if (numentries > max)
  5107. numentries = max;
  5108. log2qty = ilog2(numentries);
  5109. do {
  5110. size = bucketsize << log2qty;
  5111. if (flags & HASH_EARLY)
  5112. table = alloc_bootmem_nopanic(size);
  5113. else if (hashdist)
  5114. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5115. else {
  5116. /*
  5117. * If bucketsize is not a power-of-two, we may free
  5118. * some pages at the end of hash table which
  5119. * alloc_pages_exact() automatically does
  5120. */
  5121. if (get_order(size) < MAX_ORDER) {
  5122. table = alloc_pages_exact(size, GFP_ATOMIC);
  5123. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5124. }
  5125. }
  5126. } while (!table && size > PAGE_SIZE && --log2qty);
  5127. if (!table)
  5128. panic("Failed to allocate %s hash table\n", tablename);
  5129. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5130. tablename,
  5131. (1UL << log2qty),
  5132. ilog2(size) - PAGE_SHIFT,
  5133. size);
  5134. if (_hash_shift)
  5135. *_hash_shift = log2qty;
  5136. if (_hash_mask)
  5137. *_hash_mask = (1 << log2qty) - 1;
  5138. return table;
  5139. }
  5140. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5141. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5142. unsigned long pfn)
  5143. {
  5144. #ifdef CONFIG_SPARSEMEM
  5145. return __pfn_to_section(pfn)->pageblock_flags;
  5146. #else
  5147. return zone->pageblock_flags;
  5148. #endif /* CONFIG_SPARSEMEM */
  5149. }
  5150. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5151. {
  5152. #ifdef CONFIG_SPARSEMEM
  5153. pfn &= (PAGES_PER_SECTION-1);
  5154. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5155. #else
  5156. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5157. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5158. #endif /* CONFIG_SPARSEMEM */
  5159. }
  5160. /**
  5161. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5162. * @page: The page within the block of interest
  5163. * @start_bitidx: The first bit of interest to retrieve
  5164. * @end_bitidx: The last bit of interest
  5165. * returns pageblock_bits flags
  5166. */
  5167. unsigned long get_pageblock_flags_group(struct page *page,
  5168. int start_bitidx, int end_bitidx)
  5169. {
  5170. struct zone *zone;
  5171. unsigned long *bitmap;
  5172. unsigned long pfn, bitidx;
  5173. unsigned long flags = 0;
  5174. unsigned long value = 1;
  5175. zone = page_zone(page);
  5176. pfn = page_to_pfn(page);
  5177. bitmap = get_pageblock_bitmap(zone, pfn);
  5178. bitidx = pfn_to_bitidx(zone, pfn);
  5179. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5180. if (test_bit(bitidx + start_bitidx, bitmap))
  5181. flags |= value;
  5182. return flags;
  5183. }
  5184. /**
  5185. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5186. * @page: The page within the block of interest
  5187. * @start_bitidx: The first bit of interest
  5188. * @end_bitidx: The last bit of interest
  5189. * @flags: The flags to set
  5190. */
  5191. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5192. int start_bitidx, int end_bitidx)
  5193. {
  5194. struct zone *zone;
  5195. unsigned long *bitmap;
  5196. unsigned long pfn, bitidx;
  5197. unsigned long value = 1;
  5198. zone = page_zone(page);
  5199. pfn = page_to_pfn(page);
  5200. bitmap = get_pageblock_bitmap(zone, pfn);
  5201. bitidx = pfn_to_bitidx(zone, pfn);
  5202. VM_BUG_ON(!zone_spans_pfn(zone, pfn));
  5203. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5204. if (flags & value)
  5205. __set_bit(bitidx + start_bitidx, bitmap);
  5206. else
  5207. __clear_bit(bitidx + start_bitidx, bitmap);
  5208. }
  5209. /*
  5210. * This function checks whether pageblock includes unmovable pages or not.
  5211. * If @count is not zero, it is okay to include less @count unmovable pages
  5212. *
  5213. * PageLRU check without isolation or lru_lock could race so that
  5214. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5215. * expect this function should be exact.
