disk-io.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. /*
  70. * end_io_wq structs are used to do processing in task context when an IO is
  71. * complete. This is used during reads to verify checksums, and it is used
  72. * by writes to insert metadata for new file extents after IO is complete.
  73. */
  74. struct end_io_wq {
  75. struct bio *bio;
  76. bio_end_io_t *end_io;
  77. void *private;
  78. struct btrfs_fs_info *info;
  79. int error;
  80. int metadata;
  81. struct list_head list;
  82. struct btrfs_work work;
  83. };
  84. /*
  85. * async submit bios are used to offload expensive checksumming
  86. * onto the worker threads. They checksum file and metadata bios
  87. * just before they are sent down the IO stack.
  88. */
  89. struct async_submit_bio {
  90. struct inode *inode;
  91. struct bio *bio;
  92. struct list_head list;
  93. extent_submit_bio_hook_t *submit_bio_start;
  94. extent_submit_bio_hook_t *submit_bio_done;
  95. int rw;
  96. int mirror_num;
  97. unsigned long bio_flags;
  98. /*
  99. * bio_offset is optional, can be used if the pages in the bio
  100. * can't tell us where in the file the bio should go
  101. */
  102. u64 bio_offset;
  103. struct btrfs_work work;
  104. int error;
  105. };
  106. /*
  107. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  108. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  109. * the level the eb occupies in the tree.
  110. *
  111. * Different roots are used for different purposes and may nest inside each
  112. * other and they require separate keysets. As lockdep keys should be
  113. * static, assign keysets according to the purpose of the root as indicated
  114. * by btrfs_root->objectid. This ensures that all special purpose roots
  115. * have separate keysets.
  116. *
  117. * Lock-nesting across peer nodes is always done with the immediate parent
  118. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  119. * subclass to avoid triggering lockdep warning in such cases.
  120. *
  121. * The key is set by the readpage_end_io_hook after the buffer has passed
  122. * csum validation but before the pages are unlocked. It is also set by
  123. * btrfs_init_new_buffer on freshly allocated blocks.
  124. *
  125. * We also add a check to make sure the highest level of the tree is the
  126. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  127. * needs update as well.
  128. */
  129. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  130. # if BTRFS_MAX_LEVEL != 8
  131. # error
  132. # endif
  133. static struct btrfs_lockdep_keyset {
  134. u64 id; /* root objectid */
  135. const char *name_stem; /* lock name stem */
  136. char names[BTRFS_MAX_LEVEL + 1][20];
  137. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  138. } btrfs_lockdep_keysets[] = {
  139. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  140. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  141. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  142. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  143. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  144. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  145. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  146. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  147. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  148. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  149. { .id = 0, .name_stem = "tree" },
  150. };
  151. void __init btrfs_init_lockdep(void)
  152. {
  153. int i, j;
  154. /* initialize lockdep class names */
  155. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  156. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  157. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  158. snprintf(ks->names[j], sizeof(ks->names[j]),
  159. "btrfs-%s-%02d", ks->name_stem, j);
  160. }
  161. }
  162. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  163. int level)
  164. {
  165. struct btrfs_lockdep_keyset *ks;
  166. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  167. /* find the matching keyset, id 0 is the default entry */
  168. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  169. if (ks->id == objectid)
  170. break;
  171. lockdep_set_class_and_name(&eb->lock,
  172. &ks->keys[level], ks->names[level]);
  173. }
  174. #endif
  175. /*
  176. * extents on the btree inode are pretty simple, there's one extent
  177. * that covers the entire device
  178. */
  179. static struct extent_map *btree_get_extent(struct inode *inode,
  180. struct page *page, size_t pg_offset, u64 start, u64 len,
  181. int create)
  182. {
  183. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  184. struct extent_map *em;
  185. int ret;
  186. read_lock(&em_tree->lock);
  187. em = lookup_extent_mapping(em_tree, start, len);
  188. if (em) {
  189. em->bdev =
  190. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  191. read_unlock(&em_tree->lock);
  192. goto out;
  193. }
  194. read_unlock(&em_tree->lock);
  195. em = alloc_extent_map();
  196. if (!em) {
  197. em = ERR_PTR(-ENOMEM);
  198. goto out;
  199. }
  200. em->start = 0;
  201. em->len = (u64)-1;
  202. em->block_len = (u64)-1;
  203. em->block_start = 0;
  204. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  205. write_lock(&em_tree->lock);
  206. ret = add_extent_mapping(em_tree, em);
  207. if (ret == -EEXIST) {
  208. free_extent_map(em);
  209. em = lookup_extent_mapping(em_tree, start, len);
  210. if (!em)
  211. em = ERR_PTR(-EIO);
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = ERR_PTR(ret);
  215. }
  216. write_unlock(&em_tree->lock);
  217. out:
  218. return em;
  219. }
  220. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  221. {
  222. return crc32c(seed, data, len);
  223. }
  224. void btrfs_csum_final(u32 crc, char *result)
  225. {
  226. put_unaligned_le32(~crc, result);
  227. }
  228. /*
  229. * compute the csum for a btree block, and either verify it or write it
  230. * into the csum field of the block.
  231. */
  232. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  233. int verify)
  234. {
  235. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  236. char *result = NULL;
  237. unsigned long len;
  238. unsigned long cur_len;
  239. unsigned long offset = BTRFS_CSUM_SIZE;
  240. char *kaddr;
  241. unsigned long map_start;
  242. unsigned long map_len;
  243. int err;
  244. u32 crc = ~(u32)0;
  245. unsigned long inline_result;
  246. len = buf->len - offset;
  247. while (len > 0) {
  248. err = map_private_extent_buffer(buf, offset, 32,
  249. &kaddr, &map_start, &map_len);
  250. if (err)
  251. return 1;
  252. cur_len = min(len, map_len - (offset - map_start));
  253. crc = btrfs_csum_data(kaddr + offset - map_start,
  254. crc, cur_len);
  255. len -= cur_len;
  256. offset += cur_len;
  257. }
  258. if (csum_size > sizeof(inline_result)) {
  259. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  260. if (!result)
  261. return 1;
  262. } else {
  263. result = (char *)&inline_result;
  264. }
  265. btrfs_csum_final(crc, result);
  266. if (verify) {
  267. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  268. u32 val;
  269. u32 found = 0;
  270. memcpy(&found, result, csum_size);
  271. read_extent_buffer(buf, &val, 0, csum_size);
  272. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  273. "failed on %llu wanted %X found %X "
  274. "level %d\n",
  275. root->fs_info->sb->s_id,
  276. (unsigned long long)buf->start, val, found,
  277. btrfs_header_level(buf));
  278. if (result != (char *)&inline_result)
  279. kfree(result);
  280. return 1;
  281. }
  282. } else {
  283. write_extent_buffer(buf, result, 0, csum_size);
  284. }
  285. if (result != (char *)&inline_result)
  286. kfree(result);
  287. return 0;
  288. }
  289. /*
  290. * we can't consider a given block up to date unless the transid of the
  291. * block matches the transid in the parent node's pointer. This is how we
  292. * detect blocks that either didn't get written at all or got written
  293. * in the wrong place.
  294. */
  295. static int verify_parent_transid(struct extent_io_tree *io_tree,
  296. struct extent_buffer *eb, u64 parent_transid,
  297. int atomic)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. if (atomic)
  304. return -EAGAIN;
  305. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  306. 0, &cached_state);
  307. if (extent_buffer_uptodate(eb) &&
  308. btrfs_header_generation(eb) == parent_transid) {
  309. ret = 0;
  310. goto out;
  311. }
  312. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  313. "found %llu\n",
  314. (unsigned long long)eb->start,
  315. (unsigned long long)parent_transid,
  316. (unsigned long long)btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * helper to read a given tree block, doing retries as required when
  326. * the checksums don't match and we have alternate mirrors to try.
