slub.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <linux/memcontrol.h>
  34. #include <trace/events/kmem.h>
  35. #include "internal.h"
  36. /*
  37. * Lock order:
  38. * 1. slab_mutex (Global Mutex)
  39. * 2. node->list_lock
  40. * 3. slab_lock(page) (Only on some arches and for debugging)
  41. *
  42. * slab_mutex
  43. *
  44. * The role of the slab_mutex is to protect the list of all the slabs
  45. * and to synchronize major metadata changes to slab cache structures.
  46. *
  47. * The slab_lock is only used for debugging and on arches that do not
  48. * have the ability to do a cmpxchg_double. It only protects the second
  49. * double word in the page struct. Meaning
  50. * A. page->freelist -> List of object free in a page
  51. * B. page->counters -> Counters of objects
  52. * C. page->frozen -> frozen state
  53. *
  54. * If a slab is frozen then it is exempt from list management. It is not
  55. * on any list. The processor that froze the slab is the one who can
  56. * perform list operations on the page. Other processors may put objects
  57. * onto the freelist but the processor that froze the slab is the only
  58. * one that can retrieve the objects from the page's freelist.
  59. *
  60. * The list_lock protects the partial and full list on each node and
  61. * the partial slab counter. If taken then no new slabs may be added or
  62. * removed from the lists nor make the number of partial slabs be modified.
  63. * (Note that the total number of slabs is an atomic value that may be
  64. * modified without taking the list lock).
  65. *
  66. * The list_lock is a centralized lock and thus we avoid taking it as
  67. * much as possible. As long as SLUB does not have to handle partial
  68. * slabs, operations can continue without any centralized lock. F.e.
  69. * allocating a long series of objects that fill up slabs does not require
  70. * the list lock.
  71. * Interrupts are disabled during allocation and deallocation in order to
  72. * make the slab allocator safe to use in the context of an irq. In addition
  73. * interrupts are disabled to ensure that the processor does not change
  74. * while handling per_cpu slabs, due to kernel preemption.
  75. *
  76. * SLUB assigns one slab for allocation to each processor.
  77. * Allocations only occur from these slabs called cpu slabs.
  78. *
  79. * Slabs with free elements are kept on a partial list and during regular
  80. * operations no list for full slabs is used. If an object in a full slab is
  81. * freed then the slab will show up again on the partial lists.
  82. * We track full slabs for debugging purposes though because otherwise we
  83. * cannot scan all objects.
  84. *
  85. * Slabs are freed when they become empty. Teardown and setup is
  86. * minimal so we rely on the page allocators per cpu caches for
  87. * fast frees and allocs.
  88. *
  89. * Overloading of page flags that are otherwise used for LRU management.
  90. *
  91. * PageActive The slab is frozen and exempt from list processing.
  92. * This means that the slab is dedicated to a purpose
  93. * such as satisfying allocations for a specific
  94. * processor. Objects may be freed in the slab while
  95. * it is frozen but slab_free will then skip the usual
  96. * list operations. It is up to the processor holding
  97. * the slab to integrate the slab into the slab lists
  98. * when the slab is no longer needed.
  99. *
  100. * One use of this flag is to mark slabs that are
  101. * used for allocations. Then such a slab becomes a cpu
  102. * slab. The cpu slab may be equipped with an additional
  103. * freelist that allows lockless access to
  104. * free objects in addition to the regular freelist
  105. * that requires the slab lock.
  106. *
  107. * PageError Slab requires special handling due to debug
  108. * options set. This moves slab handling out of
  109. * the fast path and disables lockless freelists.
  110. */
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. #ifdef CONFIG_SMP
  164. static struct notifier_block slab_notifier;
  165. #endif
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. #define TRACK_ADDRS_COUNT 16
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. #ifdef CONFIG_STACKTRACE
  173. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  174. #endif
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SYSFS
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  190. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  191. #endif
  192. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  193. {
  194. #ifdef CONFIG_SLUB_STATS
  195. __this_cpu_inc(s->cpu_slab->stat[si]);
  196. #endif
  197. }
  198. /********************************************************************
  199. * Core slab cache functions
  200. *******************************************************************/
  201. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  202. {
  203. return s->node[node];
  204. }
  205. /* Verify that a pointer has an address that is valid within a slab page */
  206. static inline int check_valid_pointer(struct kmem_cache *s,
  207. struct page *page, const void *object)
  208. {
  209. void *base;
  210. if (!object)
  211. return 1;
  212. base = page_address(page);
  213. if (object < base || object >= base + page->objects * s->size ||
  214. (object - base) % s->size) {
  215. return 0;
  216. }
  217. return 1;
  218. }
  219. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  220. {
  221. return *(void **)(object + s->offset);
  222. }
  223. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  224. {
  225. prefetch(object + s->offset);
  226. }
  227. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  228. {
  229. void *p;
  230. #ifdef CONFIG_DEBUG_PAGEALLOC
  231. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  232. #else
  233. p = get_freepointer(s, object);
  234. #endif
  235. return p;
  236. }
  237. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  238. {
  239. *(void **)(object + s->offset) = fp;
  240. }
  241. /* Loop over all objects in a slab */
  242. #define for_each_object(__p, __s, __addr, __objects) \
  243. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  244. __p += (__s)->size)
  245. /* Determine object index from a given position */
  246. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  247. {
  248. return (p - addr) / s->size;
  249. }
  250. static inline size_t slab_ksize(const struct kmem_cache *s)
  251. {
  252. #ifdef CONFIG_SLUB_DEBUG
  253. /*
  254. * Debugging requires use of the padding between object
  255. * and whatever may come after it.
  256. */
  257. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  258. return s->object_size;
  259. #endif
  260. /*
  261. * If we have the need to store the freelist pointer
  262. * back there or track user information then we can
  263. * only use the space before that information.
  264. */
  265. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  266. return s->inuse;
  267. /*
  268. * Else we can use all the padding etc for the allocation
  269. */
  270. return s->size;
  271. }
  272. static inline int order_objects(int order, unsigned long size, int reserved)
  273. {
  274. return ((PAGE_SIZE << order) - reserved) / size;
  275. }
  276. static inline struct kmem_cache_order_objects oo_make(int order,
  277. unsigned long size, int reserved)
  278. {
  279. struct kmem_cache_order_objects x = {
  280. (order << OO_SHIFT) + order_objects(order, size, reserved)
  281. };
  282. return x;
  283. }
  284. static inline int oo_order(struct kmem_cache_order_objects x)
  285. {
  286. return x.x >> OO_SHIFT;
  287. }
  288. static inline int oo_objects(struct kmem_cache_order_objects x)
  289. {
  290. return x.x & OO_MASK;
  291. }
  292. /*
  293. * Per slab locking using the pagelock
  294. */
  295. static __always_inline void slab_lock(struct page *page)
  296. {
  297. bit_spin_lock(PG_locked, &page->flags);
  298. }
  299. static __always_inline void slab_unlock(struct page *page)
  300. {
  301. __bit_spin_unlock(PG_locked, &page->flags);
  302. }
  303. /* Interrupts must be disabled (for the fallback code to work right) */
  304. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  305. void *freelist_old, unsigned long counters_old,
  306. void *freelist_new, unsigned long counters_new,
  307. const char *n)
  308. {
  309. VM_BUG_ON(!irqs_disabled());
  310. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  311. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  312. if (s->flags & __CMPXCHG_DOUBLE) {
  313. if (cmpxchg_double(&page->freelist, &page->counters,
  314. freelist_old, counters_old,
  315. freelist_new, counters_new))
  316. return 1;
  317. } else
  318. #endif
  319. {
  320. slab_lock(page);
  321. if (page->freelist == freelist_old && page->counters == counters_old) {
  322. page->freelist = freelist_new;
  323. page->counters = counters_new;
  324. slab_unlock(page);
  325. return 1;
  326. }
  327. slab_unlock(page);
  328. }
  329. cpu_relax();
  330. stat(s, CMPXCHG_DOUBLE_FAIL);
  331. #ifdef SLUB_DEBUG_CMPXCHG
  332. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  333. #endif
  334. return 0;
  335. }
  336. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  337. void *freelist_old, unsigned long counters_old,
  338. void *freelist_new, unsigned long counters_new,
  339. const char *n)
  340. {
  341. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  342. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  343. if (s->flags & __CMPXCHG_DOUBLE) {
  344. if (cmpxchg_double(&page->freelist, &page->counters,
  345. freelist_old, counters_old,
  346. freelist_new, counters_new))
  347. return 1;
  348. } else
  349. #endif
  350. {
  351. unsigned long flags;
  352. local_irq_save(flags);
  353. slab_lock(page);
  354. if (page->freelist == freelist_old && page->counters == counters_old) {
  355. page->freelist = freelist_new;
  356. page->counters = counters_new;
  357. slab_unlock(page);
  358. local_irq_restore(flags);
  359. return 1;
  360. }
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. }
  364. cpu_relax();
  365. stat(s, CMPXCHG_DOUBLE_FAIL);
  366. #ifdef SLUB_DEBUG_CMPXCHG
  367. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  368. #endif
  369. return 0;
  370. }
  371. #ifdef CONFIG_SLUB_DEBUG
  372. /*
  373. * Determine a map of object in use on a page.
  374. *
  375. * Node listlock must be held to guarantee that the page does
  376. * not vanish from under us.
  377. */
  378. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  379. {
  380. void *p;
  381. void *addr = page_address(page);
  382. for (p = page->freelist; p; p = get_freepointer(s, p))
  383. set_bit(slab_index(p, s, addr), map);
  384. }
  385. /*
  386. * Debug settings:
  387. */
  388. #ifdef CONFIG_SLUB_DEBUG_ON
  389. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  390. #else
  391. static int slub_debug;
  392. #endif
  393. static char *slub_debug_slabs;
  394. static int disable_higher_order_debug;
  395. /*
  396. * Object debugging
  397. */
  398. static void print_section(char *text, u8 *addr, unsigned int length)
  399. {
  400. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  401. length, 1);
  402. }
  403. static struct track *get_track(struct kmem_cache *s, void *object,
  404. enum track_item alloc)
  405. {
  406. struct track *p;
  407. if (s->offset)
  408. p = object + s->offset + sizeof(void *);
  409. else
  410. p = object + s->inuse;
  411. return p + alloc;
  412. }
  413. static void set_track(struct kmem_cache *s, void *object,
  414. enum track_item alloc, unsigned long addr)
  415. {
  416. struct track *p = get_track(s, object, alloc);
  417. if (addr) {
  418. #ifdef CONFIG_STACKTRACE
  419. struct stack_trace trace;
  420. int i;
  421. trace.nr_entries = 0;
  422. trace.max_entries = TRACK_ADDRS_COUNT;
  423. trace.entries = p->addrs;
  424. trace.skip = 3;
  425. save_stack_trace(&trace);
  426. /* See rant in lockdep.c */
  427. if (trace.nr_entries != 0 &&
  428. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  429. trace.nr_entries--;
  430. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  431. p->addrs[i] = 0;
  432. #endif
  433. p->addr = addr;
  434. p->cpu = smp_processor_id();
  435. p->pid = current->pid;
  436. p->when = jiffies;
  437. } else
  438. memset(p, 0, sizeof(struct track));
  439. }
  440. static void init_tracking(struct kmem_cache *s, void *object)
  441. {
  442. if (!(s->flags & SLAB_STORE_USER))
  443. return;
  444. set_track(s, object, TRACK_FREE, 0UL);
  445. set_track(s, object, TRACK_ALLOC, 0UL);
  446. }
  447. static void print_track(const char *s, struct track *t)
  448. {
  449. if (!t->addr)
  450. return;
  451. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  452. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  453. #ifdef CONFIG_STACKTRACE
  454. {
  455. int i;
  456. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  457. if (t->addrs[i])
  458. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  459. else
  460. break;
  461. }
  462. #endif
  463. }
  464. static void print_tracking(struct kmem_cache *s, void *object)
  465. {
  466. if (!(s->flags & SLAB_STORE_USER))
  467. return;
  468. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  469. print_track("Freed", get_track(s, object, TRACK_FREE));
  470. }
  471. static void print_page_info(struct page *page)
  472. {
  473. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  474. page, page->objects, page->inuse, page->freelist, page->flags);
  475. }
  476. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  477. {
  478. va_list args;
  479. char buf[100];
  480. va_start(args, fmt);
  481. vsnprintf(buf, sizeof(buf), fmt, args);
  482. va_end(args);
  483. printk(KERN_ERR "========================================"
  484. "=====================================\n");
  485. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  486. printk(KERN_ERR "----------------------------------------"
  487. "-------------------------------------\n\n");
  488. add_taint(TAINT_BAD_PAGE);
  489. }
  490. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  491. {
  492. va_list args;
  493. char buf[100];
  494. va_start(args, fmt);
  495. vsnprintf(buf, sizeof(buf), fmt, args);
  496. va_end(args);
  497. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  498. }
  499. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  500. {
  501. unsigned int off; /* Offset of last byte */
  502. u8 *addr = page_address(page);
  503. print_tracking(s, p);
  504. print_page_info(page);
  505. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  506. p, p - addr, get_freepointer(s, p));
  507. if (p > addr + 16)
  508. print_section("Bytes b4 ", p - 16, 16);
  509. print_section("Object ", p, min_t(unsigned long, s->object_size,
  510. PAGE_SIZE));
  511. if (s->flags & SLAB_RED_ZONE)
  512. print_section("Redzone ", p + s->object_size,
  513. s->inuse - s->object_size);
  514. if (s->offset)
  515. off = s->offset + sizeof(void *);
  516. else
  517. off = s->inuse;
  518. if (s->flags & SLAB_STORE_USER)
  519. off += 2 * sizeof(struct track);
  520. if (off != s->size)
  521. /* Beginning of the filler is the free pointer */
  522. print_section("Padding ", p + off, s->size - off);
  523. dump_stack();
  524. }
  525. static void object_err(struct kmem_cache *s, struct page *page,
  526. u8 *object, char *reason)
  527. {
  528. slab_bug(s, "%s", reason);
  529. print_trailer(s, page, object);
  530. }
  531. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  532. {
  533. va_list args;
  534. char buf[100];
  535. va_start(args, fmt);
  536. vsnprintf(buf, sizeof(buf), fmt, args);
  537. va_end(args);
  538. slab_bug(s, "%s", buf);
  539. print_page_info(page);
  540. dump_stack();
  541. }
  542. static void init_object(struct kmem_cache *s, void *object, u8 val)
  543. {
  544. u8 *p = object;
  545. if (s->flags & __OBJECT_POISON) {
  546. memset(p, POISON_FREE, s->object_size - 1);
  547. p[s->object_size - 1] = POISON_END;
  548. }
  549. if (s->flags & SLAB_RED_ZONE)
  550. memset(p + s->object_size, val, s->inuse - s->object_size);
  551. }
  552. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  553. void *from, void *to)
  554. {
  555. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  556. memset(from, data, to - from);
  557. }
  558. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  559. u8 *object, char *what,
  560. u8 *start, unsigned int value, unsigned int bytes)
  561. {
  562. u8 *fault;
  563. u8 *end;
  564. fault = memchr_inv(start, value, bytes);
  565. if (!fault)
  566. return 1;
  567. end = start + bytes;
  568. while (end > fault && end[-1] == value)
  569. end--;
  570. slab_bug(s, "%s overwritten", what);
  571. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  572. fault, end - 1, fault[0], value);
  573. print_trailer(s, page, object);
  574. restore_bytes(s, what, value, fault, end);
  575. return 0;
  576. }
  577. /*
  578. * Object layout:
  579. *
  580. * object address
  581. * Bytes of the object to be managed.
  582. * If the freepointer may overlay the object then the free
  583. * pointer is the first word of the object.
  584. *
  585. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  586. * 0xa5 (POISON_END)
  587. *
  588. * object + s->object_size
  589. * Padding to reach word boundary. This is also used for Redzoning.
  590. * Padding is extended by another word if Redzoning is enabled and
  591. * object_size == inuse.
  592. *
  593. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  594. * 0xcc (RED_ACTIVE) for objects in use.
  595. *
  596. * object + s->inuse
  597. * Meta data starts here.
  598. *
  599. * A. Free pointer (if we cannot overwrite object on free)
  600. * B. Tracking data for SLAB_STORE_USER
  601. * C. Padding to reach required alignment boundary or at mininum
  602. * one word if debugging is on to be able to detect writes
  603. * before the word boundary.
  604. *
  605. * Padding is done using 0x5a (POISON_INUSE)
  606. *
  607. * object + s->size
  608. * Nothing is used beyond s->size.
  609. *
  610. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  611. * ignored. And therefore no slab options that rely on these boundaries
  612. * may be used with merged slabcaches.
  613. */
  614. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  615. {
  616. unsigned long off = s->inuse; /* The end of info */
  617. if (s->offset)
  618. /* Freepointer is placed after the object. */
  619. off += sizeof(void *);
  620. if (s->flags & SLAB_STORE_USER)
  621. /* We also have user information there */
  622. off += 2 * sizeof(struct track);
  623. if (s->size == off)
  624. return 1;
  625. return check_bytes_and_report(s, page, p, "Object padding",
  626. p + off, POISON_INUSE, s->size - off);
  627. }
  628. /* Check the pad bytes at the end of a slab page */
  629. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  630. {
  631. u8 *start;
  632. u8 *fault;
  633. u8 *end;
  634. int length;
  635. int remainder;
  636. if (!(s->flags & SLAB_POISON))
  637. return 1;
  638. start = page_address(page);
  639. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  640. end = start + length;
  641. remainder = length % s->size;
  642. if (!remainder)
  643. return 1;
  644. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  645. if (!fault)
  646. return 1;
  647. while (end > fault && end[-1] == POISON_INUSE)
  648. end--;
  649. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  650. print_section("Padding ", end - remainder, remainder);
  651. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  652. return 0;
  653. }
  654. static int check_object(struct kmem_cache *s, struct page *page,
  655. void *object, u8 val)
  656. {
  657. u8 *p = object;
  658. u8 *endobject = object + s->object_size;
  659. if (s->flags & SLAB_RED_ZONE) {
  660. if (!check_bytes_and_report(s, page, object, "Redzone",
  661. endobject, val, s->inuse - s->object_size))
  662. return 0;
  663. } else {
  664. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  665. check_bytes_and_report(s, page, p, "Alignment padding",
  666. endobject, POISON_INUSE, s->inuse - s->object_size);
  667. }
  668. }
  669. if (s->flags & SLAB_POISON) {
  670. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  671. (!check_bytes_and_report(s, page, p, "Poison", p,
  672. POISON_FREE, s->object_size - 1) ||
  673. !check_bytes_and_report(s, page, p, "Poison",
  674. p + s->object_size - 1, POISON_END, 1)))
  675. return 0;
  676. /*
  677. * check_pad_bytes cleans up on its own.
