dma.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. static struct kmem_cache *rsxx_dma_pool;
  76. struct dma_tracker {
  77. int next_tag;
  78. struct rsxx_dma *dma;
  79. };
  80. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  81. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  82. struct dma_tracker_list {
  83. spinlock_t lock;
  84. int head;
  85. struct dma_tracker list[0];
  86. };
  87. /*----------------- Misc Utility Functions -------------------*/
  88. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  89. {
  90. unsigned long long tgt_addr8;
  91. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  92. card->_stripe.upper_mask) |
  93. ((addr8) & card->_stripe.lower_mask);
  94. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  95. return tgt_addr8;
  96. }
  97. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  98. {
  99. unsigned int tgt;
  100. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  101. return tgt;
  102. }
  103. void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  104. {
  105. /* Reset all DMA Command/Status Queues */
  106. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  107. }
  108. static unsigned int get_dma_size(struct rsxx_dma *dma)
  109. {
  110. if (dma->sub_page.cnt)
  111. return dma->sub_page.cnt << 9;
  112. else
  113. return RSXX_HW_BLK_SIZE;
  114. }
  115. /*----------------- DMA Tracker -------------------*/
  116. static void set_tracker_dma(struct dma_tracker_list *trackers,
  117. int tag,
  118. struct rsxx_dma *dma)
  119. {
  120. trackers->list[tag].dma = dma;
  121. }
  122. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  123. int tag)
  124. {
  125. return trackers->list[tag].dma;
  126. }
  127. static int pop_tracker(struct dma_tracker_list *trackers)
  128. {
  129. int tag;
  130. spin_lock(&trackers->lock);
  131. tag = trackers->head;
  132. if (tag != -1) {
  133. trackers->head = trackers->list[tag].next_tag;
  134. trackers->list[tag].next_tag = -1;
  135. }
  136. spin_unlock(&trackers->lock);
  137. return tag;
  138. }
  139. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  140. {
  141. spin_lock(&trackers->lock);
  142. trackers->list[tag].next_tag = trackers->head;
  143. trackers->head = tag;
  144. trackers->list[tag].dma = NULL;
  145. spin_unlock(&trackers->lock);
  146. }
  147. /*----------------- Interrupt Coalescing -------------*/
  148. /*
  149. * Interrupt Coalescing Register Format:
  150. * Interrupt Timer (64ns units) [15:0]
  151. * Interrupt Count [24:16]
  152. * Reserved [31:25]
  153. */
  154. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  155. #define INTR_COAL_COUNT_SHIFT 16
  156. #define INTR_COAL_COUNT_BITS 9
  157. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  158. INTR_COAL_COUNT_SHIFT)
  159. #define INTR_COAL_LATENCY_UNITS_NS 64
  160. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  161. {
  162. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  163. if (mode == RSXX_INTR_COAL_DISABLED)
  164. return 0;
  165. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  166. (latency_units & INTR_COAL_LATENCY_MASK);
  167. }
  168. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  169. {
  170. int i;
  171. u32 q_depth = 0;
  172. u32 intr_coal;
  173. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE ||
  174. unlikely(card->eeh_state))
  175. return;
  176. for (i = 0; i < card->n_targets; i++)
  177. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  178. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  179. q_depth / 2,
  180. card->config.data.intr_coal.latency);
  181. iowrite32(intr_coal, card->regmap + INTR_COAL);
  182. }
  183. /*----------------- RSXX DMA Handling -------------------*/
  184. static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl,
  185. struct rsxx_dma *dma,
  186. unsigned int status)
  187. {
  188. if (status & DMA_SW_ERR)
  189. ctrl->stats.dma_sw_err++;
  190. if (status & DMA_HW_FAULT)
  191. ctrl->stats.dma_hw_fault++;
  192. if (status & DMA_CANCELLED)
  193. ctrl->stats.dma_cancelled++;
  194. if (dma->dma_addr)
  195. pci_unmap_page(ctrl->card->dev, dma->dma_addr,
  196. get_dma_size(dma),
  197. dma->cmd == HW_CMD_BLK_WRITE ?