  327. */
  328. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  329. struct extent_buffer *eb,
  330. u64 start, u64 parent_transid)
  331. {
  332. struct extent_io_tree *io_tree;
  333. int failed = 0;
  334. int ret;
  335. int num_copies = 0;
  336. int mirror_num = 0;
  337. int failed_mirror = 0;
  338. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  339. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  340. while (1) {
  341. ret = read_extent_buffer_pages(io_tree, eb, start,
  342. WAIT_COMPLETE,
  343. btree_get_extent, mirror_num);
  344. if (!ret) {
  345. if (!verify_parent_transid(io_tree, eb,
  346. parent_transid, 0))
  347. break;
  348. else
  349. ret = -EIO;
  350. }
  351. /*
  352. * This buffer's crc is fine, but its contents are corrupted, so
  353. * there is no reason to read the other copies, they won't be
  354. * any less wrong.
  355. */
  356. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  357. break;
  358. num_copies = btrfs_num_copies(root->fs_info,
  359. eb->start, eb->len);
  360. if (num_copies == 1)
  361. break;
  362. if (!failed_mirror) {
  363. failed = 1;
  364. failed_mirror = eb->read_mirror;
  365. }
  366. mirror_num++;
  367. if (mirror_num == failed_mirror)
  368. mirror_num++;
  369. if (mirror_num > num_copies)
  370. break;
  371. }
  372. if (failed && !ret && failed_mirror)
  373. repair_eb_io_failure(root, eb, failed_mirror);
  374. return ret;
  375. }
  376. /*
  377. * checksum a dirty tree block before IO. This has extra checks to make sure
  378. * we only fill in the checksum field in the first page of a multi-page block
  379. */
  380. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  381. {
  382. struct extent_io_tree *tree;
  383. u64 start = page_offset(page);
  384. u64 found_start;
  385. struct extent_buffer *eb;
  386. tree = &BTRFS_I(page->mapping->host)->io_tree;
  387. eb = (struct extent_buffer *)page->private;
  388. if (page != eb->pages[0])
  389. return 0;
  390. found_start = btrfs_header_bytenr(eb);
  391. if (found_start != start) {
  392. WARN_ON(1);
  393. return 0;
  394. }
  395. if (!PageUptodate(page)) {
  396. WARN_ON(1);
  397. return 0;
  398. }
  399. csum_tree_block(root, eb, 0);
  400. return 0;
  401. }
  402. static int check_tree_block_fsid(struct btrfs_root *root,
  403. struct extent_buffer *eb)
  404. {
  405. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  406. u8 fsid[BTRFS_UUID_SIZE];
  407. int ret = 1;
  408. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  409. BTRFS_FSID_SIZE);
  410. while (fs_devices) {
  411. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  412. ret = 0;
  413. break;
  414. }
  415. fs_devices = fs_devices->seed;
  416. }
  417. return ret;
  418. }
  419. #define CORRUPT(reason, eb, root, slot) \
  420. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  421. "root=%llu, slot=%d\n", reason, \
  422. (unsigned long long)btrfs_header_bytenr(eb), \
  423. (unsigned long long)root->objectid, slot)
  424. static noinline int check_leaf(struct btrfs_root *root,
  425. struct extent_buffer *leaf)
  426. {
  427. struct btrfs_key key;
  428. struct btrfs_key leaf_key;
  429. u32 nritems = btrfs_header_nritems(leaf);
  430. int slot;
  431. if (nritems == 0)
  432. return 0;
  433. /* Check the 0 item */
  434. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  435. BTRFS_LEAF_DATA_SIZE(root)) {
  436. CORRUPT("invalid item offset size pair", leaf, root, 0);
  437. return -EIO;
  438. }
  439. /*
  440. * Check to make sure each items keys are in the correct order and their
  441. * offsets make sense. We only have to loop through nritems-1 because
  442. * we check the current slot against the next slot, which verifies the
  443. * next slot's offset+size makes sense and that the current's slot
  444. * offset is correct.
  445. */
  446. for (slot = 0; slot < nritems - 1; slot++) {
  447. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  448. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  449. /* Make sure the keys are in the right order */
  450. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  451. CORRUPT("bad key order", leaf, root, slot);
  452. return -EIO;
  453. }
  454. /*
  455. * Make sure the offset and ends are right, remember that the
  456. * item data starts at the end of the leaf and grows towards the
  457. * front.
  458. */
  459. if (btrfs_item_offset_nr(leaf, slot) !=
  460. btrfs_item_end_nr(leaf, slot + 1)) {
  461. CORRUPT("slot offset bad", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Check to make sure that we don't point outside of the leaf,
  466. * just incase all the items are consistent to eachother, but
  467. * all point outside of the leaf.
  468. */
  469. if (btrfs_item_end_nr(leaf, slot) >
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("slot end outside of leaf", leaf, root, slot);
  472. return -EIO;
  473. }
  474. }
  475. return 0;
  476. }
  477. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  478. struct page *page, int max_walk)
  479. {
  480. struct extent_buffer *eb;
  481. u64 start = page_offset(page);
  482. u64 target = start;
  483. u64 min_start;
  484. if (start < max_walk)
  485. min_start = 0;
  486. else
  487. min_start = start - max_walk;
  488. while (start >= min_start) {
  489. eb = find_extent_buffer(tree, start, 0);
  490. if (eb) {
  491. /*
  492. * we found an extent buffer and it contains our page
  493. * horray!
  494. */
  495. if (eb->start <= target &&
  496. eb->start + eb->len > target)
  497. return eb;
  498. /* we found an extent buffer that wasn't for us */
  499. free_extent_buffer(eb);
  500. return NULL;
  501. }
  502. if (start == 0)
  503. break;
  504. start -= PAGE_CACHE_SIZE;
  505. }
  506. return NULL;
  507. }
  508. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  509. struct extent_state *state, int mirror)
  510. {
  511. struct extent_io_tree *tree;
  512. u64 found_start;
  513. int found_level;
  514. struct extent_buffer *eb;
  515. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  516. int ret = 0;
  517. int reads_done;
  518. if (!page->private)
  519. goto out;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. eb = (struct extent_buffer *)page->private;
  522. /* the pending IO might have been the only thing that kept this buffer
  523. * in memory. Make sure we have a ref for all this other checks
  524. */
  525. extent_buffer_get(eb);
  526. reads_done = atomic_dec_and_test(&eb->io_pages);
  527. if (!reads_done)
  528. goto err;
  529. eb->read_mirror = mirror;
  530. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  531. ret = -EIO;
  532. goto err;
  533. }
  534. found_start = btrfs_header_bytenr(eb);
  535. if (found_start != eb->start) {
  536. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  537. "%llu %llu\n",
  538. (unsigned long long)found_start,
  539. (unsigned long long)eb->start);
  540. ret = -EIO;
  541. goto err;
  542. }
  543. if (check_tree_block_fsid(root, eb)) {
  544. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  545. (unsigned long long)eb->start);
  546. ret = -EIO;
  547. goto err;
  548. }
  549. found_level = btrfs_header_level(eb);
  550. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  551. eb, found_level);
  552. ret = csum_tree_block(root, eb, 1);
  553. if (ret) {
  554. ret = -EIO;
  555. goto err;
  556. }
  557. /*
  558. * If this is a leaf block and it is corrupt, set the corrupt bit so
  559. * that we don't try and read the other copies of this block, just
  560. * return -EIO.
