setup.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/io.h>
  28. #include <asm/page.h>
  29. #include <asm/elf.h>
  30. #include <asm/sections.h>
  31. #include <asm/irq.h>
  32. #include <asm/setup.h>
  33. #include <asm/clock.h>
  34. #include <asm/mmu_context.h>
  35. /*
  36. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  37. * This value will be used at the very early stage of serial setup.
  38. * The bigger value means no problem.
  39. */
  40. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  41. [0] = {
  42. .type = CPU_SH_NONE,
  43. .loops_per_jiffy = 10000000,
  44. },
  45. };
  46. EXPORT_SYMBOL(cpu_data);
  47. /*
  48. * The machine vector. First entry in .machvec.init, or clobbered by
  49. * sh_mv= on the command line, prior to .machvec.init teardown.
  50. */
  51. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  52. #ifdef CONFIG_VT
  53. struct screen_info screen_info;
  54. #endif
  55. extern int root_mountflags;
  56. #define RAMDISK_IMAGE_START_MASK 0x07FF
  57. #define RAMDISK_PROMPT_FLAG 0x8000
  58. #define RAMDISK_LOAD_FLAG 0x4000
  59. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  60. static struct resource code_resource = {
  61. .name = "Kernel code",
  62. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  63. };
  64. static struct resource data_resource = {
  65. .name = "Kernel data",
  66. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  67. };
  68. unsigned long memory_start;
  69. EXPORT_SYMBOL(memory_start);
  70. unsigned long memory_end = 0;
  71. EXPORT_SYMBOL(memory_end);
  72. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  73. static int __init early_parse_mem(char *p)
  74. {
  75. unsigned long size;
  76. memory_start = (unsigned long)__va(__MEMORY_START);
  77. size = memparse(p, &p);
  78. if (size > __MEMORY_SIZE) {
  79. static char msg[] __initdata = KERN_ERR
  80. "Using mem= to increase the size of kernel memory "
  81. "is not allowed.\n"
  82. " Recompile the kernel with the correct value for "
  83. "CONFIG_MEMORY_SIZE.\n";
  84. printk(msg);
  85. return 0;
  86. }
  87. memory_end = memory_start + size;
  88. return 0;
  89. }
  90. early_param("mem", early_parse_mem);
  91. /*
  92. * Register fully available low RAM pages with the bootmem allocator.
  93. */
  94. static void __init register_bootmem_low_pages(void)
  95. {
  96. unsigned long curr_pfn, last_pfn, pages;
  97. /*
  98. * We are rounding up the start address of usable memory:
  99. */
  100. curr_pfn = PFN_UP(__MEMORY_START);
  101. /*
  102. * ... and at the end of the usable range downwards:
  103. */
  104. last_pfn = PFN_DOWN(__pa(memory_end));
  105. if (last_pfn > max_low_pfn)
  106. last_pfn = max_low_pfn;
  107. pages = last_pfn - curr_pfn;
  108. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  109. }
  110. #ifdef CONFIG_KEXEC
  111. static void __init reserve_crashkernel(void)
  112. {
  113. unsigned long long free_mem;
  114. unsigned long long crash_size, crash_base;
  115. int ret;
  116. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  117. ret = parse_crashkernel(boot_command_line, free_mem,
  118. &crash_size, &crash_base);
  119. if (ret == 0 && crash_size) {
  120. if (crash_base > 0) {
  121. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  122. "for crashkernel (System RAM: %ldMB)\n",
  123. (unsigned long)(crash_size >> 20),
  124. (unsigned long)(crash_base >> 20),
  125. (unsigned long)(free_mem >> 20));
  126. crashk_res.start = crash_base;
  127. crashk_res.end = crash_base + crash_size - 1;
  128. reserve_bootmem(crash_base, crash_size);
  129. } else
  130. printk(KERN_INFO "crashkernel reservation failed - "
  131. "you have to specify a base address\n");
  132. }
  133. }
  134. #else
  135. static inline void __init reserve_crashkernel(void)
  136. {}
  137. #endif
  138. void __init setup_bootmem_allocator(unsigned long free_pfn)
  139. {
  140. unsigned long bootmap_size;
  141. /*
  142. * Find a proper area for the bootmem bitmap. After this
  143. * bootstrap step all allocations (until the page allocator
  144. * is intact) must be done via bootmem_alloc().