  198. PCI_DMA_TODEVICE :
  199. PCI_DMA_FROMDEVICE);
  200. if (dma->cb)
  201. dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0);
  202. kmem_cache_free(rsxx_dma_pool, dma);
  203. }
  204. int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl,
  205. struct list_head *q)
  206. {
  207. struct rsxx_dma *dma;
  208. struct rsxx_dma *tmp;
  209. int cnt = 0;
  210. list_for_each_entry_safe(dma, tmp, q, list) {
  211. list_del(&dma->list);
  212. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  213. cnt++;
  214. }
  215. return cnt;
  216. }
  217. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  218. struct rsxx_dma *dma)
  219. {
  220. /*
  221. * Requeued DMAs go to the front of the queue so they are issued
  222. * first.
  223. */
  224. spin_lock_bh(&ctrl->queue_lock);
  225. list_add(&dma->list, &ctrl->queue);
  226. spin_unlock_bh(&ctrl->queue_lock);
  227. }
  228. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  229. struct rsxx_dma *dma,
  230. u8 hw_st)
  231. {
  232. unsigned int status = 0;
  233. int requeue_cmd = 0;
  234. dev_dbg(CARD_TO_DEV(ctrl->card),
  235. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  236. dma->cmd, dma->laddr, hw_st);
  237. if (hw_st & HW_STATUS_CRC)
  238. ctrl->stats.crc_errors++;
  239. if (hw_st & HW_STATUS_HARD_ERR)
  240. ctrl->stats.hard_errors++;
  241. if (hw_st & HW_STATUS_SOFT_ERR)
  242. ctrl->stats.soft_errors++;
  243. switch (dma->cmd) {
  244. case HW_CMD_BLK_READ:
  245. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  246. if (ctrl->card->scrub_hard) {
  247. dma->cmd = HW_CMD_BLK_RECON_READ;
  248. requeue_cmd = 1;
  249. ctrl->stats.reads_retried++;
  250. } else {
  251. status |= DMA_HW_FAULT;
  252. ctrl->stats.reads_failed++;
  253. }
  254. } else if (hw_st & HW_STATUS_FAULT) {
  255. status |= DMA_HW_FAULT;
  256. ctrl->stats.reads_failed++;
  257. }
  258. break;
  259. case HW_CMD_BLK_RECON_READ:
  260. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  261. /* Data could not be reconstructed. */
  262. status |= DMA_HW_FAULT;
  263. ctrl->stats.reads_failed++;
  264. }
  265. break;
  266. case HW_CMD_BLK_WRITE:
  267. status |= DMA_HW_FAULT;
  268. ctrl->stats.writes_failed++;
  269. break;
  270. case HW_CMD_BLK_DISCARD:
  271. status |= DMA_HW_FAULT;
  272. ctrl->stats.discards_failed++;
  273. break;
  274. default:
  275. dev_err(CARD_TO_DEV(ctrl->card),
  276. "Unknown command in DMA!(cmd: x%02x "
  277. "laddr x%08x st: x%02x\n",
  278. dma->cmd, dma->laddr, hw_st);
  279. status |= DMA_SW_ERR;
  280. break;
  281. }
  282. if (requeue_cmd)
  283. rsxx_requeue_dma(ctrl, dma);
  284. else
  285. rsxx_complete_dma(ctrl, dma, status);
  286. }
  287. static void dma_engine_stalled(unsigned long data)
  288. {
  289. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  290. int cnt;
  291. if (atomic_read(&ctrl->stats.hw_q_depth) == 0 ||
  292. unlikely(ctrl->card->eeh_state))
  293. return;
  294. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  295. /*
  296. * The dma engine was stalled because the SW_CMD_IDX write
  297. * was lost. Issue it again to recover.