  561. */
  562. if (found_level == 0 && check_leaf(root, eb)) {
  563. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  564. ret = -EIO;
  565. }
  566. if (!ret)
  567. set_extent_buffer_uptodate(eb);
  568. err:
  569. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  570. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  571. btree_readahead_hook(root, eb, eb->start, ret);
  572. }
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. end_io_wq->work.func = end_workqueue_fn;
  605. end_io_wq->work.flags = 0;
  606. if (bio->bi_rw & REQ_WRITE) {
  607. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  608. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  609. &end_io_wq->work);
  610. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  611. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  612. &end_io_wq->work);
  613. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  614. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  615. &end_io_wq->work);
  616. else
  617. btrfs_queue_worker(&fs_info->endio_write_workers,
  618. &end_io_wq->work);
  619. } else {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  621. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata)
  624. btrfs_queue_worker(&fs_info->endio_meta_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_workers,
  628. &end_io_wq->work);
  629. }
  630. }
  631. /*
  632. * For the metadata arg you want
  633. *
  634. * 0 - if data
  635. * 1 - if normal metadta
  636. * 2 - if writing to the free space cache area
  637. * 3 - raid parity work
  638. */
  639. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  640. int metadata)
  641. {
  642. struct end_io_wq *end_io_wq;
  643. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  644. if (!end_io_wq)
  645. return -ENOMEM;
  646. end_io_wq->private = bio->bi_private;
  647. end_io_wq->end_io = bio->bi_end_io;
  648. end_io_wq->info = info;
  649. end_io_wq->error = 0;
  650. end_io_wq->bio = bio;
  651. end_io_wq->metadata = metadata;
  652. bio->bi_private = end_io_wq;
  653. bio->bi_end_io = end_workqueue_bio;
  654. return 0;
  655. }
  656. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  657. {
  658. unsigned long limit = min_t(unsigned long,
  659. info->workers.max_workers,
  660. info->fs_devices->open_devices);
  661. return 256 * limit;
  662. }
  663. static void run_one_async_start(struct btrfs_work *work)
  664. {
  665. struct async_submit_bio *async;
  666. int ret;
  667. async = container_of(work, struct async_submit_bio, work);
  668. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  669. async->mirror_num, async->bio_flags,
  670. async->bio_offset);
  671. if (ret)
  672. async->error = ret;
  673. }
  674. static void run_one_async_done(struct btrfs_work *work)
  675. {
  676. struct btrfs_fs_info *fs_info;
  677. struct async_submit_bio *async;
  678. int limit;
  679. async = container_of(work, struct async_submit_bio, work);
  680. fs_info = BTRFS_I(async->inode)->root->fs_info;
  681. limit = btrfs_async_submit_limit(fs_info);
  682. limit = limit * 2 / 3;
  683. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  684. waitqueue_active(&fs_info->async_submit_wait))
  685. wake_up(&fs_info->async_submit_wait);
  686. /* If an error occured we just want to clean up the bio and move on */
  687. if (async->error) {
  688. bio_endio(async->bio, async->error);
  689. return;
  690. }
  691. async->submit_bio_done(async->inode, async->rw, async->bio,
  692. async->mirror_num, async->bio_flags,
  693. async->bio_offset);
  694. }
  695. static void run_one_async_free(struct btrfs_work *work)
  696. {
  697. struct async_submit_bio *async;
  698. async = container_of(work, struct async_submit_bio, work);
  699. kfree(async);
  700. }
  701. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  702. int rw, struct bio *bio, int mirror_num,
  703. unsigned long bio_flags,
  704. u64 bio_offset,
  705. extent_submit_bio_hook_t *submit_bio_start,
  706. extent_submit_bio_hook_t *submit_bio_done)
  707. {
  708. struct async_submit_bio *async;
  709. async = kmalloc(sizeof(*async), GFP_NOFS);
  710. if (!async)
  711. return -ENOMEM;
  712. async->inode = inode;
  713. async->rw = rw;
  714. async->bio = bio;
  715. async->mirror_num = mirror_num;
  716. async->submit_bio_start = submit_bio_start;
  717. async->submit_bio_done = submit_bio_done;
  718. async->work.func = run_one_async_start;
  719. async->work.ordered_func = run_one_async_done;
  720. async->work.ordered_free = run_one_async_free;
  721. async->work.flags = 0;
  722. async->bio_flags = bio_flags;
  723. async->bio_offset = bio_offset;
  724. async->error = 0;
  725. atomic_inc(&fs_info->nr_async_submits);
  726. if (rw & REQ_SYNC)
  727. btrfs_set_work_high_prio(&async->work);
  728. btrfs_queue_worker(&fs_info->workers, &async->work);
  729. while (atomic_read(&fs_info->async_submit_draining) &&
  730. atomic_read(&fs_info->nr_async_submits)) {
  731. wait_event(fs_info->async_submit_wait,
  732. (atomic_read(&fs_info->nr_async_submits) == 0));
  733. }
  734. return 0;
  735. }
  736. static int btree_csum_one_bio(struct bio *bio)
  737. {
  738. struct bio_vec *bvec = bio->bi_io_vec;
  739. int bio_index = 0;
  740. struct btrfs_root *root;
  741. int ret = 0;
  742. WARN_ON(bio->bi_vcnt <= 0);
  743. while (bio_index < bio->bi_vcnt) {
  744. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  745. ret = csum_dirty_buffer(root, bvec->bv_page);
  746. if (ret)
  747. break;
  748. bio_index++;
  749. bvec++;
  750. }
  751. return ret;
  752. }
  753. static int __btree_submit_bio_start(struct inode *inode, int rw,
  754. struct bio *bio, int mirror_num,
  755. unsigned long bio_flags,
  756. u64 bio_offset)
  757. {
  758. /*
  759. * when we're called for a write, we're already in the async
  760. * submission context. Just jump into btrfs_map_bio
  761. */
  762. return btree_csum_one_bio(bio);
  763. }
  764. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  765. int mirror_num, unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. int ret;
  769. /*
  770. * when we're called for a write, we're already in the async
  771. * submission context. Just jump into btrfs_map_bio
  772. */
  773. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  774. if (ret)
  775. bio_endio(bio, ret);
  776. return ret;
  777. }
  778. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  779. {
  780. if (bio_flags & EXTENT_BIO_TREE_LOG)
  781. return 0;
  782. #ifdef CONFIG_X86
  783. if (cpu_has_xmm4_2)
  784. return 0;
  785. #endif
  786. return 1;
  787. }
  788. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  789. int mirror_num, unsigned long bio_flags,
  790. u64 bio_offset)
  791. {
  792. int async = check_async_write(inode, bio_flags);
  793. int ret;
  794. if (!(rw & REQ_WRITE)) {
  795. /*
  796. * called for a read, do the setup so that checksum validation
  797. * can happen in the async kernel threads
  798. */
  799. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  800. bio, 1);
  801. if (ret)
  802. goto out_w_error;
  803. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  804. mirror_num, 0);
  805. } else if (!async) {
  806. ret = btree_csum_one_bio(bio);
  807. if (ret)
  808. goto out_w_error;
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  810. mirror_num, 0);
  811. } else {
  812. /*
  813. * kthread helpers are used to submit writes so that
  814. * checksumming can happen in parallel across all CPUs
  815. */
  816. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  817. inode, rw, bio, mirror_num, 0,
  818. bio_offset,
  819. __btree_submit_bio_start,
  820. __btree_submit_bio_done);
  821. }
  822. if (ret) {
  823. out_w_error:
  824. bio_endio(bio, ret);
  825. }
  826. return ret;
  827. }
  828. #ifdef CONFIG_MIGRATION
  829. static int btree_migratepage(struct address_space *mapping,
  830. struct page *newpage, struct page *page,
  831. enum migrate_mode mode)
  832. {
  833. /*
  834. * we can't safely write a btree page from here,
  835. * we haven't done the locking hook
  836. */
  837. if (PageDirty(page))
  838. return -EAGAIN;
  839. /*
  840. * Buffers may be managed in a filesystem specific way.
  841. * We must have no buffers or drop them.
