mmu.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. struct kvm_pv_mmu_op_buffer {
  105. void *ptr;
  106. unsigned len;
  107. unsigned processed;
  108. char buf[512] __aligned(sizeof(long));
  109. };
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static u64 __read_mostly shadow_trap_nonpresent_pte;
  118. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  119. static u64 __read_mostly shadow_base_present_pte;
  120. static u64 __read_mostly shadow_nx_mask;
  121. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  122. static u64 __read_mostly shadow_user_mask;
  123. static u64 __read_mostly shadow_accessed_mask;
  124. static u64 __read_mostly shadow_dirty_mask;
  125. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  126. {
  127. shadow_trap_nonpresent_pte = trap_pte;
  128. shadow_notrap_nonpresent_pte = notrap_pte;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  131. void kvm_mmu_set_base_ptes(u64 base_pte)
  132. {
  133. shadow_base_present_pte = base_pte;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  136. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  137. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  138. {
  139. shadow_user_mask = user_mask;
  140. shadow_accessed_mask = accessed_mask;
  141. shadow_dirty_mask = dirty_mask;
  142. shadow_nx_mask = nx_mask;
  143. shadow_x_mask = x_mask;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  146. static int is_write_protection(struct kvm_vcpu *vcpu)
  147. {
  148. return vcpu->arch.cr0 & X86_CR0_WP;
  149. }
  150. static int is_cpuid_PSE36(void)
  151. {
  152. return 1;
  153. }
  154. static int is_nx(struct kvm_vcpu *vcpu)
  155. {
  156. return vcpu->arch.shadow_efer & EFER_NX;
  157. }
  158. static int is_present_pte(unsigned long pte)
  159. {
  160. return pte & PT_PRESENT_MASK;
  161. }
  162. static int is_shadow_present_pte(u64 pte)
  163. {
  164. return pte != shadow_trap_nonpresent_pte
  165. && pte != shadow_notrap_nonpresent_pte;
  166. }
  167. static int is_large_pte(u64 pte)
  168. {
  169. return pte & PT_PAGE_SIZE_MASK;
  170. }
  171. static int is_writeble_pte(unsigned long pte)
  172. {
  173. return pte & PT_WRITABLE_MASK;
  174. }
  175. static int is_dirty_pte(unsigned long pte)
  176. {
  177. return pte & shadow_dirty_mask;
  178. }
  179. static int is_rmap_pte(u64 pte)
  180. {
  181. return is_shadow_present_pte(pte);
  182. }
  183. static pfn_t spte_to_pfn(u64 pte)
  184. {
  185. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  186. }
  187. static gfn_t pse36_gfn_delta(u32 gpte)
  188. {
  189. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  190. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  191. }
  192. static void set_shadow_pte(u64 *sptep, u64 spte)
  193. {
  194. #ifdef CONFIG_X86_64
  195. set_64bit((unsigned long *)sptep, spte);
  196. #else
  197. set_64bit((unsigned long long *)sptep, spte);
  198. #endif
  199. }
  200. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  201. struct kmem_cache *base_cache, int min)
  202. {
  203. void *obj;
  204. if (cache->nobjs >= min)
  205. return 0;
  206. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  207. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  208. if (!obj)
  209. return -ENOMEM;
  210. cache->objects[cache->nobjs++] = obj;
  211. }
  212. return 0;
  213. }
  214. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  215. {
  216. while (mc->nobjs)
  217. kfree(mc->objects[--mc->nobjs]);
  218. }
  219. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  220. int min)
  221. {
  222. struct page *page;
  223. if (cache->nobjs >= min)
  224. return 0;
  225. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  226. page = alloc_page(GFP_KERNEL);
  227. if (!page)
  228. return -ENOMEM;
  229. set_page_private(page, 0);
  230. cache->objects[cache->nobjs++] = page_address(page);
  231. }
  232. return 0;
  233. }
  234. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  235. {
  236. while (mc->nobjs)
  237. free_page((unsigned long)mc->objects[--mc->nobjs]);
  238. }
  239. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  240. {
  241. int r;
  242. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  243. pte_chain_cache, 4);
  244. if (r)
  245. goto out;
  246. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  247. rmap_desc_cache, 1);
  248. if (r)
  249. goto out;
  250. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  254. mmu_page_header_cache, 4);
  255. out:
  256. return r;
  257. }
  258. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  259. {
  260. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  261. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  262. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  263. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  264. }
  265. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  266. size_t size)
  267. {
  268. void *p;
  269. BUG_ON(!mc->nobjs);
  270. p = mc->objects[--mc->nobjs];
  271. memset(p, 0, size);
  272. return p;
  273. }
  274. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  275. {
  276. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  277. sizeof(struct kvm_pte_chain));
  278. }
  279. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  280. {
  281. kfree(pc);
  282. }
  283. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  284. {
  285. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  286. sizeof(struct kvm_rmap_desc));
  287. }
  288. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  289. {
  290. kfree(rd);
  291. }
  292. /*
  293. * Return the pointer to the largepage write count for a given
  294. * gfn, handling slots that are not large page aligned.
  295. */
  296. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  297. {
  298. unsigned long idx;
  299. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  300. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  301. return &slot->lpage_info[idx].write_count;
  302. }
  303. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  304. {
  305. int *write_count;
  306. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  307. *write_count += 1;
  308. }
  309. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  310. {
  311. int *write_count;
  312. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  313. *write_count -= 1;
  314. WARN_ON(*write_count < 0);
  315. }
  316. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  317. {
  318. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  319. int *largepage_idx;
  320. if (slot) {
  321. largepage_idx = slot_largepage_idx(gfn, slot);
  322. return *largepage_idx;
  323. }
  324. return 1;
  325. }
  326. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  327. {
  328. struct vm_area_struct *vma;
  329. unsigned long addr;
  330. addr = gfn_to_hva(kvm, gfn);
  331. if (kvm_is_error_hva(addr))
  332. return 0;
  333. vma = find_vma(current->mm, addr);
  334. if (vma && is_vm_hugetlb_page(vma))
  335. return 1;
  336. return 0;
  337. }
  338. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  339. {
  340. struct kvm_memory_slot *slot;
  341. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  342. return 0;
  343. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  344. return 0;
  345. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  346. if (slot && slot->dirty_bitmap)
  347. return 0;
  348. return 1;
  349. }
  350. /*
  351. * Take gfn and return the reverse mapping to it.
  352. * Note: gfn must be unaliased before this function get called
  353. */
  354. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  355. {
  356. struct kvm_memory_slot *slot;
  357. unsigned long idx;
  358. slot = gfn_to_memslot(kvm, gfn);
  359. if (!lpage)
  360. return &slot->rmap[gfn - slot->base_gfn];
  361. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  362. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  363. return &slot->lpage_info[idx].rmap_pde;
  364. }
  365. /*
  366. * Reverse mapping data structures:
  367. *
  368. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  369. * that points to page_address(page).
  370. *
  371. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  372. * containing more mappings.