  678. */
  679. check_pad_bytes(s, page, p);
  680. }
  681. if (!s->offset && val == SLUB_RED_ACTIVE)
  682. /*
  683. * Object and freepointer overlap. Cannot check
  684. * freepointer while object is allocated.
  685. */
  686. return 1;
  687. /* Check free pointer validity */
  688. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  689. object_err(s, page, p, "Freepointer corrupt");
  690. /*
  691. * No choice but to zap it and thus lose the remainder
  692. * of the free objects in this slab. May cause
  693. * another error because the object count is now wrong.
  694. */
  695. set_freepointer(s, p, NULL);
  696. return 0;
  697. }
  698. return 1;
  699. }
  700. static int check_slab(struct kmem_cache *s, struct page *page)
  701. {
  702. int maxobj;
  703. VM_BUG_ON(!irqs_disabled());
  704. if (!PageSlab(page)) {
  705. slab_err(s, page, "Not a valid slab page");
  706. return 0;
  707. }
  708. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  709. if (page->objects > maxobj) {
  710. slab_err(s, page, "objects %u > max %u",
  711. s->name, page->objects, maxobj);
  712. return 0;
  713. }
  714. if (page->inuse > page->objects) {
  715. slab_err(s, page, "inuse %u > max %u",
  716. s->name, page->inuse, page->objects);
  717. return 0;
  718. }
  719. /* Slab_pad_check fixes things up after itself */
  720. slab_pad_check(s, page);
  721. return 1;
  722. }
  723. /*
  724. * Determine if a certain object on a page is on the freelist. Must hold the
  725. * slab lock to guarantee that the chains are in a consistent state.
  726. */
  727. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  728. {
  729. int nr = 0;
  730. void *fp;
  731. void *object = NULL;
  732. unsigned long max_objects;
  733. fp = page->freelist;
  734. while (fp && nr <= page->objects) {
  735. if (fp == search)
  736. return 1;
  737. if (!check_valid_pointer(s, page, fp)) {
  738. if (object) {
  739. object_err(s, page, object,
  740. "Freechain corrupt");
  741. set_freepointer(s, object, NULL);
  742. break;
  743. } else {
  744. slab_err(s, page, "Freepointer corrupt");
  745. page->freelist = NULL;
  746. page->inuse = page->objects;
  747. slab_fix(s, "Freelist cleared");
  748. return 0;
  749. }
  750. break;
  751. }
  752. object = fp;
  753. fp = get_freepointer(s, object);
  754. nr++;
  755. }
  756. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  757. if (max_objects > MAX_OBJS_PER_PAGE)
  758. max_objects = MAX_OBJS_PER_PAGE;
  759. if (page->objects != max_objects) {
  760. slab_err(s, page, "Wrong number of objects. Found %d but "
  761. "should be %d", page->objects, max_objects);
  762. page->objects = max_objects;
  763. slab_fix(s, "Number of objects adjusted.");
  764. }
  765. if (page->inuse != page->objects - nr) {
  766. slab_err(s, page, "Wrong object count. Counter is %d but "
  767. "counted were %d", page->inuse, page->objects - nr);
  768. page->inuse = page->objects - nr;
  769. slab_fix(s, "Object count adjusted.");
  770. }
  771. return search == NULL;
  772. }
  773. static void trace(struct kmem_cache *s, struct page *page, void *object,
  774. int alloc)
  775. {
  776. if (s->flags & SLAB_TRACE) {
  777. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  778. s->name,
  779. alloc ? "alloc" : "free",
  780. object, page->inuse,
  781. page->freelist);
  782. if (!alloc)
  783. print_section("Object ", (void *)object, s->object_size);
  784. dump_stack();
  785. }
  786. }
  787. /*
  788. * Hooks for other subsystems that check memory allocations. In a typical
  789. * production configuration these hooks all should produce no code at all.
  790. */
  791. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  792. {
  793. flags &= gfp_allowed_mask;
  794. lockdep_trace_alloc(flags);
  795. might_sleep_if(flags & __GFP_WAIT);
  796. return should_failslab(s->object_size, flags, s->flags);
  797. }
  798. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  799. {
  800. flags &= gfp_allowed_mask;
  801. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  802. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  803. }
  804. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  805. {
  806. kmemleak_free_recursive(x, s->flags);
  807. /*
  808. * Trouble is that we may no longer disable interupts in the fast path
  809. * So in order to make the debug calls that expect irqs to be
  810. * disabled we need to disable interrupts temporarily.
  811. */
  812. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  813. {
  814. unsigned long flags;
  815. local_irq_save(flags);
  816. kmemcheck_slab_free(s, x, s->object_size);
  817. debug_check_no_locks_freed(x, s->object_size);
  818. local_irq_restore(flags);
  819. }
  820. #endif
  821. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  822. debug_check_no_obj_freed(x, s->object_size);
  823. }
  824. /*
  825. * Tracking of fully allocated slabs for debugging purposes.
  826. *
  827. * list_lock must be held.
  828. */
  829. static void add_full(struct kmem_cache *s,
  830. struct kmem_cache_node *n, struct page *page)
  831. {
  832. if (!(s->flags & SLAB_STORE_USER))
  833. return;
  834. list_add(&page->lru, &n->full);
  835. }
  836. /*
  837. * list_lock must be held.
  838. */
  839. static void remove_full(struct kmem_cache *s, struct page *page)
  840. {
  841. if (!(s->flags & SLAB_STORE_USER))
  842. return;
  843. list_del(&page->lru);
  844. }
  845. /* Tracking of the number of slabs for debugging purposes */
  846. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  847. {
  848. struct kmem_cache_node *n = get_node(s, node);
  849. return atomic_long_read(&n->nr_slabs);
  850. }
  851. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  852. {
  853. return atomic_long_read(&n->nr_slabs);
  854. }
  855. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  856. {
  857. struct kmem_cache_node *n = get_node(s, node);
  858. /*
  859. * May be called early in order to allocate a slab for the
  860. * kmem_cache_node structure. Solve the chicken-egg
  861. * dilemma by deferring the increment of the count during
  862. * bootstrap (see early_kmem_cache_node_alloc).
  863. */
  864. if (likely(n)) {
  865. atomic_long_inc(&n->nr_slabs);
  866. atomic_long_add(objects, &n->total_objects);
  867. }
  868. }
  869. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  870. {
  871. struct kmem_cache_node *n = get_node(s, node);
  872. atomic_long_dec(&n->nr_slabs);
  873. atomic_long_sub(objects, &n->total_objects);
  874. }
  875. /* Object debug checks for alloc/free paths */
  876. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  877. void *object)
  878. {
  879. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  880. return;
  881. init_object(s, object, SLUB_RED_INACTIVE);
  882. init_tracking(s, object);
  883. }
  884. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  885. void *object, unsigned long addr)
  886. {
  887. if (!check_slab(s, page))
  888. goto bad;
  889. if (!check_valid_pointer(s, page, object)) {
  890. object_err(s, page, object, "Freelist Pointer check fails");
  891. goto bad;
  892. }
  893. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  894. goto bad;
  895. /* Success perform special debug activities for allocs */
  896. if (s->flags & SLAB_STORE_USER)
  897. set_track(s, object, TRACK_ALLOC, addr);
  898. trace(s, page, object, 1);
  899. init_object(s, object, SLUB_RED_ACTIVE);
  900. return 1;
  901. bad:
  902. if (PageSlab(page)) {
  903. /*
  904. * If this is a slab page then lets do the best we can
  905. * to avoid issues in the future. Marking all objects
  906. * as used avoids touching the remaining objects.
  907. */
  908. slab_fix(s, "Marking all objects used");
  909. page->inuse = page->objects;
  910. page->freelist = NULL;
  911. }
  912. return 0;
  913. }
  914. static noinline struct kmem_cache_node *free_debug_processing(
  915. struct kmem_cache *s, struct page *page, void *object,
  916. unsigned long addr, unsigned long *flags)
  917. {
  918. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  919. spin_lock_irqsave(&n->list_lock, *flags);
  920. slab_lock(page);
  921. if (!check_slab(s, page))
  922. goto fail;
  923. if (!check_valid_pointer(s, page, object)) {
  924. slab_err(s, page, "Invalid object pointer 0x%p", object);
  925. goto fail;
  926. }
  927. if (on_freelist(s, page, object)) {
  928. object_err(s, page, object, "Object already free");
  929. goto fail;
  930. }
  931. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  932. goto out;
  933. if (unlikely(s != page->slab_cache)) {
  934. if (!PageSlab(page)) {
  935. slab_err(s, page, "Attempt to free object(0x%p) "
  936. "outside of slab", object);
  937. } else if (!page->slab_cache) {
  938. printk(KERN_ERR
  939. "SLUB <none>: no slab for object 0x%p.\n",
  940. object);
  941. dump_stack();
  942. } else
  943. object_err(s, page, object,
  944. "page slab pointer corrupt.");
  945. goto fail;
  946. }
  947. if (s->flags & SLAB_STORE_USER)
  948. set_track(s, object, TRACK_FREE, addr);
  949. trace(s, page, object, 0);
  950. init_object(s, object, SLUB_RED_INACTIVE);
  951. out:
  952. slab_unlock(page);
  953. /*
  954. * Keep node_lock to preserve integrity
  955. * until the object is actually freed
  956. */
  957. return n;
  958. fail:
  959. slab_unlock(page);
  960. spin_unlock_irqrestore(&n->list_lock, *flags);
  961. slab_fix(s, "Object at 0x%p not freed", object);
  962. return NULL;
  963. }
  964. static int __init setup_slub_debug(char *str)
  965. {
  966. slub_debug = DEBUG_DEFAULT_FLAGS;
  967. if (*str++ != '=' || !*str)
  968. /*
  969. * No options specified. Switch on full debugging.
  970. */
  971. goto out;
  972. if (*str == ',')
  973. /*
  974. * No options but restriction on slabs. This means full
  975. * debugging for slabs matching a pattern.
  976. */
  977. goto check_slabs;
  978. if (tolower(*str) == 'o') {
  979. /*
  980. * Avoid enabling debugging on caches if its minimum order
  981. * would increase as a result.
  982. */
  983. disable_higher_order_debug = 1;
  984. goto out;
  985. }
  986. slub_debug = 0;
  987. if (*str == '-')
  988. /*
  989. * Switch off all debugging measures.
  990. */
  991. goto out;
  992. /*
  993. * Determine which debug features should be switched on
  994. */
  995. for (; *str && *str != ','; str++) {
  996. switch (tolower(*str)) {
  997. case 'f':
  998. slub_debug |= SLAB_DEBUG_FREE;
  999. break;
  1000. case 'z':
  1001. slub_debug |= SLAB_RED_ZONE;
  1002. break;
  1003. case 'p':
  1004. slub_debug |= SLAB_POISON;
  1005. break;
  1006. case 'u':
  1007. slub_debug |= SLAB_STORE_USER;
  1008. break;
  1009. case 't':
  1010. slub_debug |= SLAB_TRACE;
  1011. break;
  1012. case 'a':
  1013. slub_debug |= SLAB_FAILSLAB;
  1014. break;
  1015. default:
  1016. printk(KERN_ERR "slub_debug option '%c' "
  1017. "unknown. skipped\n", *str);
  1018. }
  1019. }
  1020. check_slabs:
  1021. if (*str == ',')
  1022. slub_debug_slabs = str + 1;
  1023. out:
  1024. return 1;
  1025. }
  1026. __setup("slub_debug", setup_slub_debug);
  1027. static unsigned long kmem_cache_flags(unsigned long object_size,
  1028. unsigned long flags, const char *name,
  1029. void (*ctor)(void *))
  1030. {
  1031. /*
  1032. * Enable debugging if selected on the kernel commandline.
  1033. */
  1034. if (slub_debug && (!slub_debug_slabs ||
  1035. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1036. flags |= slub_debug;
  1037. return flags;
  1038. }
  1039. #else
  1040. static inline void setup_object_debug(struct kmem_cache *s,
  1041. struct page *page, void *object) {}
  1042. static inline int alloc_debug_processing(struct kmem_cache *s,
  1043. struct page *page, void *object, unsigned long addr) { return 0; }
  1044. static inline struct kmem_cache_node *free_debug_processing(
  1045. struct kmem_cache *s, struct page *page, void *object,
  1046. unsigned long addr, unsigned long *flags) { return NULL; }
  1047. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1048. { return 1; }
  1049. static inline int check_object(struct kmem_cache *s, struct page *page,
  1050. void *object, u8 val) { return 1; }
  1051. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1052. struct page *page) {}
  1053. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1054. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1055. unsigned long flags, const char *name,
  1056. void (*ctor)(void *))
  1057. {
  1058. return flags;
  1059. }
  1060. #define slub_debug 0
  1061. #define disable_higher_order_debug 0
  1062. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1063. { return 0; }
  1064. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1065. { return 0; }
  1066. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1071. { return 0; }
  1072. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1073. void *object) {}
  1074. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1075. #endif /* CONFIG_SLUB_DEBUG */
  1076. /*
  1077. * Slab allocation and freeing
  1078. */
  1079. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1080. struct kmem_cache_order_objects oo)
  1081. {
  1082. int order = oo_order(oo);
  1083. flags |= __GFP_NOTRACK;
  1084. if (node == NUMA_NO_NODE)
  1085. return alloc_pages(flags, order);
  1086. else
  1087. return alloc_pages_exact_node(node, flags, order);
  1088. }
  1089. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1090. {
  1091. struct page *page;
  1092. struct kmem_cache_order_objects oo = s->oo;
  1093. gfp_t alloc_gfp;
  1094. flags &= gfp_allowed_mask;
  1095. if (flags & __GFP_WAIT)
  1096. local_irq_enable();
  1097. flags |= s->allocflags;
  1098. /*
  1099. * Let the initial higher-order allocation fail under memory pressure
  1100. * so we fall-back to the minimum order allocation.
  1101. */
  1102. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1103. page = alloc_slab_page(alloc_gfp, node, oo);
  1104. if (unlikely(!page)) {
  1105. oo = s->min;
  1106. /*
  1107. * Allocation may have failed due to fragmentation.
  1108. * Try a lower order alloc if possible
  1109. */
  1110. page = alloc_slab_page(flags, node, oo);
  1111. if (page)
  1112. stat(s, ORDER_FALLBACK);
  1113. }
  1114. if (kmemcheck_enabled && page
  1115. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1116. int pages = 1 << oo_order(oo);
  1117. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1118. /*
  1119. * Objects from caches that have a constructor don't get
  1120. * cleared when they're allocated, so we need to do it here.
  1121. */
  1122. if (s->ctor)
  1123. kmemcheck_mark_uninitialized_pages(page, pages);
  1124. else
  1125. kmemcheck_mark_unallocated_pages(page, pages);
  1126. }
  1127. if (flags & __GFP_WAIT)
  1128. local_irq_disable();
  1129. if (!page)
  1130. return NULL;
  1131. page->objects = oo_objects(oo);
  1132. mod_zone_page_state(page_zone(page),
  1133. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1134. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1135. 1 << oo_order(oo));
  1136. return page;
  1137. }
  1138. static void setup_object(struct kmem_cache *s, struct page *page,
  1139. void *object)
  1140. {
  1141. setup_object_debug(s, page, object);
  1142. if (unlikely(s->ctor))
  1143. s->ctor(object);
  1144. }
  1145. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1146. {
  1147. struct page *page;
  1148. void *start;
  1149. void *last;
  1150. void *p;
  1151. int order;
  1152. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1153. page = allocate_slab(s,
  1154. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1155. if (!page)
  1156. goto out;
  1157. order = compound_order(page);
  1158. inc_slabs_node(s, page_to_nid(page), page->objects);
  1159. memcg_bind_pages(s, order);
  1160. page->slab_cache = s;
  1161. __SetPageSlab(page);
  1162. if (page->pfmemalloc)
  1163. SetPageSlabPfmemalloc(page);
  1164. start = page_address(page);
  1165. if (unlikely(s->flags & SLAB_POISON))
  1166. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1167. last = start;
  1168. for_each_object(p, s, start, page->objects) {
  1169. setup_object(s, page, last);
  1170. set_freepointer(s, last, p);
  1171. last = p;
  1172. }
  1173. setup_object(s, page, last);
  1174. set_freepointer(s, last, NULL);
  1175. page->freelist = start;
  1176. page->inuse = page->objects;
  1177. page->frozen = 1;
  1178. out:
  1179. return page;
  1180. }
  1181. static void __free_slab(struct kmem_cache *s, struct page *page)
  1182. {
  1183. int order = compound_order(page);
  1184. int pages = 1 << order;
  1185. if (kmem_cache_debug(s)) {
  1186. void *p;
  1187. slab_pad_check(s, page);
  1188. for_each_object(p, s, page_address(page),
  1189. page->objects)
  1190. check_object(s, page, p, SLUB_RED_INACTIVE);
  1191. }
  1192. kmemcheck_free_shadow(page, compound_order(page));
  1193. mod_zone_page_state(page_zone(page),
  1194. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1195. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1196. -pages);
  1197. __ClearPageSlabPfmemalloc(page);
  1198. __ClearPageSlab(page);
  1199. memcg_release_pages(s, order);
  1200. reset_page_mapcount(page);
  1201. if (current->reclaim_state)
  1202. current->reclaim_state->reclaimed_slab += pages;
  1203. __free_memcg_kmem_pages(page, order);
  1204. }
  1205. #define need_reserve_slab_rcu \
  1206. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1207. static void rcu_free_slab(struct rcu_head *h)
  1208. {
  1209. struct page *page;
  1210. if (need_reserve_slab_rcu)
  1211. page = virt_to_head_page(h);
  1212. else
  1213. page = container_of((struct list_head *)h, struct page, lru);
  1214. __free_slab(page->slab_cache, page);
  1215. }
  1216. static void free_slab(struct kmem_cache *s, struct page *page)
  1217. {
  1218. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1219. struct rcu_head *head;
  1220. if (need_reserve_slab_rcu) {
  1221. int order = compound_order(page);
  1222. int offset = (PAGE_SIZE << order) - s->reserved;
  1223. VM_BUG_ON(s->reserved != sizeof(*head));
  1224. head = page_address(page) + offset;
  1225. } else {
  1226. /*
  1227. * RCU free overloads the RCU head over the LRU
  1228. */
  1229. head = (void *)&page->lru;
  1230. }
  1231. call_rcu(head, rcu_free_slab);
  1232. } else
  1233. __free_slab(s, page);
  1234. }
  1235. static void discard_slab(struct kmem_cache *s, struct page *page)
  1236. {
  1237. dec_slabs_node(s, page_to_nid(page), page->objects);
  1238. free_slab(s, page);
  1239. }
  1240. /*
  1241. * Management of partially allocated slabs.