  5216. */
  5217. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5218. bool skip_hwpoisoned_pages)
  5219. {
  5220. unsigned long pfn, iter, found;
  5221. int mt;
  5222. /*
  5223. * For avoiding noise data, lru_add_drain_all() should be called
  5224. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5225. */
  5226. if (zone_idx(zone) == ZONE_MOVABLE)
  5227. return false;
  5228. mt = get_pageblock_migratetype(page);
  5229. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5230. return false;
  5231. pfn = page_to_pfn(page);
  5232. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5233. unsigned long check = pfn + iter;
  5234. if (!pfn_valid_within(check))
  5235. continue;
  5236. page = pfn_to_page(check);
  5237. /*
  5238. * We can't use page_count without pin a page
  5239. * because another CPU can free compound page.
  5240. * This check already skips compound tails of THP
  5241. * because their page->_count is zero at all time.
  5242. */
  5243. if (!atomic_read(&page->_count)) {
  5244. if (PageBuddy(page))
  5245. iter += (1 << page_order(page)) - 1;
  5246. continue;
  5247. }
  5248. /*
  5249. * The HWPoisoned page may be not in buddy system, and
  5250. * page_count() is not 0.
  5251. */
  5252. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5253. continue;
  5254. if (!PageLRU(page))
  5255. found++;
  5256. /*
  5257. * If there are RECLAIMABLE pages, we need to check it.
  5258. * But now, memory offline itself doesn't call shrink_slab()
  5259. * and it still to be fixed.
  5260. */
  5261. /*
  5262. * If the page is not RAM, page_count()should be 0.
  5263. * we don't need more check. This is an _used_ not-movable page.
  5264. *
  5265. * The problematic thing here is PG_reserved pages. PG_reserved
  5266. * is set to both of a memory hole page and a _used_ kernel
  5267. * page at boot.
  5268. */
  5269. if (found > count)
  5270. return true;
  5271. }
  5272. return false;
  5273. }
  5274. bool is_pageblock_removable_nolock(struct page *page)
  5275. {
  5276. struct zone *zone;
  5277. unsigned long pfn;
  5278. /*
  5279. * We have to be careful here because we are iterating over memory
  5280. * sections which are not zone aware so we might end up outside of
  5281. * the zone but still within the section.
  5282. * We have to take care about the node as well. If the node is offline
  5283. * its NODE_DATA will be NULL - see page_zone.
  5284. */
  5285. if (!node_online(page_to_nid(page)))
  5286. return false;
  5287. zone = page_zone(page);
  5288. pfn = page_to_pfn(page);
  5289. if (!zone_spans_pfn(zone, pfn))
  5290. return false;
  5291. return !has_unmovable_pages(zone, page, 0, true);
  5292. }
  5293. #ifdef CONFIG_CMA
  5294. static unsigned long pfn_max_align_down(unsigned long pfn)
  5295. {
  5296. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5297. pageblock_nr_pages) - 1);
  5298. }
  5299. static unsigned long pfn_max_align_up(unsigned long pfn)
  5300. {
  5301. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5302. pageblock_nr_pages));
  5303. }
  5304. /* [start, end) must belong to a single zone. */
  5305. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5306. unsigned long start, unsigned long end)
  5307. {
  5308. /* This function is based on compact_zone() from compaction.c. */
  5309. unsigned long nr_reclaimed;
  5310. unsigned long pfn = start;
  5311. unsigned int tries = 0;
  5312. int ret = 0;
  5313. migrate_prep();
  5314. while (pfn < end || !list_empty(&cc->migratepages)) {
  5315. if (fatal_signal_pending(current)) {
  5316. ret = -EINTR;
  5317. break;
  5318. }
  5319. if (list_empty(&cc->migratepages)) {
  5320. cc->nr_migratepages = 0;
  5321. pfn = isolate_migratepages_range(cc->zone, cc,
  5322. pfn, end, true);
  5323. if (!pfn) {
  5324. ret = -EINTR;
  5325. break;
  5326. }
  5327. tries = 0;
  5328. } else if (++tries == 5) {
  5329. ret = ret < 0 ? ret : -EBUSY;
  5330. break;
  5331. }
  5332. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5333. &cc->migratepages);
  5334. cc->nr_migratepages -= nr_reclaimed;
  5335. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5336. 0, MIGRATE_SYNC, MR_CMA);
  5337. }
  5338. if (ret < 0) {
  5339. putback_movable_pages(&cc->migratepages);
  5340. return ret;
  5341. }
  5342. return 0;
  5343. }
  5344. /**
  5345. * alloc_contig_range() -- tries to allocate given range of pages
  5346. * @start: start PFN to allocate
  5347. * @end: one-past-the-last PFN to allocate
  5348. * @migratetype: migratetype of the underlaying pageblocks (either
  5349. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5350. * in range must have the same migratetype and it must
  5351. * be either of the two.