  373. */
  374. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  375. {
  376. struct kvm_mmu_page *sp;
  377. struct kvm_rmap_desc *desc;
  378. unsigned long *rmapp;
  379. int i;
  380. if (!is_rmap_pte(*spte))
  381. return;
  382. gfn = unalias_gfn(vcpu->kvm, gfn);
  383. sp = page_header(__pa(spte));
  384. sp->gfns[spte - sp->spt] = gfn;
  385. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  386. if (!*rmapp) {
  387. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  388. *rmapp = (unsigned long)spte;
  389. } else if (!(*rmapp & 1)) {
  390. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  391. desc = mmu_alloc_rmap_desc(vcpu);
  392. desc->shadow_ptes[0] = (u64 *)*rmapp;
  393. desc->shadow_ptes[1] = spte;
  394. *rmapp = (unsigned long)desc | 1;
  395. } else {
  396. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  397. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  398. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  399. desc = desc->more;
  400. if (desc->shadow_ptes[RMAP_EXT-1]) {
  401. desc->more = mmu_alloc_rmap_desc(vcpu);
  402. desc = desc->more;
  403. }
  404. for (i = 0; desc->shadow_ptes[i]; ++i)
  405. ;
  406. desc->shadow_ptes[i] = spte;
  407. }
  408. }
  409. static void rmap_desc_remove_entry(unsigned long *rmapp,
  410. struct kvm_rmap_desc *desc,
  411. int i,
  412. struct kvm_rmap_desc *prev_desc)
  413. {
  414. int j;
  415. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  416. ;
  417. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  418. desc->shadow_ptes[j] = NULL;
  419. if (j != 0)
  420. return;
  421. if (!prev_desc && !desc->more)
  422. *rmapp = (unsigned long)desc->shadow_ptes[0];
  423. else
  424. if (prev_desc)
  425. prev_desc->more = desc->more;
  426. else
  427. *rmapp = (unsigned long)desc->more | 1;
  428. mmu_free_rmap_desc(desc);
  429. }
  430. static void rmap_remove(struct kvm *kvm, u64 *spte)
  431. {
  432. struct kvm_rmap_desc *desc;
  433. struct kvm_rmap_desc *prev_desc;
  434. struct kvm_mmu_page *sp;
  435. pfn_t pfn;
  436. unsigned long *rmapp;
  437. int i;
  438. if (!is_rmap_pte(*spte))
  439. return;
  440. sp = page_header(__pa(spte));
  441. pfn = spte_to_pfn(*spte);
  442. if (*spte & shadow_accessed_mask)
  443. kvm_set_pfn_accessed(pfn);
  444. if (is_writeble_pte(*spte))
  445. kvm_release_pfn_dirty(pfn);
  446. else
  447. kvm_release_pfn_clean(pfn);
  448. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  449. if (!*rmapp) {
  450. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  451. BUG();
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  454. if ((u64 *)*rmapp != spte) {
  455. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  456. spte, *spte);
  457. BUG();
  458. }
  459. *rmapp = 0;
  460. } else {
  461. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  462. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  463. prev_desc = NULL;
  464. while (desc) {
  465. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  466. if (desc->shadow_ptes[i] == spte) {
  467. rmap_desc_remove_entry(rmapp,
  468. desc, i,
  469. prev_desc);
  470. return;
  471. }
  472. prev_desc = desc;
  473. desc = desc->more;
  474. }
  475. BUG();
  476. }
  477. }
  478. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  479. {
  480. struct kvm_rmap_desc *desc;
  481. struct kvm_rmap_desc *prev_desc;
  482. u64 *prev_spte;
  483. int i;
  484. if (!*rmapp)
  485. return NULL;
  486. else if (!(*rmapp & 1)) {
  487. if (!spte)
  488. return (u64 *)*rmapp;
  489. return NULL;
  490. }
  491. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  492. prev_desc = NULL;
  493. prev_spte = NULL;
  494. while (desc) {
  495. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  496. if (prev_spte == spte)
  497. return desc->shadow_ptes[i];
  498. prev_spte = desc->shadow_ptes[i];
  499. }
  500. desc = desc->more;
  501. }
  502. return NULL;
  503. }
  504. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  505. {
  506. unsigned long *rmapp;
  507. u64 *spte;
  508. int write_protected = 0;
  509. gfn = unalias_gfn(kvm, gfn);
  510. rmapp = gfn_to_rmap(kvm, gfn, 0);
  511. spte = rmap_next(kvm, rmapp, NULL);
  512. while (spte) {
  513. BUG_ON(!spte);
  514. BUG_ON(!(*spte & PT_PRESENT_MASK));
  515. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  516. if (is_writeble_pte(*spte)) {
  517. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  518. write_protected = 1;
  519. }
  520. spte = rmap_next(kvm, rmapp, spte);
  521. }
  522. if (write_protected) {
  523. pfn_t pfn;
  524. spte = rmap_next(kvm, rmapp, NULL);
  525. pfn = spte_to_pfn(*spte);
  526. kvm_set_pfn_dirty(pfn);
  527. }
  528. /* check for huge page mappings */
  529. rmapp = gfn_to_rmap(kvm, gfn, 1);
  530. spte = rmap_next(kvm, rmapp, NULL);
  531. while (spte) {
  532. BUG_ON(!spte);
  533. BUG_ON(!(*spte & PT_PRESENT_MASK));
  534. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  535. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  536. if (is_writeble_pte(*spte)) {
  537. rmap_remove(kvm, spte);
  538. --kvm->stat.lpages;
  539. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  540. spte = NULL;
  541. write_protected = 1;
  542. }
  543. spte = rmap_next(kvm, rmapp, spte);
  544. }
  545. if (write_protected)
  546. kvm_flush_remote_tlbs(kvm);
  547. account_shadowed(kvm, gfn);
  548. }
  549. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  550. {
  551. u64 *spte;
  552. int need_tlb_flush = 0;
  553. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  554. BUG_ON(!(*spte & PT_PRESENT_MASK));
  555. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  556. rmap_remove(kvm, spte);
  557. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  558. need_tlb_flush = 1;
  559. }
  560. return need_tlb_flush;
  561. }
  562. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  563. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  564. {
  565. int i;
  566. int retval = 0;
  567. /*
  568. * If mmap_sem isn't taken, we can look the memslots with only
  569. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  570. */
  571. for (i = 0; i < kvm->nmemslots; i++) {
  572. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  573. unsigned long start = memslot->userspace_addr;
  574. unsigned long end;
  575. /* mmu_lock protects userspace_addr */
  576. if (!start)
  577. continue;
  578. end = start + (memslot->npages << PAGE_SHIFT);
  579. if (hva >= start && hva < end) {
  580. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  581. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  582. retval |= handler(kvm,
  583. &memslot->lpage_info[
  584. gfn_offset /
  585. KVM_PAGES_PER_HPAGE].rmap_pde);
  586. }
  587. }
  588. return retval;
  589. }
  590. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  591. {
  592. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  593. }
  594. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  595. {
  596. u64 *spte;
  597. int young = 0;
  598. /* always return old for EPT */
  599. if (!shadow_accessed_mask)
  600. return 0;
  601. spte = rmap_next(kvm, rmapp, NULL);
  602. while (spte) {
  603. int _young;
  604. u64 _spte = *spte;
  605. BUG_ON(!(_spte & PT_PRESENT_MASK));
  606. _young = _spte & PT_ACCESSED_MASK;
  607. if (_young) {
  608. young = 1;
  609. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  610. }
  611. spte = rmap_next(kvm, rmapp, spte);
  612. }
  613. return young;
  614. }
  615. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  616. {
  617. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  618. }
  619. #ifdef MMU_DEBUG
  620. static int is_empty_shadow_page(u64 *spt)
  621. {
  622. u64 *pos;
  623. u64 *end;
  624. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  625. if (is_shadow_present_pte(*pos)) {
  626. printk(KERN_ERR "%s: %p %llx\n", __func__,
  627. pos, *pos);
  628. return 0;
  629. }
  630. return 1;
  631. }
  632. #endif
  633. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  634. {
  635. ASSERT(is_empty_shadow_page(sp->spt));
  636. list_del(&sp->link);
  637. __free_page(virt_to_page(sp->spt));
  638. __free_page(virt_to_page(sp->gfns));
  639. kfree(sp);
  640. ++kvm->arch.n_free_mmu_pages;
  641. }
  642. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  643. {
  644. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  645. }
  646. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  647. u64 *parent_pte)
  648. {
  649. struct kvm_mmu_page *sp;
  650. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  651. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  652. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  653. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  654. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  655. ASSERT(is_empty_shadow_page(sp->spt));
  656. sp->slot_bitmap = 0;
  657. sp->multimapped = 0;
  658. sp->parent_pte = parent_pte;
  659. --vcpu->kvm->arch.n_free_mmu_pages;
  660. return sp;
  661. }
  662. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  663. struct kvm_mmu_page *sp, u64 *parent_pte)
  664. {
  665. struct kvm_pte_chain *pte_chain;
  666. struct hlist_node *node;
  667. int i;
  668. if (!parent_pte)
  669. return;
  670. if (!sp->multimapped) {
  671. u64 *old = sp->parent_pte;
  672. if (!old) {
  673. sp->parent_pte = parent_pte;
  674. return;
  675. }
  676. sp->multimapped = 1;
  677. pte_chain = mmu_alloc_pte_chain(vcpu);
  678. INIT_HLIST_HEAD(&sp->parent_ptes);
  679. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  680. pte_chain->parent_ptes[0] = old;
  681. }
  682. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  683. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  684. continue;