  1242. *
  1243. * list_lock must be held.
  1244. */
  1245. static inline void add_partial(struct kmem_cache_node *n,
  1246. struct page *page, int tail)
  1247. {
  1248. n->nr_partial++;
  1249. if (tail == DEACTIVATE_TO_TAIL)
  1250. list_add_tail(&page->lru, &n->partial);
  1251. else
  1252. list_add(&page->lru, &n->partial);
  1253. }
  1254. /*
  1255. * list_lock must be held.
  1256. */
  1257. static inline void remove_partial(struct kmem_cache_node *n,
  1258. struct page *page)
  1259. {
  1260. list_del(&page->lru);
  1261. n->nr_partial--;
  1262. }
  1263. /*
  1264. * Remove slab from the partial list, freeze it and
  1265. * return the pointer to the freelist.
  1266. *
  1267. * Returns a list of objects or NULL if it fails.
  1268. *
  1269. * Must hold list_lock since we modify the partial list.
  1270. */
  1271. static inline void *acquire_slab(struct kmem_cache *s,
  1272. struct kmem_cache_node *n, struct page *page,
  1273. int mode, int *objects)
  1274. {
  1275. void *freelist;
  1276. unsigned long counters;
  1277. struct page new;
  1278. /*
  1279. * Zap the freelist and set the frozen bit.
  1280. * The old freelist is the list of objects for the
  1281. * per cpu allocation list.
  1282. */
  1283. freelist = page->freelist;
  1284. counters = page->counters;
  1285. new.counters = counters;
  1286. *objects = new.objects - new.inuse;
  1287. if (mode) {
  1288. new.inuse = page->objects;
  1289. new.freelist = NULL;
  1290. } else {
  1291. new.freelist = freelist;
  1292. }
  1293. VM_BUG_ON(new.frozen);
  1294. new.frozen = 1;
  1295. if (!__cmpxchg_double_slab(s, page,
  1296. freelist, counters,
  1297. new.freelist, new.counters,
  1298. "acquire_slab"))
  1299. return NULL;
  1300. remove_partial(n, page);
  1301. WARN_ON(!freelist);
  1302. return freelist;
  1303. }
  1304. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1305. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1306. /*
  1307. * Try to allocate a partial slab from a specific node.
  1308. */
  1309. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1310. struct kmem_cache_cpu *c, gfp_t flags)
  1311. {
  1312. struct page *page, *page2;
  1313. void *object = NULL;
  1314. int available = 0;
  1315. int objects;
  1316. /*
  1317. * Racy check. If we mistakenly see no partial slabs then we
  1318. * just allocate an empty slab. If we mistakenly try to get a
  1319. * partial slab and there is none available then get_partials()
  1320. * will return NULL.
  1321. */
  1322. if (!n || !n->nr_partial)
  1323. return NULL;
  1324. spin_lock(&n->list_lock);
  1325. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1326. void *t;
  1327. if (!pfmemalloc_match(page, flags))
  1328. continue;
  1329. t = acquire_slab(s, n, page, object == NULL, &objects);
  1330. if (!t)
  1331. break;
  1332. available += objects;
  1333. if (!object) {
  1334. c->page = page;
  1335. stat(s, ALLOC_FROM_PARTIAL);
  1336. object = t;
  1337. } else {
  1338. put_cpu_partial(s, page, 0);
  1339. stat(s, CPU_PARTIAL_NODE);
  1340. }
  1341. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1342. break;
  1343. }
  1344. spin_unlock(&n->list_lock);
  1345. return object;
  1346. }
  1347. /*
  1348. * Get a page from somewhere. Search in increasing NUMA distances.
  1349. */
  1350. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1351. struct kmem_cache_cpu *c)
  1352. {
  1353. #ifdef CONFIG_NUMA
  1354. struct zonelist *zonelist;
  1355. struct zoneref *z;
  1356. struct zone *zone;
  1357. enum zone_type high_zoneidx = gfp_zone(flags);
  1358. void *object;
  1359. unsigned int cpuset_mems_cookie;
  1360. /*
  1361. * The defrag ratio allows a configuration of the tradeoffs between
  1362. * inter node defragmentation and node local allocations. A lower
  1363. * defrag_ratio increases the tendency to do local allocations
  1364. * instead of attempting to obtain partial slabs from other nodes.
  1365. *
  1366. * If the defrag_ratio is set to 0 then kmalloc() always
  1367. * returns node local objects. If the ratio is higher then kmalloc()
  1368. * may return off node objects because partial slabs are obtained
  1369. * from other nodes and filled up.
  1370. *
  1371. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1372. * defrag_ratio = 1000) then every (well almost) allocation will
  1373. * first attempt to defrag slab caches on other nodes. This means
  1374. * scanning over all nodes to look for partial slabs which may be
  1375. * expensive if we do it every time we are trying to find a slab
  1376. * with available objects.
  1377. */
  1378. if (!s->remote_node_defrag_ratio ||
  1379. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1380. return NULL;
  1381. do {
  1382. cpuset_mems_cookie = get_mems_allowed();
  1383. zonelist = node_zonelist(slab_node(), flags);
  1384. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1385. struct kmem_cache_node *n;
  1386. n = get_node(s, zone_to_nid(zone));
  1387. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1388. n->nr_partial > s->min_partial) {
  1389. object = get_partial_node(s, n, c, flags);
  1390. if (object) {
  1391. /*
  1392. * Return the object even if
  1393. * put_mems_allowed indicated that
  1394. * the cpuset mems_allowed was
  1395. * updated in parallel. It's a
  1396. * harmless race between the alloc
  1397. * and the cpuset update.
  1398. */
  1399. put_mems_allowed(cpuset_mems_cookie);
  1400. return object;
  1401. }
  1402. }
  1403. }
  1404. } while (!put_mems_allowed(cpuset_mems_cookie));
  1405. #endif
  1406. return NULL;
  1407. }
  1408. /*
  1409. * Get a partial page, lock it and return it.
  1410. */
  1411. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1412. struct kmem_cache_cpu *c)
  1413. {
  1414. void *object;
  1415. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1416. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1417. if (object || node != NUMA_NO_NODE)
  1418. return object;
  1419. return get_any_partial(s, flags, c);
  1420. }
  1421. #ifdef CONFIG_PREEMPT
  1422. /*
  1423. * Calculate the next globally unique transaction for disambiguiation
  1424. * during cmpxchg. The transactions start with the cpu number and are then
  1425. * incremented by CONFIG_NR_CPUS.
  1426. */
  1427. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1428. #else
  1429. /*
  1430. * No preemption supported therefore also no need to check for
  1431. * different cpus.
  1432. */
  1433. #define TID_STEP 1
  1434. #endif
  1435. static inline unsigned long next_tid(unsigned long tid)
  1436. {
  1437. return tid + TID_STEP;
  1438. }
  1439. static inline unsigned int tid_to_cpu(unsigned long tid)
  1440. {
  1441. return tid % TID_STEP;
  1442. }
  1443. static inline unsigned long tid_to_event(unsigned long tid)
  1444. {
  1445. return tid / TID_STEP;
  1446. }
  1447. static inline unsigned int init_tid(int cpu)
  1448. {
  1449. return cpu;
  1450. }
  1451. static inline void note_cmpxchg_failure(const char *n,
  1452. const struct kmem_cache *s, unsigned long tid)
  1453. {
  1454. #ifdef SLUB_DEBUG_CMPXCHG
  1455. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1456. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1457. #ifdef CONFIG_PREEMPT
  1458. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1459. printk("due to cpu change %d -> %d\n",
  1460. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1461. else
  1462. #endif
  1463. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1464. printk("due to cpu running other code. Event %ld->%ld\n",
  1465. tid_to_event(tid), tid_to_event(actual_tid));
  1466. else
  1467. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1468. actual_tid, tid, next_tid(tid));
  1469. #endif
  1470. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1471. }
  1472. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1473. {
  1474. int cpu;
  1475. for_each_possible_cpu(cpu)
  1476. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1477. }
  1478. /*
  1479. * Remove the cpu slab
  1480. */
  1481. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1482. {
  1483. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1484. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1485. int lock = 0;
  1486. enum slab_modes l = M_NONE, m = M_NONE;
  1487. void *nextfree;
  1488. int tail = DEACTIVATE_TO_HEAD;
  1489. struct page new;
  1490. struct page old;
  1491. if (page->freelist) {
  1492. stat(s, DEACTIVATE_REMOTE_FREES);
  1493. tail = DEACTIVATE_TO_TAIL;
  1494. }
  1495. /*
  1496. * Stage one: Free all available per cpu objects back
  1497. * to the page freelist while it is still frozen. Leave the
  1498. * last one.
  1499. *
  1500. * There is no need to take the list->lock because the page
  1501. * is still frozen.
  1502. */
  1503. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1504. void *prior;
  1505. unsigned long counters;
  1506. do {
  1507. prior = page->freelist;
  1508. counters = page->counters;
  1509. set_freepointer(s, freelist, prior);
  1510. new.counters = counters;
  1511. new.inuse--;
  1512. VM_BUG_ON(!new.frozen);
  1513. } while (!__cmpxchg_double_slab(s, page,
  1514. prior, counters,
  1515. freelist, new.counters,
  1516. "drain percpu freelist"));
  1517. freelist = nextfree;
  1518. }
  1519. /*
  1520. * Stage two: Ensure that the page is unfrozen while the
  1521. * list presence reflects the actual number of objects
  1522. * during unfreeze.
  1523. *
  1524. * We setup the list membership and then perform a cmpxchg
  1525. * with the count. If there is a mismatch then the page
  1526. * is not unfrozen but the page is on the wrong list.
  1527. *
  1528. * Then we restart the process which may have to remove
  1529. * the page from the list that we just put it on again
  1530. * because the number of objects in the slab may have
  1531. * changed.
  1532. */
  1533. redo:
  1534. old.freelist = page->freelist;
  1535. old.counters = page->counters;
  1536. VM_BUG_ON(!old.frozen);
  1537. /* Determine target state of the slab */
  1538. new.counters = old.counters;
  1539. if (freelist) {
  1540. new.inuse--;
  1541. set_freepointer(s, freelist, old.freelist);
  1542. new.freelist = freelist;
  1543. } else
  1544. new.freelist = old.freelist;
  1545. new.frozen = 0;
  1546. if (!new.inuse && n->nr_partial > s->min_partial)
  1547. m = M_FREE;
  1548. else if (new.freelist) {
  1549. m = M_PARTIAL;
  1550. if (!lock) {
  1551. lock = 1;
  1552. /*
  1553. * Taking the spinlock removes the possiblity
  1554. * that acquire_slab() will see a slab page that
  1555. * is frozen
  1556. */
  1557. spin_lock(&n->list_lock);
  1558. }
  1559. } else {
  1560. m = M_FULL;
  1561. if (kmem_cache_debug(s) && !lock) {
  1562. lock = 1;
  1563. /*
  1564. * This also ensures that the scanning of full
  1565. * slabs from diagnostic functions will not see
  1566. * any frozen slabs.
  1567. */
  1568. spin_lock(&n->list_lock);
  1569. }
  1570. }
  1571. if (l != m) {
  1572. if (l == M_PARTIAL)
  1573. remove_partial(n, page);
  1574. else if (l == M_FULL)
  1575. remove_full(s, page);
  1576. if (m == M_PARTIAL) {
  1577. add_partial(n, page, tail);
  1578. stat(s, tail);
  1579. } else if (m == M_FULL) {
  1580. stat(s, DEACTIVATE_FULL);
  1581. add_full(s, n, page);
  1582. }
  1583. }
  1584. l = m;
  1585. if (!__cmpxchg_double_slab(s, page,
  1586. old.freelist, old.counters,
  1587. new.freelist, new.counters,
  1588. "unfreezing slab"))
  1589. goto redo;
  1590. if (lock)
  1591. spin_unlock(&n->list_lock);
  1592. if (m == M_FREE) {
  1593. stat(s, DEACTIVATE_EMPTY);
  1594. discard_slab(s, page);
  1595. stat(s, FREE_SLAB);
  1596. }
  1597. }
  1598. /*
  1599. * Unfreeze all the cpu partial slabs.
  1600. *
  1601. * This function must be called with interrupts disabled
  1602. * for the cpu using c (or some other guarantee must be there
  1603. * to guarantee no concurrent accesses).
  1604. */
  1605. static void unfreeze_partials(struct kmem_cache *s,
  1606. struct kmem_cache_cpu *c)
  1607. {
  1608. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1609. struct page *page, *discard_page = NULL;
  1610. while ((page = c->partial)) {
  1611. struct page new;
  1612. struct page old;
  1613. c->partial = page->next;
  1614. n2 = get_node(s, page_to_nid(page));
  1615. if (n != n2) {
  1616. if (n)
  1617. spin_unlock(&n->list_lock);
  1618. n = n2;
  1619. spin_lock(&n->list_lock);
  1620. }
  1621. do {
  1622. old.freelist = page->freelist;
  1623. old.counters = page->counters;
  1624. VM_BUG_ON(!old.frozen);
  1625. new.counters = old.counters;
  1626. new.freelist = old.freelist;
  1627. new.frozen = 0;
  1628. } while (!__cmpxchg_double_slab(s, page,
  1629. old.freelist, old.counters,
  1630. new.freelist, new.counters,
  1631. "unfreezing slab"));
  1632. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1633. page->next = discard_page;
  1634. discard_page = page;
  1635. } else {
  1636. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1637. stat(s, FREE_ADD_PARTIAL);
  1638. }
  1639. }
  1640. if (n)
  1641. spin_unlock(&n->list_lock);
  1642. while (discard_page) {
  1643. page = discard_page;
  1644. discard_page = discard_page->next;
  1645. stat(s, DEACTIVATE_EMPTY);
  1646. discard_slab(s, page);
  1647. stat(s, FREE_SLAB);
  1648. }
  1649. }
  1650. /*
  1651. * Put a page that was just frozen (in __slab_free) into a partial page
  1652. * slot if available. This is done without interrupts disabled and without
  1653. * preemption disabled. The cmpxchg is racy and may put the partial page
  1654. * onto a random cpus partial slot.
  1655. *
  1656. * If we did not find a slot then simply move all the partials to the
  1657. * per node partial list.
  1658. */
  1659. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1660. {
  1661. struct page *oldpage;
  1662. int pages;
  1663. int pobjects;
  1664. if (!s->cpu_partial)
  1665. return;
  1666. do {
  1667. pages = 0;
  1668. pobjects = 0;
  1669. oldpage = this_cpu_read(s->cpu_slab->partial);
  1670. if (oldpage) {
  1671. pobjects = oldpage->pobjects;
  1672. pages = oldpage->pages;
  1673. if (drain && pobjects > s->cpu_partial) {
  1674. unsigned long flags;
  1675. /*
  1676. * partial array is full. Move the existing
  1677. * set to the per node partial list.
  1678. */
  1679. local_irq_save(flags);
  1680. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1681. local_irq_restore(flags);
  1682. oldpage = NULL;
  1683. pobjects = 0;
  1684. pages = 0;
  1685. stat(s, CPU_PARTIAL_DRAIN);
  1686. }
  1687. }
  1688. pages++;
  1689. pobjects += page->objects - page->inuse;
  1690. page->pages = pages;
  1691. page->pobjects = pobjects;
  1692. page->next = oldpage;
  1693. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1694. }
  1695. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1696. {
  1697. stat(s, CPUSLAB_FLUSH);
  1698. deactivate_slab(s, c->page, c->freelist);
  1699. c->tid = next_tid(c->tid);
  1700. c->page = NULL;
  1701. c->freelist = NULL;
  1702. }
  1703. /*
  1704. * Flush cpu slab.
  1705. *
  1706. * Called from IPI handler with interrupts disabled.
  1707. */
  1708. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1709. {
  1710. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1711. if (likely(c)) {
  1712. if (c->page)
  1713. flush_slab(s, c);
  1714. unfreeze_partials(s, c);
  1715. }
  1716. }
  1717. static void flush_cpu_slab(void *d)
  1718. {
  1719. struct kmem_cache *s = d;
  1720. __flush_cpu_slab(s, smp_processor_id());
  1721. }
  1722. static bool has_cpu_slab(int cpu, void *info)
  1723. {
  1724. struct kmem_cache *s = info;
  1725. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1726. return c->page || c->partial;
  1727. }
  1728. static void flush_all(struct kmem_cache *s)
  1729. {
  1730. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1731. }
  1732. /*
  1733. * Check if the objects in a per cpu structure fit numa
  1734. * locality expectations.
