hugetlb.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/tlb.h>
  27. #include <linux/io.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/hugetlb_cgroup.h>
  30. #include <linux/node.h>
  31. #include "internal.h"
  32. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  33. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  34. unsigned long hugepages_treat_as_movable;
  35. int hugetlb_max_hstate __read_mostly;
  36. unsigned int default_hstate_idx;
  37. struct hstate hstates[HUGE_MAX_HSTATE];
  38. __initdata LIST_HEAD(huge_boot_pages);
  39. /* for command line parsing */
  40. static struct hstate * __initdata parsed_hstate;
  41. static unsigned long __initdata default_hstate_max_huge_pages;
  42. static unsigned long __initdata default_hstate_size;
  43. /*
  44. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  45. * free_huge_pages, and surplus_huge_pages.
  46. */
  47. DEFINE_SPINLOCK(hugetlb_lock);
  48. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  49. {
  50. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  51. spin_unlock(&spool->lock);
  52. /* If no pages are used, and no other handles to the subpool
  53. * remain, free the subpool the subpool remain */
  54. if (free)
  55. kfree(spool);
  56. }
  57. struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
  58. {
  59. struct hugepage_subpool *spool;
  60. spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  61. if (!spool)
  62. return NULL;
  63. spin_lock_init(&spool->lock);
  64. spool->count = 1;
  65. spool->max_hpages = nr_blocks;
  66. spool->used_hpages = 0;
  67. return spool;
  68. }
  69. void hugepage_put_subpool(struct hugepage_subpool *spool)
  70. {
  71. spin_lock(&spool->lock);
  72. BUG_ON(!spool->count);
  73. spool->count--;
  74. unlock_or_release_subpool(spool);
  75. }
  76. static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  77. long delta)
  78. {
  79. int ret = 0;
  80. if (!spool)
  81. return 0;
  82. spin_lock(&spool->lock);
  83. if ((spool->used_hpages + delta) <= spool->max_hpages) {
  84. spool->used_hpages += delta;
  85. } else {
  86. ret = -ENOMEM;
  87. }
  88. spin_unlock(&spool->lock);
  89. return ret;
  90. }
  91. static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  92. long delta)
  93. {
  94. if (!spool)
  95. return;
  96. spin_lock(&spool->lock);
  97. spool->used_hpages -= delta;
  98. /* If hugetlbfs_put_super couldn't free spool due to
  99. * an outstanding quota reference, free it now. */
  100. unlock_or_release_subpool(spool);
  101. }
  102. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  103. {
  104. return HUGETLBFS_SB(inode->i_sb)->spool;
  105. }
  106. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  107. {
  108. return subpool_inode(file_inode(vma->vm_file));
  109. }
  110. /*
  111. * Region tracking -- allows tracking of reservations and instantiated pages
  112. * across the pages in a mapping.
  113. *
  114. * The region data structures are protected by a combination of the mmap_sem
  115. * and the hugetlb_instantiation_mutex. To access or modify a region the caller
  116. * must either hold the mmap_sem for write, or the mmap_sem for read and
  117. * the hugetlb_instantiation_mutex:
  118. *
  119. * down_write(&mm->mmap_sem);
  120. * or
  121. * down_read(&mm->mmap_sem);
  122. * mutex_lock(&hugetlb_instantiation_mutex);
  123. */
  124. struct file_region {
  125. struct list_head link;
  126. long from;
  127. long to;
  128. };
  129. static long region_add(struct list_head *head, long f, long t)
  130. {
  131. struct file_region *rg, *nrg, *trg;
  132. /* Locate the region we are either in or before. */
  133. list_for_each_entry(rg, head, link)
  134. if (f <= rg->to)
  135. break;
  136. /* Round our left edge to the current segment if it encloses us. */
  137. if (f > rg->from)
  138. f = rg->from;
  139. /* Check for and consume any regions we now overlap with. */
  140. nrg = rg;
  141. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  142. if (&rg->link == head)
  143. break;
  144. if (rg->from > t)
  145. break;
  146. /* If this area reaches higher then extend our area to
  147. * include it completely. If this is not the first area
  148. * which we intend to reuse, free it. */
  149. if (rg->to > t)
  150. t = rg->to;
  151. if (rg != nrg) {
  152. list_del(&rg->link);
  153. kfree(rg);
  154. }
  155. }
  156. nrg->from = f;
  157. nrg->to = t;
  158. return 0;
  159. }
  160. static long region_chg(struct list_head *head, long f, long t)
  161. {
  162. struct file_region *rg, *nrg;
  163. long chg = 0;
  164. /* Locate the region we are before or in. */
  165. list_for_each_entry(rg, head, link)
  166. if (f <= rg->to)
  167. break;
  168. /* If we are below the current region then a new region is required.
  169. * Subtle, allocate a new region at the position but make it zero
  170. * size such that we can guarantee to record the reservation. */
  171. if (&rg->link == head || t < rg->from) {
  172. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  173. if (!nrg)
  174. return -ENOMEM;
  175. nrg->from = f;
  176. nrg->to = f;
  177. INIT_LIST_HEAD(&nrg->link);
  178. list_add(&nrg->link, rg->link.prev);
  179. return t - f;
  180. }
  181. /* Round our left edge to the current segment if it encloses us. */
  182. if (f > rg->from)
  183. f = rg->from;
  184. chg = t - f;
  185. /* Check for and consume any regions we now overlap with. */
  186. list_for_each_entry(rg, rg->link.prev, link) {
  187. if (&rg->link == head)
  188. break;
  189. if (rg->from > t)
  190. return chg;
  191. /* We overlap with this area, if it extends further than
  192. * us then we must extend ourselves. Account for its
  193. * existing reservation. */
  194. if (rg->to > t) {
  195. chg += rg->to - t;
  196. t = rg->to;
  197. }
  198. chg -= rg->to - rg->from;
  199. }
  200. return chg;
  201. }
  202. static long region_truncate(struct list_head *head, long end)
  203. {
  204. struct file_region *rg, *trg;
  205. long chg = 0;
  206. /* Locate the region we are either in or before. */
  207. list_for_each_entry(rg, head, link)
  208. if (end <= rg->to)
  209. break;
  210. if (&rg->link == head)
  211. return 0;
  212. /* If we are in the middle of a region then adjust it. */
  213. if (end > rg->from) {
  214. chg = rg->to - end;
  215. rg->to = end;
  216. rg = list_entry(rg->link.next, typeof(*rg), link);
  217. }
  218. /* Drop any remaining regions. */
  219. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  220. if (&rg->link == head)
  221. break;
  222. chg += rg->to - rg->from;
  223. list_del(&rg->link);
  224. kfree(rg);
  225. }
  226. return chg;
  227. }
  228. static long region_count(struct list_head *head, long f, long t)
  229. {
  230. struct file_region *rg;
  231. long chg = 0;
  232. /* Locate each segment we overlap with, and count that overlap. */
  233. list_for_each_entry(rg, head, link) {
  234. long seg_from;
  235. long seg_to;
  236. if (rg->to <= f)
  237. continue;
  238. if (rg->from >= t)
  239. break;
  240. seg_from = max(rg->from, f);
  241. seg_to = min(rg->to, t);
  242. chg += seg_to - seg_from;
  243. }
  244. return chg;
  245. }
  246. /*
  247. * Convert the address within this vma to the page offset within
  248. * the mapping, in pagecache page units; huge pages here.
  249. */
  250. static pgoff_t vma_hugecache_offset(struct hstate *h,
  251. struct vm_area_struct *vma, unsigned long address)
  252. {
  253. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  254. (vma->vm_pgoff >> huge_page_order(h));
  255. }
  256. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  257. unsigned long address)
  258. {
  259. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  260. }
  261. /*
  262. * Return the size of the pages allocated when backing a VMA. In the majority
  263. * cases this will be same size as used by the page table entries.
  264. */
  265. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  266. {
  267. struct hstate *hstate;
  268. if (!is_vm_hugetlb_page(vma))
  269. return PAGE_SIZE;
  270. hstate = hstate_vma(vma);
  271. return 1UL << huge_page_shift(hstate);
  272. }
  273. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  274. /*
  275. * Return the page size being used by the MMU to back a VMA. In the majority
  276. * of cases, the page size used by the kernel matches the MMU size. On
  277. * architectures where it differs, an architecture-specific version of this
  278. * function is required.
  279. */
  280. #ifndef vma_mmu_pagesize
  281. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  282. {
  283. return vma_kernel_pagesize(vma);
  284. }
  285. #endif
  286. /*
  287. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  288. * bits of the reservation map pointer, which are always clear due to
  289. * alignment.
  290. */
  291. #define HPAGE_RESV_OWNER (1UL << 0)
  292. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  293. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  294. /*
  295. * These helpers are used to track how many pages are reserved for
  296. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  297. * is guaranteed to have their future faults succeed.
  298. *
  299. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  300. * the reserve counters are updated with the hugetlb_lock held. It is safe
  301. * to reset the VMA at fork() time as it is not in use yet and there is no
  302. * chance of the global counters getting corrupted as a result of the values.
  303. *
  304. * The private mapping reservation is represented in a subtly different
  305. * manner to a shared mapping. A shared mapping has a region map associated
  306. * with the underlying file, this region map represents the backing file
  307. * pages which have ever had a reservation assigned which this persists even
  308. * after the page is instantiated. A private mapping has a region map
  309. * associated with the original mmap which is attached to all VMAs which
  310. * reference it, this region map represents those offsets which have consumed
  311. * reservation ie. where pages have been instantiated.
  312. */
  313. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  314. {
  315. return (unsigned long)vma->vm_private_data;
  316. }
  317. static void set_vma_private_data(struct vm_area_struct *vma,
  318. unsigned long value)
  319. {
  320. vma->vm_private_data = (void *)value;
  321. }
  322. struct resv_map {
  323. struct kref refs;
  324. struct list_head regions;
  325. };
  326. static struct resv_map *resv_map_alloc(void)
  327. {
  328. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  329. if (!resv_map)
  330. return NULL;
  331. kref_init(&resv_map->refs);
  332. INIT_LIST_HEAD(&resv_map->regions);
  333. return resv_map;
  334. }
  335. static void resv_map_release(struct kref *ref)
  336. {
  337. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  338. /* Clear out any active regions before we release the map. */
  339. region_truncate(&resv_map->regions, 0);
  340. kfree(resv_map);
  341. }
  342. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  343. {
  344. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  345. if (!(vma->vm_flags & VM_MAYSHARE))
  346. return (struct resv_map *)(get_vma_private_data(vma) &
  347. ~HPAGE_RESV_MASK);
  348. return NULL;
  349. }
  350. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  351. {
  352. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  353. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  354. set_vma_private_data(vma, (get_vma_private_data(vma) &
  355. HPAGE_RESV_MASK) | (unsigned long)map);
  356. }
  357. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  358. {
  359. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  360. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  361. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  362. }
  363. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  364. {
  365. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  366. return (get_vma_private_data(vma) & flag) != 0;
  367. }
  368. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  369. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  370. {
  371. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  372. if (!(vma->vm_flags & VM_MAYSHARE))
  373. vma->vm_private_data = (void *)0;
  374. }
  375. /* Returns true if the VMA has associated reserve pages */
  376. static int vma_has_reserves(struct vm_area_struct *vma, long chg)
  377. {
  378. if (vma->vm_flags & VM_NORESERVE) {
  379. /*
  380. * This address is already reserved by other process(chg == 0),
  381. * so, we should decrement reserved count. Without decrementing,
  382. * reserve count remains after releasing inode, because this
  383. * allocated page will go into page cache and is regarded as
  384. * coming from reserved pool in releasing step. Currently, we
  385. * don't have any other solution to deal with this situation
  386. * properly, so add work-around here.
  387. */
  388. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  389. return 1;
  390. else
  391. return 0;
  392. }
  393. /* Shared mappings always use reserves */
  394. if (vma->vm_flags & VM_MAYSHARE)
  395. return 1;
  396. /*
  397. * Only the process that called mmap() has reserves for
  398. * private mappings.