  298. */
  299. dev_warn(CARD_TO_DEV(ctrl->card),
  300. "SW_CMD_IDX write was lost, re-writing...\n");
  301. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  302. mod_timer(&ctrl->activity_timer,
  303. jiffies + DMA_ACTIVITY_TIMEOUT);
  304. } else {
  305. dev_warn(CARD_TO_DEV(ctrl->card),
  306. "DMA channel %d has stalled, faulting interface.\n",
  307. ctrl->id);
  308. ctrl->card->dma_fault = 1;
  309. /* Clean up the DMA queue */
  310. spin_lock(&ctrl->queue_lock);
  311. cnt = rsxx_cleanup_dma_queue(ctrl, &ctrl->queue);
  312. spin_unlock(&ctrl->queue_lock);
  313. cnt += rsxx_dma_cancel(ctrl);
  314. if (cnt)
  315. dev_info(CARD_TO_DEV(ctrl->card),
  316. "Freed %d queued DMAs on channel %d\n",
  317. cnt, ctrl->id);
  318. }
  319. }
  320. static void rsxx_issue_dmas(struct rsxx_dma_ctrl *ctrl)
  321. {
  322. struct rsxx_dma *dma;
  323. int tag;
  324. int cmds_pending = 0;
  325. struct hw_cmd *hw_cmd_buf;
  326. hw_cmd_buf = ctrl->cmd.buf;
  327. if (unlikely(ctrl->card->halt) ||
  328. unlikely(ctrl->card->eeh_state))
  329. return;
  330. while (1) {
  331. spin_lock_bh(&ctrl->queue_lock);
  332. if (list_empty(&ctrl->queue)) {
  333. spin_unlock_bh(&ctrl->queue_lock);
  334. break;
  335. }
  336. spin_unlock_bh(&ctrl->queue_lock);
  337. tag = pop_tracker(ctrl->trackers);
  338. if (tag == -1)
  339. break;
  340. spin_lock_bh(&ctrl->queue_lock);
  341. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  342. list_del(&dma->list);
  343. ctrl->stats.sw_q_depth--;
  344. spin_unlock_bh(&ctrl->queue_lock);
  345. /*
  346. * This will catch any DMAs that slipped in right before the
  347. * fault, but was queued after all the other DMAs were
  348. * cancelled.
  349. */
  350. if (unlikely(ctrl->card->dma_fault)) {
  351. push_tracker(ctrl->trackers, tag);
  352. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  353. continue;
  354. }
  355. set_tracker_dma(ctrl->trackers, tag, dma);
  356. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  357. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  358. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  359. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  360. ((dma->sub_page.cnt & 0x7) << 4) |
  361. (dma->sub_page.off & 0x7);
  362. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  363. cpu_to_le32(dma->laddr);
  364. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  365. cpu_to_le64(dma->dma_addr);
  366. dev_dbg(CARD_TO_DEV(ctrl->card),
  367. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  368. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  369. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  370. cmds_pending++;
  371. if (dma->cmd == HW_CMD_BLK_WRITE)
  372. ctrl->stats.writes_issued++;
  373. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  374. ctrl->stats.discards_issued++;
  375. else
  376. ctrl->stats.reads_issued++;
  377. }
  378. /* Let HW know we've queued commands. */
  379. if (cmds_pending) {
  380. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  381. mod_timer(&ctrl->activity_timer,
  382. jiffies + DMA_ACTIVITY_TIMEOUT);
  383. if (unlikely(ctrl->card->eeh_state)) {
  384. del_timer_sync(&ctrl->activity_timer);
  385. return;
  386. }
  387. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  388. }
  389. }
  390. static void rsxx_dma_done(struct rsxx_dma_ctrl *ctrl)
  391. {
  392. struct rsxx_dma *dma;
  393. unsigned long flags;
  394. u16 count;
  395. u8 status;
  396. u8 tag;
  397. struct hw_status *hw_st_buf;
  398. hw_st_buf = ctrl->status.buf;
  399. if (unlikely(ctrl->card->halt) ||
  400. unlikely(ctrl->card->dma_fault) ||
  401. unlikely(ctrl->card->eeh_state))
  402. return;
  403. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  404. while (count == ctrl->e_cnt) {
  405. /*
  406. * The read memory-barrier is necessary to keep aggressive
  407. * processors/optimizers (such as the PPC Apple G5) from
  408. * reordering the following status-buffer tag & status read
  409. * *before* the count read on subsequent iterations of the
  410. * loop!