  1735. */
  1736. static inline int node_match(struct page *page, int node)
  1737. {
  1738. #ifdef CONFIG_NUMA
  1739. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1740. return 0;
  1741. #endif
  1742. return 1;
  1743. }
  1744. static int count_free(struct page *page)
  1745. {
  1746. return page->objects - page->inuse;
  1747. }
  1748. static unsigned long count_partial(struct kmem_cache_node *n,
  1749. int (*get_count)(struct page *))
  1750. {
  1751. unsigned long flags;
  1752. unsigned long x = 0;
  1753. struct page *page;
  1754. spin_lock_irqsave(&n->list_lock, flags);
  1755. list_for_each_entry(page, &n->partial, lru)
  1756. x += get_count(page);
  1757. spin_unlock_irqrestore(&n->list_lock, flags);
  1758. return x;
  1759. }
  1760. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1761. {
  1762. #ifdef CONFIG_SLUB_DEBUG
  1763. return atomic_long_read(&n->total_objects);
  1764. #else
  1765. return 0;
  1766. #endif
  1767. }
  1768. static noinline void
  1769. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1770. {
  1771. int node;
  1772. printk(KERN_WARNING
  1773. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1774. nid, gfpflags);
  1775. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1776. "default order: %d, min order: %d\n", s->name, s->object_size,
  1777. s->size, oo_order(s->oo), oo_order(s->min));
  1778. if (oo_order(s->min) > get_order(s->object_size))
  1779. printk(KERN_WARNING " %s debugging increased min order, use "
  1780. "slub_debug=O to disable.\n", s->name);
  1781. for_each_online_node(node) {
  1782. struct kmem_cache_node *n = get_node(s, node);
  1783. unsigned long nr_slabs;
  1784. unsigned long nr_objs;
  1785. unsigned long nr_free;
  1786. if (!n)
  1787. continue;
  1788. nr_free = count_partial(n, count_free);
  1789. nr_slabs = node_nr_slabs(n);
  1790. nr_objs = node_nr_objs(n);
  1791. printk(KERN_WARNING
  1792. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1793. node, nr_slabs, nr_objs, nr_free);
  1794. }
  1795. }
  1796. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1797. int node, struct kmem_cache_cpu **pc)
  1798. {
  1799. void *freelist;
  1800. struct kmem_cache_cpu *c = *pc;
  1801. struct page *page;
  1802. freelist = get_partial(s, flags, node, c);
  1803. if (freelist)
  1804. return freelist;
  1805. page = new_slab(s, flags, node);
  1806. if (page) {
  1807. c = __this_cpu_ptr(s->cpu_slab);
  1808. if (c->page)
  1809. flush_slab(s, c);
  1810. /*
  1811. * No other reference to the page yet so we can
  1812. * muck around with it freely without cmpxchg
  1813. */
  1814. freelist = page->freelist;
  1815. page->freelist = NULL;
  1816. stat(s, ALLOC_SLAB);
  1817. c->page = page;
  1818. *pc = c;
  1819. } else
  1820. freelist = NULL;
  1821. return freelist;
  1822. }
  1823. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1824. {
  1825. if (unlikely(PageSlabPfmemalloc(page)))
  1826. return gfp_pfmemalloc_allowed(gfpflags);
  1827. return true;
  1828. }
  1829. /*
  1830. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1831. * or deactivate the page.
  1832. *
  1833. * The page is still frozen if the return value is not NULL.
  1834. *
  1835. * If this function returns NULL then the page has been unfrozen.
  1836. *
  1837. * This function must be called with interrupt disabled.
  1838. */
  1839. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1840. {
  1841. struct page new;
  1842. unsigned long counters;
  1843. void *freelist;
  1844. do {
  1845. freelist = page->freelist;
  1846. counters = page->counters;
  1847. new.counters = counters;
  1848. VM_BUG_ON(!new.frozen);
  1849. new.inuse = page->objects;
  1850. new.frozen = freelist != NULL;
  1851. } while (!__cmpxchg_double_slab(s, page,
  1852. freelist, counters,
  1853. NULL, new.counters,
  1854. "get_freelist"));
  1855. return freelist;
  1856. }
  1857. /*
  1858. * Slow path. The lockless freelist is empty or we need to perform
  1859. * debugging duties.
  1860. *
  1861. * Processing is still very fast if new objects have been freed to the
  1862. * regular freelist. In that case we simply take over the regular freelist
  1863. * as the lockless freelist and zap the regular freelist.
  1864. *
  1865. * If that is not working then we fall back to the partial lists. We take the
  1866. * first element of the freelist as the object to allocate now and move the
  1867. * rest of the freelist to the lockless freelist.
  1868. *
  1869. * And if we were unable to get a new slab from the partial slab lists then
  1870. * we need to allocate a new slab. This is the slowest path since it involves
  1871. * a call to the page allocator and the setup of a new slab.
  1872. */
  1873. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1874. unsigned long addr, struct kmem_cache_cpu *c)
  1875. {
  1876. void *freelist;
  1877. struct page *page;
  1878. unsigned long flags;
  1879. local_irq_save(flags);
  1880. #ifdef CONFIG_PREEMPT
  1881. /*
  1882. * We may have been preempted and rescheduled on a different
  1883. * cpu before disabling interrupts. Need to reload cpu area
  1884. * pointer.
  1885. */
  1886. c = this_cpu_ptr(s->cpu_slab);
  1887. #endif
  1888. page = c->page;
  1889. if (!page)
  1890. goto new_slab;
  1891. redo:
  1892. if (unlikely(!node_match(page, node))) {
  1893. stat(s, ALLOC_NODE_MISMATCH);
  1894. deactivate_slab(s, page, c->freelist);
  1895. c->page = NULL;
  1896. c->freelist = NULL;
  1897. goto new_slab;
  1898. }
  1899. /*
  1900. * By rights, we should be searching for a slab page that was
  1901. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1902. * information when the page leaves the per-cpu allocator
  1903. */
  1904. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1905. deactivate_slab(s, page, c->freelist);
  1906. c->page = NULL;
  1907. c->freelist = NULL;
  1908. goto new_slab;
  1909. }
  1910. /* must check again c->freelist in case of cpu migration or IRQ */
  1911. freelist = c->freelist;
  1912. if (freelist)
  1913. goto load_freelist;
  1914. stat(s, ALLOC_SLOWPATH);
  1915. freelist = get_freelist(s, page);
  1916. if (!freelist) {
  1917. c->page = NULL;
  1918. stat(s, DEACTIVATE_BYPASS);
  1919. goto new_slab;
  1920. }
  1921. stat(s, ALLOC_REFILL);
  1922. load_freelist:
  1923. /*
  1924. * freelist is pointing to the list of objects to be used.
  1925. * page is pointing to the page from which the objects are obtained.
  1926. * That page must be frozen for per cpu allocations to work.
  1927. */
  1928. VM_BUG_ON(!c->page->frozen);
  1929. c->freelist = get_freepointer(s, freelist);
  1930. c->tid = next_tid(c->tid);
  1931. local_irq_restore(flags);
  1932. return freelist;
  1933. new_slab:
  1934. if (c->partial) {
  1935. page = c->page = c->partial;
  1936. c->partial = page->next;
  1937. stat(s, CPU_PARTIAL_ALLOC);
  1938. c->freelist = NULL;
  1939. goto redo;
  1940. }
  1941. freelist = new_slab_objects(s, gfpflags, node, &c);
  1942. if (unlikely(!freelist)) {
  1943. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1944. slab_out_of_memory(s, gfpflags, node);
  1945. local_irq_restore(flags);
  1946. return NULL;
  1947. }
  1948. page = c->page;
  1949. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1950. goto load_freelist;
  1951. /* Only entered in the debug case */
  1952. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1953. goto new_slab; /* Slab failed checks. Next slab needed */
  1954. deactivate_slab(s, page, get_freepointer(s, freelist));
  1955. c->page = NULL;
  1956. c->freelist = NULL;
  1957. local_irq_restore(flags);
  1958. return freelist;
  1959. }
  1960. /*
  1961. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1962. * have the fastpath folded into their functions. So no function call
  1963. * overhead for requests that can be satisfied on the fastpath.
  1964. *
  1965. * The fastpath works by first checking if the lockless freelist can be used.
  1966. * If not then __slab_alloc is called for slow processing.
  1967. *
  1968. * Otherwise we can simply pick the next object from the lockless free list.
  1969. */
  1970. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1971. gfp_t gfpflags, int node, unsigned long addr)
  1972. {
  1973. void **object;
  1974. struct kmem_cache_cpu *c;
  1975. struct page *page;
  1976. unsigned long tid;
  1977. if (slab_pre_alloc_hook(s, gfpflags))
  1978. return NULL;
  1979. s = memcg_kmem_get_cache(s, gfpflags);
  1980. redo:
  1981. /*
  1982. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1983. * enabled. We may switch back and forth between cpus while
  1984. * reading from one cpu area. That does not matter as long
  1985. * as we end up on the original cpu again when doing the cmpxchg.
  1986. *
  1987. * Preemption is disabled for the retrieval of the tid because that
  1988. * must occur from the current processor. We cannot allow rescheduling
  1989. * on a different processor between the determination of the pointer
  1990. * and the retrieval of the tid.
  1991. */
  1992. preempt_disable();
  1993. c = __this_cpu_ptr(s->cpu_slab);
  1994. /*
  1995. * The transaction ids are globally unique per cpu and per operation on
  1996. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1997. * occurs on the right processor and that there was no operation on the
  1998. * linked list in between.
  1999. */
  2000. tid = c->tid;
  2001. preempt_enable();
  2002. object = c->freelist;
  2003. page = c->page;
  2004. if (unlikely(!object || !node_match(page, node)))
  2005. object = __slab_alloc(s, gfpflags, node, addr, c);
  2006. else {
  2007. void *next_object = get_freepointer_safe(s, object);
  2008. /*
  2009. * The cmpxchg will only match if there was no additional
  2010. * operation and if we are on the right processor.
  2011. *
  2012. * The cmpxchg does the following atomically (without lock semantics!)
  2013. * 1. Relocate first pointer to the current per cpu area.
  2014. * 2. Verify that tid and freelist have not been changed
  2015. * 3. If they were not changed replace tid and freelist
  2016. *
  2017. * Since this is without lock semantics the protection is only against
  2018. * code executing on this cpu *not* from access by other cpus.
  2019. */
  2020. if (unlikely(!this_cpu_cmpxchg_double(
  2021. s->cpu_slab->freelist, s->cpu_slab->tid,
  2022. object, tid,
  2023. next_object, next_tid(tid)))) {
  2024. note_cmpxchg_failure("slab_alloc", s, tid);
  2025. goto redo;
  2026. }
  2027. prefetch_freepointer(s, next_object);
  2028. stat(s, ALLOC_FASTPATH);
  2029. }
  2030. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2031. memset(object, 0, s->object_size);
  2032. slab_post_alloc_hook(s, gfpflags, object);
  2033. return object;
  2034. }
  2035. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2036. gfp_t gfpflags, unsigned long addr)
  2037. {
  2038. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2039. }
  2040. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2041. {
  2042. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2043. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2044. return ret;
  2045. }
  2046. EXPORT_SYMBOL(kmem_cache_alloc);
  2047. #ifdef CONFIG_TRACING
  2048. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2049. {
  2050. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2051. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2052. return ret;
  2053. }
  2054. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2055. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2056. {
  2057. void *ret = kmalloc_order(size, flags, order);
  2058. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2059. return ret;
  2060. }
  2061. EXPORT_SYMBOL(kmalloc_order_trace);
  2062. #endif
  2063. #ifdef CONFIG_NUMA
  2064. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2065. {
  2066. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2067. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2068. s->object_size, s->size, gfpflags, node);
  2069. return ret;
  2070. }
  2071. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2072. #ifdef CONFIG_TRACING
  2073. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2074. gfp_t gfpflags,
  2075. int node, size_t size)
  2076. {
  2077. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2078. trace_kmalloc_node(_RET_IP_, ret,
  2079. size, s->size, gfpflags, node);
  2080. return ret;
  2081. }
  2082. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2083. #endif
  2084. #endif
  2085. /*
  2086. * Slow patch handling. This may still be called frequently since objects
  2087. * have a longer lifetime than the cpu slabs in most processing loads.
  2088. *
  2089. * So we still attempt to reduce cache line usage. Just take the slab
  2090. * lock and free the item. If there is no additional partial page
  2091. * handling required then we can return immediately.
  2092. */
  2093. static void __slab_free(struct kmem_cache *s, struct page *page,
  2094. void *x, unsigned long addr)
  2095. {
  2096. void *prior;
  2097. void **object = (void *)x;
  2098. int was_frozen;
  2099. struct page new;
  2100. unsigned long counters;
  2101. struct kmem_cache_node *n = NULL;
  2102. unsigned long uninitialized_var(flags);
  2103. stat(s, FREE_SLOWPATH);
  2104. if (kmem_cache_debug(s) &&
  2105. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2106. return;
  2107. do {
  2108. if (unlikely(n)) {
  2109. spin_unlock_irqrestore(&n->list_lock, flags);
  2110. n = NULL;
  2111. }
  2112. prior = page->freelist;
  2113. counters = page->counters;
  2114. set_freepointer(s, object, prior);
  2115. new.counters = counters;
  2116. was_frozen = new.frozen;
  2117. new.inuse--;
  2118. if ((!new.inuse || !prior) && !was_frozen) {
  2119. if (!kmem_cache_debug(s) && !prior)
  2120. /*
  2121. * Slab was on no list before and will be partially empty
  2122. * We can defer the list move and instead freeze it.
  2123. */
  2124. new.frozen = 1;
  2125. else { /* Needs to be taken off a list */
  2126. n = get_node(s, page_to_nid(page));
  2127. /*
  2128. * Speculatively acquire the list_lock.
  2129. * If the cmpxchg does not succeed then we may
  2130. * drop the list_lock without any processing.
  2131. *
  2132. * Otherwise the list_lock will synchronize with
  2133. * other processors updating the list of slabs.
  2134. */
  2135. spin_lock_irqsave(&n->list_lock, flags);
  2136. }
  2137. }
  2138. } while (!cmpxchg_double_slab(s, page,
  2139. prior, counters,
  2140. object, new.counters,
  2141. "__slab_free"));
  2142. if (likely(!n)) {
  2143. /*
  2144. * If we just froze the page then put it onto the
  2145. * per cpu partial list.
  2146. */
  2147. if (new.frozen && !was_frozen) {
  2148. put_cpu_partial(s, page, 1);
  2149. stat(s, CPU_PARTIAL_FREE);
  2150. }
  2151. /*
  2152. * The list lock was not taken therefore no list
  2153. * activity can be necessary.
  2154. */
  2155. if (was_frozen)
  2156. stat(s, FREE_FROZEN);
  2157. return;
  2158. }
  2159. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2160. goto slab_empty;
  2161. /*
  2162. * Objects left in the slab. If it was not on the partial list before
  2163. * then add it.
  2164. */
  2165. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2166. remove_full(s, page);
  2167. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2168. stat(s, FREE_ADD_PARTIAL);
  2169. }
  2170. spin_unlock_irqrestore(&n->list_lock, flags);
  2171. return;
  2172. slab_empty:
  2173. if (prior) {
  2174. /*
  2175. * Slab on the partial list.
  2176. */
  2177. remove_partial(n, page);
  2178. stat(s, FREE_REMOVE_PARTIAL);
  2179. } else
  2180. /* Slab must be on the full list */
  2181. remove_full(s, page);
  2182. spin_unlock_irqrestore(&n->list_lock, flags);
  2183. stat(s, FREE_SLAB);
  2184. discard_slab(s, page);
  2185. }
  2186. /*
  2187. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2188. * can perform fastpath freeing without additional function calls.
  2189. *
  2190. * The fastpath is only possible if we are freeing to the current cpu slab
  2191. * of this processor. This typically the case if we have just allocated
  2192. * the item before.
  2193. *
  2194. * If fastpath is not possible then fall back to __slab_free where we deal
  2195. * with all sorts of special processing.
  2196. */
  2197. static __always_inline void slab_free(struct kmem_cache *s,
  2198. struct page *page, void *x, unsigned long addr)
  2199. {
  2200. void **object = (void *)x;
  2201. struct kmem_cache_cpu *c;
  2202. unsigned long tid;
  2203. slab_free_hook(s, x);
  2204. redo:
  2205. /*
  2206. * Determine the currently cpus per cpu slab.
  2207. * The cpu may change afterward. However that does not matter since
  2208. * data is retrieved via this pointer. If we are on the same cpu
  2209. * during the cmpxchg then the free will succedd.
  2210. */
  2211. preempt_disable();
  2212. c = __this_cpu_ptr(s->cpu_slab);
  2213. tid = c->tid;
  2214. preempt_enable();
  2215. if (likely(page == c->page)) {
  2216. set_freepointer(s, object, c->freelist);
  2217. if (unlikely(!this_cpu_cmpxchg_double(
  2218. s->cpu_slab->freelist, s->cpu_slab->tid,
  2219. c->freelist, tid,
  2220. object, next_tid(tid)))) {
  2221. note_cmpxchg_failure("slab_free", s, tid);
  2222. goto redo;
  2223. }
  2224. stat(s, FREE_FASTPATH);
  2225. } else
  2226. __slab_free(s, page, x, addr);
  2227. }
  2228. void kmem_cache_free(struct kmem_cache *s, void *x)
  2229. {
  2230. s = cache_from_obj(s, x);
  2231. if (!s)
  2232. return;
  2233. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2234. trace_kmem_cache_free(_RET_IP_, x);
  2235. }
  2236. EXPORT_SYMBOL(kmem_cache_free);
  2237. /*
  2238. * Object placement in a slab is made very easy because we always start at
  2239. * offset 0. If we tune the size of the object to the alignment then we can
  2240. * get the required alignment by putting one properly sized object after
  2241. * another.
  2242. *
  2243. * Notice that the allocation order determines the sizes of the per cpu
  2244. * caches. Each processor has always one slab available for allocations.
  2245. * Increasing the allocation order reduces the number of times that slabs
  2246. * must be moved on and off the partial lists and is therefore a factor in
  2247. * locking overhead.
  2248. */
  2249. /*
  2250. * Mininum / Maximum order of slab pages. This influences locking overhead
  2251. * and slab fragmentation. A higher order reduces the number of partial slabs
  2252. * and increases the number of allocations possible without having to
  2253. * take the list_lock.
  2254. */
  2255. static int slub_min_order;
  2256. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2257. static int slub_min_objects;
  2258. /*
  2259. * Merge control. If this is set then no merging of slab caches will occur.
  2260. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2261. */
  2262. static int slub_nomerge;
  2263. /*
  2264. * Calculate the order of allocation given an slab object size.
  2265. *
  2266. * The order of allocation has significant impact on performance and other
  2267. * system components. Generally order 0 allocations should be preferred since
  2268. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2269. * be problematic to put into order 0 slabs because there may be too much
  2270. * unused space left. We go to a higher order if more than 1/16th of the slab
  2271. * would be wasted.
  2272. *
  2273. * In order to reach satisfactory performance we must ensure that a minimum
  2274. * number of objects is in one slab. Otherwise we may generate too much
  2275. * activity on the partial lists which requires taking the list_lock. This is
  2276. * less a concern for large slabs though which are rarely used.
  2277. *
  2278. * slub_max_order specifies the order where we begin to stop considering the
  2279. * number of objects in a slab as critical. If we reach slub_max_order then
  2280. * we try to keep the page order as low as possible. So we accept more waste
  2281. * of space in favor of a small page order.
  2282. *
  2283. * Higher order allocations also allow the placement of more objects in a
  2284. * slab and thereby reduce object handling overhead. If the user has
  2285. * requested a higher mininum order then we start with that one instead of
  2286. * the smallest order which will fit the object.