  399. */
  400. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  401. return 1;
  402. return 0;
  403. }
  404. static void copy_gigantic_page(struct page *dst, struct page *src)
  405. {
  406. int i;
  407. struct hstate *h = page_hstate(src);
  408. struct page *dst_base = dst;
  409. struct page *src_base = src;
  410. for (i = 0; i < pages_per_huge_page(h); ) {
  411. cond_resched();
  412. copy_highpage(dst, src);
  413. i++;
  414. dst = mem_map_next(dst, dst_base, i);
  415. src = mem_map_next(src, src_base, i);
  416. }
  417. }
  418. void copy_huge_page(struct page *dst, struct page *src)
  419. {
  420. int i;
  421. struct hstate *h = page_hstate(src);
  422. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  423. copy_gigantic_page(dst, src);
  424. return;
  425. }
  426. might_sleep();
  427. for (i = 0; i < pages_per_huge_page(h); i++) {
  428. cond_resched();
  429. copy_highpage(dst + i, src + i);
  430. }
  431. }
  432. static void enqueue_huge_page(struct hstate *h, struct page *page)
  433. {
  434. int nid = page_to_nid(page);
  435. list_move(&page->lru, &h->hugepage_freelists[nid]);
  436. h->free_huge_pages++;
  437. h->free_huge_pages_node[nid]++;
  438. }
  439. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  440. {
  441. struct page *page;
  442. if (list_empty(&h->hugepage_freelists[nid]))
  443. return NULL;
  444. page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
  445. list_move(&page->lru, &h->hugepage_activelist);
  446. set_page_refcounted(page);
  447. h->free_huge_pages--;
  448. h->free_huge_pages_node[nid]--;
  449. return page;
  450. }
  451. static struct page *dequeue_huge_page_vma(struct hstate *h,
  452. struct vm_area_struct *vma,
  453. unsigned long address, int avoid_reserve,
  454. long chg)
  455. {
  456. struct page *page = NULL;
  457. struct mempolicy *mpol;
  458. nodemask_t *nodemask;
  459. struct zonelist *zonelist;
  460. struct zone *zone;
  461. struct zoneref *z;
  462. unsigned int cpuset_mems_cookie;
  463. /*
  464. * A child process with MAP_PRIVATE mappings created by their parent
  465. * have no page reserves. This check ensures that reservations are
  466. * not "stolen". The child may still get SIGKILLed
  467. */
  468. if (!vma_has_reserves(vma, chg) &&
  469. h->free_huge_pages - h->resv_huge_pages == 0)
  470. goto err;
  471. /* If reserves cannot be used, ensure enough pages are in the pool */
  472. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  473. goto err;
  474. retry_cpuset:
  475. cpuset_mems_cookie = get_mems_allowed();
  476. zonelist = huge_zonelist(vma, address,
  477. htlb_alloc_mask, &mpol, &nodemask);
  478. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  479. MAX_NR_ZONES - 1, nodemask) {
  480. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
  481. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  482. if (page) {
  483. if (avoid_reserve)
  484. break;
  485. if (!vma_has_reserves(vma, chg))
  486. break;
  487. SetPagePrivate(page);
  488. h->resv_huge_pages--;
  489. break;
  490. }
  491. }
  492. }
  493. mpol_cond_put(mpol);
  494. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  495. goto retry_cpuset;
  496. return page;
  497. err:
  498. return NULL;
  499. }
  500. static void update_and_free_page(struct hstate *h, struct page *page)
  501. {
  502. int i;
  503. VM_BUG_ON(h->order >= MAX_ORDER);
  504. h->nr_huge_pages--;
  505. h->nr_huge_pages_node[page_to_nid(page)]--;
  506. for (i = 0; i < pages_per_huge_page(h); i++) {
  507. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  508. 1 << PG_referenced | 1 << PG_dirty |
  509. 1 << PG_active | 1 << PG_reserved |
  510. 1 << PG_private | 1 << PG_writeback);
  511. }
  512. VM_BUG_ON(hugetlb_cgroup_from_page(page));
  513. set_compound_page_dtor(page, NULL);
  514. set_page_refcounted(page);
  515. arch_release_hugepage(page);
  516. __free_pages(page, huge_page_order(h));
  517. }
  518. struct hstate *size_to_hstate(unsigned long size)
  519. {
  520. struct hstate *h;
  521. for_each_hstate(h) {
  522. if (huge_page_size(h) == size)
  523. return h;
  524. }
  525. return NULL;
  526. }
  527. static void free_huge_page(struct page *page)
  528. {
  529. /*
  530. * Can't pass hstate in here because it is called from the
  531. * compound page destructor.
  532. */
  533. struct hstate *h = page_hstate(page);
  534. int nid = page_to_nid(page);
  535. struct hugepage_subpool *spool =
  536. (struct hugepage_subpool *)page_private(page);
  537. bool restore_reserve;
  538. set_page_private(page, 0);
  539. page->mapping = NULL;
  540. BUG_ON(page_count(page));
  541. BUG_ON(page_mapcount(page));
  542. restore_reserve = PagePrivate(page);
  543. spin_lock(&hugetlb_lock);
  544. hugetlb_cgroup_uncharge_page(hstate_index(h),
  545. pages_per_huge_page(h), page);
  546. if (restore_reserve)
  547. h->resv_huge_pages++;
  548. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  549. /* remove the page from active list */
  550. list_del(&page->lru);
  551. update_and_free_page(h, page);
  552. h->surplus_huge_pages--;
  553. h->surplus_huge_pages_node[nid]--;
  554. } else {
  555. arch_clear_hugepage_flags(page);
  556. enqueue_huge_page(h, page);
  557. }
  558. spin_unlock(&hugetlb_lock);
  559. hugepage_subpool_put_pages(spool, 1);
  560. }
  561. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  562. {
  563. INIT_LIST_HEAD(&page->lru);
  564. set_compound_page_dtor(page, free_huge_page);
  565. spin_lock(&hugetlb_lock);
  566. set_hugetlb_cgroup(page, NULL);
  567. h->nr_huge_pages++;
  568. h->nr_huge_pages_node[nid]++;
  569. spin_unlock(&hugetlb_lock);
  570. put_page(page); /* free it into the hugepage allocator */
  571. }
  572. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  573. {
  574. int i;
  575. int nr_pages = 1 << order;
  576. struct page *p = page + 1;
  577. /* we rely on prep_new_huge_page to set the destructor */
  578. set_compound_order(page, order);
  579. __SetPageHead(page);
  580. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  581. __SetPageTail(p);
  582. set_page_count(p, 0);
  583. p->first_page = page;
  584. }
  585. }
  586. /*
  587. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  588. * transparent huge pages. See the PageTransHuge() documentation for more
  589. * details.
  590. */
  591. int PageHuge(struct page *page)
  592. {
  593. compound_page_dtor *dtor;
  594. if (!PageCompound(page))
  595. return 0;
  596. page = compound_head(page);
  597. dtor = get_compound_page_dtor(page);
  598. return dtor == free_huge_page;
  599. }
  600. EXPORT_SYMBOL_GPL(PageHuge);
  601. pgoff_t __basepage_index(struct page *page)
  602. {
  603. struct page *page_head = compound_head(page);
  604. pgoff_t index = page_index(page_head);
  605. unsigned long compound_idx;
  606. if (!PageHuge(page_head))
  607. return page_index(page);
  608. if (compound_order(page_head) >= MAX_ORDER)
  609. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  610. else
  611. compound_idx = page - page_head;
  612. return (index << compound_order(page_head)) + compound_idx;
  613. }
  614. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  615. {
  616. struct page *page;
  617. if (h->order >= MAX_ORDER)
  618. return NULL;
  619. page = alloc_pages_exact_node(nid,
  620. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  621. __GFP_REPEAT|__GFP_NOWARN,
  622. huge_page_order(h));
  623. if (page) {
  624. if (arch_prepare_hugepage(page)) {
  625. __free_pages(page, huge_page_order(h));
  626. return NULL;
  627. }
  628. prep_new_huge_page(h, page, nid);
  629. }
  630. return page;
  631. }
  632. /*
  633. * common helper functions for hstate_next_node_to_{alloc|free}.
  634. * We may have allocated or freed a huge page based on a different
  635. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  636. * be outside of *nodes_allowed. Ensure that we use an allowed
  637. * node for alloc or free.
  638. */
  639. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  640. {
  641. nid = next_node(nid, *nodes_allowed);
  642. if (nid == MAX_NUMNODES)
  643. nid = first_node(*nodes_allowed);
  644. VM_BUG_ON(nid >= MAX_NUMNODES);
  645. return nid;
  646. }
  647. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  648. {
  649. if (!node_isset(nid, *nodes_allowed))
  650. nid = next_node_allowed(nid, nodes_allowed);
  651. return nid;
  652. }
  653. /*
  654. * returns the previously saved node ["this node"] from which to
  655. * allocate a persistent huge page for the pool and advance the
  656. * next node from which to allocate, handling wrap at end of node
  657. * mask.
  658. */
  659. static int hstate_next_node_to_alloc(struct hstate *h,
  660. nodemask_t *nodes_allowed)
  661. {
  662. int nid;
  663. VM_BUG_ON(!nodes_allowed);
  664. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  665. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  666. return nid;
  667. }
  668. /*
  669. * helper for free_pool_huge_page() - return the previously saved
  670. * node ["this node"] from which to free a huge page. Advance the
  671. * next node id whether or not we find a free huge page to free so
  672. * that the next attempt to free addresses the next node.
  673. */
  674. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  675. {
  676. int nid;
  677. VM_BUG_ON(!nodes_allowed);
  678. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  679. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  680. return nid;
  681. }
  682. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  683. for (nr_nodes = nodes_weight(*mask); \
  684. nr_nodes > 0 && \
  685. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  686. nr_nodes--)
  687. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  688. for (nr_nodes = nodes_weight(*mask); \
  689. nr_nodes > 0 && \
  690. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  691. nr_nodes--)
  692. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  693. {
  694. struct page *page;
  695. int nr_nodes, node;
  696. int ret = 0;
  697. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  698. page = alloc_fresh_huge_page_node(h, node);
  699. if (page) {
  700. ret = 1;
  701. break;
  702. }
  703. }
  704. if (ret)
  705. count_vm_event(HTLB_BUDDY_PGALLOC);
  706. else
  707. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  708. return ret;
  709. }
  710. /*
  711. * Free huge page from pool from next node to free.
  712. * Attempt to keep persistent huge pages more or less
  713. * balanced over allowed nodes.
  714. * Called with hugetlb_lock locked.
  715. */
  716. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  717. bool acct_surplus)
  718. {
  719. int nr_nodes, node;
  720. int ret = 0;
  721. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  722. /*
  723. * If we're returning unused surplus pages, only examine
  724. * nodes with surplus pages.
  725. */
  726. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  727. !list_empty(&h->hugepage_freelists[node])) {
  728. struct page *page =
  729. list_entry(h->hugepage_freelists[node].next,
  730. struct page, lru);
  731. list_del(&page->lru);
  732. h->free_huge_pages--;
  733. h->free_huge_pages_node[node]--;
  734. if (acct_surplus) {
  735. h->surplus_huge_pages--;
  736. h->surplus_huge_pages_node[node]--;
  737. }
  738. update_and_free_page(h, page);
  739. ret = 1;
  740. break;
  741. }
  742. }
  743. return ret;
  744. }
  745. static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
  746. {
  747. struct page *page;
  748. unsigned int r_nid;
  749. if (h->order >= MAX_ORDER)
  750. return NULL;
  751. /*
  752. * Assume we will successfully allocate the surplus page to
  753. * prevent racing processes from causing the surplus to exceed
  754. * overcommit
  755. *
  756. * This however introduces a different race, where a process B
  757. * tries to grow the static hugepage pool while alloc_pages() is
  758. * called by process A. B will only examine the per-node
  759. * counters in determining if surplus huge pages can be
  760. * converted to normal huge pages in adjust_pool_surplus(). A
  761. * won't be able to increment the per-node counter, until the
  762. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  763. * no more huge pages can be converted from surplus to normal
  764. * state (and doesn't try to convert again). Thus, we have a
  765. * case where a surplus huge page exists, the pool is grown, and
  766. * the surplus huge page still exists after, even though it
  767. * should just have been converted to a normal huge page. This
  768. * does not leak memory, though, as the hugepage will be freed
  769. * once it is out of use. It also does not allow the counters to
  770. * go out of whack in adjust_pool_surplus() as we don't modify
  771. * the node values until we've gotten the hugepage and only the
  772. * per-node value is checked there.
  773. */
  774. spin_lock(&hugetlb_lock);
  775. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  776. spin_unlock(&hugetlb_lock);
  777. return NULL;
  778. } else {
  779. h->nr_huge_pages++;
  780. h->surplus_huge_pages++;
  781. }
  782. spin_unlock(&hugetlb_lock);
  783. if (nid == NUMA_NO_NODE)
  784. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
  785. __GFP_REPEAT|__GFP_NOWARN,
  786. huge_page_order(h));
  787. else
  788. page = alloc_pages_exact_node(nid,
  789. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  790. __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
  791. if (page && arch_prepare_hugepage(page)) {
  792. __free_pages(page, huge_page_order(h));
  793. page = NULL;
  794. }
  795. spin_lock(&hugetlb_lock);
  796. if (page) {
  797. INIT_LIST_HEAD(&page->lru);
  798. r_nid = page_to_nid(page);
  799. set_compound_page_dtor(page, free_huge_page);
  800. set_hugetlb_cgroup(page, NULL);
  801. /*
  802. * We incremented the global counters already
  803. */
  804. h->nr_huge_pages_node[r_nid]++;
  805. h->surplus_huge_pages_node[r_nid]++;
  806. __count_vm_event(HTLB_BUDDY_PGALLOC);
  807. } else {
  808. h->nr_huge_pages--;
  809. h->surplus_huge_pages--;
  810. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  811. }
  812. spin_unlock(&hugetlb_lock);
  813. return page;
  814. }
  815. /*
  816. * This allocation function is useful in the context where vma is irrelevant.