  685. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  686. if (!pte_chain->parent_ptes[i]) {
  687. pte_chain->parent_ptes[i] = parent_pte;
  688. return;
  689. }
  690. }
  691. pte_chain = mmu_alloc_pte_chain(vcpu);
  692. BUG_ON(!pte_chain);
  693. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  694. pte_chain->parent_ptes[0] = parent_pte;
  695. }
  696. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  697. u64 *parent_pte)
  698. {
  699. struct kvm_pte_chain *pte_chain;
  700. struct hlist_node *node;
  701. int i;
  702. if (!sp->multimapped) {
  703. BUG_ON(sp->parent_pte != parent_pte);
  704. sp->parent_pte = NULL;
  705. return;
  706. }
  707. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  708. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  709. if (!pte_chain->parent_ptes[i])
  710. break;
  711. if (pte_chain->parent_ptes[i] != parent_pte)
  712. continue;
  713. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  714. && pte_chain->parent_ptes[i + 1]) {
  715. pte_chain->parent_ptes[i]
  716. = pte_chain->parent_ptes[i + 1];
  717. ++i;
  718. }
  719. pte_chain->parent_ptes[i] = NULL;
  720. if (i == 0) {
  721. hlist_del(&pte_chain->link);
  722. mmu_free_pte_chain(pte_chain);
  723. if (hlist_empty(&sp->parent_ptes)) {
  724. sp->multimapped = 0;
  725. sp->parent_pte = NULL;
  726. }
  727. }
  728. return;
  729. }
  730. BUG();
  731. }
  732. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  733. struct kvm_mmu_page *sp)
  734. {
  735. int i;
  736. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  737. sp->spt[i] = shadow_trap_nonpresent_pte;
  738. }
  739. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  740. {
  741. unsigned index;
  742. struct hlist_head *bucket;
  743. struct kvm_mmu_page *sp;
  744. struct hlist_node *node;
  745. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  746. index = kvm_page_table_hashfn(gfn);
  747. bucket = &kvm->arch.mmu_page_hash[index];
  748. hlist_for_each_entry(sp, node, bucket, hash_link)
  749. if (sp->gfn == gfn && !sp->role.metaphysical
  750. && !sp->role.invalid) {
  751. pgprintk("%s: found role %x\n",
  752. __func__, sp->role.word);
  753. return sp;
  754. }
  755. return NULL;
  756. }
  757. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  758. gfn_t gfn,
  759. gva_t gaddr,
  760. unsigned level,
  761. int metaphysical,
  762. unsigned access,
  763. u64 *parent_pte)
  764. {
  765. union kvm_mmu_page_role role;
  766. unsigned index;
  767. unsigned quadrant;
  768. struct hlist_head *bucket;
  769. struct kvm_mmu_page *sp;
  770. struct hlist_node *node;
  771. role.word = 0;
  772. role.glevels = vcpu->arch.mmu.root_level;
  773. role.level = level;
  774. role.metaphysical = metaphysical;
  775. role.access = access;
  776. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  777. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  778. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  779. role.quadrant = quadrant;
  780. }
  781. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  782. gfn, role.word);
  783. index = kvm_page_table_hashfn(gfn);
  784. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  785. hlist_for_each_entry(sp, node, bucket, hash_link)
  786. if (sp->gfn == gfn && sp->role.word == role.word) {
  787. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  788. pgprintk("%s: found\n", __func__);
  789. return sp;
  790. }
  791. ++vcpu->kvm->stat.mmu_cache_miss;
  792. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  793. if (!sp)
  794. return sp;
  795. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  796. sp->gfn = gfn;
  797. sp->role = role;
  798. hlist_add_head(&sp->hash_link, bucket);
  799. if (!metaphysical)
  800. rmap_write_protect(vcpu->kvm, gfn);
  801. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  802. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  803. else
  804. nonpaging_prefetch_page(vcpu, sp);
  805. return sp;
  806. }
  807. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  808. struct kvm_mmu_page *sp)
  809. {
  810. unsigned i;
  811. u64 *pt;
  812. u64 ent;
  813. pt = sp->spt;
  814. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  815. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  816. if (is_shadow_present_pte(pt[i]))
  817. rmap_remove(kvm, &pt[i]);
  818. pt[i] = shadow_trap_nonpresent_pte;
  819. }
  820. kvm_flush_remote_tlbs(kvm);
  821. return;
  822. }
  823. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  824. ent = pt[i];
  825. if (is_shadow_present_pte(ent)) {
  826. if (!is_large_pte(ent)) {
  827. ent &= PT64_BASE_ADDR_MASK;
  828. mmu_page_remove_parent_pte(page_header(ent),
  829. &pt[i]);
  830. } else {
  831. --kvm->stat.lpages;
  832. rmap_remove(kvm, &pt[i]);
  833. }
  834. }
  835. pt[i] = shadow_trap_nonpresent_pte;
  836. }
  837. kvm_flush_remote_tlbs(kvm);
  838. }
  839. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  840. {
  841. mmu_page_remove_parent_pte(sp, parent_pte);
  842. }
  843. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  844. {
  845. int i;
  846. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  847. if (kvm->vcpus[i])
  848. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  849. }
  850. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  851. {
  852. u64 *parent_pte;
  853. while (sp->multimapped || sp->parent_pte) {
  854. if (!sp->multimapped)
  855. parent_pte = sp->parent_pte;
  856. else {
  857. struct kvm_pte_chain *chain;
  858. chain = container_of(sp->parent_ptes.first,
  859. struct kvm_pte_chain, link);
  860. parent_pte = chain->parent_ptes[0];
  861. }
  862. BUG_ON(!parent_pte);
  863. kvm_mmu_put_page(sp, parent_pte);
  864. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  865. }
  866. }
  867. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  868. {
  869. ++kvm->stat.mmu_shadow_zapped;
  870. kvm_mmu_page_unlink_children(kvm, sp);
  871. kvm_mmu_unlink_parents(kvm, sp);
  872. if (!sp->root_count) {
  873. if (!sp->role.metaphysical && !sp->role.invalid)
  874. unaccount_shadowed(kvm, sp->gfn);
  875. hlist_del(&sp->hash_link);
  876. kvm_mmu_free_page(kvm, sp);
  877. } else {
  878. int invalid = sp->role.invalid;
  879. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  880. sp->role.invalid = 1;
  881. kvm_reload_remote_mmus(kvm);
  882. if (!sp->role.metaphysical && !invalid)
  883. unaccount_shadowed(kvm, sp->gfn);
  884. }
  885. kvm_mmu_reset_last_pte_updated(kvm);
  886. }
  887. /*
  888. * Changing the number of mmu pages allocated to the vm
  889. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  890. */
  891. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  892. {
  893. /*
  894. * If we set the number of mmu pages to be smaller be than the
  895. * number of actived pages , we must to free some mmu pages before we
  896. * change the value
  897. */
  898. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  899. kvm_nr_mmu_pages) {
  900. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  901. - kvm->arch.n_free_mmu_pages;
  902. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  903. struct kvm_mmu_page *page;
  904. page = container_of(kvm->arch.active_mmu_pages.prev,
  905. struct kvm_mmu_page, link);
  906. kvm_mmu_zap_page(kvm, page);
  907. n_used_mmu_pages--;
  908. }
  909. kvm->arch.n_free_mmu_pages = 0;
  910. }
  911. else
  912. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  913. - kvm->arch.n_alloc_mmu_pages;
  914. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  915. }
  916. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  917. {
  918. unsigned index;
  919. struct hlist_head *bucket;
  920. struct kvm_mmu_page *sp;
  921. struct hlist_node *node, *n;
  922. int r;
  923. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  924. r = 0;
  925. index = kvm_page_table_hashfn(gfn);
  926. bucket = &kvm->arch.mmu_page_hash[index];
  927. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  928. if (sp->gfn == gfn && !sp->role.metaphysical) {
  929. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  930. sp->role.word);
  931. kvm_mmu_zap_page(kvm, sp);
  932. r = 1;
  933. }
  934. return r;
  935. }
  936. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  937. {
  938. struct kvm_mmu_page *sp;
  939. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  940. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  941. kvm_mmu_zap_page(kvm, sp);
  942. }
  943. }
  944. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  945. {
  946. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  947. struct kvm_mmu_page *sp = page_header(__pa(pte));
  948. __set_bit(slot, &sp->slot_bitmap);
  949. }
  950. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  951. {
  952. struct page *page;
  953. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  954. if (gpa == UNMAPPED_GVA)
  955. return NULL;
  956. down_read(&current->mm->mmap_sem);
  957. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  958. up_read(&current->mm->mmap_sem);
  959. return page;
  960. }
  961. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  962. unsigned pt_access, unsigned pte_access,
  963. int user_fault, int write_fault, int dirty,
  964. int *ptwrite, int largepage, gfn_t gfn,
  965. pfn_t pfn, bool speculative)
  966. {
  967. u64 spte;
  968. int was_rmapped = 0;
  969. int was_writeble = is_writeble_pte(*shadow_pte);
  970. pgprintk("%s: spte %llx access %x write_fault %d"
  971. " user_fault %d gfn %lx\n",
  972. __func__, *shadow_pte, pt_access,
  973. write_fault, user_fault, gfn);
  974. if (is_rmap_pte(*shadow_pte)) {
  975. /*
  976. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  977. * the parent of the now unreachable PTE.