  2287. */
  2288. static inline int slab_order(int size, int min_objects,
  2289. int max_order, int fract_leftover, int reserved)
  2290. {
  2291. int order;
  2292. int rem;
  2293. int min_order = slub_min_order;
  2294. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2295. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2296. for (order = max(min_order,
  2297. fls(min_objects * size - 1) - PAGE_SHIFT);
  2298. order <= max_order; order++) {
  2299. unsigned long slab_size = PAGE_SIZE << order;
  2300. if (slab_size < min_objects * size + reserved)
  2301. continue;
  2302. rem = (slab_size - reserved) % size;
  2303. if (rem <= slab_size / fract_leftover)
  2304. break;
  2305. }
  2306. return order;
  2307. }
  2308. static inline int calculate_order(int size, int reserved)
  2309. {
  2310. int order;
  2311. int min_objects;
  2312. int fraction;
  2313. int max_objects;
  2314. /*
  2315. * Attempt to find best configuration for a slab. This
  2316. * works by first attempting to generate a layout with
  2317. * the best configuration and backing off gradually.
  2318. *
  2319. * First we reduce the acceptable waste in a slab. Then
  2320. * we reduce the minimum objects required in a slab.
  2321. */
  2322. min_objects = slub_min_objects;
  2323. if (!min_objects)
  2324. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2325. max_objects = order_objects(slub_max_order, size, reserved);
  2326. min_objects = min(min_objects, max_objects);
  2327. while (min_objects > 1) {
  2328. fraction = 16;
  2329. while (fraction >= 4) {
  2330. order = slab_order(size, min_objects,
  2331. slub_max_order, fraction, reserved);
  2332. if (order <= slub_max_order)
  2333. return order;
  2334. fraction /= 2;
  2335. }
  2336. min_objects--;
  2337. }
  2338. /*
  2339. * We were unable to place multiple objects in a slab. Now
  2340. * lets see if we can place a single object there.
  2341. */
  2342. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2343. if (order <= slub_max_order)
  2344. return order;
  2345. /*
  2346. * Doh this slab cannot be placed using slub_max_order.
  2347. */
  2348. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2349. if (order < MAX_ORDER)
  2350. return order;
  2351. return -ENOSYS;
  2352. }
  2353. static void
  2354. init_kmem_cache_node(struct kmem_cache_node *n)
  2355. {
  2356. n->nr_partial = 0;
  2357. spin_lock_init(&n->list_lock);
  2358. INIT_LIST_HEAD(&n->partial);
  2359. #ifdef CONFIG_SLUB_DEBUG
  2360. atomic_long_set(&n->nr_slabs, 0);
  2361. atomic_long_set(&n->total_objects, 0);
  2362. INIT_LIST_HEAD(&n->full);
  2363. #endif
  2364. }
  2365. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2366. {
  2367. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2368. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2369. /*
  2370. * Must align to double word boundary for the double cmpxchg
  2371. * instructions to work; see __pcpu_double_call_return_bool().
  2372. */
  2373. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2374. 2 * sizeof(void *));
  2375. if (!s->cpu_slab)
  2376. return 0;
  2377. init_kmem_cache_cpus(s);
  2378. return 1;
  2379. }
  2380. static struct kmem_cache *kmem_cache_node;
  2381. /*
  2382. * No kmalloc_node yet so do it by hand. We know that this is the first
  2383. * slab on the node for this slabcache. There are no concurrent accesses
  2384. * possible.
  2385. *
  2386. * Note that this function only works on the kmalloc_node_cache
  2387. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2388. * memory on a fresh node that has no slab structures yet.
  2389. */
  2390. static void early_kmem_cache_node_alloc(int node)
  2391. {
  2392. struct page *page;
  2393. struct kmem_cache_node *n;
  2394. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2395. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2396. BUG_ON(!page);
  2397. if (page_to_nid(page) != node) {
  2398. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2399. "node %d\n", node);
  2400. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2401. "in order to be able to continue\n");
  2402. }
  2403. n = page->freelist;
  2404. BUG_ON(!n);
  2405. page->freelist = get_freepointer(kmem_cache_node, n);
  2406. page->inuse = 1;
  2407. page->frozen = 0;
  2408. kmem_cache_node->node[node] = n;
  2409. #ifdef CONFIG_SLUB_DEBUG
  2410. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2411. init_tracking(kmem_cache_node, n);
  2412. #endif
  2413. init_kmem_cache_node(n);
  2414. inc_slabs_node(kmem_cache_node, node, page->objects);
  2415. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2416. }
  2417. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2418. {
  2419. int node;
  2420. for_each_node_state(node, N_NORMAL_MEMORY) {
  2421. struct kmem_cache_node *n = s->node[node];
  2422. if (n)
  2423. kmem_cache_free(kmem_cache_node, n);
  2424. s->node[node] = NULL;
  2425. }
  2426. }
  2427. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2428. {
  2429. int node;
  2430. for_each_node_state(node, N_NORMAL_MEMORY) {
  2431. struct kmem_cache_node *n;
  2432. if (slab_state == DOWN) {
  2433. early_kmem_cache_node_alloc(node);
  2434. continue;
  2435. }
  2436. n = kmem_cache_alloc_node(kmem_cache_node,
  2437. GFP_KERNEL, node);
  2438. if (!n) {
  2439. free_kmem_cache_nodes(s);
  2440. return 0;
  2441. }
  2442. s->node[node] = n;
  2443. init_kmem_cache_node(n);
  2444. }
  2445. return 1;
  2446. }
  2447. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2448. {
  2449. if (min < MIN_PARTIAL)
  2450. min = MIN_PARTIAL;
  2451. else if (min > MAX_PARTIAL)
  2452. min = MAX_PARTIAL;
  2453. s->min_partial = min;
  2454. }
  2455. /*
  2456. * calculate_sizes() determines the order and the distribution of data within
  2457. * a slab object.
  2458. */
  2459. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2460. {
  2461. unsigned long flags = s->flags;
  2462. unsigned long size = s->object_size;
  2463. int order;
  2464. /*
  2465. * Round up object size to the next word boundary. We can only
  2466. * place the free pointer at word boundaries and this determines
  2467. * the possible location of the free pointer.
  2468. */
  2469. size = ALIGN(size, sizeof(void *));
  2470. #ifdef CONFIG_SLUB_DEBUG
  2471. /*
  2472. * Determine if we can poison the object itself. If the user of
  2473. * the slab may touch the object after free or before allocation
  2474. * then we should never poison the object itself.
  2475. */
  2476. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2477. !s->ctor)
  2478. s->flags |= __OBJECT_POISON;
  2479. else
  2480. s->flags &= ~__OBJECT_POISON;
  2481. /*
  2482. * If we are Redzoning then check if there is some space between the
  2483. * end of the object and the free pointer. If not then add an
  2484. * additional word to have some bytes to store Redzone information.
  2485. */
  2486. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2487. size += sizeof(void *);
  2488. #endif
  2489. /*
  2490. * With that we have determined the number of bytes in actual use
  2491. * by the object. This is the potential offset to the free pointer.
  2492. */
  2493. s->inuse = size;
  2494. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2495. s->ctor)) {
  2496. /*
  2497. * Relocate free pointer after the object if it is not
  2498. * permitted to overwrite the first word of the object on
  2499. * kmem_cache_free.
  2500. *
  2501. * This is the case if we do RCU, have a constructor or
  2502. * destructor or are poisoning the objects.
  2503. */
  2504. s->offset = size;
  2505. size += sizeof(void *);
  2506. }
  2507. #ifdef CONFIG_SLUB_DEBUG
  2508. if (flags & SLAB_STORE_USER)
  2509. /*
  2510. * Need to store information about allocs and frees after
  2511. * the object.
  2512. */
  2513. size += 2 * sizeof(struct track);
  2514. if (flags & SLAB_RED_ZONE)
  2515. /*
  2516. * Add some empty padding so that we can catch
  2517. * overwrites from earlier objects rather than let
  2518. * tracking information or the free pointer be
  2519. * corrupted if a user writes before the start
  2520. * of the object.
  2521. */
  2522. size += sizeof(void *);
  2523. #endif
  2524. /*
  2525. * SLUB stores one object immediately after another beginning from
  2526. * offset 0. In order to align the objects we have to simply size
  2527. * each object to conform to the alignment.
  2528. */
  2529. size = ALIGN(size, s->align);
  2530. s->size = size;
  2531. if (forced_order >= 0)
  2532. order = forced_order;
  2533. else
  2534. order = calculate_order(size, s->reserved);
  2535. if (order < 0)
  2536. return 0;
  2537. s->allocflags = 0;
  2538. if (order)
  2539. s->allocflags |= __GFP_COMP;
  2540. if (s->flags & SLAB_CACHE_DMA)
  2541. s->allocflags |= GFP_DMA;
  2542. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2543. s->allocflags |= __GFP_RECLAIMABLE;
  2544. /*
  2545. * Determine the number of objects per slab
  2546. */
  2547. s->oo = oo_make(order, size, s->reserved);
  2548. s->min = oo_make(get_order(size), size, s->reserved);
  2549. if (oo_objects(s->oo) > oo_objects(s->max))
  2550. s->max = s->oo;
  2551. return !!oo_objects(s->oo);
  2552. }
  2553. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2554. {
  2555. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2556. s->reserved = 0;
  2557. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2558. s->reserved = sizeof(struct rcu_head);
  2559. if (!calculate_sizes(s, -1))
  2560. goto error;
  2561. if (disable_higher_order_debug) {
  2562. /*
  2563. * Disable debugging flags that store metadata if the min slab
  2564. * order increased.
  2565. */
  2566. if (get_order(s->size) > get_order(s->object_size)) {
  2567. s->flags &= ~DEBUG_METADATA_FLAGS;
  2568. s->offset = 0;
  2569. if (!calculate_sizes(s, -1))
  2570. goto error;
  2571. }
  2572. }
  2573. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2574. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2575. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2576. /* Enable fast mode */
  2577. s->flags |= __CMPXCHG_DOUBLE;
  2578. #endif
  2579. /*
  2580. * The larger the object size is, the more pages we want on the partial
  2581. * list to avoid pounding the page allocator excessively.
  2582. */
  2583. set_min_partial(s, ilog2(s->size) / 2);
  2584. /*
  2585. * cpu_partial determined the maximum number of objects kept in the
  2586. * per cpu partial lists of a processor.
  2587. *
  2588. * Per cpu partial lists mainly contain slabs that just have one
  2589. * object freed. If they are used for allocation then they can be
  2590. * filled up again with minimal effort. The slab will never hit the
  2591. * per node partial lists and therefore no locking will be required.
  2592. *
  2593. * This setting also determines
  2594. *
  2595. * A) The number of objects from per cpu partial slabs dumped to the
  2596. * per node list when we reach the limit.
  2597. * B) The number of objects in cpu partial slabs to extract from the
  2598. * per node list when we run out of per cpu objects. We only fetch 50%
  2599. * to keep some capacity around for frees.
  2600. */
  2601. if (kmem_cache_debug(s))
  2602. s->cpu_partial = 0;
  2603. else if (s->size >= PAGE_SIZE)
  2604. s->cpu_partial = 2;
  2605. else if (s->size >= 1024)
  2606. s->cpu_partial = 6;
  2607. else if (s->size >= 256)
  2608. s->cpu_partial = 13;
  2609. else
  2610. s->cpu_partial = 30;
  2611. #ifdef CONFIG_NUMA
  2612. s->remote_node_defrag_ratio = 1000;
  2613. #endif
  2614. if (!init_kmem_cache_nodes(s))
  2615. goto error;
  2616. if (alloc_kmem_cache_cpus(s))
  2617. return 0;
  2618. free_kmem_cache_nodes(s);
  2619. error:
  2620. if (flags & SLAB_PANIC)
  2621. panic("Cannot create slab %s size=%lu realsize=%u "
  2622. "order=%u offset=%u flags=%lx\n",
  2623. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2624. s->offset, flags);
  2625. return -EINVAL;
  2626. }
  2627. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2628. const char *text)
  2629. {
  2630. #ifdef CONFIG_SLUB_DEBUG
  2631. void *addr = page_address(page);
  2632. void *p;
  2633. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2634. sizeof(long), GFP_ATOMIC);
  2635. if (!map)
  2636. return;
  2637. slab_err(s, page, text, s->name);
  2638. slab_lock(page);
  2639. get_map(s, page, map);
  2640. for_each_object(p, s, addr, page->objects) {
  2641. if (!test_bit(slab_index(p, s, addr), map)) {
  2642. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2643. p, p - addr);
  2644. print_tracking(s, p);
  2645. }
  2646. }
  2647. slab_unlock(page);
  2648. kfree(map);
  2649. #endif
  2650. }
  2651. /*
  2652. * Attempt to free all partial slabs on a node.
  2653. * This is called from kmem_cache_close(). We must be the last thread
  2654. * using the cache and therefore we do not need to lock anymore.
  2655. */
  2656. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2657. {
  2658. struct page *page, *h;
  2659. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2660. if (!page->inuse) {
  2661. remove_partial(n, page);
  2662. discard_slab(s, page);
  2663. } else {
  2664. list_slab_objects(s, page,
  2665. "Objects remaining in %s on kmem_cache_close()");
  2666. }
  2667. }
  2668. }
  2669. /*
  2670. * Release all resources used by a slab cache.
  2671. */
  2672. static inline int kmem_cache_close(struct kmem_cache *s)
  2673. {
  2674. int node;
  2675. flush_all(s);
  2676. /* Attempt to free all objects */
  2677. for_each_node_state(node, N_NORMAL_MEMORY) {
  2678. struct kmem_cache_node *n = get_node(s, node);
  2679. free_partial(s, n);
  2680. if (n->nr_partial || slabs_node(s, node))
  2681. return 1;
  2682. }
  2683. free_percpu(s->cpu_slab);
  2684. free_kmem_cache_nodes(s);
  2685. return 0;
  2686. }
  2687. int __kmem_cache_shutdown(struct kmem_cache *s)
  2688. {
  2689. int rc = kmem_cache_close(s);
  2690. if (!rc) {
  2691. /*
  2692. * We do the same lock strategy around sysfs_slab_add, see
  2693. * __kmem_cache_create. Because this is pretty much the last
  2694. * operation we do and the lock will be released shortly after
  2695. * that in slab_common.c, we could just move sysfs_slab_remove
  2696. * to a later point in common code. We should do that when we
  2697. * have a common sysfs framework for all allocators.
  2698. */
  2699. mutex_unlock(&slab_mutex);
  2700. sysfs_slab_remove(s);
  2701. mutex_lock(&slab_mutex);
  2702. }
  2703. return rc;
  2704. }
  2705. /********************************************************************
  2706. * Kmalloc subsystem
  2707. *******************************************************************/
  2708. static int __init setup_slub_min_order(char *str)
  2709. {
  2710. get_option(&str, &slub_min_order);
  2711. return 1;
  2712. }
  2713. __setup("slub_min_order=", setup_slub_min_order);
  2714. static int __init setup_slub_max_order(char *str)
  2715. {
  2716. get_option(&str, &slub_max_order);
  2717. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2718. return 1;
  2719. }
  2720. __setup("slub_max_order=", setup_slub_max_order);
  2721. static int __init setup_slub_min_objects(char *str)
  2722. {
  2723. get_option(&str, &slub_min_objects);
  2724. return 1;
  2725. }
  2726. __setup("slub_min_objects=", setup_slub_min_objects);
  2727. static int __init setup_slub_nomerge(char *str)
  2728. {
  2729. slub_nomerge = 1;
  2730. return 1;
  2731. }
  2732. __setup("slub_nomerge", setup_slub_nomerge);
  2733. void *__kmalloc(size_t size, gfp_t flags)
  2734. {
  2735. struct kmem_cache *s;
  2736. void *ret;
  2737. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2738. return kmalloc_large(size, flags);
  2739. s = kmalloc_slab(size, flags);
  2740. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2741. return s;
  2742. ret = slab_alloc(s, flags, _RET_IP_);
  2743. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2744. return ret;
  2745. }
  2746. EXPORT_SYMBOL(__kmalloc);
  2747. #ifdef CONFIG_NUMA
  2748. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2749. {
  2750. struct page *page;
  2751. void *ptr = NULL;
  2752. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2753. page = alloc_pages_node(node, flags, get_order(size));
  2754. if (page)
  2755. ptr = page_address(page);
  2756. kmemleak_alloc(ptr, size, 1, flags);
  2757. return ptr;
  2758. }
  2759. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2760. {
  2761. struct kmem_cache *s;
  2762. void *ret;
  2763. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2764. ret = kmalloc_large_node(size, flags, node);
  2765. trace_kmalloc_node(_RET_IP_, ret,
  2766. size, PAGE_SIZE << get_order(size),
  2767. flags, node);
  2768. return ret;
  2769. }
  2770. s = kmalloc_slab(size, flags);
  2771. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2772. return s;
  2773. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2774. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2775. return ret;
  2776. }
  2777. EXPORT_SYMBOL(__kmalloc_node);
  2778. #endif
  2779. size_t ksize(const void *object)
  2780. {
  2781. struct page *page;
  2782. if (unlikely(object == ZERO_SIZE_PTR))
  2783. return 0;
  2784. page = virt_to_head_page(object);
  2785. if (unlikely(!PageSlab(page))) {
  2786. WARN_ON(!PageCompound(page));
  2787. return PAGE_SIZE << compound_order(page);
  2788. }
  2789. return slab_ksize(page->slab_cache);
  2790. }
  2791. EXPORT_SYMBOL(ksize);
  2792. #ifdef CONFIG_SLUB_DEBUG
  2793. bool verify_mem_not_deleted(const void *x)
  2794. {
  2795. struct page *page;
  2796. void *object = (void *)x;
  2797. unsigned long flags;
  2798. bool rv;
  2799. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2800. return false;
  2801. local_irq_save(flags);
  2802. page = virt_to_head_page(x);
  2803. if (unlikely(!PageSlab(page))) {
  2804. /* maybe it was from stack? */
  2805. rv = true;
  2806. goto out_unlock;
  2807. }
  2808. slab_lock(page);
  2809. if (on_freelist(page->slab_cache, page, object)) {
  2810. object_err(page->slab_cache, page, object, "Object is on free-list");
  2811. rv = false;
  2812. } else {
  2813. rv = true;
  2814. }
  2815. slab_unlock(page);
  2816. out_unlock:
  2817. local_irq_restore(flags);
  2818. return rv;
  2819. }
  2820. EXPORT_SYMBOL(verify_mem_not_deleted);
  2821. #endif
  2822. void kfree(const void *x)
  2823. {
  2824. struct page *page;
  2825. void *object = (void *)x;
  2826. trace_kfree(_RET_IP_, x);
  2827. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2828. return;
  2829. page = virt_to_head_page(x);
  2830. if (unlikely(!PageSlab(page))) {
  2831. BUG_ON(!PageCompound(page));
  2832. kmemleak_free(x);
  2833. __free_memcg_kmem_pages(page, compound_order(page));
  2834. return;
  2835. }
  2836. slab_free(page->slab_cache, page, object, _RET_IP_);
  2837. }
  2838. EXPORT_SYMBOL(kfree);
  2839. /*
  2840. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2841. * the remaining slabs by the number of items in use. The slabs with the
  2842. * most items in use come first. New allocations will then fill those up
  2843. * and thus they can be removed from the partial lists.