  411. */
  412. rmb();
  413. status = hw_st_buf[ctrl->status.idx].status;
  414. tag = hw_st_buf[ctrl->status.idx].tag;
  415. dma = get_tracker_dma(ctrl->trackers, tag);
  416. if (dma == NULL) {
  417. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  418. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  419. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  420. dev_err(CARD_TO_DEV(ctrl->card),
  421. "No tracker for tag %d "
  422. "(idx %d id %d)\n",
  423. tag, ctrl->status.idx, ctrl->id);
  424. return;
  425. }
  426. dev_dbg(CARD_TO_DEV(ctrl->card),
  427. "Completing DMA%d"
  428. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  429. ctrl->id, dma->laddr, tag, status, count,
  430. ctrl->status.idx);
  431. atomic_dec(&ctrl->stats.hw_q_depth);
  432. mod_timer(&ctrl->activity_timer,
  433. jiffies + DMA_ACTIVITY_TIMEOUT);
  434. if (status)
  435. rsxx_handle_dma_error(ctrl, dma, status);
  436. else
  437. rsxx_complete_dma(ctrl, dma, 0);
  438. push_tracker(ctrl->trackers, tag);
  439. ctrl->status.idx = (ctrl->status.idx + 1) &
  440. RSXX_CS_IDX_MASK;
  441. ctrl->e_cnt++;
  442. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  443. }
  444. dma_intr_coal_auto_tune(ctrl->card);
  445. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  446. del_timer_sync(&ctrl->activity_timer);
  447. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  448. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  449. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  450. spin_lock_bh(&ctrl->queue_lock);
  451. if (ctrl->stats.sw_q_depth)
  452. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  453. spin_unlock_bh(&ctrl->queue_lock);
  454. }
  455. static void rsxx_schedule_issue(struct work_struct *work)
  456. {
  457. struct rsxx_dma_ctrl *ctrl;
  458. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  459. mutex_lock(&ctrl->work_lock);
  460. rsxx_issue_dmas(ctrl);
  461. mutex_unlock(&ctrl->work_lock);
  462. }
  463. static void rsxx_schedule_done(struct work_struct *work)
  464. {
  465. struct rsxx_dma_ctrl *ctrl;
  466. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  467. mutex_lock(&ctrl->work_lock);
  468. rsxx_dma_done(ctrl);
  469. mutex_unlock(&ctrl->work_lock);
  470. }
  471. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  472. struct list_head *q,
  473. unsigned int laddr,
  474. rsxx_dma_cb cb,
  475. void *cb_data)
  476. {
  477. struct rsxx_dma *dma;
  478. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  479. if (!dma)
  480. return -ENOMEM;
  481. dma->cmd = HW_CMD_BLK_DISCARD;
  482. dma->laddr = laddr;
  483. dma->dma_addr = 0;
  484. dma->sub_page.off = 0;
  485. dma->sub_page.cnt = 0;
  486. dma->page = NULL;
  487. dma->pg_off = 0;
  488. dma->cb = cb;
  489. dma->cb_data = cb_data;
  490. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  491. list_add_tail(&dma->list, q);
  492. return 0;
  493. }
  494. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  495. struct list_head *q,
  496. int dir,
  497. unsigned int dma_off,
  498. unsigned int dma_len,
  499. unsigned int laddr,
  500. struct page *page,
  501. unsigned int pg_off,
  502. rsxx_dma_cb cb,
  503. void *cb_data)
  504. {
  505. struct rsxx_dma *dma;
  506. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  507. if (!dma)
  508. return -ENOMEM;
  509. dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len,
  510. dir ? PCI_DMA_TODEVICE :
  511. PCI_DMA_FROMDEVICE);
  512. if (!dma->dma_addr) {
  513. kmem_cache_free(rsxx_dma_pool, dma);
  514. return -ENOMEM;
  515. }
  516. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  517. dma->laddr = laddr;
  518. dma->sub_page.off = (dma_off >> 9);
  519. dma->sub_page.cnt = (dma_len >> 9);
  520. dma->page = page;
  521. dma->pg_off = pg_off;
  522. dma->cb = cb;
  523. dma->cb_data = cb_data;
  524. dev_dbg(CARD_TO_DEV(card),
  525. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  526. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  527. dma->sub_page.cnt, dma->page, dma->pg_off);
  528. /* Queue the DMA */
  529. list_add_tail(&dma->list, q);
  530. return 0;
  531. }