  145. */
  146. bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
  147. min_low_pfn, max_low_pfn);
  148. add_active_range(0, min_low_pfn, max_low_pfn);
  149. register_bootmem_low_pages();
  150. node_set_online(0);
  151. /*
  152. * Reserve the kernel text and
  153. * Reserve the bootmem bitmap. We do this in two steps (first step
  154. * was init_bootmem()), because this catches the (definitely buggy)
  155. * case of us accidentally initializing the bootmem allocator with
  156. * an invalid RAM area.
  157. */
  158. reserve_bootmem(__MEMORY_START+PAGE_SIZE,
  159. (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
  160. /*
  161. * reserve physical page 0 - it's a special BIOS page on many boxes,
  162. * enabling clean reboots, SMP operation, laptop functions.
  163. */
  164. reserve_bootmem(__MEMORY_START, PAGE_SIZE);
  165. sparse_memory_present_with_active_regions(0);
  166. #ifdef CONFIG_BLK_DEV_INITRD
  167. ROOT_DEV = Root_RAM0;
  168. if (LOADER_TYPE && INITRD_START) {
  169. if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
  170. reserve_bootmem(INITRD_START + __MEMORY_START,
  171. INITRD_SIZE);
  172. initrd_start = INITRD_START + PAGE_OFFSET +
  173. __MEMORY_START;
  174. initrd_end = initrd_start + INITRD_SIZE;
  175. } else {
  176. printk("initrd extends beyond end of memory "
  177. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  178. INITRD_START + INITRD_SIZE,
  179. max_low_pfn << PAGE_SHIFT);
  180. initrd_start = 0;
  181. }
  182. }
  183. #endif
  184. reserve_crashkernel();
  185. }
  186. #ifndef CONFIG_NEED_MULTIPLE_NODES
  187. static void __init setup_memory(void)
  188. {
  189. unsigned long start_pfn;
  190. /*
  191. * Partially used pages are not usable - thus
  192. * we are rounding upwards:
  193. */
  194. start_pfn = PFN_UP(__pa(_end));
  195. setup_bootmem_allocator(start_pfn);
  196. }
  197. #else
  198. extern void __init setup_memory(void);
  199. #endif
  200. void __init setup_arch(char **cmdline_p)
  201. {
  202. enable_mmu();
  203. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  204. #ifdef CONFIG_BLK_DEV_RAM
  205. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  206. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  207. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  208. #endif
  209. if (!MOUNT_ROOT_RDONLY)
  210. root_mountflags &= ~MS_RDONLY;
  211. init_mm.start_code = (unsigned long) _text;
  212. init_mm.end_code = (unsigned long) _etext;
  213. init_mm.end_data = (unsigned long) _edata;
  214. init_mm.brk = (unsigned long) _end;
  215. code_resource.start = virt_to_phys(_text);
  216. code_resource.end = virt_to_phys(_etext)-1;
  217. data_resource.start = virt_to_phys(_etext);
  218. data_resource.end = virt_to_phys(_edata)-1;
  219. memory_start = (unsigned long)__va(__MEMORY_START);
  220. if (!memory_end)
  221. memory_end = memory_start + __MEMORY_SIZE;
  222. #ifdef CONFIG_CMDLINE_BOOL
  223. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  224. #else
  225. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  226. #endif
  227. /* Save unparsed command line copy for /proc/cmdline */
  228. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  229. *cmdline_p = command_line;
  230. parse_early_param();
  231. sh_mv_setup();
  232. /*
  233. * Find the highest page frame number we have available
  234. */
  235. max_pfn = PFN_DOWN(__pa(memory_end));
  236. /*
  237. * Determine low and high memory ranges:
  238. */
  239. max_low_pfn = max_pfn;
  240. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  241. nodes_clear(node_online_map);
  242. /* Setup bootmem with available RAM */
  243. setup_memory();
  244. sparse_init();
  245. #ifdef CONFIG_DUMMY_CONSOLE
  246. conswitchp = &dummy_con;
  247. #endif
  248. /* Perform the machine specific initialisation */
  249. if (likely(sh_mv.mv_setup))
  250. sh_mv.mv_setup(cmdline_p);
  251. paging_init();
  252. #ifdef CONFIG_SMP