  5352. *
  5353. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5354. * aligned, however it's the caller's responsibility to guarantee that
  5355. * we are the only thread that changes migrate type of pageblocks the
  5356. * pages fall in.
  5357. *
  5358. * The PFN range must belong to a single zone.
  5359. *
  5360. * Returns zero on success or negative error code. On success all
  5361. * pages which PFN is in [start, end) are allocated for the caller and
  5362. * need to be freed with free_contig_range().
  5363. */
  5364. int alloc_contig_range(unsigned long start, unsigned long end,
  5365. unsigned migratetype)
  5366. {
  5367. unsigned long outer_start, outer_end;
  5368. int ret = 0, order;
  5369. struct compact_control cc = {
  5370. .nr_migratepages = 0,
  5371. .order = -1,
  5372. .zone = page_zone(pfn_to_page(start)),
  5373. .sync = true,
  5374. .ignore_skip_hint = true,
  5375. };
  5376. INIT_LIST_HEAD(&cc.migratepages);
  5377. /*
  5378. * What we do here is we mark all pageblocks in range as
  5379. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5380. * have different sizes, and due to the way page allocator
  5381. * work, we align the range to biggest of the two pages so
  5382. * that page allocator won't try to merge buddies from
  5383. * different pageblocks and change MIGRATE_ISOLATE to some
  5384. * other migration type.
  5385. *
  5386. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5387. * migrate the pages from an unaligned range (ie. pages that
  5388. * we are interested in). This will put all the pages in
  5389. * range back to page allocator as MIGRATE_ISOLATE.
  5390. *
  5391. * When this is done, we take the pages in range from page
  5392. * allocator removing them from the buddy system. This way
  5393. * page allocator will never consider using them.
  5394. *
  5395. * This lets us mark the pageblocks back as
  5396. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5397. * aligned range but not in the unaligned, original range are
  5398. * put back to page allocator so that buddy can use them.
  5399. */
  5400. ret = start_isolate_page_range(pfn_max_align_down(start),
  5401. pfn_max_align_up(end), migratetype,
  5402. false);
  5403. if (ret)
  5404. return ret;
  5405. ret = __alloc_contig_migrate_range(&cc, start, end);
  5406. if (ret)
  5407. goto done;
  5408. /*
  5409. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5410. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5411. * more, all pages in [start, end) are free in page allocator.
  5412. * What we are going to do is to allocate all pages from
  5413. * [start, end) (that is remove them from page allocator).
  5414. *
  5415. * The only problem is that pages at the beginning and at the
  5416. * end of interesting range may be not aligned with pages that
  5417. * page allocator holds, ie. they can be part of higher order
  5418. * pages. Because of this, we reserve the bigger range and
  5419. * once this is done free the pages we are not interested in.
  5420. *
  5421. * We don't have to hold zone->lock here because the pages are
  5422. * isolated thus they won't get removed from buddy.