  817. * E.g. soft-offlining uses this function because it only cares physical
  818. * address of error page.
  819. */
  820. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  821. {
  822. struct page *page = NULL;
  823. spin_lock(&hugetlb_lock);
  824. if (h->free_huge_pages - h->resv_huge_pages > 0)
  825. page = dequeue_huge_page_node(h, nid);
  826. spin_unlock(&hugetlb_lock);
  827. if (!page)
  828. page = alloc_buddy_huge_page(h, nid);
  829. return page;
  830. }
  831. /*
  832. * Increase the hugetlb pool such that it can accommodate a reservation
  833. * of size 'delta'.
  834. */
  835. static int gather_surplus_pages(struct hstate *h, int delta)
  836. {
  837. struct list_head surplus_list;
  838. struct page *page, *tmp;
  839. int ret, i;
  840. int needed, allocated;
  841. bool alloc_ok = true;
  842. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  843. if (needed <= 0) {
  844. h->resv_huge_pages += delta;
  845. return 0;
  846. }
  847. allocated = 0;
  848. INIT_LIST_HEAD(&surplus_list);
  849. ret = -ENOMEM;
  850. retry:
  851. spin_unlock(&hugetlb_lock);
  852. for (i = 0; i < needed; i++) {
  853. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  854. if (!page) {
  855. alloc_ok = false;
  856. break;
  857. }
  858. list_add(&page->lru, &surplus_list);
  859. }
  860. allocated += i;
  861. /*
  862. * After retaking hugetlb_lock, we need to recalculate 'needed'
  863. * because either resv_huge_pages or free_huge_pages may have changed.
  864. */
  865. spin_lock(&hugetlb_lock);
  866. needed = (h->resv_huge_pages + delta) -
  867. (h->free_huge_pages + allocated);
  868. if (needed > 0) {
  869. if (alloc_ok)
  870. goto retry;
  871. /*
  872. * We were not able to allocate enough pages to
  873. * satisfy the entire reservation so we free what
  874. * we've allocated so far.
  875. */
  876. goto free;
  877. }
  878. /*
  879. * The surplus_list now contains _at_least_ the number of extra pages
  880. * needed to accommodate the reservation. Add the appropriate number
  881. * of pages to the hugetlb pool and free the extras back to the buddy
  882. * allocator. Commit the entire reservation here to prevent another
  883. * process from stealing the pages as they are added to the pool but
  884. * before they are reserved.
  885. */
  886. needed += allocated;
  887. h->resv_huge_pages += delta;
  888. ret = 0;
  889. /* Free the needed pages to the hugetlb pool */
  890. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  891. if ((--needed) < 0)
  892. break;
  893. /*
  894. * This page is now managed by the hugetlb allocator and has
  895. * no users -- drop the buddy allocator's reference.
  896. */
  897. put_page_testzero(page);
  898. VM_BUG_ON(page_count(page));
  899. enqueue_huge_page(h, page);
  900. }
  901. free:
  902. spin_unlock(&hugetlb_lock);
  903. /* Free unnecessary surplus pages to the buddy allocator */
  904. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  905. put_page(page);
  906. spin_lock(&hugetlb_lock);
  907. return ret;
  908. }
  909. /*
  910. * When releasing a hugetlb pool reservation, any surplus pages that were
  911. * allocated to satisfy the reservation must be explicitly freed if they were
  912. * never used.
  913. * Called with hugetlb_lock held.
  914. */
  915. static void return_unused_surplus_pages(struct hstate *h,
  916. unsigned long unused_resv_pages)
  917. {
  918. unsigned long nr_pages;
  919. /* Uncommit the reservation */
  920. h->resv_huge_pages -= unused_resv_pages;
  921. /* Cannot return gigantic pages currently */
  922. if (h->order >= MAX_ORDER)
  923. return;
  924. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  925. /*
  926. * We want to release as many surplus pages as possible, spread
  927. * evenly across all nodes with memory. Iterate across these nodes
  928. * until we can no longer free unreserved surplus pages. This occurs
  929. * when the nodes with surplus pages have no free pages.
  930. * free_pool_huge_page() will balance the the freed pages across the
  931. * on-line nodes with memory and will handle the hstate accounting.
  932. */
  933. while (nr_pages--) {
  934. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  935. break;
  936. }
  937. }
  938. /*
  939. * Determine if the huge page at addr within the vma has an associated
  940. * reservation. Where it does not we will need to logically increase
  941. * reservation and actually increase subpool usage before an allocation
  942. * can occur. Where any new reservation would be required the
  943. * reservation change is prepared, but not committed. Once the page
  944. * has been allocated from the subpool and instantiated the change should
  945. * be committed via vma_commit_reservation. No action is required on
  946. * failure.
  947. */
  948. static long vma_needs_reservation(struct hstate *h,
  949. struct vm_area_struct *vma, unsigned long addr)
  950. {
  951. struct address_space *mapping = vma->vm_file->f_mapping;
  952. struct inode *inode = mapping->host;
  953. if (vma->vm_flags & VM_MAYSHARE) {
  954. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  955. return region_chg(&inode->i_mapping->private_list,
  956. idx, idx + 1);
  957. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  958. return 1;
  959. } else {
  960. long err;
  961. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  962. struct resv_map *resv = vma_resv_map(vma);
  963. err = region_chg(&resv->regions, idx, idx + 1);
  964. if (err < 0)
  965. return err;
  966. return 0;
  967. }
  968. }
  969. static void vma_commit_reservation(struct hstate *h,
  970. struct vm_area_struct *vma, unsigned long addr)
  971. {
  972. struct address_space *mapping = vma->vm_file->f_mapping;
  973. struct inode *inode = mapping->host;
  974. if (vma->vm_flags & VM_MAYSHARE) {
  975. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  976. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  977. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  978. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  979. struct resv_map *resv = vma_resv_map(vma);
  980. /* Mark this page used in the map. */
  981. region_add(&resv->regions, idx, idx + 1);
  982. }
  983. }
  984. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  985. unsigned long addr, int avoid_reserve)
  986. {
  987. struct hugepage_subpool *spool = subpool_vma(vma);
  988. struct hstate *h = hstate_vma(vma);
  989. struct page *page;
  990. long chg;
  991. int ret, idx;
  992. struct hugetlb_cgroup *h_cg;
  993. idx = hstate_index(h);
  994. /*
  995. * Processes that did not create the mapping will have no
  996. * reserves and will not have accounted against subpool
  997. * limit. Check that the subpool limit can be made before
  998. * satisfying the allocation MAP_NORESERVE mappings may also
  999. * need pages and subpool limit allocated allocated if no reserve
  1000. * mapping overlaps.
  1001. */
  1002. chg = vma_needs_reservation(h, vma, addr);
  1003. if (chg < 0)
  1004. return ERR_PTR(-ENOMEM);
  1005. if (chg || avoid_reserve)
  1006. if (hugepage_subpool_get_pages(spool, 1))
  1007. return ERR_PTR(-ENOSPC);
  1008. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1009. if (ret) {
  1010. if (chg || avoid_reserve)
  1011. hugepage_subpool_put_pages(spool, 1);
  1012. return ERR_PTR(-ENOSPC);
  1013. }
  1014. spin_lock(&hugetlb_lock);
  1015. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
  1016. if (!page) {
  1017. spin_unlock(&hugetlb_lock);
  1018. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  1019. if (!page) {
  1020. hugetlb_cgroup_uncharge_cgroup(idx,
  1021. pages_per_huge_page(h),
  1022. h_cg);
  1023. if (chg || avoid_reserve)
  1024. hugepage_subpool_put_pages(spool, 1);
  1025. return ERR_PTR(-ENOSPC);
  1026. }
  1027. spin_lock(&hugetlb_lock);
  1028. list_move(&page->lru, &h->hugepage_activelist);
  1029. /* Fall through */
  1030. }
  1031. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1032. spin_unlock(&hugetlb_lock);
  1033. set_page_private(page, (unsigned long)spool);
  1034. vma_commit_reservation(h, vma, addr);
  1035. return page;
  1036. }
  1037. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1038. {
  1039. struct huge_bootmem_page *m;
  1040. int nr_nodes, node;
  1041. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1042. void *addr;
  1043. addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
  1044. huge_page_size(h), huge_page_size(h), 0);
  1045. if (addr) {
  1046. /*
  1047. * Use the beginning of the huge page to store the
  1048. * huge_bootmem_page struct (until gather_bootmem
  1049. * puts them into the mem_map).
  1050. */
  1051. m = addr;
  1052. goto found;
  1053. }
  1054. }
  1055. return 0;
  1056. found:
  1057. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  1058. /* Put them into a private list first because mem_map is not up yet */
  1059. list_add(&m->list, &huge_boot_pages);
  1060. m->hstate = h;
  1061. return 1;
  1062. }
  1063. static void prep_compound_huge_page(struct page *page, int order)
  1064. {
  1065. if (unlikely(order > (MAX_ORDER - 1)))
  1066. prep_compound_gigantic_page(page, order);
  1067. else
  1068. prep_compound_page(page, order);
  1069. }
  1070. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1071. static void __init gather_bootmem_prealloc(void)
  1072. {
  1073. struct huge_bootmem_page *m;
  1074. list_for_each_entry(m, &huge_boot_pages, list) {
  1075. struct hstate *h = m->hstate;
  1076. struct page *page;
  1077. #ifdef CONFIG_HIGHMEM
  1078. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1079. free_bootmem_late((unsigned long)m,
  1080. sizeof(struct huge_bootmem_page));
  1081. #else
  1082. page = virt_to_page(m);
  1083. #endif
  1084. __ClearPageReserved(page);
  1085. WARN_ON(page_count(page) != 1);
  1086. prep_compound_huge_page(page, h->order);
  1087. prep_new_huge_page(h, page, page_to_nid(page));
  1088. /*
  1089. * If we had gigantic hugepages allocated at boot time, we need
  1090. * to restore the 'stolen' pages to totalram_pages in order to
  1091. * fix confusing memory reports from free(1) and another
  1092. * side-effects, like CommitLimit going negative.
  1093. */
  1094. if (h->order > (MAX_ORDER - 1))
  1095. adjust_managed_page_count(page, 1 << h->order);
  1096. }
  1097. }
  1098. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1099. {
  1100. unsigned long i;
  1101. for (i = 0; i < h->max_huge_pages; ++i) {
  1102. if (h->order >= MAX_ORDER) {
  1103. if (!alloc_bootmem_huge_page(h))
  1104. break;
  1105. } else if (!alloc_fresh_huge_page(h,
  1106. &node_states[N_MEMORY]))
  1107. break;
  1108. }
  1109. h->max_huge_pages = i;
  1110. }
  1111. static void __init hugetlb_init_hstates(void)
  1112. {
  1113. struct hstate *h;
  1114. for_each_hstate(h) {
  1115. /* oversize hugepages were init'ed in early boot */
  1116. if (h->order < MAX_ORDER)
  1117. hugetlb_hstate_alloc_pages(h);
  1118. }
  1119. }
  1120. static char * __init memfmt(char *buf, unsigned long n)
  1121. {
  1122. if (n >= (1UL << 30))
  1123. sprintf(buf, "%lu GB", n >> 30);
  1124. else if (n >= (1UL << 20))
  1125. sprintf(buf, "%lu MB", n >> 20);
  1126. else
  1127. sprintf(buf, "%lu KB", n >> 10);
  1128. return buf;
  1129. }
  1130. static void __init report_hugepages(void)
  1131. {
  1132. struct hstate *h;
  1133. for_each_hstate(h) {
  1134. char buf[32];
  1135. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1136. memfmt(buf, huge_page_size(h)),
  1137. h->free_huge_pages);
  1138. }
  1139. }
  1140. #ifdef CONFIG_HIGHMEM
  1141. static void try_to_free_low(struct hstate *h, unsigned long count,
  1142. nodemask_t *nodes_allowed)
  1143. {
  1144. int i;
  1145. if (h->order >= MAX_ORDER)
  1146. return;
  1147. for_each_node_mask(i, *nodes_allowed) {
  1148. struct page *page, *next;
  1149. struct list_head *freel = &h->hugepage_freelists[i];
  1150. list_for_each_entry_safe(page, next, freel, lru) {
  1151. if (count >= h->nr_huge_pages)
  1152. return;
  1153. if (PageHighMem(page))
  1154. continue;
  1155. list_del(&page->lru);
  1156. update_and_free_page(h, page);
  1157. h->free_huge_pages--;
  1158. h->free_huge_pages_node[page_to_nid(page)]--;
  1159. }
  1160. }
  1161. }
  1162. #else
  1163. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1164. nodemask_t *nodes_allowed)
  1165. {
  1166. }
  1167. #endif
  1168. /*
  1169. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1170. * balanced by operating on them in a round-robin fashion.
  1171. * Returns 1 if an adjustment was made.