  842. */
  843. if (page_has_private(page) &&
  844. !try_to_release_page(page, GFP_KERNEL))
  845. return -EAGAIN;
  846. return migrate_page(mapping, newpage, page, mode);
  847. }
  848. #endif
  849. static int btree_writepages(struct address_space *mapping,
  850. struct writeback_control *wbc)
  851. {
  852. struct extent_io_tree *tree;
  853. struct btrfs_fs_info *fs_info;
  854. int ret;
  855. tree = &BTRFS_I(mapping->host)->io_tree;
  856. if (wbc->sync_mode == WB_SYNC_NONE) {
  857. if (wbc->for_kupdate)
  858. return 0;
  859. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  860. /* this is a bit racy, but that's ok */
  861. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  862. BTRFS_DIRTY_METADATA_THRESH);
  863. if (ret < 0)
  864. return 0;
  865. }
  866. return btree_write_cache_pages(mapping, wbc);
  867. }
  868. static int btree_readpage(struct file *file, struct page *page)
  869. {
  870. struct extent_io_tree *tree;
  871. tree = &BTRFS_I(page->mapping->host)->io_tree;
  872. return extent_read_full_page(tree, page, btree_get_extent, 0);
  873. }
  874. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  875. {
  876. if (PageWriteback(page) || PageDirty(page))
  877. return 0;
  878. /*
  879. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  880. * slab allocation from alloc_extent_state down the callchain where
  881. * it'd hit a BUG_ON as those flags are not allowed.
  882. */
  883. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  884. return try_release_extent_buffer(page, gfp_flags);
  885. }
  886. static void btree_invalidatepage(struct page *page, unsigned long offset)
  887. {
  888. struct extent_io_tree *tree;
  889. tree = &BTRFS_I(page->mapping->host)->io_tree;
  890. extent_invalidatepage(tree, page, offset);
  891. btree_releasepage(page, GFP_NOFS);
  892. if (PagePrivate(page)) {
  893. printk(KERN_WARNING "btrfs warning page private not zero "
  894. "on page %llu\n", (unsigned long long)page_offset(page));
  895. ClearPagePrivate(page);
  896. set_page_private(page, 0);
  897. page_cache_release(page);
  898. }
  899. }
  900. static int btree_set_page_dirty(struct page *page)
  901. {
  902. #ifdef DEBUG
  903. struct extent_buffer *eb;
  904. BUG_ON(!PagePrivate(page));
  905. eb = (struct extent_buffer *)page->private;
  906. BUG_ON(!eb);
  907. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  908. BUG_ON(!atomic_read(&eb->refs));
  909. btrfs_assert_tree_locked(eb);
  910. #endif
  911. return __set_page_dirty_nobuffers(page);
  912. }
  913. static const struct address_space_operations btree_aops = {
  914. .readpage = btree_readpage,
  915. .writepages = btree_writepages,
  916. .releasepage = btree_releasepage,
  917. .invalidatepage = btree_invalidatepage,
  918. #ifdef CONFIG_MIGRATION
  919. .migratepage = btree_migratepage,
  920. #endif
  921. .set_page_dirty = btree_set_page_dirty,
  922. };
  923. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  924. u64 parent_transid)
  925. {
  926. struct extent_buffer *buf = NULL;
  927. struct inode *btree_inode = root->fs_info->btree_inode;
  928. int ret = 0;
  929. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  930. if (!buf)
  931. return 0;
  932. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  933. buf, 0, WAIT_NONE, btree_get_extent, 0);
  934. free_extent_buffer(buf);
  935. return ret;
  936. }
  937. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  938. int mirror_num, struct extent_buffer **eb)
  939. {
  940. struct extent_buffer *buf = NULL;
  941. struct inode *btree_inode = root->fs_info->btree_inode;
  942. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  943. int ret;
  944. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  945. if (!buf)
  946. return 0;
  947. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  948. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  949. btree_get_extent, mirror_num);
  950. if (ret) {
  951. free_extent_buffer(buf);
  952. return ret;
  953. }
  954. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  955. free_extent_buffer(buf);
  956. return -EIO;
  957. } else if (extent_buffer_uptodate(buf)) {
  958. *eb = buf;
  959. } else {
  960. free_extent_buffer(buf);
  961. }
  962. return 0;
  963. }
  964. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  965. u64 bytenr, u32 blocksize)
  966. {
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. struct extent_buffer *eb;
  969. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  970. bytenr, blocksize);
  971. return eb;
  972. }
  973. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  974. u64 bytenr, u32 blocksize)
  975. {
  976. struct inode *btree_inode = root->fs_info->btree_inode;
  977. struct extent_buffer *eb;
  978. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  979. bytenr, blocksize);
  980. return eb;
  981. }
  982. int btrfs_write_tree_block(struct extent_buffer *buf)
  983. {
  984. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  985. buf->start + buf->len - 1);
  986. }
  987. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawait_range(buf->pages[0]->mapping,
  990. buf->start, buf->start + buf->len - 1);
  991. }
  992. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  993. u32 blocksize, u64 parent_transid)
  994. {
  995. struct extent_buffer *buf = NULL;
  996. int ret;
  997. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  998. if (!buf)
  999. return NULL;
  1000. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1001. return buf;
  1002. }
  1003. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1004. struct extent_buffer *buf)
  1005. {
  1006. struct btrfs_fs_info *fs_info = root->fs_info;
  1007. if (btrfs_header_generation(buf) ==
  1008. fs_info->running_transaction->transid) {
  1009. btrfs_assert_tree_locked(buf);
  1010. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1011. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1012. -buf->len,
  1013. fs_info->dirty_metadata_batch);
  1014. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1015. btrfs_set_lock_blocking(buf);
  1016. clear_extent_buffer_dirty(buf);
  1017. }
  1018. }
  1019. }
  1020. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1021. u32 stripesize, struct btrfs_root *root,
  1022. struct btrfs_fs_info *fs_info,
  1023. u64 objectid)
  1024. {
  1025. root->node = NULL;
  1026. root->commit_root = NULL;
  1027. root->sectorsize = sectorsize;
  1028. root->nodesize = nodesize;
  1029. root->leafsize = leafsize;
  1030. root->stripesize = stripesize;
  1031. root->ref_cows = 0;
  1032. root->track_dirty = 0;
  1033. root->in_radix = 0;
  1034. root->orphan_item_inserted = 0;
  1035. root->orphan_cleanup_state = 0;
  1036. root->objectid = objectid;
  1037. root->last_trans = 0;
  1038. root->highest_objectid = 0;
  1039. root->name = NULL;
  1040. root->inode_tree = RB_ROOT;
  1041. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1042. root->block_rsv = NULL;
  1043. root->orphan_block_rsv = NULL;
  1044. INIT_LIST_HEAD(&root->dirty_list);
  1045. INIT_LIST_HEAD(&root->root_list);
  1046. INIT_LIST_HEAD(&root->logged_list[0]);
  1047. INIT_LIST_HEAD(&root->logged_list[1]);
  1048. spin_lock_init(&root->orphan_lock);
  1049. spin_lock_init(&root->inode_lock);
  1050. spin_lock_init(&root->accounting_lock);
  1051. spin_lock_init(&root->log_extents_lock[0]);
  1052. spin_lock_init(&root->log_extents_lock[1]);
  1053. mutex_init(&root->objectid_mutex);
  1054. mutex_init(&root->log_mutex);
  1055. init_waitqueue_head(&root->log_writer_wait);
  1056. init_waitqueue_head(&root->log_commit_wait[0]);
  1057. init_waitqueue_head(&root->log_commit_wait[1]);
  1058. atomic_set(&root->log_commit[0], 0);
  1059. atomic_set(&root->log_commit[1], 0);
  1060. atomic_set(&root->log_writers, 0);
  1061. atomic_set(&root->log_batch, 0);
  1062. atomic_set(&root->orphan_inodes, 0);
  1063. root->log_transid = 0;
  1064. root->last_log_commit = 0;