  2844. *
  2845. * The slabs with the least items are placed last. This results in them
  2846. * being allocated from last increasing the chance that the last objects
  2847. * are freed in them.
  2848. */
  2849. int kmem_cache_shrink(struct kmem_cache *s)
  2850. {
  2851. int node;
  2852. int i;
  2853. struct kmem_cache_node *n;
  2854. struct page *page;
  2855. struct page *t;
  2856. int objects = oo_objects(s->max);
  2857. struct list_head *slabs_by_inuse =
  2858. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2859. unsigned long flags;
  2860. if (!slabs_by_inuse)
  2861. return -ENOMEM;
  2862. flush_all(s);
  2863. for_each_node_state(node, N_NORMAL_MEMORY) {
  2864. n = get_node(s, node);
  2865. if (!n->nr_partial)
  2866. continue;
  2867. for (i = 0; i < objects; i++)
  2868. INIT_LIST_HEAD(slabs_by_inuse + i);
  2869. spin_lock_irqsave(&n->list_lock, flags);
  2870. /*
  2871. * Build lists indexed by the items in use in each slab.
  2872. *
  2873. * Note that concurrent frees may occur while we hold the
  2874. * list_lock. page->inuse here is the upper limit.
  2875. */
  2876. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2877. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2878. if (!page->inuse)
  2879. n->nr_partial--;
  2880. }
  2881. /*
  2882. * Rebuild the partial list with the slabs filled up most
  2883. * first and the least used slabs at the end.
  2884. */
  2885. for (i = objects - 1; i > 0; i--)
  2886. list_splice(slabs_by_inuse + i, n->partial.prev);
  2887. spin_unlock_irqrestore(&n->list_lock, flags);
  2888. /* Release empty slabs */
  2889. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2890. discard_slab(s, page);
  2891. }
  2892. kfree(slabs_by_inuse);
  2893. return 0;
  2894. }
  2895. EXPORT_SYMBOL(kmem_cache_shrink);
  2896. #if defined(CONFIG_MEMORY_HOTPLUG)
  2897. static int slab_mem_going_offline_callback(void *arg)
  2898. {
  2899. struct kmem_cache *s;
  2900. mutex_lock(&slab_mutex);
  2901. list_for_each_entry(s, &slab_caches, list)
  2902. kmem_cache_shrink(s);
  2903. mutex_unlock(&slab_mutex);
  2904. return 0;
  2905. }
  2906. static void slab_mem_offline_callback(void *arg)
  2907. {
  2908. struct kmem_cache_node *n;
  2909. struct kmem_cache *s;
  2910. struct memory_notify *marg = arg;
  2911. int offline_node;
  2912. offline_node = marg->status_change_nid_normal;
  2913. /*
  2914. * If the node still has available memory. we need kmem_cache_node
  2915. * for it yet.
  2916. */
  2917. if (offline_node < 0)
  2918. return;
  2919. mutex_lock(&slab_mutex);
  2920. list_for_each_entry(s, &slab_caches, list) {
  2921. n = get_node(s, offline_node);
  2922. if (n) {
  2923. /*
  2924. * if n->nr_slabs > 0, slabs still exist on the node
  2925. * that is going down. We were unable to free them,
  2926. * and offline_pages() function shouldn't call this
  2927. * callback. So, we must fail.
  2928. */
  2929. BUG_ON(slabs_node(s, offline_node));
  2930. s->node[offline_node] = NULL;
  2931. kmem_cache_free(kmem_cache_node, n);
  2932. }
  2933. }
  2934. mutex_unlock(&slab_mutex);
  2935. }
  2936. static int slab_mem_going_online_callback(void *arg)
  2937. {
  2938. struct kmem_cache_node *n;
  2939. struct kmem_cache *s;
  2940. struct memory_notify *marg = arg;
  2941. int nid = marg->status_change_nid_normal;
  2942. int ret = 0;
  2943. /*
  2944. * If the node's memory is already available, then kmem_cache_node is
  2945. * already created. Nothing to do.
  2946. */
  2947. if (nid < 0)
  2948. return 0;
  2949. /*
  2950. * We are bringing a node online. No memory is available yet. We must
  2951. * allocate a kmem_cache_node structure in order to bring the node
  2952. * online.
  2953. */
  2954. mutex_lock(&slab_mutex);
  2955. list_for_each_entry(s, &slab_caches, list) {
  2956. /*
  2957. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2958. * since memory is not yet available from the node that
  2959. * is brought up.
  2960. */
  2961. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2962. if (!n) {
  2963. ret = -ENOMEM;
  2964. goto out;
  2965. }
  2966. init_kmem_cache_node(n);
  2967. s->node[nid] = n;
  2968. }
  2969. out:
  2970. mutex_unlock(&slab_mutex);
  2971. return ret;
  2972. }
  2973. static int slab_memory_callback(struct notifier_block *self,
  2974. unsigned long action, void *arg)
  2975. {
  2976. int ret = 0;
  2977. switch (action) {
  2978. case MEM_GOING_ONLINE:
  2979. ret = slab_mem_going_online_callback(arg);
  2980. break;
  2981. case MEM_GOING_OFFLINE:
  2982. ret = slab_mem_going_offline_callback(arg);
  2983. break;
  2984. case MEM_OFFLINE:
  2985. case MEM_CANCEL_ONLINE:
  2986. slab_mem_offline_callback(arg);
  2987. break;
  2988. case MEM_ONLINE:
  2989. case MEM_CANCEL_OFFLINE:
  2990. break;
  2991. }
  2992. if (ret)
  2993. ret = notifier_from_errno(ret);
  2994. else
  2995. ret = NOTIFY_OK;
  2996. return ret;
  2997. }
  2998. #endif /* CONFIG_MEMORY_HOTPLUG */
  2999. /********************************************************************
  3000. * Basic setup of slabs
  3001. *******************************************************************/
  3002. /*
  3003. * Used for early kmem_cache structures that were allocated using
  3004. * the page allocator. Allocate them properly then fix up the pointers
  3005. * that may be pointing to the wrong kmem_cache structure.
  3006. */
  3007. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3008. {
  3009. int node;
  3010. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3011. memcpy(s, static_cache, kmem_cache->object_size);
  3012. /*
  3013. * This runs very early, and only the boot processor is supposed to be
  3014. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3015. * IPIs around.
  3016. */
  3017. __flush_cpu_slab(s, smp_processor_id());
  3018. for_each_node_state(node, N_NORMAL_MEMORY) {
  3019. struct kmem_cache_node *n = get_node(s, node);
  3020. struct page *p;
  3021. if (n) {
  3022. list_for_each_entry(p, &n->partial, lru)
  3023. p->slab_cache = s;
  3024. #ifdef CONFIG_SLUB_DEBUG
  3025. list_for_each_entry(p, &n->full, lru)
  3026. p->slab_cache = s;
  3027. #endif
  3028. }
  3029. }
  3030. list_add(&s->list, &slab_caches);
  3031. return s;
  3032. }
  3033. void __init kmem_cache_init(void)
  3034. {
  3035. static __initdata struct kmem_cache boot_kmem_cache,
  3036. boot_kmem_cache_node;
  3037. if (debug_guardpage_minorder())
  3038. slub_max_order = 0;
  3039. kmem_cache_node = &boot_kmem_cache_node;
  3040. kmem_cache = &boot_kmem_cache;
  3041. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3042. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3043. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3044. /* Able to allocate the per node structures */
  3045. slab_state = PARTIAL;
  3046. create_boot_cache(kmem_cache, "kmem_cache",
  3047. offsetof(struct kmem_cache, node) +
  3048. nr_node_ids * sizeof(struct kmem_cache_node *),
  3049. SLAB_HWCACHE_ALIGN);
  3050. kmem_cache = bootstrap(&boot_kmem_cache);
  3051. /*
  3052. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3053. * kmem_cache_node is separately allocated so no need to
  3054. * update any list pointers.
  3055. */
  3056. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3057. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3058. create_kmalloc_caches(0);
  3059. #ifdef CONFIG_SMP
  3060. register_cpu_notifier(&slab_notifier);
  3061. #endif
  3062. printk(KERN_INFO
  3063. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3064. " CPUs=%d, Nodes=%d\n",
  3065. cache_line_size(),
  3066. slub_min_order, slub_max_order, slub_min_objects,
  3067. nr_cpu_ids, nr_node_ids);
  3068. }
  3069. void __init kmem_cache_init_late(void)
  3070. {
  3071. }
  3072. /*
  3073. * Find a mergeable slab cache
  3074. */
  3075. static int slab_unmergeable(struct kmem_cache *s)
  3076. {
  3077. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3078. return 1;
  3079. if (s->ctor)
  3080. return 1;
  3081. /*
  3082. * We may have set a slab to be unmergeable during bootstrap.
  3083. */
  3084. if (s->refcount < 0)
  3085. return 1;
  3086. return 0;
  3087. }
  3088. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3089. size_t align, unsigned long flags, const char *name,
  3090. void (*ctor)(void *))
  3091. {
  3092. struct kmem_cache *s;
  3093. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3094. return NULL;
  3095. if (ctor)
  3096. return NULL;
  3097. size = ALIGN(size, sizeof(void *));
  3098. align = calculate_alignment(flags, align, size);
  3099. size = ALIGN(size, align);
  3100. flags = kmem_cache_flags(size, flags, name, NULL);
  3101. list_for_each_entry(s, &slab_caches, list) {
  3102. if (slab_unmergeable(s))
  3103. continue;
  3104. if (size > s->size)
  3105. continue;
  3106. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3107. continue;
  3108. /*
  3109. * Check if alignment is compatible.
  3110. * Courtesy of Adrian Drzewiecki
  3111. */
  3112. if ((s->size & ~(align - 1)) != s->size)
  3113. continue;
  3114. if (s->size - size >= sizeof(void *))
  3115. continue;
  3116. if (!cache_match_memcg(s, memcg))
  3117. continue;
  3118. return s;
  3119. }
  3120. return NULL;
  3121. }
  3122. struct kmem_cache *
  3123. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3124. size_t align, unsigned long flags, void (*ctor)(void *))
  3125. {
  3126. struct kmem_cache *s;
  3127. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3128. if (s) {
  3129. s->refcount++;
  3130. /*
  3131. * Adjust the object sizes so that we clear
  3132. * the complete object on kzalloc.
  3133. */
  3134. s->object_size = max(s->object_size, (int)size);
  3135. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3136. if (sysfs_slab_alias(s, name)) {
  3137. s->refcount--;
  3138. s = NULL;
  3139. }
  3140. }
  3141. return s;
  3142. }
  3143. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3144. {
  3145. int err;
  3146. err = kmem_cache_open(s, flags);
  3147. if (err)
  3148. return err;
  3149. /* Mutex is not taken during early boot */
  3150. if (slab_state <= UP)
  3151. return 0;
  3152. memcg_propagate_slab_attrs(s);
  3153. mutex_unlock(&slab_mutex);
  3154. err = sysfs_slab_add(s);
  3155. mutex_lock(&slab_mutex);
  3156. if (err)
  3157. kmem_cache_close(s);
  3158. return err;
  3159. }
  3160. #ifdef CONFIG_SMP
  3161. /*
  3162. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3163. * necessary.
  3164. */
  3165. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3166. unsigned long action, void *hcpu)
  3167. {
  3168. long cpu = (long)hcpu;
  3169. struct kmem_cache *s;
  3170. unsigned long flags;
  3171. switch (action) {
  3172. case CPU_UP_CANCELED:
  3173. case CPU_UP_CANCELED_FROZEN:
  3174. case CPU_DEAD:
  3175. case CPU_DEAD_FROZEN:
  3176. mutex_lock(&slab_mutex);
  3177. list_for_each_entry(s, &slab_caches, list) {
  3178. local_irq_save(flags);
  3179. __flush_cpu_slab(s, cpu);
  3180. local_irq_restore(flags);
  3181. }
  3182. mutex_unlock(&slab_mutex);
  3183. break;
  3184. default:
  3185. break;
  3186. }
  3187. return NOTIFY_OK;
  3188. }
  3189. static struct notifier_block __cpuinitdata slab_notifier = {
  3190. .notifier_call = slab_cpuup_callback
  3191. };
  3192. #endif
  3193. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3194. {
  3195. struct kmem_cache *s;
  3196. void *ret;
  3197. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3198. return kmalloc_large(size, gfpflags);
  3199. s = kmalloc_slab(size, gfpflags);
  3200. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3201. return s;
  3202. ret = slab_alloc(s, gfpflags, caller);
  3203. /* Honor the call site pointer we received. */
  3204. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3205. return ret;
  3206. }
  3207. #ifdef CONFIG_NUMA
  3208. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3209. int node, unsigned long caller)
  3210. {
  3211. struct kmem_cache *s;
  3212. void *ret;
  3213. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3214. ret = kmalloc_large_node(size, gfpflags, node);
  3215. trace_kmalloc_node(caller, ret,
  3216. size, PAGE_SIZE << get_order(size),
  3217. gfpflags, node);
  3218. return ret;
  3219. }
  3220. s = kmalloc_slab(size, gfpflags);
  3221. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3222. return s;
  3223. ret = slab_alloc_node(s, gfpflags, node, caller);
  3224. /* Honor the call site pointer we received. */
  3225. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3226. return ret;
  3227. }
  3228. #endif
  3229. #ifdef CONFIG_SYSFS
  3230. static int count_inuse(struct page *page)
  3231. {
  3232. return page->inuse;
  3233. }
  3234. static int count_total(struct page *page)
  3235. {
  3236. return page->objects;
  3237. }
  3238. #endif
  3239. #ifdef CONFIG_SLUB_DEBUG
  3240. static int validate_slab(struct kmem_cache *s, struct page *page,
  3241. unsigned long *map)
  3242. {
  3243. void *p;
  3244. void *addr = page_address(page);
  3245. if (!check_slab(s, page) ||
  3246. !on_freelist(s, page, NULL))
  3247. return 0;
  3248. /* Now we know that a valid freelist exists */
  3249. bitmap_zero(map, page->objects);
  3250. get_map(s, page, map);
  3251. for_each_object(p, s, addr, page->objects) {
  3252. if (test_bit(slab_index(p, s, addr), map))
  3253. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3254. return 0;
  3255. }
  3256. for_each_object(p, s, addr, page->objects)
  3257. if (!test_bit(slab_index(p, s, addr), map))
  3258. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3259. return 0;
  3260. return 1;
  3261. }
  3262. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3263. unsigned long *map)
  3264. {
  3265. slab_lock(page);
  3266. validate_slab(s, page, map);
  3267. slab_unlock(page);
  3268. }
  3269. static int validate_slab_node(struct kmem_cache *s,
  3270. struct kmem_cache_node *n, unsigned long *map)
  3271. {
  3272. unsigned long count = 0;
  3273. struct page *page;
  3274. unsigned long flags;
  3275. spin_lock_irqsave(&n->list_lock, flags);
  3276. list_for_each_entry(page, &n->partial, lru) {
  3277. validate_slab_slab(s, page, map);
  3278. count++;
  3279. }
  3280. if (count != n->nr_partial)
  3281. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3282. "counter=%ld\n", s->name, count, n->nr_partial);
  3283. if (!(s->flags & SLAB_STORE_USER))
  3284. goto out;
  3285. list_for_each_entry(page, &n->full, lru) {
  3286. validate_slab_slab(s, page, map);
  3287. count++;
  3288. }
  3289. if (count != atomic_long_read(&n->nr_slabs))
  3290. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3291. "counter=%ld\n", s->name, count,
  3292. atomic_long_read(&n->nr_slabs));
  3293. out:
  3294. spin_unlock_irqrestore(&n->list_lock, flags);
  3295. return count;
  3296. }
  3297. static long validate_slab_cache(struct kmem_cache *s)
  3298. {
  3299. int node;
  3300. unsigned long count = 0;
  3301. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3302. sizeof(unsigned long), GFP_KERNEL);
  3303. if (!map)
  3304. return -ENOMEM;
  3305. flush_all(s);
  3306. for_each_node_state(node, N_NORMAL_MEMORY) {
  3307. struct kmem_cache_node *n = get_node(s, node);
  3308. count += validate_slab_node(s, n, map);
  3309. }
  3310. kfree(map);
  3311. return count;
  3312. }
  3313. /*
  3314. * Generate lists of code addresses where slabcache objects are allocated
  3315. * and freed.
  3316. */
  3317. struct location {
  3318. unsigned long count;
  3319. unsigned long addr;
  3320. long long sum_time;
  3321. long min_time;
  3322. long max_time;
  3323. long min_pid;
  3324. long max_pid;
  3325. DECLARE_BITMAP(cpus, NR_CPUS);
  3326. nodemask_t nodes;
  3327. };
  3328. struct loc_track {
  3329. unsigned long max;
  3330. unsigned long count;
  3331. struct location *loc;
  3332. };
  3333. static void free_loc_track(struct loc_track *t)
  3334. {
  3335. if (t->max)
  3336. free_pages((unsigned long)t->loc,
  3337. get_order(sizeof(struct location) * t->max));
  3338. }
  3339. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3340. {
  3341. struct location *l;
  3342. int order;
  3343. order = get_order(sizeof(struct location) * max);
  3344. l = (void *)__get_free_pages(flags, order);
  3345. if (!l)
  3346. return 0;
  3347. if (t->count) {
  3348. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3349. free_loc_track(t);
  3350. }
  3351. t->max = max;
  3352. t->loc = l;
  3353. return 1;
  3354. }
  3355. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3356. const struct track *track)
  3357. {
  3358. long start, end, pos;
  3359. struct location *l;
  3360. unsigned long caddr;
  3361. unsigned long age = jiffies - track->when;
  3362. start = -1;
  3363. end = t->count;
  3364. for ( ; ; ) {
  3365. pos = start + (end - start + 1) / 2;
  3366. /*
  3367. * There is nothing at "end". If we end up there
  3368. * we need to add something to before end.