  5423. */
  5424. lru_add_drain_all();
  5425. drain_all_pages();
  5426. order = 0;
  5427. outer_start = start;
  5428. while (!PageBuddy(pfn_to_page(outer_start))) {
  5429. if (++order >= MAX_ORDER) {
  5430. ret = -EBUSY;
  5431. goto done;
  5432. }
  5433. outer_start &= ~0UL << order;
  5434. }
  5435. /* Make sure the range is really isolated. */
  5436. if (test_pages_isolated(outer_start, end, false)) {
  5437. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5438. outer_start, end);
  5439. ret = -EBUSY;
  5440. goto done;
  5441. }
  5442. /* Grab isolated pages from freelists. */
  5443. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5444. if (!outer_end) {
  5445. ret = -EBUSY;
  5446. goto done;
  5447. }
  5448. /* Free head and tail (if any) */
  5449. if (start != outer_start)
  5450. free_contig_range(outer_start, start - outer_start);
  5451. if (end != outer_end)
  5452. free_contig_range(end, outer_end - end);
  5453. done:
  5454. undo_isolate_page_range(pfn_max_align_down(start),
  5455. pfn_max_align_up(end), migratetype);
  5456. return ret;
  5457. }
  5458. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5459. {
  5460. unsigned int count = 0;
  5461. for (; nr_pages--; pfn++) {
  5462. struct page *page = pfn_to_page(pfn);
  5463. count += page_count(page) != 1;
  5464. __free_page(page);
  5465. }
  5466. WARN(count != 0, "%d pages are still in use!\n", count);
  5467. }
  5468. #endif
  5469. #ifdef CONFIG_MEMORY_HOTPLUG
  5470. /*
  5471. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5472. * page high values need to be recalulated.
  5473. */
  5474. void __meminit zone_pcp_update(struct zone *zone)
  5475. {
  5476. unsigned cpu;
  5477. mutex_lock(&pcp_batch_high_lock);
  5478. for_each_possible_cpu(cpu)
  5479. pageset_set_high_and_batch(zone,
  5480. per_cpu_ptr(zone->pageset, cpu));
  5481. mutex_unlock(&pcp_batch_high_lock);
  5482. }
  5483. #endif
  5484. void zone_pcp_reset(struct zone *zone)
  5485. {
  5486. unsigned long flags;
  5487. int cpu;
  5488. struct per_cpu_pageset *pset;
  5489. /* avoid races with drain_pages() */
  5490. local_irq_save(flags);
  5491. if (zone->pageset != &boot_pageset) {
  5492. for_each_online_cpu(cpu) {
  5493. pset = per_cpu_ptr(zone->pageset, cpu);
  5494. drain_zonestat(zone, pset);
  5495. }
  5496. free_percpu(zone->pageset);
  5497. zone->pageset = &boot_pageset;
  5498. }
  5499. local_irq_restore(flags);
  5500. }
  5501. #ifdef CONFIG_MEMORY_HOTREMOVE
  5502. /*
  5503. * All pages in the range must be isolated before calling this.
  5504. */
  5505. void
  5506. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5507. {
  5508. struct page *page;
  5509. struct zone *zone;
  5510. int order, i;
  5511. unsigned long pfn;
  5512. unsigned long flags;
  5513. /* find the first valid pfn */
  5514. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5515. if (pfn_valid(pfn))
  5516. break;
  5517. if (pfn == end_pfn)
  5518. return;
  5519. zone = page_zone(pfn_to_page(pfn));
  5520. spin_lock_irqsave(&zone->lock, flags);
  5521. pfn = start_pfn;
  5522. while (pfn < end_pfn) {
  5523. if (!pfn_valid(pfn)) {
  5524. pfn++;
  5525. continue;
  5526. }
  5527. page = pfn_to_page(pfn);
  5528. /*
  5529. * The HWPoisoned page may be not in buddy system, and
  5530. * page_count() is not 0.