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. root->defrag_trans_start = fs_info->generation;
  1072. init_completion(&root->kobj_unregister);
  1073. root->defrag_running = 0;
  1074. root->root_key.objectid = objectid;
  1075. root->anon_dev = 0;
  1076. spin_lock_init(&root->root_item_lock);
  1077. }
  1078. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1079. struct btrfs_fs_info *fs_info,
  1080. u64 objectid,
  1081. struct btrfs_root *root)
  1082. {
  1083. int ret;
  1084. u32 blocksize;
  1085. u64 generation;
  1086. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1087. tree_root->sectorsize, tree_root->stripesize,
  1088. root, fs_info, objectid);
  1089. ret = btrfs_find_last_root(tree_root, objectid,
  1090. &root->root_item, &root->root_key);
  1091. if (ret > 0)
  1092. return -ENOENT;
  1093. else if (ret < 0)
  1094. return ret;
  1095. generation = btrfs_root_generation(&root->root_item);
  1096. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1097. root->commit_root = NULL;
  1098. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1099. blocksize, generation);
  1100. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1101. free_extent_buffer(root->node);
  1102. root->node = NULL;
  1103. return -EIO;
  1104. }
  1105. root->commit_root = btrfs_root_node(root);
  1106. return 0;
  1107. }
  1108. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1109. {
  1110. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1111. if (root)
  1112. root->fs_info = fs_info;
  1113. return root;
  1114. }
  1115. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1116. struct btrfs_fs_info *fs_info,
  1117. u64 objectid)
  1118. {
  1119. struct extent_buffer *leaf;
  1120. struct btrfs_root *tree_root = fs_info->tree_root;
  1121. struct btrfs_root *root;
  1122. struct btrfs_key key;
  1123. int ret = 0;
  1124. u64 bytenr;
  1125. root = btrfs_alloc_root(fs_info);
  1126. if (!root)
  1127. return ERR_PTR(-ENOMEM);
  1128. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1129. tree_root->sectorsize, tree_root->stripesize,
  1130. root, fs_info, objectid);
  1131. root->root_key.objectid = objectid;
  1132. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1133. root->root_key.offset = 0;
  1134. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1135. 0, objectid, NULL, 0, 0, 0);
  1136. if (IS_ERR(leaf)) {
  1137. ret = PTR_ERR(leaf);
  1138. leaf = NULL;
  1139. goto fail;
  1140. }
  1141. bytenr = leaf->start;
  1142. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1143. btrfs_set_header_bytenr(leaf, leaf->start);
  1144. btrfs_set_header_generation(leaf, trans->transid);
  1145. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1146. btrfs_set_header_owner(leaf, objectid);
  1147. root->node = leaf;
  1148. write_extent_buffer(leaf, fs_info->fsid,
  1149. (unsigned long)btrfs_header_fsid(leaf),
  1150. BTRFS_FSID_SIZE);
  1151. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1152. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1153. BTRFS_UUID_SIZE);
  1154. btrfs_mark_buffer_dirty(leaf);
  1155. root->commit_root = btrfs_root_node(root);
  1156. root->track_dirty = 1;
  1157. root->root_item.flags = 0;
  1158. root->root_item.byte_limit = 0;
  1159. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1160. btrfs_set_root_generation(&root->root_item, trans->transid);
  1161. btrfs_set_root_level(&root->root_item, 0);
  1162. btrfs_set_root_refs(&root->root_item, 1);
  1163. btrfs_set_root_used(&root->root_item, leaf->len);
  1164. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1165. btrfs_set_root_dirid(&root->root_item, 0);
  1166. root->root_item.drop_level = 0;
  1167. key.objectid = objectid;
  1168. key.type = BTRFS_ROOT_ITEM_KEY;
  1169. key.offset = 0;
  1170. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1171. if (ret)
  1172. goto fail;
  1173. btrfs_tree_unlock(leaf);
  1174. return root;
  1175. fail:
  1176. if (leaf) {
  1177. btrfs_tree_unlock(leaf);
  1178. free_extent_buffer(leaf);
  1179. }
  1180. kfree(root);
  1181. return ERR_PTR(ret);
  1182. }
  1183. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1184. struct btrfs_fs_info *fs_info)
  1185. {
  1186. struct btrfs_root *root;
  1187. struct btrfs_root *tree_root = fs_info->tree_root;
  1188. struct extent_buffer *leaf;
  1189. root = btrfs_alloc_root(fs_info);
  1190. if (!root)
  1191. return ERR_PTR(-ENOMEM);
  1192. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1193. tree_root->sectorsize, tree_root->stripesize,
  1194. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1195. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1196. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1197. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1198. /*
  1199. * log trees do not get reference counted because they go away
  1200. * before a real commit is actually done. They do store pointers
  1201. * to file data extents, and those reference counts still get
  1202. * updated (along with back refs to the log tree).
  1203. */
  1204. root->ref_cows = 0;
  1205. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1206. BTRFS_TREE_LOG_OBJECTID, NULL,
  1207. 0, 0, 0);
  1208. if (IS_ERR(leaf)) {
  1209. kfree(root);
  1210. return ERR_CAST(leaf);
  1211. }
  1212. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1213. btrfs_set_header_bytenr(leaf, leaf->start);
  1214. btrfs_set_header_generation(leaf, trans->transid);
  1215. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1216. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1217. root->node = leaf;
  1218. write_extent_buffer(root->node, root->fs_info->fsid,
  1219. (unsigned long)btrfs_header_fsid(root->node),
  1220. BTRFS_FSID_SIZE);
  1221. btrfs_mark_buffer_dirty(root->node);
  1222. btrfs_tree_unlock(root->node);
  1223. return root;
  1224. }
  1225. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1226. struct btrfs_fs_info *fs_info)
  1227. {
  1228. struct btrfs_root *log_root;
  1229. log_root = alloc_log_tree(trans, fs_info);
  1230. if (IS_ERR(log_root))
  1231. return PTR_ERR(log_root);
  1232. WARN_ON(fs_info->log_root_tree);
  1233. fs_info->log_root_tree = log_root;
  1234. return 0;
  1235. }
  1236. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1237. struct btrfs_root *root)
  1238. {
  1239. struct btrfs_root *log_root;
  1240. struct btrfs_inode_item *inode_item;
  1241. log_root = alloc_log_tree(trans, root->fs_info);
  1242. if (IS_ERR(log_root))
  1243. return PTR_ERR(log_root);
  1244. log_root->last_trans = trans->transid;
  1245. log_root->root_key.offset = root->root_key.objectid;
  1246. inode_item = &log_root->root_item.inode;
  1247. inode_item->generation = cpu_to_le64(1);
  1248. inode_item->size = cpu_to_le64(3);
  1249. inode_item->nlink = cpu_to_le32(1);
  1250. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1251. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1252. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1253. WARN_ON(root->log_root);
  1254. root->log_root = log_root;
  1255. root->log_transid = 0;
  1256. root->last_log_commit = 0;
  1257. return 0;
  1258. }
  1259. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1260. struct btrfs_key *location)
  1261. {
  1262. struct btrfs_root *root;
  1263. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1264. struct btrfs_path *path;
  1265. struct extent_buffer *l;
  1266. u64 generation;
  1267. u32 blocksize;
  1268. int ret = 0;
  1269. int slot;
  1270. root = btrfs_alloc_root(fs_info);
  1271. if (!root)
  1272. return ERR_PTR(-ENOMEM);
  1273. if (location->offset == (u64)-1) {
  1274. ret = find_and_setup_root(tree_root, fs_info,
  1275. location->objectid, root);
  1276. if (ret) {
  1277. kfree(root);
  1278. return ERR_PTR(ret);
  1279. }
  1280. goto out;
  1281. }
  1282. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1283. tree_root->sectorsize, tree_root->stripesize,
  1284. root, fs_info, location->objectid);
  1285. path = btrfs_alloc_path();
  1286. if (!path) {
  1287. kfree(root);