  532. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  533. struct bio *bio,
  534. atomic_t *n_dmas,
  535. rsxx_dma_cb cb,
  536. void *cb_data)
  537. {
  538. struct list_head dma_list[RSXX_MAX_TARGETS];
  539. struct bio_vec *bvec;
  540. unsigned long long addr8;
  541. unsigned int laddr;
  542. unsigned int bv_len;
  543. unsigned int bv_off;
  544. unsigned int dma_off;
  545. unsigned int dma_len;
  546. int dma_cnt[RSXX_MAX_TARGETS];
  547. int tgt;
  548. int st;
  549. int i;
  550. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  551. atomic_set(n_dmas, 0);
  552. for (i = 0; i < card->n_targets; i++) {
  553. INIT_LIST_HEAD(&dma_list[i]);
  554. dma_cnt[i] = 0;
  555. }
  556. if (bio->bi_rw & REQ_DISCARD) {
  557. bv_len = bio->bi_size;
  558. while (bv_len > 0) {
  559. tgt = rsxx_get_dma_tgt(card, addr8);
  560. laddr = rsxx_addr8_to_laddr(addr8, card);
  561. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  562. cb, cb_data);
  563. if (st)
  564. goto bvec_err;
  565. dma_cnt[tgt]++;
  566. atomic_inc(n_dmas);
  567. addr8 += RSXX_HW_BLK_SIZE;
  568. bv_len -= RSXX_HW_BLK_SIZE;
  569. }
  570. } else {
  571. bio_for_each_segment(bvec, bio, i) {
  572. bv_len = bvec->bv_len;
  573. bv_off = bvec->bv_offset;
  574. while (bv_len > 0) {
  575. tgt = rsxx_get_dma_tgt(card, addr8);
  576. laddr = rsxx_addr8_to_laddr(addr8, card);
  577. dma_off = addr8 & RSXX_HW_BLK_MASK;
  578. dma_len = min(bv_len,
  579. RSXX_HW_BLK_SIZE - dma_off);
  580. st = rsxx_queue_dma(card, &dma_list[tgt],
  581. bio_data_dir(bio),
  582. dma_off, dma_len,
  583. laddr, bvec->bv_page,
  584. bv_off, cb, cb_data);
  585. if (st)
  586. goto bvec_err;
  587. dma_cnt[tgt]++;
  588. atomic_inc(n_dmas);
  589. addr8 += dma_len;
  590. bv_off += dma_len;
  591. bv_len -= dma_len;
  592. }
  593. }
  594. }
  595. for (i = 0; i < card->n_targets; i++) {
  596. if (!list_empty(&dma_list[i])) {
  597. spin_lock_bh(&card->ctrl[i].queue_lock);
  598. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  599. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  600. spin_unlock_bh(&card->ctrl[i].queue_lock);
  601. queue_work(card->ctrl[i].issue_wq,
  602. &card->ctrl[i].issue_dma_work);
  603. }
  604. }
  605. return 0;
  606. bvec_err:
  607. for (i = 0; i < card->n_targets; i++) {
  608. spin_lock_bh(&card->ctrl[i].queue_lock);
  609. rsxx_cleanup_dma_queue(&card->ctrl[i], &dma_list[i]);
  610. spin_unlock_bh(&card->ctrl[i].queue_lock);
  611. }
  612. return st;
  613. }
  614. /*----------------- DMA Engine Initialization & Setup -------------------*/
  615. int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl)
  616. {
  617. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  618. &ctrl->status.dma_addr);
  619. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  620. &ctrl->cmd.dma_addr);
  621. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  622. return -ENOMEM;
  623. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  624. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  625. ctrl->regmap + SB_ADD_LO);
  626. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  627. ctrl->regmap + SB_ADD_HI);
  628. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  629. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  630. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  631. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  632. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  633. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  634. ctrl->status.idx);
  635. return -EINVAL;
  636. }
  637. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  638. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  639. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  640. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  641. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  642. ctrl->status.idx);
  643. return -EINVAL;
  644. }
  645. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  646. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  647. return 0;
  648. }
  649. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  650. struct rsxx_dma_ctrl *ctrl)
  651. {
  652. int i;
  653. int st;