  1172. */
  1173. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1174. int delta)
  1175. {
  1176. int nr_nodes, node;
  1177. VM_BUG_ON(delta != -1 && delta != 1);
  1178. if (delta < 0) {
  1179. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1180. if (h->surplus_huge_pages_node[node])
  1181. goto found;
  1182. }
  1183. } else {
  1184. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1185. if (h->surplus_huge_pages_node[node] <
  1186. h->nr_huge_pages_node[node])
  1187. goto found;
  1188. }
  1189. }
  1190. return 0;
  1191. found:
  1192. h->surplus_huge_pages += delta;
  1193. h->surplus_huge_pages_node[node] += delta;
  1194. return 1;
  1195. }
  1196. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1197. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1198. nodemask_t *nodes_allowed)
  1199. {
  1200. unsigned long min_count, ret;
  1201. if (h->order >= MAX_ORDER)
  1202. return h->max_huge_pages;
  1203. /*
  1204. * Increase the pool size
  1205. * First take pages out of surplus state. Then make up the
  1206. * remaining difference by allocating fresh huge pages.
  1207. *
  1208. * We might race with alloc_buddy_huge_page() here and be unable
  1209. * to convert a surplus huge page to a normal huge page. That is
  1210. * not critical, though, it just means the overall size of the
  1211. * pool might be one hugepage larger than it needs to be, but
  1212. * within all the constraints specified by the sysctls.
  1213. */
  1214. spin_lock(&hugetlb_lock);
  1215. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1216. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1217. break;
  1218. }
  1219. while (count > persistent_huge_pages(h)) {
  1220. /*
  1221. * If this allocation races such that we no longer need the
  1222. * page, free_huge_page will handle it by freeing the page
  1223. * and reducing the surplus.
  1224. */
  1225. spin_unlock(&hugetlb_lock);
  1226. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1227. spin_lock(&hugetlb_lock);
  1228. if (!ret)
  1229. goto out;
  1230. /* Bail for signals. Probably ctrl-c from user */
  1231. if (signal_pending(current))
  1232. goto out;
  1233. }
  1234. /*
  1235. * Decrease the pool size
  1236. * First return free pages to the buddy allocator (being careful
  1237. * to keep enough around to satisfy reservations). Then place
  1238. * pages into surplus state as needed so the pool will shrink
  1239. * to the desired size as pages become free.
  1240. *
  1241. * By placing pages into the surplus state independent of the
  1242. * overcommit value, we are allowing the surplus pool size to
  1243. * exceed overcommit. There are few sane options here. Since
  1244. * alloc_buddy_huge_page() is checking the global counter,
  1245. * though, we'll note that we're not allowed to exceed surplus
  1246. * and won't grow the pool anywhere else. Not until one of the
  1247. * sysctls are changed, or the surplus pages go out of use.
  1248. */
  1249. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1250. min_count = max(count, min_count);
  1251. try_to_free_low(h, min_count, nodes_allowed);
  1252. while (min_count < persistent_huge_pages(h)) {
  1253. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1254. break;
  1255. }
  1256. while (count < persistent_huge_pages(h)) {
  1257. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1258. break;
  1259. }
  1260. out:
  1261. ret = persistent_huge_pages(h);
  1262. spin_unlock(&hugetlb_lock);
  1263. return ret;
  1264. }
  1265. #define HSTATE_ATTR_RO(_name) \
  1266. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1267. #define HSTATE_ATTR(_name) \
  1268. static struct kobj_attribute _name##_attr = \
  1269. __ATTR(_name, 0644, _name##_show, _name##_store)
  1270. static struct kobject *hugepages_kobj;
  1271. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1272. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1273. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1274. {
  1275. int i;
  1276. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1277. if (hstate_kobjs[i] == kobj) {
  1278. if (nidp)
  1279. *nidp = NUMA_NO_NODE;
  1280. return &hstates[i];
  1281. }
  1282. return kobj_to_node_hstate(kobj, nidp);
  1283. }
  1284. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1285. struct kobj_attribute *attr, char *buf)
  1286. {
  1287. struct hstate *h;
  1288. unsigned long nr_huge_pages;
  1289. int nid;
  1290. h = kobj_to_hstate(kobj, &nid);
  1291. if (nid == NUMA_NO_NODE)
  1292. nr_huge_pages = h->nr_huge_pages;
  1293. else
  1294. nr_huge_pages = h->nr_huge_pages_node[nid];
  1295. return sprintf(buf, "%lu\n", nr_huge_pages);
  1296. }
  1297. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1298. struct kobject *kobj, struct kobj_attribute *attr,
  1299. const char *buf, size_t len)
  1300. {
  1301. int err;
  1302. int nid;
  1303. unsigned long count;
  1304. struct hstate *h;
  1305. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1306. err = kstrtoul(buf, 10, &count);
  1307. if (err)
  1308. goto out;
  1309. h = kobj_to_hstate(kobj, &nid);
  1310. if (h->order >= MAX_ORDER) {
  1311. err = -EINVAL;
  1312. goto out;
  1313. }
  1314. if (nid == NUMA_NO_NODE) {
  1315. /*
  1316. * global hstate attribute
  1317. */
  1318. if (!(obey_mempolicy &&
  1319. init_nodemask_of_mempolicy(nodes_allowed))) {
  1320. NODEMASK_FREE(nodes_allowed);
  1321. nodes_allowed = &node_states[N_MEMORY];
  1322. }
  1323. } else if (nodes_allowed) {
  1324. /*
  1325. * per node hstate attribute: adjust count to global,
  1326. * but restrict alloc/free to the specified node.
  1327. */
  1328. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1329. init_nodemask_of_node(nodes_allowed, nid);
  1330. } else
  1331. nodes_allowed = &node_states[N_MEMORY];
  1332. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1333. if (nodes_allowed != &node_states[N_MEMORY])
  1334. NODEMASK_FREE(nodes_allowed);
  1335. return len;
  1336. out:
  1337. NODEMASK_FREE(nodes_allowed);
  1338. return err;
  1339. }
  1340. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1341. struct kobj_attribute *attr, char *buf)
  1342. {
  1343. return nr_hugepages_show_common(kobj, attr, buf);
  1344. }
  1345. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1346. struct kobj_attribute *attr, const char *buf, size_t len)
  1347. {
  1348. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1349. }
  1350. HSTATE_ATTR(nr_hugepages);
  1351. #ifdef CONFIG_NUMA
  1352. /*
  1353. * hstate attribute for optionally mempolicy-based constraint on persistent
  1354. * huge page alloc/free.
  1355. */
  1356. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1357. struct kobj_attribute *attr, char *buf)
  1358. {
  1359. return nr_hugepages_show_common(kobj, attr, buf);
  1360. }
  1361. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1362. struct kobj_attribute *attr, const char *buf, size_t len)
  1363. {
  1364. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1365. }
  1366. HSTATE_ATTR(nr_hugepages_mempolicy);
  1367. #endif
  1368. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1369. struct kobj_attribute *attr, char *buf)
  1370. {
  1371. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1372. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1373. }
  1374. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1375. struct kobj_attribute *attr, const char *buf, size_t count)
  1376. {
  1377. int err;
  1378. unsigned long input;
  1379. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1380. if (h->order >= MAX_ORDER)
  1381. return -EINVAL;
  1382. err = kstrtoul(buf, 10, &input);
  1383. if (err)
  1384. return err;
  1385. spin_lock(&hugetlb_lock);
  1386. h->nr_overcommit_huge_pages = input;
  1387. spin_unlock(&hugetlb_lock);
  1388. return count;
  1389. }
  1390. HSTATE_ATTR(nr_overcommit_hugepages);
  1391. static ssize_t free_hugepages_show(struct kobject *kobj,
  1392. struct kobj_attribute *attr, char *buf)
  1393. {
  1394. struct hstate *h;
  1395. unsigned long free_huge_pages;
  1396. int nid;
  1397. h = kobj_to_hstate(kobj, &nid);
  1398. if (nid == NUMA_NO_NODE)
  1399. free_huge_pages = h->free_huge_pages;
  1400. else
  1401. free_huge_pages = h->free_huge_pages_node[nid];
  1402. return sprintf(buf, "%lu\n", free_huge_pages);
  1403. }
  1404. HSTATE_ATTR_RO(free_hugepages);
  1405. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1406. struct kobj_attribute *attr, char *buf)
  1407. {
  1408. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1409. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1410. }
  1411. HSTATE_ATTR_RO(resv_hugepages);
  1412. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1413. struct kobj_attribute *attr, char *buf)
  1414. {
  1415. struct hstate *h;
  1416. unsigned long surplus_huge_pages;
  1417. int nid;
  1418. h = kobj_to_hstate(kobj, &nid);
  1419. if (nid == NUMA_NO_NODE)
  1420. surplus_huge_pages = h->surplus_huge_pages;
  1421. else
  1422. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1423. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1424. }
  1425. HSTATE_ATTR_RO(surplus_hugepages);
  1426. static struct attribute *hstate_attrs[] = {
  1427. &nr_hugepages_attr.attr,
  1428. &nr_overcommit_hugepages_attr.attr,
  1429. &free_hugepages_attr.attr,
  1430. &resv_hugepages_attr.attr,
  1431. &surplus_hugepages_attr.attr,
  1432. #ifdef CONFIG_NUMA
  1433. &nr_hugepages_mempolicy_attr.attr,
  1434. #endif
  1435. NULL,
  1436. };
  1437. static struct attribute_group hstate_attr_group = {
  1438. .attrs = hstate_attrs,
  1439. };
  1440. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1441. struct kobject **hstate_kobjs,
  1442. struct attribute_group *hstate_attr_group)
  1443. {
  1444. int retval;
  1445. int hi = hstate_index(h);
  1446. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1447. if (!hstate_kobjs[hi])
  1448. return -ENOMEM;
  1449. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1450. if (retval)
  1451. kobject_put(hstate_kobjs[hi]);
  1452. return retval;
  1453. }
  1454. static void __init hugetlb_sysfs_init(void)
  1455. {
  1456. struct hstate *h;
  1457. int err;
  1458. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1459. if (!hugepages_kobj)
  1460. return;
  1461. for_each_hstate(h) {
  1462. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1463. hstate_kobjs, &hstate_attr_group);
  1464. if (err)
  1465. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  1466. }
  1467. }
  1468. #ifdef CONFIG_NUMA
  1469. /*
  1470. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1471. * with node devices in node_devices[] using a parallel array. The array
  1472. * index of a node device or _hstate == node id.
  1473. * This is here to avoid any static dependency of the node device driver, in
  1474. * the base kernel, on the hugetlb module.
  1475. */
  1476. struct node_hstate {
  1477. struct kobject *hugepages_kobj;
  1478. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1479. };
  1480. struct node_hstate node_hstates[MAX_NUMNODES];
  1481. /*
  1482. * A subset of global hstate attributes for node devices
  1483. */
  1484. static struct attribute *per_node_hstate_attrs[] = {
  1485. &nr_hugepages_attr.attr,
  1486. &free_hugepages_attr.attr,
  1487. &surplus_hugepages_attr.attr,
  1488. NULL,
  1489. };
  1490. static struct attribute_group per_node_hstate_attr_group = {
  1491. .attrs = per_node_hstate_attrs,
  1492. };
  1493. /*
  1494. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  1495. * Returns node id via non-NULL nidp.
  1496. */
  1497. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1498. {
  1499. int nid;
  1500. for (nid = 0; nid < nr_node_ids; nid++) {
  1501. struct node_hstate *nhs = &node_hstates[nid];
  1502. int i;
  1503. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1504. if (nhs->hstate_kobjs[i] == kobj) {
  1505. if (nidp)
  1506. *nidp = nid;
  1507. return &hstates[i];
  1508. }
  1509. }
  1510. BUG();
  1511. return NULL;
  1512. }
  1513. /*
  1514. * Unregister hstate attributes from a single node device.
  1515. * No-op if no hstate attributes attached.
  1516. */
  1517. static void hugetlb_unregister_node(struct node *node)
  1518. {
  1519. struct hstate *h;
  1520. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1521. if (!nhs->hugepages_kobj)
  1522. return; /* no hstate attributes */
  1523. for_each_hstate(h) {
  1524. int idx = hstate_index(h);
  1525. if (nhs->hstate_kobjs[idx]) {
  1526. kobject_put(nhs->hstate_kobjs[idx]);
  1527. nhs->hstate_kobjs[idx] = NULL;
  1528. }
  1529. }
  1530. kobject_put(nhs->hugepages_kobj);
  1531. nhs->hugepages_kobj = NULL;
  1532. }
  1533. /*
  1534. * hugetlb module exit: unregister hstate attributes from node devices
  1535. * that have them.
  1536. */
  1537. static void hugetlb_unregister_all_nodes(void)
  1538. {
  1539. int nid;
  1540. /*
  1541. * disable node device registrations.
  1542. */
  1543. register_hugetlbfs_with_node(NULL, NULL);
  1544. /*
  1545. * remove hstate attributes from any nodes that have them.