  1288. return ERR_PTR(-ENOMEM);
  1289. }
  1290. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1291. if (ret == 0) {
  1292. l = path->nodes[0];
  1293. slot = path->slots[0];
  1294. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1295. memcpy(&root->root_key, location, sizeof(*location));
  1296. }
  1297. btrfs_free_path(path);
  1298. if (ret) {
  1299. kfree(root);
  1300. if (ret > 0)
  1301. ret = -ENOENT;
  1302. return ERR_PTR(ret);
  1303. }
  1304. generation = btrfs_root_generation(&root->root_item);
  1305. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1306. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1307. blocksize, generation);
  1308. root->commit_root = btrfs_root_node(root);
  1309. BUG_ON(!root->node); /* -ENOMEM */
  1310. out:
  1311. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1312. root->ref_cows = 1;
  1313. btrfs_check_and_init_root_item(&root->root_item);
  1314. }
  1315. return root;
  1316. }
  1317. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1318. struct btrfs_key *location)
  1319. {
  1320. struct btrfs_root *root;
  1321. int ret;
  1322. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1323. return fs_info->tree_root;
  1324. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1325. return fs_info->extent_root;
  1326. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1327. return fs_info->chunk_root;
  1328. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1329. return fs_info->dev_root;
  1330. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1331. return fs_info->csum_root;
  1332. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1333. return fs_info->quota_root ? fs_info->quota_root :
  1334. ERR_PTR(-ENOENT);
  1335. again:
  1336. spin_lock(&fs_info->fs_roots_radix_lock);
  1337. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1338. (unsigned long)location->objectid);
  1339. spin_unlock(&fs_info->fs_roots_radix_lock);
  1340. if (root)
  1341. return root;
  1342. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1343. if (IS_ERR(root))
  1344. return root;
  1345. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1346. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1347. GFP_NOFS);
  1348. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1349. ret = -ENOMEM;
  1350. goto fail;
  1351. }
  1352. btrfs_init_free_ino_ctl(root);
  1353. mutex_init(&root->fs_commit_mutex);
  1354. spin_lock_init(&root->cache_lock);
  1355. init_waitqueue_head(&root->cache_wait);
  1356. ret = get_anon_bdev(&root->anon_dev);
  1357. if (ret)
  1358. goto fail;
  1359. if (btrfs_root_refs(&root->root_item) == 0) {
  1360. ret = -ENOENT;
  1361. goto fail;
  1362. }
  1363. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1364. if (ret < 0)
  1365. goto fail;
  1366. if (ret == 0)
  1367. root->orphan_item_inserted = 1;
  1368. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1369. if (ret)
  1370. goto fail;
  1371. spin_lock(&fs_info->fs_roots_radix_lock);
  1372. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1373. (unsigned long)root->root_key.objectid,
  1374. root);
  1375. if (ret == 0)
  1376. root->in_radix = 1;
  1377. spin_unlock(&fs_info->fs_roots_radix_lock);
  1378. radix_tree_preload_end();
  1379. if (ret) {
  1380. if (ret == -EEXIST) {
  1381. free_fs_root(root);
  1382. goto again;
  1383. }
  1384. goto fail;
  1385. }
  1386. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1387. root->root_key.objectid);
  1388. WARN_ON(ret);
  1389. return root;
  1390. fail:
  1391. free_fs_root(root);
  1392. return ERR_PTR(ret);
  1393. }
  1394. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1395. {
  1396. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1397. int ret = 0;
  1398. struct btrfs_device *device;
  1399. struct backing_dev_info *bdi;
  1400. rcu_read_lock();
  1401. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1402. if (!device->bdev)
  1403. continue;
  1404. bdi = blk_get_backing_dev_info(device->bdev);
  1405. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1406. ret = 1;
  1407. break;
  1408. }
  1409. }
  1410. rcu_read_unlock();
  1411. return ret;
  1412. }
  1413. /*
  1414. * If this fails, caller must call bdi_destroy() to get rid of the
  1415. * bdi again.
  1416. */
  1417. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1418. {
  1419. int err;
  1420. bdi->capabilities = BDI_CAP_MAP_COPY;
  1421. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1422. if (err)
  1423. return err;
  1424. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1425. bdi->congested_fn = btrfs_congested_fn;
  1426. bdi->congested_data = info;
  1427. return 0;
  1428. }
  1429. /*
  1430. * called by the kthread helper functions to finally call the bio end_io
  1431. * functions. This is where read checksum verification actually happens
  1432. */
  1433. static void end_workqueue_fn(struct btrfs_work *work)
  1434. {
  1435. struct bio *bio;
  1436. struct end_io_wq *end_io_wq;
  1437. struct btrfs_fs_info *fs_info;
  1438. int error;
  1439. end_io_wq = container_of(work, struct end_io_wq, work);
  1440. bio = end_io_wq->bio;
  1441. fs_info = end_io_wq->info;
  1442. error = end_io_wq->error;
  1443. bio->bi_private = end_io_wq->private;
  1444. bio->bi_end_io = end_io_wq->end_io;
  1445. kfree(end_io_wq);
  1446. bio_endio(bio, error);
  1447. }
  1448. static int cleaner_kthread(void *arg)
  1449. {
  1450. struct btrfs_root *root = arg;
  1451. do {
  1452. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1453. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1454. btrfs_run_delayed_iputs(root);
  1455. btrfs_clean_old_snapshots(root);
  1456. mutex_unlock(&root->fs_info->cleaner_mutex);
  1457. btrfs_run_defrag_inodes(root->fs_info);
  1458. }
  1459. if (!try_to_freeze()) {
  1460. set_current_state(TASK_INTERRUPTIBLE);
  1461. if (!kthread_should_stop())
  1462. schedule();
  1463. __set_current_state(TASK_RUNNING);
  1464. }
  1465. } while (!kthread_should_stop());
  1466. return 0;
  1467. }
  1468. static int transaction_kthread(void *arg)
  1469. {
  1470. struct btrfs_root *root = arg;
  1471. struct btrfs_trans_handle *trans;
  1472. struct btrfs_transaction *cur;
  1473. u64 transid;
  1474. unsigned long now;
  1475. unsigned long delay;
  1476. bool cannot_commit;
  1477. do {
  1478. cannot_commit = false;
  1479. delay = HZ * 30;
  1480. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1481. spin_lock(&root->fs_info->trans_lock);
  1482. cur = root->fs_info->running_transaction;
  1483. if (!cur) {
  1484. spin_unlock(&root->fs_info->trans_lock);
  1485. goto sleep;
  1486. }
  1487. now = get_seconds();
  1488. if (!cur->blocked &&
  1489. (now < cur->start_time || now - cur->start_time < 30)) {
  1490. spin_unlock(&root->fs_info->trans_lock);
  1491. delay = HZ * 5;
  1492. goto sleep;
  1493. }
  1494. transid = cur->transid;
  1495. spin_unlock(&root->fs_info->trans_lock);
  1496. /* If the file system is aborted, this will always fail. */
  1497. trans = btrfs_attach_transaction(root);
  1498. if (IS_ERR(trans)) {
  1499. if (PTR_ERR(trans) != -ENOENT)
  1500. cannot_commit = true;
  1501. goto sleep;
  1502. }
  1503. if (transid == trans->transid) {
  1504. btrfs_commit_transaction(trans, root);
  1505. } else {
  1506. btrfs_end_transaction(trans, root);
  1507. }
  1508. sleep:
  1509. wake_up_process(root->fs_info->cleaner_kthread);
  1510. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1511. if (!try_to_freeze()) {
  1512. set_current_state(TASK_INTERRUPTIBLE);
  1513. if (!kthread_should_stop() &&
  1514. (!btrfs_transaction_blocked(root->fs_info) ||
  1515. cannot_commit))
  1516. schedule_timeout(delay);
  1517. __set_current_state(TASK_RUNNING);
  1518. }
  1519. } while (!kthread_should_stop());
  1520. return 0;
  1521. }
  1522. /*
  1523. * this will find the highest generation in the array of
  1524. * root backups. The index of the highest array is returned,
  1525. * or -1 if we can't find anything.