  978. */
  979. if (largepage && !is_large_pte(*shadow_pte)) {
  980. struct kvm_mmu_page *child;
  981. u64 pte = *shadow_pte;
  982. child = page_header(pte & PT64_BASE_ADDR_MASK);
  983. mmu_page_remove_parent_pte(child, shadow_pte);
  984. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  985. pgprintk("hfn old %lx new %lx\n",
  986. spte_to_pfn(*shadow_pte), pfn);
  987. rmap_remove(vcpu->kvm, shadow_pte);
  988. } else {
  989. if (largepage)
  990. was_rmapped = is_large_pte(*shadow_pte);
  991. else
  992. was_rmapped = 1;
  993. }
  994. }
  995. /*
  996. * We don't set the accessed bit, since we sometimes want to see
  997. * whether the guest actually used the pte (in order to detect
  998. * demand paging).
  999. */
  1000. spte = shadow_base_present_pte | shadow_dirty_mask;
  1001. if (!speculative)
  1002. pte_access |= PT_ACCESSED_MASK;
  1003. if (!dirty)
  1004. pte_access &= ~ACC_WRITE_MASK;
  1005. if (pte_access & ACC_EXEC_MASK)
  1006. spte |= shadow_x_mask;
  1007. else
  1008. spte |= shadow_nx_mask;
  1009. if (pte_access & ACC_USER_MASK)
  1010. spte |= shadow_user_mask;
  1011. if (largepage)
  1012. spte |= PT_PAGE_SIZE_MASK;
  1013. spte |= (u64)pfn << PAGE_SHIFT;
  1014. if ((pte_access & ACC_WRITE_MASK)
  1015. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1016. struct kvm_mmu_page *shadow;
  1017. spte |= PT_WRITABLE_MASK;
  1018. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1019. if (shadow ||
  1020. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  1021. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1022. __func__, gfn);
  1023. pte_access &= ~ACC_WRITE_MASK;
  1024. if (is_writeble_pte(spte)) {
  1025. spte &= ~PT_WRITABLE_MASK;
  1026. kvm_x86_ops->tlb_flush(vcpu);
  1027. }
  1028. if (write_fault)
  1029. *ptwrite = 1;
  1030. }
  1031. }
  1032. if (pte_access & ACC_WRITE_MASK)
  1033. mark_page_dirty(vcpu->kvm, gfn);
  1034. pgprintk("%s: setting spte %llx\n", __func__, spte);
  1035. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1036. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  1037. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  1038. set_shadow_pte(shadow_pte, spte);
  1039. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  1040. && (spte & PT_PRESENT_MASK))
  1041. ++vcpu->kvm->stat.lpages;
  1042. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1043. if (!was_rmapped) {
  1044. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1045. if (!is_rmap_pte(*shadow_pte))
  1046. kvm_release_pfn_clean(pfn);
  1047. } else {
  1048. if (was_writeble)
  1049. kvm_release_pfn_dirty(pfn);
  1050. else
  1051. kvm_release_pfn_clean(pfn);
  1052. }
  1053. if (speculative) {
  1054. vcpu->arch.last_pte_updated = shadow_pte;
  1055. vcpu->arch.last_pte_gfn = gfn;
  1056. }
  1057. }
  1058. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1059. {
  1060. }
  1061. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1062. int largepage, gfn_t gfn, pfn_t pfn,
  1063. int level)
  1064. {
  1065. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  1066. int pt_write = 0;
  1067. for (; ; level--) {
  1068. u32 index = PT64_INDEX(v, level);
  1069. u64 *table;
  1070. ASSERT(VALID_PAGE(table_addr));
  1071. table = __va(table_addr);
  1072. if (level == 1) {
  1073. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  1074. 0, write, 1, &pt_write, 0, gfn, pfn, false);
  1075. return pt_write;
  1076. }
  1077. if (largepage && level == 2) {
  1078. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  1079. 0, write, 1, &pt_write, 1, gfn, pfn, false);
  1080. return pt_write;
  1081. }
  1082. if (table[index] == shadow_trap_nonpresent_pte) {
  1083. struct kvm_mmu_page *new_table;
  1084. gfn_t pseudo_gfn;
  1085. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  1086. >> PAGE_SHIFT;
  1087. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  1088. v, level - 1,
  1089. 1, ACC_ALL, &table[index]);
  1090. if (!new_table) {
  1091. pgprintk("nonpaging_map: ENOMEM\n");
  1092. kvm_release_pfn_clean(pfn);
  1093. return -ENOMEM;
  1094. }
  1095. set_shadow_pte(&table[index],
  1096. __pa(new_table->spt)
  1097. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1098. | shadow_user_mask | shadow_x_mask);
  1099. }
  1100. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1101. }
  1102. }
  1103. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1104. {
  1105. int r;
  1106. int largepage = 0;
  1107. pfn_t pfn;
  1108. unsigned long mmu_seq;
  1109. down_read(&current->mm->mmap_sem);
  1110. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1111. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1112. largepage = 1;
  1113. }
  1114. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1115. /* implicit mb(), we'll read before PT lock is unlocked */
  1116. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1117. up_read(&current->mm->mmap_sem);
  1118. /* mmio */
  1119. if (is_error_pfn(pfn)) {
  1120. kvm_release_pfn_clean(pfn);
  1121. return 1;
  1122. }
  1123. spin_lock(&vcpu->kvm->mmu_lock);
  1124. if (mmu_notifier_retry(vcpu, mmu_seq))
  1125. goto out_unlock;
  1126. kvm_mmu_free_some_pages(vcpu);
  1127. r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
  1128. PT32E_ROOT_LEVEL);
  1129. spin_unlock(&vcpu->kvm->mmu_lock);
  1130. return r;
  1131. out_unlock:
  1132. spin_unlock(&vcpu->kvm->mmu_lock);
  1133. kvm_release_pfn_clean(pfn);
  1134. return 0;
  1135. }
  1136. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1137. {
  1138. int i;
  1139. struct kvm_mmu_page *sp;
  1140. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1141. return;
  1142. spin_lock(&vcpu->kvm->mmu_lock);
  1143. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1144. hpa_t root = vcpu->arch.mmu.root_hpa;
  1145. sp = page_header(root);
  1146. --sp->root_count;
  1147. if (!sp->root_count && sp->role.invalid)
  1148. kvm_mmu_zap_page(vcpu->kvm, sp);
  1149. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1150. spin_unlock(&vcpu->kvm->mmu_lock);
  1151. return;
  1152. }
  1153. for (i = 0; i < 4; ++i) {
  1154. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1155. if (root) {
  1156. root &= PT64_BASE_ADDR_MASK;
  1157. sp = page_header(root);
  1158. --sp->root_count;
  1159. if (!sp->root_count && sp->role.invalid)
  1160. kvm_mmu_zap_page(vcpu->kvm, sp);
  1161. }
  1162. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1163. }
  1164. spin_unlock(&vcpu->kvm->mmu_lock);
  1165. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1166. }
  1167. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1168. {
  1169. int i;
  1170. gfn_t root_gfn;
  1171. struct kvm_mmu_page *sp;
  1172. int metaphysical = 0;
  1173. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1174. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1175. hpa_t root = vcpu->arch.mmu.root_hpa;
  1176. ASSERT(!VALID_PAGE(root));
  1177. if (tdp_enabled)
  1178. metaphysical = 1;
  1179. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1180. PT64_ROOT_LEVEL, metaphysical,
  1181. ACC_ALL, NULL);
  1182. root = __pa(sp->spt);
  1183. ++sp->root_count;
  1184. vcpu->arch.mmu.root_hpa = root;
  1185. return;
  1186. }
  1187. metaphysical = !is_paging(vcpu);
  1188. if (tdp_enabled)
  1189. metaphysical = 1;
  1190. for (i = 0; i < 4; ++i) {