  1546. */
  1547. for (nid = 0; nid < nr_node_ids; nid++)
  1548. hugetlb_unregister_node(node_devices[nid]);
  1549. }
  1550. /*
  1551. * Register hstate attributes for a single node device.
  1552. * No-op if attributes already registered.
  1553. */
  1554. static void hugetlb_register_node(struct node *node)
  1555. {
  1556. struct hstate *h;
  1557. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1558. int err;
  1559. if (nhs->hugepages_kobj)
  1560. return; /* already allocated */
  1561. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1562. &node->dev.kobj);
  1563. if (!nhs->hugepages_kobj)
  1564. return;
  1565. for_each_hstate(h) {
  1566. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1567. nhs->hstate_kobjs,
  1568. &per_node_hstate_attr_group);
  1569. if (err) {
  1570. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  1571. h->name, node->dev.id);
  1572. hugetlb_unregister_node(node);
  1573. break;
  1574. }
  1575. }
  1576. }
  1577. /*
  1578. * hugetlb init time: register hstate attributes for all registered node
  1579. * devices of nodes that have memory. All on-line nodes should have
  1580. * registered their associated device by this time.
  1581. */
  1582. static void hugetlb_register_all_nodes(void)
  1583. {
  1584. int nid;
  1585. for_each_node_state(nid, N_MEMORY) {
  1586. struct node *node = node_devices[nid];
  1587. if (node->dev.id == nid)
  1588. hugetlb_register_node(node);
  1589. }
  1590. /*
  1591. * Let the node device driver know we're here so it can
  1592. * [un]register hstate attributes on node hotplug.
  1593. */
  1594. register_hugetlbfs_with_node(hugetlb_register_node,
  1595. hugetlb_unregister_node);
  1596. }
  1597. #else /* !CONFIG_NUMA */
  1598. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1599. {
  1600. BUG();
  1601. if (nidp)
  1602. *nidp = -1;
  1603. return NULL;
  1604. }
  1605. static void hugetlb_unregister_all_nodes(void) { }
  1606. static void hugetlb_register_all_nodes(void) { }
  1607. #endif
  1608. static void __exit hugetlb_exit(void)
  1609. {
  1610. struct hstate *h;
  1611. hugetlb_unregister_all_nodes();
  1612. for_each_hstate(h) {
  1613. kobject_put(hstate_kobjs[hstate_index(h)]);
  1614. }
  1615. kobject_put(hugepages_kobj);
  1616. }
  1617. module_exit(hugetlb_exit);
  1618. static int __init hugetlb_init(void)
  1619. {
  1620. /* Some platform decide whether they support huge pages at boot
  1621. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1622. * there is no such support
  1623. */
  1624. if (HPAGE_SHIFT == 0)
  1625. return 0;
  1626. if (!size_to_hstate(default_hstate_size)) {
  1627. default_hstate_size = HPAGE_SIZE;
  1628. if (!size_to_hstate(default_hstate_size))
  1629. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1630. }
  1631. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  1632. if (default_hstate_max_huge_pages)
  1633. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1634. hugetlb_init_hstates();
  1635. gather_bootmem_prealloc();
  1636. report_hugepages();
  1637. hugetlb_sysfs_init();
  1638. hugetlb_register_all_nodes();
  1639. hugetlb_cgroup_file_init();
  1640. return 0;
  1641. }
  1642. module_init(hugetlb_init);
  1643. /* Should be called on processing a hugepagesz=... option */
  1644. void __init hugetlb_add_hstate(unsigned order)
  1645. {
  1646. struct hstate *h;
  1647. unsigned long i;
  1648. if (size_to_hstate(PAGE_SIZE << order)) {
  1649. pr_warning("hugepagesz= specified twice, ignoring\n");
  1650. return;
  1651. }
  1652. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  1653. BUG_ON(order == 0);
  1654. h = &hstates[hugetlb_max_hstate++];
  1655. h->order = order;
  1656. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1657. h->nr_huge_pages = 0;
  1658. h->free_huge_pages = 0;
  1659. for (i = 0; i < MAX_NUMNODES; ++i)
  1660. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1661. INIT_LIST_HEAD(&h->hugepage_activelist);
  1662. h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
  1663. h->next_nid_to_free = first_node(node_states[N_MEMORY]);
  1664. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1665. huge_page_size(h)/1024);
  1666. parsed_hstate = h;
  1667. }
  1668. static int __init hugetlb_nrpages_setup(char *s)
  1669. {
  1670. unsigned long *mhp;
  1671. static unsigned long *last_mhp;
  1672. /*
  1673. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1674. * so this hugepages= parameter goes to the "default hstate".
  1675. */
  1676. if (!hugetlb_max_hstate)
  1677. mhp = &default_hstate_max_huge_pages;
  1678. else
  1679. mhp = &parsed_hstate->max_huge_pages;
  1680. if (mhp == last_mhp) {
  1681. pr_warning("hugepages= specified twice without "
  1682. "interleaving hugepagesz=, ignoring\n");
  1683. return 1;
  1684. }
  1685. if (sscanf(s, "%lu", mhp) <= 0)
  1686. *mhp = 0;
  1687. /*
  1688. * Global state is always initialized later in hugetlb_init.
  1689. * But we need to allocate >= MAX_ORDER hstates here early to still
  1690. * use the bootmem allocator.
  1691. */
  1692. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  1693. hugetlb_hstate_alloc_pages(parsed_hstate);
  1694. last_mhp = mhp;
  1695. return 1;
  1696. }
  1697. __setup("hugepages=", hugetlb_nrpages_setup);
  1698. static int __init hugetlb_default_setup(char *s)
  1699. {
  1700. default_hstate_size = memparse(s, &s);
  1701. return 1;
  1702. }
  1703. __setup("default_hugepagesz=", hugetlb_default_setup);
  1704. static unsigned int cpuset_mems_nr(unsigned int *array)
  1705. {
  1706. int node;
  1707. unsigned int nr = 0;
  1708. for_each_node_mask(node, cpuset_current_mems_allowed)
  1709. nr += array[node];
  1710. return nr;
  1711. }
  1712. #ifdef CONFIG_SYSCTL
  1713. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1714. struct ctl_table *table, int write,
  1715. void __user *buffer, size_t *length, loff_t *ppos)
  1716. {
  1717. struct hstate *h = &default_hstate;
  1718. unsigned long tmp;
  1719. int ret;
  1720. tmp = h->max_huge_pages;
  1721. if (write && h->order >= MAX_ORDER)
  1722. return -EINVAL;
  1723. table->data = &tmp;
  1724. table->maxlen = sizeof(unsigned long);
  1725. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1726. if (ret)
  1727. goto out;
  1728. if (write) {
  1729. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1730. GFP_KERNEL | __GFP_NORETRY);
  1731. if (!(obey_mempolicy &&
  1732. init_nodemask_of_mempolicy(nodes_allowed))) {
  1733. NODEMASK_FREE(nodes_allowed);
  1734. nodes_allowed = &node_states[N_MEMORY];
  1735. }
  1736. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1737. if (nodes_allowed != &node_states[N_MEMORY])
  1738. NODEMASK_FREE(nodes_allowed);
  1739. }
  1740. out:
  1741. return ret;
  1742. }
  1743. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1744. void __user *buffer, size_t *length, loff_t *ppos)
  1745. {
  1746. return hugetlb_sysctl_handler_common(false, table, write,
  1747. buffer, length, ppos);
  1748. }
  1749. #ifdef CONFIG_NUMA
  1750. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1751. void __user *buffer, size_t *length, loff_t *ppos)
  1752. {
  1753. return hugetlb_sysctl_handler_common(true, table, write,
  1754. buffer, length, ppos);
  1755. }
  1756. #endif /* CONFIG_NUMA */
  1757. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  1758. void __user *buffer,
  1759. size_t *length, loff_t *ppos)
  1760. {
  1761. proc_dointvec(table, write, buffer, length, ppos);
  1762. if (hugepages_treat_as_movable)
  1763. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  1764. else
  1765. htlb_alloc_mask = GFP_HIGHUSER;
  1766. return 0;
  1767. }
  1768. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1769. void __user *buffer,
  1770. size_t *length, loff_t *ppos)
  1771. {
  1772. struct hstate *h = &default_hstate;
  1773. unsigned long tmp;
  1774. int ret;
  1775. tmp = h->nr_overcommit_huge_pages;
  1776. if (write && h->order >= MAX_ORDER)
  1777. return -EINVAL;
  1778. table->data = &tmp;
  1779. table->maxlen = sizeof(unsigned long);
  1780. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1781. if (ret)
  1782. goto out;
  1783. if (write) {
  1784. spin_lock(&hugetlb_lock);
  1785. h->nr_overcommit_huge_pages = tmp;
  1786. spin_unlock(&hugetlb_lock);
  1787. }
  1788. out:
  1789. return ret;
  1790. }
  1791. #endif /* CONFIG_SYSCTL */
  1792. void hugetlb_report_meminfo(struct seq_file *m)
  1793. {
  1794. struct hstate *h = &default_hstate;
  1795. seq_printf(m,
  1796. "HugePages_Total: %5lu\n"
  1797. "HugePages_Free: %5lu\n"
  1798. "HugePages_Rsvd: %5lu\n"
  1799. "HugePages_Surp: %5lu\n"
  1800. "Hugepagesize: %8lu kB\n",
  1801. h->nr_huge_pages,
  1802. h->free_huge_pages,
  1803. h->resv_huge_pages,
  1804. h->surplus_huge_pages,
  1805. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1806. }
  1807. int hugetlb_report_node_meminfo(int nid, char *buf)
  1808. {
  1809. struct hstate *h = &default_hstate;
  1810. return sprintf(buf,
  1811. "Node %d HugePages_Total: %5u\n"
  1812. "Node %d HugePages_Free: %5u\n"
  1813. "Node %d HugePages_Surp: %5u\n",
  1814. nid, h->nr_huge_pages_node[nid],
  1815. nid, h->free_huge_pages_node[nid],
  1816. nid, h->surplus_huge_pages_node[nid]);
  1817. }
  1818. void hugetlb_show_meminfo(void)
  1819. {
  1820. struct hstate *h;
  1821. int nid;
  1822. for_each_node_state(nid, N_MEMORY)
  1823. for_each_hstate(h)
  1824. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  1825. nid,
  1826. h->nr_huge_pages_node[nid],
  1827. h->free_huge_pages_node[nid],
  1828. h->surplus_huge_pages_node[nid],
  1829. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1830. }
  1831. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1832. unsigned long hugetlb_total_pages(void)
  1833. {
  1834. struct hstate *h;
  1835. unsigned long nr_total_pages = 0;
  1836. for_each_hstate(h)
  1837. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  1838. return nr_total_pages;
  1839. }
  1840. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1841. {
  1842. int ret = -ENOMEM;
  1843. spin_lock(&hugetlb_lock);
  1844. /*
  1845. * When cpuset is configured, it breaks the strict hugetlb page
  1846. * reservation as the accounting is done on a global variable. Such
  1847. * reservation is completely rubbish in the presence of cpuset because
  1848. * the reservation is not checked against page availability for the
  1849. * current cpuset. Application can still potentially OOM'ed by kernel
  1850. * with lack of free htlb page in cpuset that the task is in.
  1851. * Attempt to enforce strict accounting with cpuset is almost
  1852. * impossible (or too ugly) because cpuset is too fluid that
  1853. * task or memory node can be dynamically moved between cpusets.
  1854. *
  1855. * The change of semantics for shared hugetlb mapping with cpuset is
  1856. * undesirable. However, in order to preserve some of the semantics,
  1857. * we fall back to check against current free page availability as
  1858. * a best attempt and hopefully to minimize the impact of changing
  1859. * semantics that cpuset has.
  1860. */
  1861. if (delta > 0) {
  1862. if (gather_surplus_pages(h, delta) < 0)
  1863. goto out;
  1864. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1865. return_unused_surplus_pages(h, delta);
  1866. goto out;
  1867. }
  1868. }
  1869. ret = 0;
  1870. if (delta < 0)
  1871. return_unused_surplus_pages(h, (unsigned long) -delta);
  1872. out:
  1873. spin_unlock(&hugetlb_lock);
  1874. return ret;
  1875. }
  1876. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1877. {
  1878. struct resv_map *resv = vma_resv_map(vma);
  1879. /*
  1880. * This new VMA should share its siblings reservation map if present.
  1881. * The VMA will only ever have a valid reservation map pointer where
  1882. * it is being copied for another still existing VMA. As that VMA
  1883. * has a reference to the reservation map it cannot disappear until
  1884. * after this open call completes. It is therefore safe to take a
  1885. * new reference here without additional locking.