  1526. *
  1527. * We check to make sure the array is valid by comparing the
  1528. * generation of the latest root in the array with the generation
  1529. * in the super block. If they don't match we pitch it.
  1530. */
  1531. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1532. {
  1533. u64 cur;
  1534. int newest_index = -1;
  1535. struct btrfs_root_backup *root_backup;
  1536. int i;
  1537. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1538. root_backup = info->super_copy->super_roots + i;
  1539. cur = btrfs_backup_tree_root_gen(root_backup);
  1540. if (cur == newest_gen)
  1541. newest_index = i;
  1542. }
  1543. /* check to see if we actually wrapped around */
  1544. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1545. root_backup = info->super_copy->super_roots;
  1546. cur = btrfs_backup_tree_root_gen(root_backup);
  1547. if (cur == newest_gen)
  1548. newest_index = 0;
  1549. }
  1550. return newest_index;
  1551. }
  1552. /*
  1553. * find the oldest backup so we know where to store new entries
  1554. * in the backup array. This will set the backup_root_index
  1555. * field in the fs_info struct
  1556. */
  1557. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1558. u64 newest_gen)
  1559. {
  1560. int newest_index = -1;
  1561. newest_index = find_newest_super_backup(info, newest_gen);
  1562. /* if there was garbage in there, just move along */
  1563. if (newest_index == -1) {
  1564. info->backup_root_index = 0;
  1565. } else {
  1566. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1567. }
  1568. }
  1569. /*
  1570. * copy all the root pointers into the super backup array.
  1571. * this will bump the backup pointer by one when it is
  1572. * done
  1573. */
  1574. static void backup_super_roots(struct btrfs_fs_info *info)
  1575. {
  1576. int next_backup;
  1577. struct btrfs_root_backup *root_backup;
  1578. int last_backup;
  1579. next_backup = info->backup_root_index;
  1580. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1581. BTRFS_NUM_BACKUP_ROOTS;
  1582. /*
  1583. * just overwrite the last backup if we're at the same generation
  1584. * this happens only at umount
  1585. */
  1586. root_backup = info->super_for_commit->super_roots + last_backup;
  1587. if (btrfs_backup_tree_root_gen(root_backup) ==
  1588. btrfs_header_generation(info->tree_root->node))
  1589. next_backup = last_backup;
  1590. root_backup = info->super_for_commit->super_roots + next_backup;
  1591. /*
  1592. * make sure all of our padding and empty slots get zero filled
  1593. * regardless of which ones we use today
  1594. */
  1595. memset(root_backup, 0, sizeof(*root_backup));
  1596. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1597. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1598. btrfs_set_backup_tree_root_gen(root_backup,
  1599. btrfs_header_generation(info->tree_root->node));
  1600. btrfs_set_backup_tree_root_level(root_backup,
  1601. btrfs_header_level(info->tree_root->node));
  1602. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1603. btrfs_set_backup_chunk_root_gen(root_backup,
  1604. btrfs_header_generation(info->chunk_root->node));
  1605. btrfs_set_backup_chunk_root_level(root_backup,
  1606. btrfs_header_level(info->chunk_root->node));
  1607. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1608. btrfs_set_backup_extent_root_gen(root_backup,
  1609. btrfs_header_generation(info->extent_root->node));
  1610. btrfs_set_backup_extent_root_level(root_backup,
  1611. btrfs_header_level(info->extent_root->node));
  1612. /*
  1613. * we might commit during log recovery, which happens before we set
  1614. * the fs_root. Make sure it is valid before we fill it in.
  1615. */
  1616. if (info->fs_root && info->fs_root->node) {
  1617. btrfs_set_backup_fs_root(root_backup,
  1618. info->fs_root->node->start);
  1619. btrfs_set_backup_fs_root_gen(root_backup,
  1620. btrfs_header_generation(info->fs_root->node));
  1621. btrfs_set_backup_fs_root_level(root_backup,
  1622. btrfs_header_level(info->fs_root->node));
  1623. }
  1624. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1625. btrfs_set_backup_dev_root_gen(root_backup,
  1626. btrfs_header_generation(info->dev_root->node));
  1627. btrfs_set_backup_dev_root_level(root_backup,
  1628. btrfs_header_level(info->dev_root->node));
  1629. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1630. btrfs_set_backup_csum_root_gen(root_backup,
  1631. btrfs_header_generation(info->csum_root->node));
  1632. btrfs_set_backup_csum_root_level(root_backup,
  1633. btrfs_header_level(info->csum_root->node));
  1634. btrfs_set_backup_total_bytes(root_backup,
  1635. btrfs_super_total_bytes(info->super_copy));
  1636. btrfs_set_backup_bytes_used(root_backup,
  1637. btrfs_super_bytes_used(info->super_copy));
  1638. btrfs_set_backup_num_devices(root_backup,
  1639. btrfs_super_num_devices(info->super_copy));
  1640. /*
  1641. * if we don't copy this out to the super_copy, it won't get remembered
  1642. * for the next commit
  1643. */
  1644. memcpy(&info->super_copy->super_roots,
  1645. &info->super_for_commit->super_roots,
  1646. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1647. }
  1648. /*
  1649. * this copies info out of the root backup array and back into
  1650. * the in-memory super block. It is meant to help iterate through
  1651. * the array, so you send it the number of backups you've already
  1652. * tried and the last backup index you used.
  1653. *
  1654. * this returns -1 when it has tried all the backups
  1655. */
  1656. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1657. struct btrfs_super_block *super,
  1658. int *num_backups_tried, int *backup_index)
  1659. {
  1660. struct btrfs_root_backup *root_backup;
  1661. int newest = *backup_index;
  1662. if (*num_backups_tried == 0) {
  1663. u64 gen = btrfs_super_generation(super);
  1664. newest = find_newest_super_backup(info, gen);
  1665. if (newest == -1)
  1666. return -1;
  1667. *backup_index = newest;
  1668. *num_backups_tried = 1;
  1669. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1670. /* we've tried all the backups, all done */
  1671. return -1;
  1672. } else {
  1673. /* jump to the next oldest backup */
  1674. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1675. BTRFS_NUM_BACKUP_ROOTS;
  1676. *backup_index = newest;
  1677. *num_backups_tried += 1;
  1678. }
  1679. root_backup = super->super_roots + newest;
  1680. btrfs_set_super_generation(super,
  1681. btrfs_backup_tree_root_gen(root_backup));
  1682. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1683. btrfs_set_super_root_level(super,
  1684. btrfs_backup_tree_root_level(root_backup));
  1685. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1686. /*
  1687. * fixme: the total bytes and num_devices need to match or we should
  1688. * need a fsck
  1689. */
  1690. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1691. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1692. return 0;
  1693. }
  1694. /* helper to cleanup tree roots */
  1695. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1696. {
  1697. free_extent_buffer(info->tree_root->node);
  1698. free_extent_buffer(info->tree_root->commit_root);
  1699. free_extent_buffer(info->dev_root->node);
  1700. free_extent_buffer(info->dev_root->commit_root);
  1701. free_extent_buffer(info->extent_root->node);
  1702. free_extent_buffer(info->extent_root->commit_root);
  1703. free_extent_buffer(info->csum_root->node);
  1704. free_extent_buffer(info->csum_root->commit_root);
  1705. if (info->quota_root) {
  1706. free_extent_buffer(info->quota_root->node);
  1707. free_extent_buffer(info->quota_root->commit_root);
  1708. }
  1709. info->tree_root->node = NULL;
  1710. info->tree_root->commit_root = NULL;
  1711. info->dev_root->node = NULL;
  1712. info->dev_root->commit_root = NULL;
  1713. info->extent_root->node = NULL;
  1714. info->extent_root->commit_root = NULL;
  1715. info->csum_root->node = NULL;