  654. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  655. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  656. if (!ctrl->trackers)
  657. return -ENOMEM;
  658. ctrl->trackers->head = 0;
  659. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  660. ctrl->trackers->list[i].next_tag = i + 1;
  661. ctrl->trackers->list[i].dma = NULL;
  662. }
  663. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  664. spin_lock_init(&ctrl->trackers->lock);
  665. spin_lock_init(&ctrl->queue_lock);
  666. mutex_init(&ctrl->work_lock);
  667. INIT_LIST_HEAD(&ctrl->queue);
  668. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  669. (unsigned long)ctrl);
  670. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  671. if (!ctrl->issue_wq)
  672. return -ENOMEM;
  673. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  674. if (!ctrl->done_wq)
  675. return -ENOMEM;
  676. INIT_WORK(&ctrl->issue_dma_work, rsxx_schedule_issue);
  677. INIT_WORK(&ctrl->dma_done_work, rsxx_schedule_done);
  678. st = rsxx_hw_buffers_init(dev, ctrl);
  679. if (st)
  680. return st;
  681. return 0;
  682. }
  683. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  684. unsigned int stripe_size8)
  685. {
  686. if (!is_power_of_2(stripe_size8)) {
  687. dev_err(CARD_TO_DEV(card),
  688. "stripe_size is NOT a power of 2!\n");
  689. return -EINVAL;
  690. }
  691. card->_stripe.lower_mask = stripe_size8 - 1;
  692. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  693. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  694. card->_stripe.target_mask = card->n_targets - 1;
  695. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  696. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  697. card->_stripe.lower_mask);
  698. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  699. card->_stripe.upper_shift);
  700. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  701. card->_stripe.upper_mask);
  702. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  703. card->_stripe.target_mask);
  704. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  705. card->_stripe.target_shift);
  706. return 0;
  707. }
  708. int rsxx_dma_configure(struct rsxx_cardinfo *card)
  709. {
  710. u32 intr_coal;
  711. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  712. card->config.data.intr_coal.count,
  713. card->config.data.intr_coal.latency);
  714. iowrite32(intr_coal, card->regmap + INTR_COAL);
  715. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  716. }
  717. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  718. {
  719. unsigned long flags;
  720. int st;
  721. int i;
  722. dev_info(CARD_TO_DEV(card),
  723. "Initializing %d DMA targets\n",
  724. card->n_targets);
  725. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  726. for (i = 0; i < card->n_targets; i++)
  727. card->ctrl[i].regmap = card->regmap + (i * 4096);
  728. card->dma_fault = 0;
  729. /* Reset the DMA queues */
  730. rsxx_dma_queue_reset(card);
  731. /************* Setup DMA Control *************/
  732. for (i = 0; i < card->n_targets; i++) {
  733. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  734. if (st)
  735. goto failed_dma_setup;
  736. card->ctrl[i].card = card;
  737. card->ctrl[i].id = i;
  738. }
  739. card->scrub_hard = 1;
  740. if (card->config_valid)
  741. rsxx_dma_configure(card);
  742. /* Enable the interrupts after all setup has completed. */
  743. for (i = 0; i < card->n_targets; i++) {
  744. spin_lock_irqsave(&card->irq_lock, flags);
  745. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  746. spin_unlock_irqrestore(&card->irq_lock, flags);
  747. }
  748. return 0;
  749. failed_dma_setup:
  750. for (i = 0; i < card->n_targets; i++) {
  751. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  752. if (ctrl->issue_wq) {
  753. destroy_workqueue(ctrl->issue_wq);
  754. ctrl->issue_wq = NULL;
  755. }
  756. if (ctrl->done_wq) {
  757. destroy_workqueue(ctrl->done_wq);
  758. ctrl->done_wq = NULL;
  759. }
  760. if (ctrl->trackers)
  761. vfree(ctrl->trackers);
  762. if (ctrl->status.buf)
  763. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  764. ctrl->status.buf,
  765. ctrl->status.dma_addr);