  1886. */
  1887. if (resv)
  1888. kref_get(&resv->refs);
  1889. }
  1890. static void resv_map_put(struct vm_area_struct *vma)
  1891. {
  1892. struct resv_map *resv = vma_resv_map(vma);
  1893. if (!resv)
  1894. return;
  1895. kref_put(&resv->refs, resv_map_release);
  1896. }
  1897. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1898. {
  1899. struct hstate *h = hstate_vma(vma);
  1900. struct resv_map *resv = vma_resv_map(vma);
  1901. struct hugepage_subpool *spool = subpool_vma(vma);
  1902. unsigned long reserve;
  1903. unsigned long start;
  1904. unsigned long end;
  1905. if (resv) {
  1906. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1907. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1908. reserve = (end - start) -
  1909. region_count(&resv->regions, start, end);
  1910. resv_map_put(vma);
  1911. if (reserve) {
  1912. hugetlb_acct_memory(h, -reserve);
  1913. hugepage_subpool_put_pages(spool, reserve);
  1914. }
  1915. }
  1916. }
  1917. /*
  1918. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1919. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1920. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1921. * this far.
  1922. */
  1923. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1924. {
  1925. BUG();
  1926. return 0;
  1927. }
  1928. const struct vm_operations_struct hugetlb_vm_ops = {
  1929. .fault = hugetlb_vm_op_fault,
  1930. .open = hugetlb_vm_op_open,
  1931. .close = hugetlb_vm_op_close,
  1932. };
  1933. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1934. int writable)
  1935. {
  1936. pte_t entry;
  1937. if (writable) {
  1938. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  1939. vma->vm_page_prot)));
  1940. } else {
  1941. entry = huge_pte_wrprotect(mk_huge_pte(page,
  1942. vma->vm_page_prot));
  1943. }
  1944. entry = pte_mkyoung(entry);
  1945. entry = pte_mkhuge(entry);
  1946. entry = arch_make_huge_pte(entry, vma, page, writable);
  1947. return entry;
  1948. }
  1949. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  1950. unsigned long address, pte_t *ptep)
  1951. {
  1952. pte_t entry;
  1953. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  1954. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  1955. update_mmu_cache(vma, address, ptep);
  1956. }
  1957. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  1958. struct vm_area_struct *vma)
  1959. {
  1960. pte_t *src_pte, *dst_pte, entry;
  1961. struct page *ptepage;
  1962. unsigned long addr;
  1963. int cow;
  1964. struct hstate *h = hstate_vma(vma);
  1965. unsigned long sz = huge_page_size(h);
  1966. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  1967. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  1968. src_pte = huge_pte_offset(src, addr);
  1969. if (!src_pte)
  1970. continue;
  1971. dst_pte = huge_pte_alloc(dst, addr, sz);
  1972. if (!dst_pte)
  1973. goto nomem;
  1974. /* If the pagetables are shared don't copy or take references */
  1975. if (dst_pte == src_pte)
  1976. continue;
  1977. spin_lock(&dst->page_table_lock);
  1978. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  1979. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  1980. if (cow)
  1981. huge_ptep_set_wrprotect(src, addr, src_pte);
  1982. entry = huge_ptep_get(src_pte);
  1983. ptepage = pte_page(entry);
  1984. get_page(ptepage);
  1985. page_dup_rmap(ptepage);
  1986. set_huge_pte_at(dst, addr, dst_pte, entry);
  1987. }
  1988. spin_unlock(&src->page_table_lock);
  1989. spin_unlock(&dst->page_table_lock);
  1990. }
  1991. return 0;
  1992. nomem:
  1993. return -ENOMEM;
  1994. }
  1995. static int is_hugetlb_entry_migration(pte_t pte)
  1996. {
  1997. swp_entry_t swp;
  1998. if (huge_pte_none(pte) || pte_present(pte))
  1999. return 0;
  2000. swp = pte_to_swp_entry(pte);
  2001. if (non_swap_entry(swp) && is_migration_entry(swp))
  2002. return 1;
  2003. else
  2004. return 0;
  2005. }
  2006. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2007. {
  2008. swp_entry_t swp;
  2009. if (huge_pte_none(pte) || pte_present(pte))
  2010. return 0;
  2011. swp = pte_to_swp_entry(pte);
  2012. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2013. return 1;
  2014. else
  2015. return 0;
  2016. }
  2017. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2018. unsigned long start, unsigned long end,
  2019. struct page *ref_page)
  2020. {
  2021. int force_flush = 0;
  2022. struct mm_struct *mm = vma->vm_mm;
  2023. unsigned long address;
  2024. pte_t *ptep;
  2025. pte_t pte;
  2026. struct page *page;
  2027. struct hstate *h = hstate_vma(vma);
  2028. unsigned long sz = huge_page_size(h);
  2029. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2030. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2031. WARN_ON(!is_vm_hugetlb_page(vma));
  2032. BUG_ON(start & ~huge_page_mask(h));
  2033. BUG_ON(end & ~huge_page_mask(h));
  2034. tlb_start_vma(tlb, vma);
  2035. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2036. again:
  2037. spin_lock(&mm->page_table_lock);
  2038. for (address = start; address < end; address += sz) {
  2039. ptep = huge_pte_offset(mm, address);
  2040. if (!ptep)
  2041. continue;
  2042. if (huge_pmd_unshare(mm, &address, ptep))
  2043. continue;
  2044. pte = huge_ptep_get(ptep);
  2045. if (huge_pte_none(pte))
  2046. continue;
  2047. /*
  2048. * HWPoisoned hugepage is already unmapped and dropped reference
  2049. */
  2050. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  2051. huge_pte_clear(mm, address, ptep);
  2052. continue;
  2053. }
  2054. page = pte_page(pte);
  2055. /*
  2056. * If a reference page is supplied, it is because a specific
  2057. * page is being unmapped, not a range. Ensure the page we
  2058. * are about to unmap is the actual page of interest.
  2059. */
  2060. if (ref_page) {
  2061. if (page != ref_page)
  2062. continue;
  2063. /*
  2064. * Mark the VMA as having unmapped its page so that
  2065. * future faults in this VMA will fail rather than
  2066. * looking like data was lost
  2067. */
  2068. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2069. }
  2070. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2071. tlb_remove_tlb_entry(tlb, ptep, address);
  2072. if (huge_pte_dirty(pte))
  2073. set_page_dirty(page);
  2074. page_remove_rmap(page);
  2075. force_flush = !__tlb_remove_page(tlb, page);
  2076. if (force_flush)
  2077. break;
  2078. /* Bail out after unmapping reference page if supplied */
  2079. if (ref_page)
  2080. break;
  2081. }
  2082. spin_unlock(&mm->page_table_lock);
  2083. /*
  2084. * mmu_gather ran out of room to batch pages, we break out of
  2085. * the PTE lock to avoid doing the potential expensive TLB invalidate
  2086. * and page-free while holding it.
  2087. */
  2088. if (force_flush) {
  2089. force_flush = 0;
  2090. tlb_flush_mmu(tlb);
  2091. if (address < end && !ref_page)
  2092. goto again;
  2093. }
  2094. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2095. tlb_end_vma(tlb, vma);
  2096. }
  2097. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2098. struct vm_area_struct *vma, unsigned long start,
  2099. unsigned long end, struct page *ref_page)
  2100. {
  2101. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2102. /*
  2103. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2104. * test will fail on a vma being torn down, and not grab a page table
  2105. * on its way out. We're lucky that the flag has such an appropriate
  2106. * name, and can in fact be safely cleared here. We could clear it
  2107. * before the __unmap_hugepage_range above, but all that's necessary
  2108. * is to clear it before releasing the i_mmap_mutex. This works
  2109. * because in the context this is called, the VMA is about to be
  2110. * destroyed and the i_mmap_mutex is held.
  2111. */
  2112. vma->vm_flags &= ~VM_MAYSHARE;
  2113. }
  2114. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2115. unsigned long end, struct page *ref_page)
  2116. {
  2117. struct mm_struct *mm;
  2118. struct mmu_gather tlb;
  2119. mm = vma->vm_mm;
  2120. tlb_gather_mmu(&tlb, mm, start, end);
  2121. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2122. tlb_finish_mmu(&tlb, start, end);
  2123. }
  2124. /*
  2125. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2126. * mappping it owns the reserve page for. The intention is to unmap the page
  2127. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2128. * same region.
  2129. */
  2130. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2131. struct page *page, unsigned long address)
  2132. {
  2133. struct hstate *h = hstate_vma(vma);
  2134. struct vm_area_struct *iter_vma;
  2135. struct address_space *mapping;
  2136. pgoff_t pgoff;
  2137. /*
  2138. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2139. * from page cache lookup which is in HPAGE_SIZE units.
  2140. */
  2141. address = address & huge_page_mask(h);
  2142. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2143. vma->vm_pgoff;
  2144. mapping = file_inode(vma->vm_file)->i_mapping;
  2145. /*
  2146. * Take the mapping lock for the duration of the table walk. As
  2147. * this mapping should be shared between all the VMAs,
  2148. * __unmap_hugepage_range() is called as the lock is already held
  2149. */
  2150. mutex_lock(&mapping->i_mmap_mutex);
  2151. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2152. /* Do not unmap the current VMA */
  2153. if (iter_vma == vma)
  2154. continue;
  2155. /*
  2156. * Unmap the page from other VMAs without their own reserves.
  2157. * They get marked to be SIGKILLed if they fault in these
  2158. * areas. This is because a future no-page fault on this VMA
  2159. * could insert a zeroed page instead of the data existing
  2160. * from the time of fork. This would look like data corruption
  2161. */
  2162. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2163. unmap_hugepage_range(iter_vma, address,
  2164. address + huge_page_size(h), page);
  2165. }
  2166. mutex_unlock(&mapping->i_mmap_mutex);
  2167. return 1;
  2168. }
  2169. /*
  2170. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2171. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2172. * cannot race with other handlers or page migration.
  2173. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2174. */
  2175. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2176. unsigned long address, pte_t *ptep, pte_t pte,
  2177. struct page *pagecache_page)
  2178. {
  2179. struct hstate *h = hstate_vma(vma);
  2180. struct page *old_page, *new_page;
  2181. int outside_reserve = 0;
  2182. unsigned long mmun_start; /* For mmu_notifiers */
  2183. unsigned long mmun_end; /* For mmu_notifiers */
  2184. old_page = pte_page(pte);
  2185. retry_avoidcopy:
  2186. /* If no-one else is actually using this page, avoid the copy
  2187. * and just make the page writable */
  2188. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  2189. page_move_anon_rmap(old_page, vma, address);
  2190. set_huge_ptep_writable(vma, address, ptep);
  2191. return 0;
  2192. }
  2193. /*
  2194. * If the process that created a MAP_PRIVATE mapping is about to
  2195. * perform a COW due to a shared page count, attempt to satisfy
  2196. * the allocation without using the existing reserves. The pagecache
  2197. * page is used to determine if the reserve at this address was
  2198. * consumed or not. If reserves were used, a partial faulted mapping
  2199. * at the time of fork() could consume its reserves on COW instead
  2200. * of the full address range.
  2201. */
  2202. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2203. old_page != pagecache_page)
  2204. outside_reserve = 1;
  2205. page_cache_get(old_page);
  2206. /* Drop page_table_lock as buddy allocator may be called */
  2207. spin_unlock(&mm->page_table_lock);
  2208. new_page = alloc_huge_page(vma, address, outside_reserve);
  2209. if (IS_ERR(new_page)) {
  2210. long err = PTR_ERR(new_page);
  2211. page_cache_release(old_page);
  2212. /*
  2213. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2214. * it is due to references held by a child and an insufficient
  2215. * huge page pool. To guarantee the original mappers
  2216. * reliability, unmap the page from child processes. The child
  2217. * may get SIGKILLed if it later faults.
  2218. */
  2219. if (outside_reserve) {
  2220. BUG_ON(huge_pte_none(pte));
  2221. if (unmap_ref_private(mm, vma, old_page, address)) {
  2222. BUG_ON(huge_pte_none(pte));
  2223. spin_lock(&mm->page_table_lock);
  2224. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2225. if (likely(pte_same(huge_ptep_get(ptep), pte)))
  2226. goto retry_avoidcopy;
  2227. /*
  2228. * race occurs while re-acquiring page_table_lock, and
  2229. * our job is done.
  2230. */
  2231. return 0;
  2232. }
  2233. WARN_ON_ONCE(1);
  2234. }
  2235. /* Caller expects lock to be held */
  2236. spin_lock(&mm->page_table_lock);
  2237. if (err == -ENOMEM)
  2238. return VM_FAULT_OOM;
  2239. else
  2240. return VM_FAULT_SIGBUS;
  2241. }
  2242. /*
  2243. * When the original hugepage is shared one, it does not have
  2244. * anon_vma prepared.