  1191. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1192. ASSERT(!VALID_PAGE(root));
  1193. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1194. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1195. vcpu->arch.mmu.pae_root[i] = 0;
  1196. continue;
  1197. }
  1198. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1199. } else if (vcpu->arch.mmu.root_level == 0)
  1200. root_gfn = 0;
  1201. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1202. PT32_ROOT_LEVEL, metaphysical,
  1203. ACC_ALL, NULL);
  1204. root = __pa(sp->spt);
  1205. ++sp->root_count;
  1206. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1207. }
  1208. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1209. }
  1210. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1211. {
  1212. return vaddr;
  1213. }
  1214. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1215. u32 error_code)
  1216. {
  1217. gfn_t gfn;
  1218. int r;
  1219. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1220. r = mmu_topup_memory_caches(vcpu);
  1221. if (r)
  1222. return r;
  1223. ASSERT(vcpu);
  1224. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1225. gfn = gva >> PAGE_SHIFT;
  1226. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1227. error_code & PFERR_WRITE_MASK, gfn);
  1228. }
  1229. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1230. u32 error_code)
  1231. {
  1232. pfn_t pfn;
  1233. int r;
  1234. int largepage = 0;
  1235. gfn_t gfn = gpa >> PAGE_SHIFT;
  1236. unsigned long mmu_seq;
  1237. ASSERT(vcpu);
  1238. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1239. r = mmu_topup_memory_caches(vcpu);
  1240. if (r)
  1241. return r;
  1242. down_read(&current->mm->mmap_sem);
  1243. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1244. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1245. largepage = 1;
  1246. }
  1247. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1248. /* implicit mb(), we'll read before PT lock is unlocked */
  1249. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1250. up_read(&current->mm->mmap_sem);
  1251. if (is_error_pfn(pfn)) {
  1252. kvm_release_pfn_clean(pfn);
  1253. return 1;
  1254. }
  1255. spin_lock(&vcpu->kvm->mmu_lock);
  1256. if (mmu_notifier_retry(vcpu, mmu_seq))
  1257. goto out_unlock;
  1258. kvm_mmu_free_some_pages(vcpu);
  1259. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1260. largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
  1261. spin_unlock(&vcpu->kvm->mmu_lock);
  1262. return r;
  1263. out_unlock:
  1264. spin_unlock(&vcpu->kvm->mmu_lock);
  1265. kvm_release_pfn_clean(pfn);
  1266. return 0;
  1267. }
  1268. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1269. {
  1270. mmu_free_roots(vcpu);
  1271. }
  1272. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1273. {
  1274. struct kvm_mmu *context = &vcpu->arch.mmu;
  1275. context->new_cr3 = nonpaging_new_cr3;
  1276. context->page_fault = nonpaging_page_fault;
  1277. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1278. context->free = nonpaging_free;
  1279. context->prefetch_page = nonpaging_prefetch_page;
  1280. context->root_level = 0;
  1281. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1282. context->root_hpa = INVALID_PAGE;
  1283. return 0;
  1284. }
  1285. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1286. {
  1287. ++vcpu->stat.tlb_flush;
  1288. kvm_x86_ops->tlb_flush(vcpu);
  1289. }
  1290. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1291. {
  1292. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1293. mmu_free_roots(vcpu);
  1294. }
  1295. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1296. u64 addr,
  1297. u32 err_code)
  1298. {
  1299. kvm_inject_page_fault(vcpu, addr, err_code);
  1300. }
  1301. static void paging_free(struct kvm_vcpu *vcpu)
  1302. {
  1303. nonpaging_free(vcpu);
  1304. }
  1305. #define PTTYPE 64
  1306. #include "paging_tmpl.h"
  1307. #undef PTTYPE
  1308. #define PTTYPE 32
  1309. #include "paging_tmpl.h"
  1310. #undef PTTYPE
  1311. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1312. {
  1313. struct kvm_mmu *context = &vcpu->arch.mmu;
  1314. ASSERT(is_pae(vcpu));
  1315. context->new_cr3 = paging_new_cr3;
  1316. context->page_fault = paging64_page_fault;
  1317. context->gva_to_gpa = paging64_gva_to_gpa;
  1318. context->prefetch_page = paging64_prefetch_page;
  1319. context->free = paging_free;
  1320. context->root_level = level;
  1321. context->shadow_root_level = level;
  1322. context->root_hpa = INVALID_PAGE;
  1323. return 0;
  1324. }
  1325. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1326. {
  1327. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1328. }
  1329. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1330. {
  1331. struct kvm_mmu *context = &vcpu->arch.mmu;
  1332. context->new_cr3 = paging_new_cr3;
  1333. context->page_fault = paging32_page_fault;
  1334. context->gva_to_gpa = paging32_gva_to_gpa;
  1335. context->free = paging_free;
  1336. context->prefetch_page = paging32_prefetch_page;
  1337. context->root_level = PT32_ROOT_LEVEL;
  1338. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1339. context->root_hpa = INVALID_PAGE;
  1340. return 0;
  1341. }
  1342. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1343. {
  1344. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1345. }
  1346. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1347. {
  1348. struct kvm_mmu *context = &vcpu->arch.mmu;
  1349. context->new_cr3 = nonpaging_new_cr3;
  1350. context->page_fault = tdp_page_fault;
  1351. context->free = nonpaging_free;
  1352. context->prefetch_page = nonpaging_prefetch_page;
  1353. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1354. context->root_hpa = INVALID_PAGE;
  1355. if (!is_paging(vcpu)) {
  1356. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1357. context->root_level = 0;
  1358. } else if (is_long_mode(vcpu)) {
  1359. context->gva_to_gpa = paging64_gva_to_gpa;
  1360. context->root_level = PT64_ROOT_LEVEL;
  1361. } else if (is_pae(vcpu)) {
  1362. context->gva_to_gpa = paging64_gva_to_gpa;
  1363. context->root_level = PT32E_ROOT_LEVEL;
  1364. } else {
  1365. context->gva_to_gpa = paging32_gva_to_gpa;
  1366. context->root_level = PT32_ROOT_LEVEL;
  1367. }
  1368. return 0;
  1369. }
  1370. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1371. {
  1372. ASSERT(vcpu);
  1373. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1374. if (!is_paging(vcpu))
  1375. return nonpaging_init_context(vcpu);
  1376. else if (is_long_mode(vcpu))
  1377. return paging64_init_context(vcpu);
  1378. else if (is_pae(vcpu))
  1379. return paging32E_init_context(vcpu);
  1380. else
  1381. return paging32_init_context(vcpu);
  1382. }
  1383. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1384. {
  1385. vcpu->arch.update_pte.pfn = bad_pfn;
  1386. if (tdp_enabled)
  1387. return init_kvm_tdp_mmu(vcpu);
  1388. else
  1389. return init_kvm_softmmu(vcpu);
  1390. }
  1391. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1392. {
  1393. ASSERT(vcpu);
  1394. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1395. vcpu->arch.mmu.free(vcpu);
  1396. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1397. }
  1398. }
  1399. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1400. {
  1401. destroy_kvm_mmu(vcpu);
  1402. return init_kvm_mmu(vcpu);