  3369. */
  3370. if (pos == end)
  3371. break;
  3372. caddr = t->loc[pos].addr;
  3373. if (track->addr == caddr) {
  3374. l = &t->loc[pos];
  3375. l->count++;
  3376. if (track->when) {
  3377. l->sum_time += age;
  3378. if (age < l->min_time)
  3379. l->min_time = age;
  3380. if (age > l->max_time)
  3381. l->max_time = age;
  3382. if (track->pid < l->min_pid)
  3383. l->min_pid = track->pid;
  3384. if (track->pid > l->max_pid)
  3385. l->max_pid = track->pid;
  3386. cpumask_set_cpu(track->cpu,
  3387. to_cpumask(l->cpus));
  3388. }
  3389. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3390. return 1;
  3391. }
  3392. if (track->addr < caddr)
  3393. end = pos;
  3394. else
  3395. start = pos;
  3396. }
  3397. /*
  3398. * Not found. Insert new tracking element.
  3399. */
  3400. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3401. return 0;
  3402. l = t->loc + pos;
  3403. if (pos < t->count)
  3404. memmove(l + 1, l,
  3405. (t->count - pos) * sizeof(struct location));
  3406. t->count++;
  3407. l->count = 1;
  3408. l->addr = track->addr;
  3409. l->sum_time = age;
  3410. l->min_time = age;
  3411. l->max_time = age;
  3412. l->min_pid = track->pid;
  3413. l->max_pid = track->pid;
  3414. cpumask_clear(to_cpumask(l->cpus));
  3415. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3416. nodes_clear(l->nodes);
  3417. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3418. return 1;
  3419. }
  3420. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3421. struct page *page, enum track_item alloc,
  3422. unsigned long *map)
  3423. {
  3424. void *addr = page_address(page);
  3425. void *p;
  3426. bitmap_zero(map, page->objects);
  3427. get_map(s, page, map);
  3428. for_each_object(p, s, addr, page->objects)
  3429. if (!test_bit(slab_index(p, s, addr), map))
  3430. add_location(t, s, get_track(s, p, alloc));
  3431. }
  3432. static int list_locations(struct kmem_cache *s, char *buf,
  3433. enum track_item alloc)
  3434. {
  3435. int len = 0;
  3436. unsigned long i;
  3437. struct loc_track t = { 0, 0, NULL };
  3438. int node;
  3439. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3440. sizeof(unsigned long), GFP_KERNEL);
  3441. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3442. GFP_TEMPORARY)) {
  3443. kfree(map);
  3444. return sprintf(buf, "Out of memory\n");
  3445. }
  3446. /* Push back cpu slabs */
  3447. flush_all(s);
  3448. for_each_node_state(node, N_NORMAL_MEMORY) {
  3449. struct kmem_cache_node *n = get_node(s, node);
  3450. unsigned long flags;
  3451. struct page *page;
  3452. if (!atomic_long_read(&n->nr_slabs))
  3453. continue;
  3454. spin_lock_irqsave(&n->list_lock, flags);
  3455. list_for_each_entry(page, &n->partial, lru)
  3456. process_slab(&t, s, page, alloc, map);
  3457. list_for_each_entry(page, &n->full, lru)
  3458. process_slab(&t, s, page, alloc, map);
  3459. spin_unlock_irqrestore(&n->list_lock, flags);
  3460. }
  3461. for (i = 0; i < t.count; i++) {
  3462. struct location *l = &t.loc[i];
  3463. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3464. break;
  3465. len += sprintf(buf + len, "%7ld ", l->count);
  3466. if (l->addr)
  3467. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3468. else
  3469. len += sprintf(buf + len, "<not-available>");
  3470. if (l->sum_time != l->min_time) {
  3471. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3472. l->min_time,
  3473. (long)div_u64(l->sum_time, l->count),
  3474. l->max_time);
  3475. } else
  3476. len += sprintf(buf + len, " age=%ld",
  3477. l->min_time);
  3478. if (l->min_pid != l->max_pid)
  3479. len += sprintf(buf + len, " pid=%ld-%ld",
  3480. l->min_pid, l->max_pid);
  3481. else
  3482. len += sprintf(buf + len, " pid=%ld",
  3483. l->min_pid);
  3484. if (num_online_cpus() > 1 &&
  3485. !cpumask_empty(to_cpumask(l->cpus)) &&
  3486. len < PAGE_SIZE - 60) {
  3487. len += sprintf(buf + len, " cpus=");
  3488. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3489. to_cpumask(l->cpus));
  3490. }
  3491. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3492. len < PAGE_SIZE - 60) {
  3493. len += sprintf(buf + len, " nodes=");
  3494. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3495. l->nodes);
  3496. }
  3497. len += sprintf(buf + len, "\n");
  3498. }
  3499. free_loc_track(&t);
  3500. kfree(map);
  3501. if (!t.count)
  3502. len += sprintf(buf, "No data\n");
  3503. return len;
  3504. }
  3505. #endif
  3506. #ifdef SLUB_RESILIENCY_TEST
  3507. static void resiliency_test(void)
  3508. {
  3509. u8 *p;
  3510. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3511. printk(KERN_ERR "SLUB resiliency testing\n");
  3512. printk(KERN_ERR "-----------------------\n");
  3513. printk(KERN_ERR "A. Corruption after allocation\n");
  3514. p = kzalloc(16, GFP_KERNEL);
  3515. p[16] = 0x12;
  3516. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3517. " 0x12->0x%p\n\n", p + 16);
  3518. validate_slab_cache(kmalloc_caches[4]);
  3519. /* Hmmm... The next two are dangerous */
  3520. p = kzalloc(32, GFP_KERNEL);
  3521. p[32 + sizeof(void *)] = 0x34;
  3522. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3523. " 0x34 -> -0x%p\n", p);
  3524. printk(KERN_ERR
  3525. "If allocated object is overwritten then not detectable\n\n");
  3526. validate_slab_cache(kmalloc_caches[5]);
  3527. p = kzalloc(64, GFP_KERNEL);
  3528. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3529. *p = 0x56;
  3530. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3531. p);
  3532. printk(KERN_ERR
  3533. "If allocated object is overwritten then not detectable\n\n");
  3534. validate_slab_cache(kmalloc_caches[6]);
  3535. printk(KERN_ERR "\nB. Corruption after free\n");
  3536. p = kzalloc(128, GFP_KERNEL);
  3537. kfree(p);
  3538. *p = 0x78;
  3539. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3540. validate_slab_cache(kmalloc_caches[7]);
  3541. p = kzalloc(256, GFP_KERNEL);
  3542. kfree(p);
  3543. p[50] = 0x9a;
  3544. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3545. p);
  3546. validate_slab_cache(kmalloc_caches[8]);
  3547. p = kzalloc(512, GFP_KERNEL);
  3548. kfree(p);
  3549. p[512] = 0xab;
  3550. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3551. validate_slab_cache(kmalloc_caches[9]);
  3552. }
  3553. #else
  3554. #ifdef CONFIG_SYSFS
  3555. static void resiliency_test(void) {};
  3556. #endif
  3557. #endif
  3558. #ifdef CONFIG_SYSFS
  3559. enum slab_stat_type {
  3560. SL_ALL, /* All slabs */
  3561. SL_PARTIAL, /* Only partially allocated slabs */
  3562. SL_CPU, /* Only slabs used for cpu caches */
  3563. SL_OBJECTS, /* Determine allocated objects not slabs */
  3564. SL_TOTAL /* Determine object capacity not slabs */
  3565. };
  3566. #define SO_ALL (1 << SL_ALL)
  3567. #define SO_PARTIAL (1 << SL_PARTIAL)
  3568. #define SO_CPU (1 << SL_CPU)
  3569. #define SO_OBJECTS (1 << SL_OBJECTS)
  3570. #define SO_TOTAL (1 << SL_TOTAL)
  3571. static ssize_t show_slab_objects(struct kmem_cache *s,
  3572. char *buf, unsigned long flags)
  3573. {
  3574. unsigned long total = 0;
  3575. int node;
  3576. int x;
  3577. unsigned long *nodes;
  3578. unsigned long *per_cpu;
  3579. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3580. if (!nodes)
  3581. return -ENOMEM;
  3582. per_cpu = nodes + nr_node_ids;
  3583. if (flags & SO_CPU) {
  3584. int cpu;
  3585. for_each_possible_cpu(cpu) {
  3586. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3587. int node;
  3588. struct page *page;
  3589. page = ACCESS_ONCE(c->page);
  3590. if (!page)
  3591. continue;
  3592. node = page_to_nid(page);
  3593. if (flags & SO_TOTAL)
  3594. x = page->objects;
  3595. else if (flags & SO_OBJECTS)
  3596. x = page->inuse;
  3597. else
  3598. x = 1;
  3599. total += x;
  3600. nodes[node] += x;
  3601. page = ACCESS_ONCE(c->partial);
  3602. if (page) {
  3603. x = page->pobjects;
  3604. total += x;
  3605. nodes[node] += x;
  3606. }
  3607. per_cpu[node]++;
  3608. }
  3609. }
  3610. lock_memory_hotplug();
  3611. #ifdef CONFIG_SLUB_DEBUG
  3612. if (flags & SO_ALL) {
  3613. for_each_node_state(node, N_NORMAL_MEMORY) {
  3614. struct kmem_cache_node *n = get_node(s, node);
  3615. if (flags & SO_TOTAL)
  3616. x = atomic_long_read(&n->total_objects);
  3617. else if (flags & SO_OBJECTS)
  3618. x = atomic_long_read(&n->total_objects) -
  3619. count_partial(n, count_free);
  3620. else
  3621. x = atomic_long_read(&n->nr_slabs);
  3622. total += x;
  3623. nodes[node] += x;
  3624. }
  3625. } else
  3626. #endif
  3627. if (flags & SO_PARTIAL) {
  3628. for_each_node_state(node, N_NORMAL_MEMORY) {
  3629. struct kmem_cache_node *n = get_node(s, node);
  3630. if (flags & SO_TOTAL)
  3631. x = count_partial(n, count_total);
  3632. else if (flags & SO_OBJECTS)
  3633. x = count_partial(n, count_inuse);
  3634. else
  3635. x = n->nr_partial;
  3636. total += x;
  3637. nodes[node] += x;
  3638. }
  3639. }
  3640. x = sprintf(buf, "%lu", total);
  3641. #ifdef CONFIG_NUMA
  3642. for_each_node_state(node, N_NORMAL_MEMORY)
  3643. if (nodes[node])
  3644. x += sprintf(buf + x, " N%d=%lu",
  3645. node, nodes[node]);
  3646. #endif
  3647. unlock_memory_hotplug();
  3648. kfree(nodes);
  3649. return x + sprintf(buf + x, "\n");
  3650. }
  3651. #ifdef CONFIG_SLUB_DEBUG
  3652. static int any_slab_objects(struct kmem_cache *s)
  3653. {
  3654. int node;
  3655. for_each_online_node(node) {
  3656. struct kmem_cache_node *n = get_node(s, node);
  3657. if (!n)
  3658. continue;
  3659. if (atomic_long_read(&n->total_objects))
  3660. return 1;
  3661. }
  3662. return 0;
  3663. }
  3664. #endif
  3665. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3666. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3667. struct slab_attribute {
  3668. struct attribute attr;
  3669. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3670. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3671. };
  3672. #define SLAB_ATTR_RO(_name) \
  3673. static struct slab_attribute _name##_attr = \
  3674. __ATTR(_name, 0400, _name##_show, NULL)
  3675. #define SLAB_ATTR(_name) \
  3676. static struct slab_attribute _name##_attr = \
  3677. __ATTR(_name, 0600, _name##_show, _name##_store)
  3678. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3679. {
  3680. return sprintf(buf, "%d\n", s->size);
  3681. }
  3682. SLAB_ATTR_RO(slab_size);
  3683. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3684. {
  3685. return sprintf(buf, "%d\n", s->align);
  3686. }
  3687. SLAB_ATTR_RO(align);
  3688. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3689. {
  3690. return sprintf(buf, "%d\n", s->object_size);
  3691. }
  3692. SLAB_ATTR_RO(object_size);
  3693. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3694. {
  3695. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3696. }
  3697. SLAB_ATTR_RO(objs_per_slab);
  3698. static ssize_t order_store(struct kmem_cache *s,
  3699. const char *buf, size_t length)
  3700. {
  3701. unsigned long order;
  3702. int err;
  3703. err = strict_strtoul(buf, 10, &order);
  3704. if (err)
  3705. return err;
  3706. if (order > slub_max_order || order < slub_min_order)
  3707. return -EINVAL;
  3708. calculate_sizes(s, order);
  3709. return length;
  3710. }
  3711. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3712. {
  3713. return sprintf(buf, "%d\n", oo_order(s->oo));
  3714. }
  3715. SLAB_ATTR(order);
  3716. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3717. {
  3718. return sprintf(buf, "%lu\n", s->min_partial);
  3719. }
  3720. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3721. size_t length)
  3722. {
  3723. unsigned long min;
  3724. int err;
  3725. err = strict_strtoul(buf, 10, &min);
  3726. if (err)
  3727. return err;
  3728. set_min_partial(s, min);
  3729. return length;
  3730. }
  3731. SLAB_ATTR(min_partial);
  3732. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3733. {
  3734. return sprintf(buf, "%u\n", s->cpu_partial);
  3735. }
  3736. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3737. size_t length)
  3738. {
  3739. unsigned long objects;
  3740. int err;
  3741. err = strict_strtoul(buf, 10, &objects);
  3742. if (err)
  3743. return err;
  3744. if (objects && kmem_cache_debug(s))
  3745. return -EINVAL;
  3746. s->cpu_partial = objects;
  3747. flush_all(s);
  3748. return length;
  3749. }
  3750. SLAB_ATTR(cpu_partial);
  3751. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3752. {
  3753. if (!s->ctor)
  3754. return 0;
  3755. return sprintf(buf, "%pS\n", s->ctor);
  3756. }
  3757. SLAB_ATTR_RO(ctor);
  3758. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3759. {
  3760. return sprintf(buf, "%d\n", s->refcount - 1);
  3761. }
  3762. SLAB_ATTR_RO(aliases);
  3763. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3764. {
  3765. return show_slab_objects(s, buf, SO_PARTIAL);
  3766. }
  3767. SLAB_ATTR_RO(partial);
  3768. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3769. {
  3770. return show_slab_objects(s, buf, SO_CPU);
  3771. }
  3772. SLAB_ATTR_RO(cpu_slabs);
  3773. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3774. {
  3775. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3776. }
  3777. SLAB_ATTR_RO(objects);
  3778. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3779. {
  3780. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3781. }
  3782. SLAB_ATTR_RO(objects_partial);
  3783. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3784. {
  3785. int objects = 0;
  3786. int pages = 0;
  3787. int cpu;
  3788. int len;
  3789. for_each_online_cpu(cpu) {
  3790. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3791. if (page) {
  3792. pages += page->pages;
  3793. objects += page->pobjects;
  3794. }
  3795. }
  3796. len = sprintf(buf, "%d(%d)", objects, pages);
  3797. #ifdef CONFIG_SMP
  3798. for_each_online_cpu(cpu) {
  3799. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3800. if (page && len < PAGE_SIZE - 20)
  3801. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3802. page->pobjects, page->pages);
  3803. }
  3804. #endif
  3805. return len + sprintf(buf + len, "\n");
  3806. }
  3807. SLAB_ATTR_RO(slabs_cpu_partial);
  3808. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3809. {
  3810. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3811. }
  3812. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3813. const char *buf, size_t length)
  3814. {
  3815. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3816. if (buf[0] == '1')
  3817. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3818. return length;
  3819. }
  3820. SLAB_ATTR(reclaim_account);
  3821. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3822. {
  3823. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3824. }
  3825. SLAB_ATTR_RO(hwcache_align);
  3826. #ifdef CONFIG_ZONE_DMA
  3827. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3828. {
  3829. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3830. }
  3831. SLAB_ATTR_RO(cache_dma);
  3832. #endif
  3833. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3834. {
  3835. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3836. }
  3837. SLAB_ATTR_RO(destroy_by_rcu);
  3838. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3839. {
  3840. return sprintf(buf, "%d\n", s->reserved);
  3841. }
  3842. SLAB_ATTR_RO(reserved);
  3843. #ifdef CONFIG_SLUB_DEBUG
  3844. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3845. {
  3846. return show_slab_objects(s, buf, SO_ALL);
  3847. }
  3848. SLAB_ATTR_RO(slabs);
  3849. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3850. {
  3851. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3852. }
  3853. SLAB_ATTR_RO(total_objects);
  3854. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3855. {
  3856. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3857. }
  3858. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3859. const char *buf, size_t length)
  3860. {
  3861. s->flags &= ~SLAB_DEBUG_FREE;
  3862. if (buf[0] == '1') {
  3863. s->flags &= ~__CMPXCHG_DOUBLE;
  3864. s->flags |= SLAB_DEBUG_FREE;
  3865. }
  3866. return length;
  3867. }
  3868. SLAB_ATTR(sanity_checks);
  3869. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3870. {
  3871. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3872. }
  3873. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3874. size_t length)
  3875. {
  3876. s->flags &= ~SLAB_TRACE;
  3877. if (buf[0] == '1') {
  3878. s->flags &= ~__CMPXCHG_DOUBLE;
  3879. s->flags |= SLAB_TRACE;
  3880. }
  3881. return length;
  3882. }
  3883. SLAB_ATTR(trace);
  3884. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3885. {
  3886. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3887. }
  3888. static ssize_t red_zone_store(struct kmem_cache *s,
  3889. const char *buf, size_t length)
  3890. {
  3891. if (any_slab_objects(s))
  3892. return -EBUSY;
  3893. s->flags &= ~SLAB_RED_ZONE;
  3894. if (buf[0] == '1') {
  3895. s->flags &= ~__CMPXCHG_DOUBLE;
  3896. s->flags |= SLAB_RED_ZONE;
  3897. }
  3898. calculate_sizes(s, -1);
  3899. return length;
  3900. }
  3901. SLAB_ATTR(red_zone);
  3902. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3903. {
  3904. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3905. }
  3906. static ssize_t poison_store(struct kmem_cache *s,
  3907. const char *buf, size_t length)
  3908. {
  3909. if (any_slab_objects(s))
  3910. return -EBUSY;
  3911. s->flags &= ~SLAB_POISON;
  3912. if (buf[0] == '1') {
  3913. s->flags &= ~__CMPXCHG_DOUBLE;
  3914. s->flags |= SLAB_POISON;
  3915. }
  3916. calculate_sizes(s, -1);
  3917. return length;
  3918. }
  3919. SLAB_ATTR(poison);
  3920. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3921. {