  2245. */
  2246. if (unlikely(anon_vma_prepare(vma))) {
  2247. page_cache_release(new_page);
  2248. page_cache_release(old_page);
  2249. /* Caller expects lock to be held */
  2250. spin_lock(&mm->page_table_lock);
  2251. return VM_FAULT_OOM;
  2252. }
  2253. copy_user_huge_page(new_page, old_page, address, vma,
  2254. pages_per_huge_page(h));
  2255. __SetPageUptodate(new_page);
  2256. mmun_start = address & huge_page_mask(h);
  2257. mmun_end = mmun_start + huge_page_size(h);
  2258. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2259. /*
  2260. * Retake the page_table_lock to check for racing updates
  2261. * before the page tables are altered
  2262. */
  2263. spin_lock(&mm->page_table_lock);
  2264. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2265. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2266. ClearPagePrivate(new_page);
  2267. /* Break COW */
  2268. huge_ptep_clear_flush(vma, address, ptep);
  2269. set_huge_pte_at(mm, address, ptep,
  2270. make_huge_pte(vma, new_page, 1));
  2271. page_remove_rmap(old_page);
  2272. hugepage_add_new_anon_rmap(new_page, vma, address);
  2273. /* Make the old page be freed below */
  2274. new_page = old_page;
  2275. }
  2276. spin_unlock(&mm->page_table_lock);
  2277. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2278. page_cache_release(new_page);
  2279. page_cache_release(old_page);
  2280. /* Caller expects lock to be held */
  2281. spin_lock(&mm->page_table_lock);
  2282. return 0;
  2283. }
  2284. /* Return the pagecache page at a given address within a VMA */
  2285. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2286. struct vm_area_struct *vma, unsigned long address)
  2287. {
  2288. struct address_space *mapping;
  2289. pgoff_t idx;
  2290. mapping = vma->vm_file->f_mapping;
  2291. idx = vma_hugecache_offset(h, vma, address);
  2292. return find_lock_page(mapping, idx);
  2293. }
  2294. /*
  2295. * Return whether there is a pagecache page to back given address within VMA.
  2296. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2297. */
  2298. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2299. struct vm_area_struct *vma, unsigned long address)
  2300. {
  2301. struct address_space *mapping;
  2302. pgoff_t idx;
  2303. struct page *page;
  2304. mapping = vma->vm_file->f_mapping;
  2305. idx = vma_hugecache_offset(h, vma, address);
  2306. page = find_get_page(mapping, idx);
  2307. if (page)
  2308. put_page(page);
  2309. return page != NULL;
  2310. }
  2311. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2312. unsigned long address, pte_t *ptep, unsigned int flags)
  2313. {
  2314. struct hstate *h = hstate_vma(vma);
  2315. int ret = VM_FAULT_SIGBUS;
  2316. int anon_rmap = 0;
  2317. pgoff_t idx;
  2318. unsigned long size;
  2319. struct page *page;
  2320. struct address_space *mapping;
  2321. pte_t new_pte;
  2322. /*
  2323. * Currently, we are forced to kill the process in the event the
  2324. * original mapper has unmapped pages from the child due to a failed
  2325. * COW. Warn that such a situation has occurred as it may not be obvious
  2326. */
  2327. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2328. pr_warning("PID %d killed due to inadequate hugepage pool\n",
  2329. current->pid);
  2330. return ret;
  2331. }
  2332. mapping = vma->vm_file->f_mapping;
  2333. idx = vma_hugecache_offset(h, vma, address);
  2334. /*
  2335. * Use page lock to guard against racing truncation
  2336. * before we get page_table_lock.
  2337. */
  2338. retry:
  2339. page = find_lock_page(mapping, idx);
  2340. if (!page) {
  2341. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2342. if (idx >= size)
  2343. goto out;
  2344. page = alloc_huge_page(vma, address, 0);
  2345. if (IS_ERR(page)) {
  2346. ret = PTR_ERR(page);
  2347. if (ret == -ENOMEM)
  2348. ret = VM_FAULT_OOM;
  2349. else
  2350. ret = VM_FAULT_SIGBUS;
  2351. goto out;
  2352. }
  2353. clear_huge_page(page, address, pages_per_huge_page(h));
  2354. __SetPageUptodate(page);
  2355. if (vma->vm_flags & VM_MAYSHARE) {
  2356. int err;
  2357. struct inode *inode = mapping->host;
  2358. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2359. if (err) {
  2360. put_page(page);
  2361. if (err == -EEXIST)
  2362. goto retry;
  2363. goto out;
  2364. }
  2365. ClearPagePrivate(page);
  2366. spin_lock(&inode->i_lock);
  2367. inode->i_blocks += blocks_per_huge_page(h);
  2368. spin_unlock(&inode->i_lock);
  2369. } else {
  2370. lock_page(page);
  2371. if (unlikely(anon_vma_prepare(vma))) {
  2372. ret = VM_FAULT_OOM;
  2373. goto backout_unlocked;
  2374. }
  2375. anon_rmap = 1;
  2376. }
  2377. } else {
  2378. /*
  2379. * If memory error occurs between mmap() and fault, some process
  2380. * don't have hwpoisoned swap entry for errored virtual address.
  2381. * So we need to block hugepage fault by PG_hwpoison bit check.
  2382. */
  2383. if (unlikely(PageHWPoison(page))) {
  2384. ret = VM_FAULT_HWPOISON |
  2385. VM_FAULT_SET_HINDEX(hstate_index(h));
  2386. goto backout_unlocked;
  2387. }
  2388. }
  2389. /*
  2390. * If we are going to COW a private mapping later, we examine the
  2391. * pending reservations for this page now. This will ensure that
  2392. * any allocations necessary to record that reservation occur outside
  2393. * the spinlock.
  2394. */
  2395. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2396. if (vma_needs_reservation(h, vma, address) < 0) {
  2397. ret = VM_FAULT_OOM;
  2398. goto backout_unlocked;
  2399. }
  2400. spin_lock(&mm->page_table_lock);
  2401. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2402. if (idx >= size)
  2403. goto backout;
  2404. ret = 0;
  2405. if (!huge_pte_none(huge_ptep_get(ptep)))
  2406. goto backout;
  2407. if (anon_rmap) {
  2408. ClearPagePrivate(page);
  2409. hugepage_add_new_anon_rmap(page, vma, address);
  2410. }
  2411. else
  2412. page_dup_rmap(page);
  2413. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2414. && (vma->vm_flags & VM_SHARED)));
  2415. set_huge_pte_at(mm, address, ptep, new_pte);
  2416. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2417. /* Optimization, do the COW without a second fault */
  2418. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2419. }
  2420. spin_unlock(&mm->page_table_lock);
  2421. unlock_page(page);
  2422. out:
  2423. return ret;
  2424. backout:
  2425. spin_unlock(&mm->page_table_lock);
  2426. backout_unlocked:
  2427. unlock_page(page);
  2428. put_page(page);
  2429. goto out;
  2430. }
  2431. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2432. unsigned long address, unsigned int flags)
  2433. {
  2434. pte_t *ptep;
  2435. pte_t entry;
  2436. int ret;
  2437. struct page *page = NULL;
  2438. struct page *pagecache_page = NULL;
  2439. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2440. struct hstate *h = hstate_vma(vma);
  2441. address &= huge_page_mask(h);
  2442. ptep = huge_pte_offset(mm, address);
  2443. if (ptep) {
  2444. entry = huge_ptep_get(ptep);
  2445. if (unlikely(is_hugetlb_entry_migration(entry))) {
  2446. migration_entry_wait_huge(mm, ptep);
  2447. return 0;
  2448. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2449. return VM_FAULT_HWPOISON_LARGE |
  2450. VM_FAULT_SET_HINDEX(hstate_index(h));
  2451. }
  2452. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2453. if (!ptep)
  2454. return VM_FAULT_OOM;
  2455. /*
  2456. * Serialize hugepage allocation and instantiation, so that we don't
  2457. * get spurious allocation failures if two CPUs race to instantiate
  2458. * the same page in the page cache.
  2459. */
  2460. mutex_lock(&hugetlb_instantiation_mutex);
  2461. entry = huge_ptep_get(ptep);
  2462. if (huge_pte_none(entry)) {
  2463. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2464. goto out_mutex;
  2465. }
  2466. ret = 0;
  2467. /*
  2468. * If we are going to COW the mapping later, we examine the pending
  2469. * reservations for this page now. This will ensure that any
  2470. * allocations necessary to record that reservation occur outside the
  2471. * spinlock. For private mappings, we also lookup the pagecache
  2472. * page now as it is used to determine if a reservation has been
  2473. * consumed.
  2474. */
  2475. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  2476. if (vma_needs_reservation(h, vma, address) < 0) {
  2477. ret = VM_FAULT_OOM;
  2478. goto out_mutex;
  2479. }
  2480. if (!(vma->vm_flags & VM_MAYSHARE))
  2481. pagecache_page = hugetlbfs_pagecache_page(h,
  2482. vma, address);
  2483. }
  2484. /*
  2485. * hugetlb_cow() requires page locks of pte_page(entry) and
  2486. * pagecache_page, so here we need take the former one
  2487. * when page != pagecache_page or !pagecache_page.
  2488. * Note that locking order is always pagecache_page -> page,
  2489. * so no worry about deadlock.
  2490. */
  2491. page = pte_page(entry);
  2492. get_page(page);
  2493. if (page != pagecache_page)
  2494. lock_page(page);
  2495. spin_lock(&mm->page_table_lock);
  2496. /* Check for a racing update before calling hugetlb_cow */
  2497. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2498. goto out_page_table_lock;
  2499. if (flags & FAULT_FLAG_WRITE) {
  2500. if (!huge_pte_write(entry)) {
  2501. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2502. pagecache_page);
  2503. goto out_page_table_lock;
  2504. }
  2505. entry = huge_pte_mkdirty(entry);
  2506. }
  2507. entry = pte_mkyoung(entry);
  2508. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2509. flags & FAULT_FLAG_WRITE))
  2510. update_mmu_cache(vma, address, ptep);
  2511. out_page_table_lock:
  2512. spin_unlock(&mm->page_table_lock);
  2513. if (pagecache_page) {
  2514. unlock_page(pagecache_page);
  2515. put_page(pagecache_page);
  2516. }
  2517. if (page != pagecache_page)
  2518. unlock_page(page);
  2519. put_page(page);
  2520. out_mutex:
  2521. mutex_unlock(&hugetlb_instantiation_mutex);
  2522. return ret;
  2523. }
  2524. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2525. struct page **pages, struct vm_area_struct **vmas,
  2526. unsigned long *position, unsigned long *nr_pages,
  2527. long i, unsigned int flags)
  2528. {
  2529. unsigned long pfn_offset;
  2530. unsigned long vaddr = *position;
  2531. unsigned long remainder = *nr_pages;
  2532. struct hstate *h = hstate_vma(vma);
  2533. spin_lock(&mm->page_table_lock);
  2534. while (vaddr < vma->vm_end && remainder) {
  2535. pte_t *pte;
  2536. int absent;
  2537. struct page *page;
  2538. /*
  2539. * Some archs (sparc64, sh*) have multiple pte_ts to
  2540. * each hugepage. We have to make sure we get the
  2541. * first, for the page indexing below to work.
  2542. */
  2543. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2544. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2545. /*
  2546. * When coredumping, it suits get_dump_page if we just return
  2547. * an error where there's an empty slot with no huge pagecache
  2548. * to back it. This way, we avoid allocating a hugepage, and
  2549. * the sparse dumpfile avoids allocating disk blocks, but its
  2550. * huge holes still show up with zeroes where they need to be.
  2551. */
  2552. if (absent && (flags & FOLL_DUMP) &&
  2553. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2554. remainder = 0;
  2555. break;
  2556. }
  2557. /*
  2558. * We need call hugetlb_fault for both hugepages under migration
  2559. * (in which case hugetlb_fault waits for the migration,) and
  2560. * hwpoisoned hugepages (in which case we need to prevent the
  2561. * caller from accessing to them.) In order to do this, we use
  2562. * here is_swap_pte instead of is_hugetlb_entry_migration and
  2563. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  2564. * both cases, and because we can't follow correct pages
  2565. * directly from any kind of swap entries.
  2566. */
  2567. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  2568. ((flags & FOLL_WRITE) &&
  2569. !huge_pte_write(huge_ptep_get(pte)))) {
  2570. int ret;
  2571. spin_unlock(&mm->page_table_lock);
  2572. ret = hugetlb_fault(mm, vma, vaddr,
  2573. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2574. spin_lock(&mm->page_table_lock);
  2575. if (!(ret & VM_FAULT_ERROR))
  2576. continue;
  2577. remainder = 0;
  2578. break;
  2579. }
  2580. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2581. page = pte_page(huge_ptep_get(pte));
  2582. same_page:
  2583. if (pages) {
  2584. pages[i] = mem_map_offset(page, pfn_offset);
  2585. get_page(pages[i]);
  2586. }
  2587. if (vmas)
  2588. vmas[i] = vma;
  2589. vaddr += PAGE_SIZE;
  2590. ++pfn_offset;
  2591. --remainder;
  2592. ++i;
  2593. if (vaddr < vma->vm_end && remainder &&
  2594. pfn_offset < pages_per_huge_page(h)) {
  2595. /*
  2596. * We use pfn_offset to avoid touching the pageframes
  2597. * of this compound page.