  5531. */
  5532. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5533. pfn++;
  5534. SetPageReserved(page);
  5535. continue;
  5536. }
  5537. BUG_ON(page_count(page));
  5538. BUG_ON(!PageBuddy(page));
  5539. order = page_order(page);
  5540. #ifdef CONFIG_DEBUG_VM
  5541. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5542. pfn, 1 << order, end_pfn);
  5543. #endif
  5544. list_del(&page->lru);
  5545. rmv_page_order(page);
  5546. zone->free_area[order].nr_free--;
  5547. #ifdef CONFIG_HIGHMEM
  5548. if (PageHighMem(page))
  5549. totalhigh_pages -= 1 << order;
  5550. #endif
  5551. for (i = 0; i < (1 << order); i++)
  5552. SetPageReserved((page+i));
  5553. pfn += (1 << order);
  5554. }
  5555. spin_unlock_irqrestore(&zone->lock, flags);
  5556. }
  5557. #endif
  5558. #ifdef CONFIG_MEMORY_FAILURE
  5559. bool is_free_buddy_page(struct page *page)
  5560. {
  5561. struct zone *zone = page_zone(page);
  5562. unsigned long pfn = page_to_pfn(page);
  5563. unsigned long flags;
  5564. int order;
  5565. spin_lock_irqsave(&zone->lock, flags);
  5566. for (order = 0; order < MAX_ORDER; order++) {
  5567. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5568. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5569. break;
  5570. }
  5571. spin_unlock_irqrestore(&zone->lock, flags);
  5572. return order < MAX_ORDER;
  5573. }
  5574. #endif
  5575. static const struct trace_print_flags pageflag_names[] = {
  5576. {1UL << PG_locked, "locked" },
  5577. {1UL << PG_error, "error" },
  5578. {1UL << PG_referenced, "referenced" },
  5579. {1UL << PG_uptodate, "uptodate" },
  5580. {1UL << PG_dirty, "dirty" },
  5581. {1UL << PG_lru, "lru" },
  5582. {1UL << PG_active, "active" },
  5583. {1UL << PG_slab, "slab" },
  5584. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5585. {1UL << PG_arch_1, "arch_1" },
  5586. {1UL << PG_reserved, "reserved" },
  5587. {1UL << PG_private, "private" },
  5588. {1UL << PG_private_2, "private_2" },
  5589. {1UL << PG_writeback, "writeback" },
  5590. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5591. {1UL << PG_head, "head" },
  5592. {1UL << PG_tail, "tail" },
  5593. #else
  5594. {1UL << PG_compound, "compound" },
  5595. #endif
  5596. {1UL << PG_swapcache, "swapcache" },
  5597. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5598. {1UL << PG_reclaim, "reclaim" },
  5599. {1UL << PG_swapbacked, "swapbacked" },
  5600. {1UL << PG_unevictable, "unevictable" },
  5601. #ifdef CONFIG_MMU
  5602. {1UL << PG_mlocked, "mlocked" },
  5603. #endif
  5604. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5605. {1UL << PG_uncached, "uncached" },
  5606. #endif
  5607. #ifdef CONFIG_MEMORY_FAILURE
  5608. {1UL << PG_hwpoison, "hwpoison" },
  5609. #endif
  5610. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5611. {1UL << PG_compound_lock, "compound_lock" },
  5612. #endif
  5613. };
  5614. static void dump_page_flags(unsigned long flags)
  5615. {
  5616. const char *delim = "";
  5617. unsigned long mask;
  5618. int i;
  5619. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5620. printk(KERN_ALERT "page flags: %#lx(", flags);
  5621. /* remove zone id */
  5622. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5623. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5624. mask = pageflag_names[i].mask;
  5625. if ((flags & mask) != mask)
  5626. continue;
  5627. flags &= ~mask;
  5628. printk("%s%s", delim, pageflag_names[i].name);
  5629. delim = "|";
  5630. }
  5631. /* check for left over flags */
  5632. if (flags)
  5633. printk("%s%#lx", delim, flags);
  5634. printk(")\n");
  5635. }
  5636. void dump_page(struct page *page)
  5637. {
  5638. printk(KERN_ALERT
  5639. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5640. page, atomic_read(&page->_count), page_mapcount(page),
  5641. page->mapping, page->index);
  5642. dump_page_flags(page->flags);
  5643. mem_cgroup_print_bad_page(page);
  5644. }