  3922. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3923. }
  3924. static ssize_t store_user_store(struct kmem_cache *s,
  3925. const char *buf, size_t length)
  3926. {
  3927. if (any_slab_objects(s))
  3928. return -EBUSY;
  3929. s->flags &= ~SLAB_STORE_USER;
  3930. if (buf[0] == '1') {
  3931. s->flags &= ~__CMPXCHG_DOUBLE;
  3932. s->flags |= SLAB_STORE_USER;
  3933. }
  3934. calculate_sizes(s, -1);
  3935. return length;
  3936. }
  3937. SLAB_ATTR(store_user);
  3938. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return 0;
  3941. }
  3942. static ssize_t validate_store(struct kmem_cache *s,
  3943. const char *buf, size_t length)
  3944. {
  3945. int ret = -EINVAL;
  3946. if (buf[0] == '1') {
  3947. ret = validate_slab_cache(s);
  3948. if (ret >= 0)
  3949. ret = length;
  3950. }
  3951. return ret;
  3952. }
  3953. SLAB_ATTR(validate);
  3954. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. if (!(s->flags & SLAB_STORE_USER))
  3957. return -ENOSYS;
  3958. return list_locations(s, buf, TRACK_ALLOC);
  3959. }
  3960. SLAB_ATTR_RO(alloc_calls);
  3961. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3962. {
  3963. if (!(s->flags & SLAB_STORE_USER))
  3964. return -ENOSYS;
  3965. return list_locations(s, buf, TRACK_FREE);
  3966. }
  3967. SLAB_ATTR_RO(free_calls);
  3968. #endif /* CONFIG_SLUB_DEBUG */
  3969. #ifdef CONFIG_FAILSLAB
  3970. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3971. {
  3972. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3973. }
  3974. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3975. size_t length)
  3976. {
  3977. s->flags &= ~SLAB_FAILSLAB;
  3978. if (buf[0] == '1')
  3979. s->flags |= SLAB_FAILSLAB;
  3980. return length;
  3981. }
  3982. SLAB_ATTR(failslab);
  3983. #endif
  3984. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3985. {
  3986. return 0;
  3987. }
  3988. static ssize_t shrink_store(struct kmem_cache *s,
  3989. const char *buf, size_t length)
  3990. {
  3991. if (buf[0] == '1') {
  3992. int rc = kmem_cache_shrink(s);
  3993. if (rc)
  3994. return rc;
  3995. } else
  3996. return -EINVAL;
  3997. return length;
  3998. }
  3999. SLAB_ATTR(shrink);
  4000. #ifdef CONFIG_NUMA
  4001. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4002. {
  4003. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4004. }
  4005. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4006. const char *buf, size_t length)
  4007. {
  4008. unsigned long ratio;
  4009. int err;
  4010. err = strict_strtoul(buf, 10, &ratio);
  4011. if (err)
  4012. return err;
  4013. if (ratio <= 100)
  4014. s->remote_node_defrag_ratio = ratio * 10;
  4015. return length;
  4016. }
  4017. SLAB_ATTR(remote_node_defrag_ratio);
  4018. #endif
  4019. #ifdef CONFIG_SLUB_STATS
  4020. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4021. {
  4022. unsigned long sum = 0;
  4023. int cpu;
  4024. int len;
  4025. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4026. if (!data)
  4027. return -ENOMEM;
  4028. for_each_online_cpu(cpu) {
  4029. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4030. data[cpu] = x;
  4031. sum += x;
  4032. }
  4033. len = sprintf(buf, "%lu", sum);
  4034. #ifdef CONFIG_SMP
  4035. for_each_online_cpu(cpu) {
  4036. if (data[cpu] && len < PAGE_SIZE - 20)
  4037. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4038. }
  4039. #endif
  4040. kfree(data);
  4041. return len + sprintf(buf + len, "\n");
  4042. }
  4043. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4044. {
  4045. int cpu;
  4046. for_each_online_cpu(cpu)
  4047. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4048. }
  4049. #define STAT_ATTR(si, text) \
  4050. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4051. { \
  4052. return show_stat(s, buf, si); \
  4053. } \
  4054. static ssize_t text##_store(struct kmem_cache *s, \
  4055. const char *buf, size_t length) \
  4056. { \
  4057. if (buf[0] != '0') \
  4058. return -EINVAL; \
  4059. clear_stat(s, si); \
  4060. return length; \
  4061. } \
  4062. SLAB_ATTR(text); \
  4063. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4064. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4065. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4066. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4067. STAT_ATTR(FREE_FROZEN, free_frozen);
  4068. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4069. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4070. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4071. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4072. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4073. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4074. STAT_ATTR(FREE_SLAB, free_slab);
  4075. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4076. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4077. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4078. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4079. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4080. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4081. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4082. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4083. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4084. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4085. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4086. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4087. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4088. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4089. #endif
  4090. static struct attribute *slab_attrs[] = {
  4091. &slab_size_attr.attr,
  4092. &object_size_attr.attr,
  4093. &objs_per_slab_attr.attr,
  4094. &order_attr.attr,
  4095. &min_partial_attr.attr,
  4096. &cpu_partial_attr.attr,
  4097. &objects_attr.attr,
  4098. &objects_partial_attr.attr,
  4099. &partial_attr.attr,
  4100. &cpu_slabs_attr.attr,
  4101. &ctor_attr.attr,
  4102. &aliases_attr.attr,
  4103. &align_attr.attr,
  4104. &hwcache_align_attr.attr,
  4105. &reclaim_account_attr.attr,
  4106. &destroy_by_rcu_attr.attr,
  4107. &shrink_attr.attr,
  4108. &reserved_attr.attr,
  4109. &slabs_cpu_partial_attr.attr,
  4110. #ifdef CONFIG_SLUB_DEBUG
  4111. &total_objects_attr.attr,
  4112. &slabs_attr.attr,
  4113. &sanity_checks_attr.attr,
  4114. &trace_attr.attr,
  4115. &red_zone_attr.attr,
  4116. &poison_attr.attr,
  4117. &store_user_attr.attr,
  4118. &validate_attr.attr,
  4119. &alloc_calls_attr.attr,
  4120. &free_calls_attr.attr,
  4121. #endif
  4122. #ifdef CONFIG_ZONE_DMA
  4123. &cache_dma_attr.attr,
  4124. #endif
  4125. #ifdef CONFIG_NUMA
  4126. &remote_node_defrag_ratio_attr.attr,
  4127. #endif
  4128. #ifdef CONFIG_SLUB_STATS
  4129. &alloc_fastpath_attr.attr,
  4130. &alloc_slowpath_attr.attr,
  4131. &free_fastpath_attr.attr,
  4132. &free_slowpath_attr.attr,
  4133. &free_frozen_attr.attr,
  4134. &free_add_partial_attr.attr,
  4135. &free_remove_partial_attr.attr,
  4136. &alloc_from_partial_attr.attr,
  4137. &alloc_slab_attr.attr,
  4138. &alloc_refill_attr.attr,
  4139. &alloc_node_mismatch_attr.attr,
  4140. &free_slab_attr.attr,
  4141. &cpuslab_flush_attr.attr,
  4142. &deactivate_full_attr.attr,
  4143. &deactivate_empty_attr.attr,
  4144. &deactivate_to_head_attr.attr,
  4145. &deactivate_to_tail_attr.attr,
  4146. &deactivate_remote_frees_attr.attr,
  4147. &deactivate_bypass_attr.attr,
  4148. &order_fallback_attr.attr,
  4149. &cmpxchg_double_fail_attr.attr,
  4150. &cmpxchg_double_cpu_fail_attr.attr,
  4151. &cpu_partial_alloc_attr.attr,
  4152. &cpu_partial_free_attr.attr,
  4153. &cpu_partial_node_attr.attr,
  4154. &cpu_partial_drain_attr.attr,
  4155. #endif
  4156. #ifdef CONFIG_FAILSLAB
  4157. &failslab_attr.attr,
  4158. #endif
  4159. NULL
  4160. };
  4161. static struct attribute_group slab_attr_group = {
  4162. .attrs = slab_attrs,
  4163. };
  4164. static ssize_t slab_attr_show(struct kobject *kobj,
  4165. struct attribute *attr,
  4166. char *buf)
  4167. {
  4168. struct slab_attribute *attribute;
  4169. struct kmem_cache *s;
  4170. int err;
  4171. attribute = to_slab_attr(attr);
  4172. s = to_slab(kobj);
  4173. if (!attribute->show)
  4174. return -EIO;
  4175. err = attribute->show(s, buf);
  4176. return err;
  4177. }
  4178. static ssize_t slab_attr_store(struct kobject *kobj,
  4179. struct attribute *attr,
  4180. const char *buf, size_t len)
  4181. {
  4182. struct slab_attribute *attribute;
  4183. struct kmem_cache *s;
  4184. int err;
  4185. attribute = to_slab_attr(attr);
  4186. s = to_slab(kobj);
  4187. if (!attribute->store)
  4188. return -EIO;
  4189. err = attribute->store(s, buf, len);
  4190. #ifdef CONFIG_MEMCG_KMEM
  4191. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4192. int i;
  4193. mutex_lock(&slab_mutex);
  4194. if (s->max_attr_size < len)
  4195. s->max_attr_size = len;
  4196. /*
  4197. * This is a best effort propagation, so this function's return
  4198. * value will be determined by the parent cache only. This is
  4199. * basically because not all attributes will have a well
  4200. * defined semantics for rollbacks - most of the actions will
  4201. * have permanent effects.
  4202. *
  4203. * Returning the error value of any of the children that fail
  4204. * is not 100 % defined, in the sense that users seeing the
  4205. * error code won't be able to know anything about the state of
  4206. * the cache.
  4207. *
  4208. * Only returning the error code for the parent cache at least
  4209. * has well defined semantics. The cache being written to
  4210. * directly either failed or succeeded, in which case we loop
  4211. * through the descendants with best-effort propagation.
  4212. */
  4213. for_each_memcg_cache_index(i) {
  4214. struct kmem_cache *c = cache_from_memcg(s, i);
  4215. if (c)
  4216. attribute->store(c, buf, len);
  4217. }
  4218. mutex_unlock(&slab_mutex);
  4219. }
  4220. #endif
  4221. return err;
  4222. }
  4223. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4224. {
  4225. #ifdef CONFIG_MEMCG_KMEM
  4226. int i;
  4227. char *buffer = NULL;
  4228. if (!is_root_cache(s))
  4229. return;
  4230. /*
  4231. * This mean this cache had no attribute written. Therefore, no point
  4232. * in copying default values around
  4233. */
  4234. if (!s->max_attr_size)
  4235. return;
  4236. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4237. char mbuf[64];
  4238. char *buf;
  4239. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4240. if (!attr || !attr->store || !attr->show)
  4241. continue;
  4242. /*
  4243. * It is really bad that we have to allocate here, so we will
  4244. * do it only as a fallback. If we actually allocate, though,
  4245. * we can just use the allocated buffer until the end.
  4246. *
  4247. * Most of the slub attributes will tend to be very small in
  4248. * size, but sysfs allows buffers up to a page, so they can
  4249. * theoretically happen.
  4250. */
  4251. if (buffer)
  4252. buf = buffer;
  4253. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4254. buf = mbuf;
  4255. else {
  4256. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4257. if (WARN_ON(!buffer))
  4258. continue;
  4259. buf = buffer;
  4260. }
  4261. attr->show(s->memcg_params->root_cache, buf);
  4262. attr->store(s, buf, strlen(buf));
  4263. }
  4264. if (buffer)
  4265. free_page((unsigned long)buffer);
  4266. #endif
  4267. }
  4268. static const struct sysfs_ops slab_sysfs_ops = {
  4269. .show = slab_attr_show,
  4270. .store = slab_attr_store,
  4271. };
  4272. static struct kobj_type slab_ktype = {
  4273. .sysfs_ops = &slab_sysfs_ops,
  4274. };
  4275. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4276. {
  4277. struct kobj_type *ktype = get_ktype(kobj);
  4278. if (ktype == &slab_ktype)
  4279. return 1;
  4280. return 0;
  4281. }
  4282. static const struct kset_uevent_ops slab_uevent_ops = {
  4283. .filter = uevent_filter,
  4284. };
  4285. static struct kset *slab_kset;
  4286. #define ID_STR_LENGTH 64
  4287. /* Create a unique string id for a slab cache:
  4288. *
  4289. * Format :[flags-]size
  4290. */
  4291. static char *create_unique_id(struct kmem_cache *s)
  4292. {
  4293. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4294. char *p = name;
  4295. BUG_ON(!name);
  4296. *p++ = ':';
  4297. /*
  4298. * First flags affecting slabcache operations. We will only
  4299. * get here for aliasable slabs so we do not need to support
  4300. * too many flags. The flags here must cover all flags that
  4301. * are matched during merging to guarantee that the id is
  4302. * unique.
  4303. */
  4304. if (s->flags & SLAB_CACHE_DMA)
  4305. *p++ = 'd';
  4306. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4307. *p++ = 'a';
  4308. if (s->flags & SLAB_DEBUG_FREE)
  4309. *p++ = 'F';
  4310. if (!(s->flags & SLAB_NOTRACK))
  4311. *p++ = 't';
  4312. if (p != name + 1)
  4313. *p++ = '-';
  4314. p += sprintf(p, "%07d", s->size);
  4315. #ifdef CONFIG_MEMCG_KMEM
  4316. if (!is_root_cache(s))
  4317. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4318. #endif
  4319. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4320. return name;
  4321. }
  4322. static int sysfs_slab_add(struct kmem_cache *s)
  4323. {
  4324. int err;
  4325. const char *name;
  4326. int unmergeable = slab_unmergeable(s);
  4327. if (unmergeable) {
  4328. /*
  4329. * Slabcache can never be merged so we can use the name proper.
  4330. * This is typically the case for debug situations. In that
  4331. * case we can catch duplicate names easily.
  4332. */
  4333. sysfs_remove_link(&slab_kset->kobj, s->name);
  4334. name = s->name;
  4335. } else {
  4336. /*
  4337. * Create a unique name for the slab as a target
  4338. * for the symlinks.
  4339. */
  4340. name = create_unique_id(s);
  4341. }
  4342. s->kobj.kset = slab_kset;
  4343. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4344. if (err) {
  4345. kobject_put(&s->kobj);
  4346. return err;
  4347. }
  4348. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4349. if (err) {
  4350. kobject_del(&s->kobj);
  4351. kobject_put(&s->kobj);
  4352. return err;
  4353. }
  4354. kobject_uevent(&s->kobj, KOBJ_ADD);
  4355. if (!unmergeable) {
  4356. /* Setup first alias */
  4357. sysfs_slab_alias(s, s->name);
  4358. kfree(name);
  4359. }
  4360. return 0;
  4361. }
  4362. static void sysfs_slab_remove(struct kmem_cache *s)
  4363. {
  4364. if (slab_state < FULL)
  4365. /*
  4366. * Sysfs has not been setup yet so no need to remove the
  4367. * cache from sysfs.
  4368. */
  4369. return;
  4370. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4371. kobject_del(&s->kobj);
  4372. kobject_put(&s->kobj);
  4373. }
  4374. /*
  4375. * Need to buffer aliases during bootup until sysfs becomes
  4376. * available lest we lose that information.
  4377. */
  4378. struct saved_alias {
  4379. struct kmem_cache *s;
  4380. const char *name;
  4381. struct saved_alias *next;
  4382. };
  4383. static struct saved_alias *alias_list;
  4384. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4385. {
  4386. struct saved_alias *al;
  4387. if (slab_state == FULL) {
  4388. /*
  4389. * If we have a leftover link then remove it.
  4390. */
  4391. sysfs_remove_link(&slab_kset->kobj, name);
  4392. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4393. }
  4394. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4395. if (!al)
  4396. return -ENOMEM;
  4397. al->s = s;
  4398. al->name = name;
  4399. al->next = alias_list;
  4400. alias_list = al;
  4401. return 0;
  4402. }
  4403. static int __init slab_sysfs_init(void)
  4404. {
  4405. struct kmem_cache *s;
  4406. int err;
  4407. mutex_lock(&slab_mutex);
  4408. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4409. if (!slab_kset) {
  4410. mutex_unlock(&slab_mutex);
  4411. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4412. return -ENOSYS;
  4413. }
  4414. slab_state = FULL;
  4415. list_for_each_entry(s, &slab_caches, list) {
  4416. err = sysfs_slab_add(s);
  4417. if (err)
  4418. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4419. " to sysfs\n", s->name);
  4420. }
  4421. while (alias_list) {
  4422. struct saved_alias *al = alias_list;
  4423. alias_list = alias_list->next;
  4424. err = sysfs_slab_alias(al->s, al->name);
  4425. if (err)
  4426. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4427. " %s to sysfs\n", al->name);
  4428. kfree(al);
  4429. }
  4430. mutex_unlock(&slab_mutex);
  4431. resiliency_test();
  4432. return 0;
  4433. }
  4434. __initcall(slab_sysfs_init);
  4435. #endif /* CONFIG_SYSFS */
  4436. /*
  4437. * The /proc/slabinfo ABI
  4438. */
  4439. #ifdef CONFIG_SLABINFO
  4440. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4441. {
  4442. unsigned long nr_slabs = 0;
  4443. unsigned long nr_objs = 0;
  4444. unsigned long nr_free = 0;
  4445. int node;
  4446. for_each_online_node(node) {
  4447. struct kmem_cache_node *n = get_node(s, node);
  4448. if (!n)
  4449. continue;
  4450. nr_slabs += node_nr_slabs(n);
  4451. nr_objs += node_nr_objs(n);
  4452. nr_free += count_partial(n, count_free);
  4453. }
  4454. sinfo->active_objs = nr_objs - nr_free;
  4455. sinfo->num_objs = nr_objs;
  4456. sinfo->active_slabs = nr_slabs;
  4457. sinfo->num_slabs = nr_slabs;
  4458. sinfo->objects_per_slab = oo_objects(s->oo);
  4459. sinfo->cache_order = oo_order(s->oo);
  4460. }
  4461. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4462. {
  4463. }
  4464. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4465. size_t count, loff_t *ppos)
  4466. {
  4467. return -EIO;
  4468. }
  4469. #endif /* CONFIG_SLABINFO */