  766. if (ctrl->cmd.buf)
  767. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  768. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  769. }
  770. return st;
  771. }
  772. int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl)
  773. {
  774. struct rsxx_dma *dma;
  775. int i;
  776. int cnt = 0;
  777. /* Clean up issued DMAs */
  778. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  779. dma = get_tracker_dma(ctrl->trackers, i);
  780. if (dma) {
  781. atomic_dec(&ctrl->stats.hw_q_depth);
  782. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  783. push_tracker(ctrl->trackers, i);
  784. cnt++;
  785. }
  786. }
  787. return cnt;
  788. }
  789. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  790. {
  791. struct rsxx_dma_ctrl *ctrl;
  792. int i;
  793. for (i = 0; i < card->n_targets; i++) {
  794. ctrl = &card->ctrl[i];
  795. if (ctrl->issue_wq) {
  796. destroy_workqueue(ctrl->issue_wq);
  797. ctrl->issue_wq = NULL;
  798. }
  799. if (ctrl->done_wq) {
  800. destroy_workqueue(ctrl->done_wq);
  801. ctrl->done_wq = NULL;
  802. }
  803. if (timer_pending(&ctrl->activity_timer))
  804. del_timer_sync(&ctrl->activity_timer);
  805. /* Clean up the DMA queue */
  806. spin_lock_bh(&ctrl->queue_lock);
  807. rsxx_cleanup_dma_queue(ctrl, &ctrl->queue);
  808. spin_unlock_bh(&ctrl->queue_lock);
  809. rsxx_dma_cancel(ctrl);
  810. vfree(ctrl->trackers);
  811. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  812. ctrl->status.buf, ctrl->status.dma_addr);
  813. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  814. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  815. }
  816. }
  817. int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card)
  818. {
  819. int i;
  820. int j;
  821. int cnt;
  822. struct rsxx_dma *dma;
  823. struct list_head *issued_dmas;
  824. issued_dmas = kzalloc(sizeof(*issued_dmas) * card->n_targets,
  825. GFP_KERNEL);
  826. if (!issued_dmas)
  827. return -ENOMEM;
  828. for (i = 0; i < card->n_targets; i++) {
  829. INIT_LIST_HEAD(&issued_dmas[i]);
  830. cnt = 0;
  831. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  832. dma = get_tracker_dma(card->ctrl[i].trackers, j);
  833. if (dma == NULL)
  834. continue;
  835. if (dma->cmd == HW_CMD_BLK_WRITE)
  836. card->ctrl[i].stats.writes_issued--;
  837. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  838. card->ctrl[i].stats.discards_issued--;
  839. else
  840. card->ctrl[i].stats.reads_issued--;
  841. list_add_tail(&dma->list, &issued_dmas[i]);
  842. push_tracker(card->ctrl[i].trackers, j);
  843. cnt++;
  844. }
  845. spin_lock_bh(&card->ctrl[i].queue_lock);
  846. list_splice(&issued_dmas[i], &card->ctrl[i].queue);
  847. atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth);
  848. card->ctrl[i].stats.sw_q_depth += cnt;
  849. card->ctrl[i].e_cnt = 0;
  850. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  851. if (dma->dma_addr)
  852. pci_unmap_page(card->dev, dma->dma_addr,
  853. get_dma_size(dma),
  854. dma->cmd == HW_CMD_BLK_WRITE ?
  855. PCI_DMA_TODEVICE :
  856. PCI_DMA_FROMDEVICE);
  857. }
  858. spin_unlock_bh(&card->ctrl[i].queue_lock);
  859. }
  860. kfree(issued_dmas);
  861. return 0;
  862. }
  863. int rsxx_eeh_remap_dmas(struct rsxx_cardinfo *card)
  864. {
  865. struct rsxx_dma *dma;
  866. int i;
  867. for (i = 0; i < card->n_targets; i++) {
  868. spin_lock_bh(&card->ctrl[i].queue_lock);
  869. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  870. dma->dma_addr = pci_map_page(card->dev, dma->page,
  871. dma->pg_off, get_dma_size(dma),
  872. dma->cmd == HW_CMD_BLK_WRITE ?
  873. PCI_DMA_TODEVICE :
  874. PCI_DMA_FROMDEVICE);
  875. if (!dma->dma_addr) {
  876. spin_unlock_bh(&card->ctrl[i].queue_lock);
  877. kmem_cache_free(rsxx_dma_pool, dma);
  878. return -ENOMEM;
  879. }
  880. }
  881. spin_unlock_bh(&card->ctrl[i].queue_lock);
  882. }
  883. return 0;
  884. }
  885. int rsxx_dma_init(void)
  886. {
  887. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  888. if (!rsxx_dma_pool)
  889. return -ENOMEM;
  890. return 0;
  891. }
  892. void rsxx_dma_cleanup(void)
  893. {
  894. kmem_cache_destroy(rsxx_dma_pool);
  895. }