  1403. }
  1404. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1405. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1406. {
  1407. int r;
  1408. r = mmu_topup_memory_caches(vcpu);
  1409. if (r)
  1410. goto out;
  1411. spin_lock(&vcpu->kvm->mmu_lock);
  1412. kvm_mmu_free_some_pages(vcpu);
  1413. mmu_alloc_roots(vcpu);
  1414. spin_unlock(&vcpu->kvm->mmu_lock);
  1415. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1416. kvm_mmu_flush_tlb(vcpu);
  1417. out:
  1418. return r;
  1419. }
  1420. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1421. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1422. {
  1423. mmu_free_roots(vcpu);
  1424. }
  1425. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1426. struct kvm_mmu_page *sp,
  1427. u64 *spte)
  1428. {
  1429. u64 pte;
  1430. struct kvm_mmu_page *child;
  1431. pte = *spte;
  1432. if (is_shadow_present_pte(pte)) {
  1433. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1434. is_large_pte(pte))
  1435. rmap_remove(vcpu->kvm, spte);
  1436. else {
  1437. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1438. mmu_page_remove_parent_pte(child, spte);
  1439. }
  1440. }
  1441. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1442. if (is_large_pte(pte))
  1443. --vcpu->kvm->stat.lpages;
  1444. }
  1445. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1446. struct kvm_mmu_page *sp,
  1447. u64 *spte,
  1448. const void *new)
  1449. {
  1450. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1451. if (!vcpu->arch.update_pte.largepage ||
  1452. sp->role.glevels == PT32_ROOT_LEVEL) {
  1453. ++vcpu->kvm->stat.mmu_pde_zapped;
  1454. return;
  1455. }
  1456. }
  1457. ++vcpu->kvm->stat.mmu_pte_updated;
  1458. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1459. paging32_update_pte(vcpu, sp, spte, new);
  1460. else
  1461. paging64_update_pte(vcpu, sp, spte, new);
  1462. }
  1463. static bool need_remote_flush(u64 old, u64 new)
  1464. {
  1465. if (!is_shadow_present_pte(old))
  1466. return false;
  1467. if (!is_shadow_present_pte(new))
  1468. return true;
  1469. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1470. return true;
  1471. old ^= PT64_NX_MASK;
  1472. new ^= PT64_NX_MASK;
  1473. return (old & ~new & PT64_PERM_MASK) != 0;
  1474. }
  1475. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1476. {
  1477. if (need_remote_flush(old, new))
  1478. kvm_flush_remote_tlbs(vcpu->kvm);
  1479. else
  1480. kvm_mmu_flush_tlb(vcpu);
  1481. }
  1482. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1483. {
  1484. u64 *spte = vcpu->arch.last_pte_updated;
  1485. return !!(spte && (*spte & shadow_accessed_mask));
  1486. }
  1487. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1488. const u8 *new, int bytes)
  1489. {
  1490. gfn_t gfn;
  1491. int r;
  1492. u64 gpte = 0;
  1493. pfn_t pfn;
  1494. vcpu->arch.update_pte.largepage = 0;
  1495. if (bytes != 4 && bytes != 8)
  1496. return;
  1497. /*
  1498. * Assume that the pte write on a page table of the same type
  1499. * as the current vcpu paging mode. This is nearly always true
  1500. * (might be false while changing modes). Note it is verified later
  1501. * by update_pte().
  1502. */
  1503. if (is_pae(vcpu)) {
  1504. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1505. if ((bytes == 4) && (gpa % 4 == 0)) {
  1506. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1507. if (r)
  1508. return;
  1509. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1510. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1511. memcpy((void *)&gpte, new, 8);
  1512. }
  1513. } else {
  1514. if ((bytes == 4) && (gpa % 4 == 0))
  1515. memcpy((void *)&gpte, new, 4);
  1516. }
  1517. if (!is_present_pte(gpte))
  1518. return;
  1519. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1520. down_read(&current->mm->mmap_sem);
  1521. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1522. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1523. vcpu->arch.update_pte.largepage = 1;
  1524. }
  1525. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1526. /* implicit mb(), we'll read before PT lock is unlocked */
  1527. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1528. up_read(&current->mm->mmap_sem);
  1529. if (is_error_pfn(pfn)) {
  1530. kvm_release_pfn_clean(pfn);
  1531. return;
  1532. }
  1533. vcpu->arch.update_pte.gfn = gfn;
  1534. vcpu->arch.update_pte.pfn = pfn;
  1535. }
  1536. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1537. {
  1538. u64 *spte = vcpu->arch.last_pte_updated;
  1539. if (spte
  1540. && vcpu->arch.last_pte_gfn == gfn
  1541. && shadow_accessed_mask
  1542. && !(*spte & shadow_accessed_mask)
  1543. && is_shadow_present_pte(*spte))
  1544. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1545. }
  1546. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1547. const u8 *new, int bytes)
  1548. {
  1549. gfn_t gfn = gpa >> PAGE_SHIFT;
  1550. struct kvm_mmu_page *sp;
  1551. struct hlist_node *node, *n;
  1552. struct hlist_head *bucket;
  1553. unsigned index;
  1554. u64 entry, gentry;
  1555. u64 *spte;
  1556. unsigned offset = offset_in_page(gpa);
  1557. unsigned pte_size;
  1558. unsigned page_offset;
  1559. unsigned misaligned;
  1560. unsigned quadrant;
  1561. int level;
  1562. int flooded = 0;
  1563. int npte;
  1564. int r;
  1565. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1566. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1567. spin_lock(&vcpu->kvm->mmu_lock);
  1568. kvm_mmu_access_page(vcpu, gfn);
  1569. kvm_mmu_free_some_pages(vcpu);
  1570. ++vcpu->kvm->stat.mmu_pte_write;
  1571. kvm_mmu_audit(vcpu, "pre pte write");
  1572. if (gfn == vcpu->arch.last_pt_write_gfn
  1573. && !last_updated_pte_accessed(vcpu)) {
  1574. ++vcpu->arch.last_pt_write_count;
  1575. if (vcpu->arch.last_pt_write_count >= 3)
  1576. flooded = 1;
  1577. } else {
  1578. vcpu->arch.last_pt_write_gfn = gfn;
  1579. vcpu->arch.last_pt_write_count = 1;
  1580. vcpu->arch.last_pte_updated = NULL;
  1581. }
  1582. index = kvm_page_table_hashfn(gfn);
  1583. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1584. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1585. if (sp->gfn != gfn || sp->role.metaphysical)
  1586. continue;
  1587. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1588. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1589. misaligned |= bytes < 4;
  1590. if (misaligned || flooded) {
  1591. /*
  1592. * Misaligned accesses are too much trouble to fix
  1593. * up; also, they usually indicate a page is not used
  1594. * as a page table.
  1595. *
  1596. * If we're seeing too many writes to a page,
  1597. * it may no longer be a page table, or we may be
  1598. * forking, in which case it is better to unmap the
  1599. * page.
  1600. */
  1601. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1602. gpa, bytes, sp->role.word);
  1603. kvm_mmu_zap_page(vcpu->kvm, sp);
  1604. ++vcpu->kvm->stat.mmu_flooded;
  1605. continue;
  1606. }
  1607. page_offset = offset;
  1608. level = sp->role.level;
  1609. npte = 1;
  1610. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1611. page_offset <<= 1; /* 32->64 */
  1612. /*
  1613. * A 32-bit pde maps 4MB while the shadow pdes map
  1614. * only 2MB. So we need to double the offset again
  1615. * and zap two pdes instead of one.