  253. plat_smp_setup();
  254. #endif
  255. }
  256. static const char *cpu_name[] = {
  257. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  258. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  259. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  260. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  261. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  262. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  263. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  264. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  265. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  266. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  267. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  268. [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
  269. [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
  270. [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
  271. [CPU_SHX3] = "SH-X3",
  272. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  273. [CPU_SH_NONE] = "Unknown"
  274. };
  275. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  276. {
  277. return cpu_name[c->type];
  278. }
  279. #ifdef CONFIG_PROC_FS
  280. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  281. static const char *cpu_flags[] = {
  282. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  283. "ptea", "llsc", "l2", "op32", NULL
  284. };
  285. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  286. {
  287. unsigned long i;
  288. seq_printf(m, "cpu flags\t:");
  289. if (!c->flags) {
  290. seq_printf(m, " %s\n", cpu_flags[0]);
  291. return;
  292. }
  293. for (i = 0; cpu_flags[i]; i++)
  294. if ((c->flags & (1 << i)))
  295. seq_printf(m, " %s", cpu_flags[i+1]);
  296. seq_printf(m, "\n");
  297. }
  298. static void show_cacheinfo(struct seq_file *m, const char *type,
  299. struct cache_info info)
  300. {
  301. unsigned int cache_size;
  302. cache_size = info.ways * info.sets * info.linesz;
  303. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  304. type, cache_size >> 10, info.ways);
  305. }
  306. /*
  307. * Get CPU information for use by the procfs.
  308. */
  309. static int show_cpuinfo(struct seq_file *m, void *v)
  310. {
  311. struct sh_cpuinfo *c = v;
  312. unsigned int cpu = c - cpu_data;
  313. if (!cpu_online(cpu))
  314. return 0;
  315. if (cpu == 0)
  316. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  317. seq_printf(m, "processor\t: %d\n", cpu);
  318. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  319. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  320. show_cpuflags(m, c);
  321. seq_printf(m, "cache type\t: ");
  322. /*
  323. * Check for what type of cache we have, we support both the
  324. * unified cache on the SH-2 and SH-3, as well as the harvard
  325. * style cache on the SH-4.
  326. */
  327. if (c->icache.flags & SH_CACHE_COMBINED) {
  328. seq_printf(m, "unified\n");
  329. show_cacheinfo(m, "cache", c->icache);
  330. } else {
  331. seq_printf(m, "split (harvard)\n");
  332. show_cacheinfo(m, "icache", c->icache);
  333. show_cacheinfo(m, "dcache", c->dcache);
  334. }
  335. /* Optional secondary cache */
  336. if (c->flags & CPU_HAS_L2_CACHE)
  337. show_cacheinfo(m, "scache", c->scache);
  338. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  339. c->loops_per_jiffy/(500000/HZ),
  340. (c->loops_per_jiffy/(5000/HZ)) % 100);
  341. return 0;
  342. }
  343. static void *c_start(struct seq_file *m, loff_t *pos)
  344. {
  345. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  346. }
  347. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  348. {
  349. ++*pos;
  350. return c_start(m, pos);
  351. }
  352. static void c_stop(struct seq_file *m, void *v)
  353. {
  354. }
  355. struct seq_operations cpuinfo_op = {
  356. .start = c_start,
  357. .next = c_next,
  358. .stop = c_stop,
  359. .show = show_cpuinfo,
  360. };
  361. #endif /* CONFIG_PROC_FS */