  2598. */
  2599. goto same_page;
  2600. }
  2601. }
  2602. spin_unlock(&mm->page_table_lock);
  2603. *nr_pages = remainder;
  2604. *position = vaddr;
  2605. return i ? i : -EFAULT;
  2606. }
  2607. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  2608. unsigned long address, unsigned long end, pgprot_t newprot)
  2609. {
  2610. struct mm_struct *mm = vma->vm_mm;
  2611. unsigned long start = address;
  2612. pte_t *ptep;
  2613. pte_t pte;
  2614. struct hstate *h = hstate_vma(vma);
  2615. unsigned long pages = 0;
  2616. BUG_ON(address >= end);
  2617. flush_cache_range(vma, address, end);
  2618. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2619. spin_lock(&mm->page_table_lock);
  2620. for (; address < end; address += huge_page_size(h)) {
  2621. ptep = huge_pte_offset(mm, address);
  2622. if (!ptep)
  2623. continue;
  2624. if (huge_pmd_unshare(mm, &address, ptep)) {
  2625. pages++;
  2626. continue;
  2627. }
  2628. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2629. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2630. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  2631. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  2632. set_huge_pte_at(mm, address, ptep, pte);
  2633. pages++;
  2634. }
  2635. }
  2636. spin_unlock(&mm->page_table_lock);
  2637. /*
  2638. * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
  2639. * may have cleared our pud entry and done put_page on the page table:
  2640. * once we release i_mmap_mutex, another task can do the final put_page
  2641. * and that page table be reused and filled with junk.
  2642. */
  2643. flush_tlb_range(vma, start, end);
  2644. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2645. return pages << h->order;
  2646. }
  2647. int hugetlb_reserve_pages(struct inode *inode,
  2648. long from, long to,
  2649. struct vm_area_struct *vma,
  2650. vm_flags_t vm_flags)
  2651. {
  2652. long ret, chg;
  2653. struct hstate *h = hstate_inode(inode);
  2654. struct hugepage_subpool *spool = subpool_inode(inode);
  2655. /*
  2656. * Only apply hugepage reservation if asked. At fault time, an
  2657. * attempt will be made for VM_NORESERVE to allocate a page
  2658. * without using reserves
  2659. */
  2660. if (vm_flags & VM_NORESERVE)
  2661. return 0;
  2662. /*
  2663. * Shared mappings base their reservation on the number of pages that
  2664. * are already allocated on behalf of the file. Private mappings need
  2665. * to reserve the full area even if read-only as mprotect() may be
  2666. * called to make the mapping read-write. Assume !vma is a shm mapping
  2667. */
  2668. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2669. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2670. else {
  2671. struct resv_map *resv_map = resv_map_alloc();
  2672. if (!resv_map)
  2673. return -ENOMEM;
  2674. chg = to - from;
  2675. set_vma_resv_map(vma, resv_map);
  2676. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2677. }
  2678. if (chg < 0) {
  2679. ret = chg;
  2680. goto out_err;
  2681. }
  2682. /* There must be enough pages in the subpool for the mapping */
  2683. if (hugepage_subpool_get_pages(spool, chg)) {
  2684. ret = -ENOSPC;
  2685. goto out_err;
  2686. }
  2687. /*
  2688. * Check enough hugepages are available for the reservation.
  2689. * Hand the pages back to the subpool if there are not
  2690. */
  2691. ret = hugetlb_acct_memory(h, chg);
  2692. if (ret < 0) {
  2693. hugepage_subpool_put_pages(spool, chg);
  2694. goto out_err;
  2695. }
  2696. /*
  2697. * Account for the reservations made. Shared mappings record regions
  2698. * that have reservations as they are shared by multiple VMAs.
  2699. * When the last VMA disappears, the region map says how much
  2700. * the reservation was and the page cache tells how much of
  2701. * the reservation was consumed. Private mappings are per-VMA and
  2702. * only the consumed reservations are tracked. When the VMA
  2703. * disappears, the original reservation is the VMA size and the
  2704. * consumed reservations are stored in the map. Hence, nothing
  2705. * else has to be done for private mappings here
  2706. */
  2707. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2708. region_add(&inode->i_mapping->private_list, from, to);
  2709. return 0;
  2710. out_err:
  2711. if (vma)
  2712. resv_map_put(vma);
  2713. return ret;
  2714. }
  2715. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2716. {
  2717. struct hstate *h = hstate_inode(inode);
  2718. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2719. struct hugepage_subpool *spool = subpool_inode(inode);
  2720. spin_lock(&inode->i_lock);
  2721. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2722. spin_unlock(&inode->i_lock);
  2723. hugepage_subpool_put_pages(spool, (chg - freed));
  2724. hugetlb_acct_memory(h, -(chg - freed));
  2725. }
  2726. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  2727. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  2728. struct vm_area_struct *vma,
  2729. unsigned long addr, pgoff_t idx)
  2730. {
  2731. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  2732. svma->vm_start;
  2733. unsigned long sbase = saddr & PUD_MASK;
  2734. unsigned long s_end = sbase + PUD_SIZE;
  2735. /* Allow segments to share if only one is marked locked */
  2736. unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
  2737. unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
  2738. /*
  2739. * match the virtual addresses, permission and the alignment of the
  2740. * page table page.
  2741. */
  2742. if (pmd_index(addr) != pmd_index(saddr) ||
  2743. vm_flags != svm_flags ||
  2744. sbase < svma->vm_start || svma->vm_end < s_end)
  2745. return 0;
  2746. return saddr;
  2747. }
  2748. static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  2749. {
  2750. unsigned long base = addr & PUD_MASK;
  2751. unsigned long end = base + PUD_SIZE;
  2752. /*
  2753. * check on proper vm_flags and page table alignment
  2754. */
  2755. if (vma->vm_flags & VM_MAYSHARE &&
  2756. vma->vm_start <= base && end <= vma->vm_end)
  2757. return 1;
  2758. return 0;
  2759. }
  2760. /*
  2761. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  2762. * and returns the corresponding pte. While this is not necessary for the
  2763. * !shared pmd case because we can allocate the pmd later as well, it makes the
  2764. * code much cleaner. pmd allocation is essential for the shared case because
  2765. * pud has to be populated inside the same i_mmap_mutex section - otherwise
  2766. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  2767. * bad pmd for sharing.
  2768. */
  2769. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2770. {
  2771. struct vm_area_struct *vma = find_vma(mm, addr);
  2772. struct address_space *mapping = vma->vm_file->f_mapping;
  2773. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  2774. vma->vm_pgoff;
  2775. struct vm_area_struct *svma;
  2776. unsigned long saddr;
  2777. pte_t *spte = NULL;
  2778. pte_t *pte;
  2779. if (!vma_shareable(vma, addr))
  2780. return (pte_t *)pmd_alloc(mm, pud, addr);
  2781. mutex_lock(&mapping->i_mmap_mutex);
  2782. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  2783. if (svma == vma)
  2784. continue;
  2785. saddr = page_table_shareable(svma, vma, addr, idx);
  2786. if (saddr) {
  2787. spte = huge_pte_offset(svma->vm_mm, saddr);
  2788. if (spte) {
  2789. get_page(virt_to_page(spte));
  2790. break;
  2791. }
  2792. }
  2793. }
  2794. if (!spte)
  2795. goto out;
  2796. spin_lock(&mm->page_table_lock);
  2797. if (pud_none(*pud))
  2798. pud_populate(mm, pud,
  2799. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  2800. else
  2801. put_page(virt_to_page(spte));
  2802. spin_unlock(&mm->page_table_lock);
  2803. out:
  2804. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2805. mutex_unlock(&mapping->i_mmap_mutex);
  2806. return pte;
  2807. }
  2808. /*
  2809. * unmap huge page backed by shared pte.
  2810. *
  2811. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  2812. * indicated by page_count > 1, unmap is achieved by clearing pud and
  2813. * decrementing the ref count. If count == 1, the pte page is not shared.
  2814. *
  2815. * called with vma->vm_mm->page_table_lock held.
  2816. *
  2817. * returns: 1 successfully unmapped a shared pte page
  2818. * 0 the underlying pte page is not shared, or it is the last user
  2819. */
  2820. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  2821. {
  2822. pgd_t *pgd = pgd_offset(mm, *addr);
  2823. pud_t *pud = pud_offset(pgd, *addr);
  2824. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  2825. if (page_count(virt_to_page(ptep)) == 1)
  2826. return 0;
  2827. pud_clear(pud);
  2828. put_page(virt_to_page(ptep));
  2829. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  2830. return 1;
  2831. }
  2832. #define want_pmd_share() (1)
  2833. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2834. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2835. {
  2836. return NULL;
  2837. }
  2838. #define want_pmd_share() (0)
  2839. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2840. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  2841. pte_t *huge_pte_alloc(struct mm_struct *mm,
  2842. unsigned long addr, unsigned long sz)
  2843. {
  2844. pgd_t *pgd;
  2845. pud_t *pud;
  2846. pte_t *pte = NULL;
  2847. pgd = pgd_offset(mm, addr);
  2848. pud = pud_alloc(mm, pgd, addr);
  2849. if (pud) {
  2850. if (sz == PUD_SIZE) {
  2851. pte = (pte_t *)pud;
  2852. } else {
  2853. BUG_ON(sz != PMD_SIZE);
  2854. if (want_pmd_share() && pud_none(*pud))
  2855. pte = huge_pmd_share(mm, addr, pud);
  2856. else
  2857. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2858. }
  2859. }
  2860. BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
  2861. return pte;
  2862. }
  2863. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  2864. {
  2865. pgd_t *pgd;
  2866. pud_t *pud;
  2867. pmd_t *pmd = NULL;
  2868. pgd = pgd_offset(mm, addr);
  2869. if (pgd_present(*pgd)) {
  2870. pud = pud_offset(pgd, addr);
  2871. if (pud_present(*pud)) {
  2872. if (pud_huge(*pud))
  2873. return (pte_t *)pud;
  2874. pmd = pmd_offset(pud, addr);
  2875. }
  2876. }
  2877. return (pte_t *) pmd;
  2878. }
  2879. struct page *
  2880. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  2881. pmd_t *pmd, int write)
  2882. {
  2883. struct page *page;
  2884. page = pte_page(*(pte_t *)pmd);
  2885. if (page)
  2886. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  2887. return page;
  2888. }
  2889. struct page *
  2890. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2891. pud_t *pud, int write)
  2892. {
  2893. struct page *page;
  2894. page = pte_page(*(pte_t *)pud);
  2895. if (page)
  2896. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  2897. return page;
  2898. }
  2899. #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2900. /* Can be overriden by architectures */
  2901. __attribute__((weak)) struct page *
  2902. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2903. pud_t *pud, int write)
  2904. {
  2905. BUG();
  2906. return NULL;
  2907. }
  2908. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2909. #ifdef CONFIG_MEMORY_FAILURE
  2910. /* Should be called in hugetlb_lock */
  2911. static int is_hugepage_on_freelist(struct page *hpage)
  2912. {
  2913. struct page *page;
  2914. struct page *tmp;
  2915. struct hstate *h = page_hstate(hpage);
  2916. int nid = page_to_nid(hpage);
  2917. list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
  2918. if (page == hpage)
  2919. return 1;
  2920. return 0;
  2921. }
  2922. /*
  2923. * This function is called from memory failure code.
  2924. * Assume the caller holds page lock of the head page.
  2925. */
  2926. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  2927. {
  2928. struct hstate *h = page_hstate(hpage);
  2929. int nid = page_to_nid(hpage);
  2930. int ret = -EBUSY;
  2931. spin_lock(&hugetlb_lock);
  2932. if (is_hugepage_on_freelist(hpage)) {
  2933. /*
  2934. * Hwpoisoned hugepage isn't linked to activelist or freelist,
  2935. * but dangling hpage->lru can trigger list-debug warnings
  2936. * (this happens when we call unpoison_memory() on it),
  2937. * so let it point to itself with list_del_init().
  2938. */
  2939. list_del_init(&hpage->lru);
  2940. set_page_refcounted(hpage);
  2941. h->free_huge_pages--;
  2942. h->free_huge_pages_node[nid]--;
  2943. ret = 0;
  2944. }
  2945. spin_unlock(&hugetlb_lock);
  2946. return ret;
  2947. }
  2948. #endif
  2949. bool isolate_huge_page(struct page *page, struct list_head *list)
  2950. {
  2951. VM_BUG_ON(!PageHead(page));
  2952. if (!get_page_unless_zero(page))
  2953. return false;
  2954. spin_lock(&hugetlb_lock);
  2955. list_move_tail(&page->lru, list);
  2956. spin_unlock(&hugetlb_lock);
  2957. return true;
  2958. }
  2959. void putback_active_hugepage(struct page *page)
  2960. {
  2961. VM_BUG_ON(!PageHead(page));
  2962. spin_lock(&hugetlb_lock);
  2963. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  2964. spin_unlock(&hugetlb_lock);
  2965. put_page(page);
  2966. }