  1616. */
  1617. if (level == PT32_ROOT_LEVEL) {
  1618. page_offset &= ~7; /* kill rounding error */
  1619. page_offset <<= 1;
  1620. npte = 2;
  1621. }
  1622. quadrant = page_offset >> PAGE_SHIFT;
  1623. page_offset &= ~PAGE_MASK;
  1624. if (quadrant != sp->role.quadrant)
  1625. continue;
  1626. }
  1627. spte = &sp->spt[page_offset / sizeof(*spte)];
  1628. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1629. gentry = 0;
  1630. r = kvm_read_guest_atomic(vcpu->kvm,
  1631. gpa & ~(u64)(pte_size - 1),
  1632. &gentry, pte_size);
  1633. new = (const void *)&gentry;
  1634. if (r < 0)
  1635. new = NULL;
  1636. }
  1637. while (npte--) {
  1638. entry = *spte;
  1639. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1640. if (new)
  1641. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1642. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1643. ++spte;
  1644. }
  1645. }
  1646. kvm_mmu_audit(vcpu, "post pte write");
  1647. spin_unlock(&vcpu->kvm->mmu_lock);
  1648. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1649. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1650. vcpu->arch.update_pte.pfn = bad_pfn;
  1651. }
  1652. }
  1653. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1654. {
  1655. gpa_t gpa;
  1656. int r;
  1657. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1658. spin_lock(&vcpu->kvm->mmu_lock);
  1659. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1660. spin_unlock(&vcpu->kvm->mmu_lock);
  1661. return r;
  1662. }
  1663. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1664. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1665. {
  1666. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1667. struct kvm_mmu_page *sp;
  1668. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1669. struct kvm_mmu_page, link);
  1670. kvm_mmu_zap_page(vcpu->kvm, sp);
  1671. ++vcpu->kvm->stat.mmu_recycled;
  1672. }
  1673. }
  1674. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1675. {
  1676. int r;
  1677. enum emulation_result er;
  1678. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1679. if (r < 0)
  1680. goto out;
  1681. if (!r) {
  1682. r = 1;
  1683. goto out;
  1684. }
  1685. r = mmu_topup_memory_caches(vcpu);
  1686. if (r)
  1687. goto out;
  1688. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1689. switch (er) {
  1690. case EMULATE_DONE:
  1691. return 1;
  1692. case EMULATE_DO_MMIO:
  1693. ++vcpu->stat.mmio_exits;
  1694. return 0;
  1695. case EMULATE_FAIL:
  1696. kvm_report_emulation_failure(vcpu, "pagetable");
  1697. return 1;
  1698. default:
  1699. BUG();
  1700. }
  1701. out:
  1702. return r;
  1703. }
  1704. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1705. void kvm_enable_tdp(void)
  1706. {
  1707. tdp_enabled = true;
  1708. }
  1709. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1710. void kvm_disable_tdp(void)
  1711. {
  1712. tdp_enabled = false;
  1713. }
  1714. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1715. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1716. {
  1717. struct kvm_mmu_page *sp;
  1718. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1719. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1720. struct kvm_mmu_page, link);
  1721. kvm_mmu_zap_page(vcpu->kvm, sp);
  1722. cond_resched();
  1723. }
  1724. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1725. }
  1726. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1727. {
  1728. struct page *page;
  1729. int i;
  1730. ASSERT(vcpu);
  1731. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1732. vcpu->kvm->arch.n_free_mmu_pages =
  1733. vcpu->kvm->arch.n_requested_mmu_pages;
  1734. else
  1735. vcpu->kvm->arch.n_free_mmu_pages =
  1736. vcpu->kvm->arch.n_alloc_mmu_pages;
  1737. /*
  1738. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1739. * Therefore we need to allocate shadow page tables in the first
  1740. * 4GB of memory, which happens to fit the DMA32 zone.
  1741. */
  1742. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1743. if (!page)
  1744. goto error_1;
  1745. vcpu->arch.mmu.pae_root = page_address(page);
  1746. for (i = 0; i < 4; ++i)
  1747. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1748. return 0;
  1749. error_1:
  1750. free_mmu_pages(vcpu);
  1751. return -ENOMEM;
  1752. }
  1753. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1754. {
  1755. ASSERT(vcpu);
  1756. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1757. return alloc_mmu_pages(vcpu);
  1758. }
  1759. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1760. {
  1761. ASSERT(vcpu);
  1762. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1763. return init_kvm_mmu(vcpu);
  1764. }
  1765. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1766. {
  1767. ASSERT(vcpu);
  1768. destroy_kvm_mmu(vcpu);
  1769. free_mmu_pages(vcpu);
  1770. mmu_free_memory_caches(vcpu);
  1771. }
  1772. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1773. {
  1774. struct kvm_mmu_page *sp;
  1775. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1776. int i;
  1777. u64 *pt;
  1778. if (!test_bit(slot, &sp->slot_bitmap))
  1779. continue;
  1780. pt = sp->spt;
  1781. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1782. /* avoid RMW */
  1783. if (pt[i] & PT_WRITABLE_MASK)
  1784. pt[i] &= ~PT_WRITABLE_MASK;
  1785. }
  1786. }
  1787. void kvm_mmu_zap_all(struct kvm *kvm)
  1788. {
  1789. struct kvm_mmu_page *sp, *node;
  1790. spin_lock(&kvm->mmu_lock);
  1791. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1792. kvm_mmu_zap_page(kvm, sp);
  1793. spin_unlock(&kvm->mmu_lock);
  1794. kvm_flush_remote_tlbs(kvm);
  1795. }
  1796. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1797. {
  1798. struct kvm_mmu_page *page;
  1799. page = container_of(kvm->arch.active_mmu_pages.prev,
  1800. struct kvm_mmu_page, link);
  1801. kvm_mmu_zap_page(kvm, page);
  1802. }
  1803. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1804. {
  1805. struct kvm *kvm;
  1806. struct kvm *kvm_freed = NULL;
  1807. int cache_count = 0;
  1808. spin_lock(&kvm_lock);
  1809. list_for_each_entry(kvm, &vm_list, vm_list) {
  1810. int npages;
  1811. if (!down_read_trylock(&kvm->slots_lock))
  1812. continue;
  1813. spin_lock(&kvm->mmu_lock);
  1814. npages = kvm->arch.n_alloc_mmu_pages -
  1815. kvm->arch.n_free_mmu_pages;
  1816. cache_count += npages;
  1817. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1818. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1819. cache_count--;
  1820. kvm_freed = kvm;
  1821. }
  1822. nr_to_scan--;
  1823. spin_unlock(&kvm->mmu_lock);
  1824. up_read(&kvm->slots_lock);
  1825. }
  1826. if (kvm_freed)
  1827. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1828. spin_unlock(&kvm_lock);
  1829. return cache_count;
  1830. }
  1831. static struct shrinker mmu_shrinker = {
  1832. .shrink = mmu_shrink,
  1833. .seeks = DEFAULT_SEEKS * 10,
  1834. };
  1835. static void mmu_destroy_caches(void)
  1836. {
  1837. if (pte_chain_cache)
  1838. kmem_cache_destroy(pte_chain_cache);
  1839. if (rmap_desc_cache)
  1840. kmem_cache_destroy(rmap_desc_cache);
  1841. if (mmu_page_header_cache)
  1842. kmem_cache_destroy(mmu_page_header_cache);
  1843. }
  1844. void kvm_mmu_module_exit(void)
  1845. {
  1846. mmu_destroy_caches();
  1847. unregister_shrinker(&mmu_shrinker);
  1848. }
  1849. int kvm_mmu_module_init(void)
  1850. {
  1851. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1852. sizeof(struct kvm_pte_chain),
  1853. 0, 0, NULL);
  1854. if (!pte_chain_cache)
  1855. goto nomem;
  1856. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1857. sizeof(struct kvm_rmap_desc),
  1858. 0, 0, NULL);
  1859. if (!rmap_desc_cache)
  1860. goto nomem;
  1861. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1862. sizeof(struct kvm_mmu_page),
  1863. 0, 0, NULL);
  1864. if (!mmu_page_header_cache)
  1865. goto nomem;
  1866. register_shrinker(&mmu_shrinker);
  1867. return 0;
  1868. nomem:
  1869. mmu_destroy_caches();
  1870. return -ENOMEM;
  1871. }
  1872. /*
  1873. * Caculate mmu pages needed for kvm.
  1874. */
  1875. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1876. {
  1877. int i;
  1878. unsigned int nr_mmu_pages;
  1879. unsigned int nr_pages = 0;
  1880. for (i = 0; i < kvm->nmemslots; i++)
  1881. nr_pages += kvm->memslots[i].npages;
  1882. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1883. nr_mmu_pages = max(nr_mmu_pages,
  1884. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1885. return nr_mmu_pages;
  1886. }
  1887. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1888. unsigned len)
  1889. {
  1890. if (len > buffer->len)
  1891. return NULL;
  1892. return buffer->ptr;
  1893. }
  1894. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1895. unsigned len)
  1896. {
  1897. void *ret;
  1898. ret = pv_mmu_peek_buffer(buffer, len);
  1899. if (!ret)
  1900. return ret;
  1901. buffer->ptr += len;
  1902. buffer->len -= len;
  1903. buffer->processed += len;
  1904. return ret;
  1905. }
  1906. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1907. gpa_t addr, gpa_t value)
  1908. {
  1909. int bytes = 8;
  1910. int r;
  1911. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1912. bytes = 4;
  1913. r = mmu_topup_memory_caches(vcpu);
  1914. if (r)
  1915. return r;
  1916. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1917. return -EFAULT;
  1918. return 1;
  1919. }
  1920. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1921. {
  1922. kvm_x86_ops->tlb_flush(vcpu);
  1923. return 1;
  1924. }
  1925. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1926. {
  1927. spin_lock(&vcpu->kvm->mmu_lock);
  1928. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1929. spin_unlock(&vcpu->kvm->mmu_lock);
  1930. return 1;
  1931. }
  1932. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1933. struct kvm_pv_mmu_op_buffer *buffer)
  1934. {
  1935. struct kvm_mmu_op_header *header;
  1936. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1937. if (!header)
  1938. return 0;
  1939. switch (header->op) {
  1940. case KVM_MMU_OP_WRITE_PTE: {
  1941. struct kvm_mmu_op_write_pte *wpte;
  1942. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1943. if (!wpte)
  1944. return 0;
  1945. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1946. wpte->pte_val);
  1947. }
  1948. case KVM_MMU_OP_FLUSH_TLB: {
  1949. struct kvm_mmu_op_flush_tlb *ftlb;
  1950. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1951. if (!ftlb)
  1952. return 0;
  1953. return kvm_pv_mmu_flush_tlb(vcpu);
  1954. }
  1955. case KVM_MMU_OP_RELEASE_PT: {
  1956. struct kvm_mmu_op_release_pt *rpt;
  1957. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1958. if (!rpt)
  1959. return 0;
  1960. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1961. }
  1962. default: return 0;
  1963. }
  1964. }
  1965. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1966. gpa_t addr, unsigned long *ret)
  1967. {
  1968. int r;
  1969. struct kvm_pv_mmu_op_buffer buffer;
  1970. buffer.ptr = buffer.buf;
  1971. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1972. buffer.processed = 0;
  1973. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1974. if (r)
  1975. goto out;
  1976. while (buffer.len) {
  1977. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1978. if (r < 0)
  1979. goto out;
  1980. if (r == 0)
  1981. break;
  1982. }
  1983. r = 1;
  1984. out:
  1985. *ret = buffer.processed;
  1986. return r;
  1987. }
  1988. #ifdef AUDIT
  1989. static const char *audit_msg;
  1990. static gva_t canonicalize(gva_t gva)
  1991. {
  1992. #ifdef CONFIG_X86_64
  1993. gva = (long long)(gva << 16) >> 16;
  1994. #endif
  1995. return gva;
  1996. }
  1997. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1998. gva_t va, int level)
  1999. {
  2000. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2001. int i;
  2002. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2003. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2004. u64 ent = pt[i];
  2005. if (ent == shadow_trap_nonpresent_pte)
  2006. continue;
  2007. va = canonicalize(va);
  2008. if (level > 1) {
  2009. if (ent == shadow_notrap_nonpresent_pte)
  2010. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2011. " in nonleaf level: levels %d gva %lx"
  2012. " level %d pte %llx\n", audit_msg,
  2013. vcpu->arch.mmu.root_level, va, level, ent);
  2014. audit_mappings_page(vcpu, ent, va, level - 1);
  2015. } else {
  2016. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2017. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2018. if (is_shadow_present_pte(ent)
  2019. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2020. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2021. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2022. audit_msg, vcpu->arch.mmu.root_level,
  2023. va, gpa, hpa, ent,
  2024. is_shadow_present_pte(ent));
  2025. else if (ent == shadow_notrap_nonpresent_pte
  2026. && !is_error_hpa(hpa))
  2027. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2028. " valid guest gva %lx\n", audit_msg, va);
  2029. kvm_release_pfn_clean(pfn);
  2030. }
  2031. }
  2032. }
  2033. static void audit_mappings(struct kvm_vcpu *vcpu)
  2034. {
  2035. unsigned i;
  2036. if (vcpu->arch.mmu.root_level == 4)
  2037. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2038. else
  2039. for (i = 0; i < 4; ++i)
  2040. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2041. audit_mappings_page(vcpu,
  2042. vcpu->arch.mmu.pae_root[i],
  2043. i << 30,
  2044. 2);
  2045. }
  2046. static int count_rmaps(struct kvm_vcpu *vcpu)
  2047. {
  2048. int nmaps = 0;
  2049. int i, j, k;
  2050. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2051. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2052. struct kvm_rmap_desc *d;
  2053. for (j = 0; j < m->npages; ++j) {
  2054. unsigned long *rmapp = &m->rmap[j];
  2055. if (!*rmapp)
  2056. continue;
  2057. if (!(*rmapp & 1)) {
  2058. ++nmaps;
  2059. continue;
  2060. }
  2061. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2062. while (d) {
  2063. for (k = 0; k < RMAP_EXT; ++k)
  2064. if (d->shadow_ptes[k])
  2065. ++nmaps;
  2066. else
  2067. break;
  2068. d = d->more;
  2069. }
  2070. }
  2071. }
  2072. return nmaps;
  2073. }
  2074. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2075. {
  2076. int nmaps = 0;
  2077. struct kvm_mmu_page *sp;
  2078. int i;
  2079. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2080. u64 *pt = sp->spt;
  2081. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2082. continue;
  2083. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2084. u64 ent = pt[i];
  2085. if (!(ent & PT_PRESENT_MASK))
  2086. continue;
  2087. if (!(ent & PT_WRITABLE_MASK))
  2088. continue;
  2089. ++nmaps;
  2090. }
  2091. }
  2092. return nmaps;
  2093. }
  2094. static void audit_rmap(struct kvm_vcpu *vcpu)
  2095. {
  2096. int n_rmap = count_rmaps(vcpu);
  2097. int n_actual = count_writable_mappings(vcpu);
  2098. if (n_rmap != n_actual)
  2099. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2100. __func__, audit_msg, n_rmap, n_actual);
  2101. }
  2102. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2103. {
  2104. struct kvm_mmu_page *sp;
  2105. struct kvm_memory_slot *slot;
  2106. unsigned long *rmapp;
  2107. gfn_t gfn;
  2108. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2109. if (sp->role.metaphysical)
  2110. continue;
  2111. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2112. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2113. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2114. if (*rmapp)
  2115. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2116. " mappings: gfn %lx role %x\n",
  2117. __func__, audit_msg, sp->gfn,
  2118. sp->role.word);
  2119. }
  2120. }
  2121. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2122. {
  2123. int olddbg = dbg;
  2124. dbg = 0;
  2125. audit_msg = msg;
  2126. audit_rmap(vcpu);
  2127. audit_write_protection(vcpu);
  2128. audit_mappings(vcpu);
  2129. dbg = olddbg;
  2130. }
  2131. #endif