  1716. info->csum_root->commit_root = NULL;
  1717. if (info->quota_root) {
  1718. info->quota_root->node = NULL;
  1719. info->quota_root->commit_root = NULL;
  1720. }
  1721. if (chunk_root) {
  1722. free_extent_buffer(info->chunk_root->node);
  1723. free_extent_buffer(info->chunk_root->commit_root);
  1724. info->chunk_root->node = NULL;
  1725. info->chunk_root->commit_root = NULL;
  1726. }
  1727. }
  1728. int open_ctree(struct super_block *sb,
  1729. struct btrfs_fs_devices *fs_devices,
  1730. char *options)
  1731. {
  1732. u32 sectorsize;
  1733. u32 nodesize;
  1734. u32 leafsize;
  1735. u32 blocksize;
  1736. u32 stripesize;
  1737. u64 generation;
  1738. u64 features;
  1739. struct btrfs_key location;
  1740. struct buffer_head *bh;
  1741. struct btrfs_super_block *disk_super;
  1742. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1743. struct btrfs_root *tree_root;
  1744. struct btrfs_root *extent_root;
  1745. struct btrfs_root *csum_root;
  1746. struct btrfs_root *chunk_root;
  1747. struct btrfs_root *dev_root;
  1748. struct btrfs_root *quota_root;
  1749. struct btrfs_root *log_tree_root;
  1750. int ret;
  1751. int err = -EINVAL;
  1752. int num_backups_tried = 0;
  1753. int backup_index = 0;
  1754. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1755. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1756. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1757. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1758. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1759. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1760. if (!tree_root || !extent_root || !csum_root ||
  1761. !chunk_root || !dev_root || !quota_root) {
  1762. err = -ENOMEM;
  1763. goto fail;
  1764. }
  1765. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1766. if (ret) {
  1767. err = ret;
  1768. goto fail;
  1769. }
  1770. ret = setup_bdi(fs_info, &fs_info->bdi);
  1771. if (ret) {
  1772. err = ret;
  1773. goto fail_srcu;
  1774. }
  1775. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1776. if (ret) {
  1777. err = ret;
  1778. goto fail_bdi;
  1779. }
  1780. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1781. (1 + ilog2(nr_cpu_ids));
  1782. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1783. if (ret) {
  1784. err = ret;
  1785. goto fail_dirty_metadata_bytes;
  1786. }
  1787. fs_info->btree_inode = new_inode(sb);
  1788. if (!fs_info->btree_inode) {
  1789. err = -ENOMEM;
  1790. goto fail_delalloc_bytes;
  1791. }
  1792. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1793. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1794. INIT_LIST_HEAD(&fs_info->trans_list);
  1795. INIT_LIST_HEAD(&fs_info->dead_roots);
  1796. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1797. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1798. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1799. spin_lock_init(&fs_info->delalloc_lock);
  1800. spin_lock_init(&fs_info->trans_lock);
  1801. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1802. spin_lock_init(&fs_info->delayed_iput_lock);
  1803. spin_lock_init(&fs_info->defrag_inodes_lock);
  1804. spin_lock_init(&fs_info->free_chunk_lock);
  1805. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1806. rwlock_init(&fs_info->tree_mod_log_lock);
  1807. mutex_init(&fs_info->reloc_mutex);
  1808. seqlock_init(&fs_info->profiles_lock);
  1809. init_completion(&fs_info->kobj_unregister);
  1810. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1811. INIT_LIST_HEAD(&fs_info->space_info);
  1812. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1813. btrfs_mapping_init(&fs_info->mapping_tree);
  1814. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1815. BTRFS_BLOCK_RSV_GLOBAL);
  1816. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1817. BTRFS_BLOCK_RSV_DELALLOC);
  1818. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1819. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1820. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1821. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1822. BTRFS_BLOCK_RSV_DELOPS);
  1823. atomic_set(&fs_info->nr_async_submits, 0);
  1824. atomic_set(&fs_info->async_delalloc_pages, 0);
  1825. atomic_set(&fs_info->async_submit_draining, 0);
  1826. atomic_set(&fs_info->nr_async_bios, 0);
  1827. atomic_set(&fs_info->defrag_running, 0);
  1828. atomic_set(&fs_info->tree_mod_seq, 0);
  1829. fs_info->sb = sb;
  1830. fs_info->max_inline = 8192 * 1024;
  1831. fs_info->metadata_ratio = 0;
  1832. fs_info->defrag_inodes = RB_ROOT;
  1833. fs_info->trans_no_join = 0;
  1834. fs_info->free_chunk_space = 0;
  1835. fs_info->tree_mod_log = RB_ROOT;
  1836. /* readahead state */
  1837. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1838. spin_lock_init(&fs_info->reada_lock);
  1839. fs_info->thread_pool_size = min_t(unsigned long,
  1840. num_online_cpus() + 2, 8);
  1841. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1842. spin_lock_init(&fs_info->ordered_extent_lock);
  1843. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1844. GFP_NOFS);
  1845. if (!fs_info->delayed_root) {
  1846. err = -ENOMEM;
  1847. goto fail_iput;
  1848. }
  1849. btrfs_init_delayed_root(fs_info->delayed_root);
  1850. mutex_init(&fs_info->scrub_lock);
  1851. atomic_set(&fs_info->scrubs_running, 0);
  1852. atomic_set(&fs_info->scrub_pause_req, 0);
  1853. atomic_set(&fs_info->scrubs_paused, 0);
  1854. atomic_set(&fs_info->scrub_cancel_req, 0);
  1855. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1856. init_rwsem(&fs_info->scrub_super_lock);
  1857. fs_info->scrub_workers_refcnt = 0;
  1858. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1859. fs_info->check_integrity_print_mask = 0;
  1860. #endif
  1861. spin_lock_init(&fs_info->balance_lock);
  1862. mutex_init(&fs_info->balance_mutex);
  1863. atomic_set(&fs_info->balance_running, 0);
  1864. atomic_set(&fs_info->balance_pause_req, 0);
  1865. atomic_set(&fs_info->balance_cancel_req, 0);
  1866. fs_info->balance_ctl = NULL;
  1867. init_waitqueue_head(&fs_info->balance_wait_q);
  1868. sb->s_blocksize = 4096;
  1869. sb->s_blocksize_bits = blksize_bits(4096);
  1870. sb->s_bdi = &fs_info->bdi;
  1871. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1872. set_nlink(fs_info->btree_inode, 1);
  1873. /*
  1874. * we set the i_size on the btree inode to the max possible int.
  1875. * the real end of the address space is determined by all of
  1876. * the devices in the system
  1877. */
  1878. fs_info->btree_inode->i_size = OFFSET_MAX;
  1879. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1880. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1881. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1882. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1883. fs_info->btree_inode->i_mapping);
  1884. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1885. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1886. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1887. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1888. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1889. sizeof(struct btrfs_key));
  1890. set_bit(BTRFS_INODE_DUMMY,
  1891. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1892. insert_inode_hash(fs_info->btree_inode);
  1893. spin_lock_init(&fs_info->block_group_cache_lock);
  1894. fs_info->block_group_cache_tree = RB_ROOT;
  1895. fs_info->first_logical_byte = (u64)-1;
  1896. extent_io_tree_init(&fs_info->freed_extents[0],
  1897. fs_info->btree_inode->i_mapping);
  1898. extent_io_tree_init(&fs_info->freed_extents[1],
  1899. fs_info->btree_inode->i_mapping);
  1900. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1901. fs_info->do_barriers = 1;
  1902. mutex_init(&fs_info->ordered_operations_mutex);
  1903. mutex_init(&fs_info->tree_log_mutex);
  1904. mutex_init(&fs_info->chunk_mutex);
  1905. mutex_init(&fs_info->transaction_kthread_mutex);
  1906. mutex_init(&fs_info->cleaner_mutex);
  1907. mutex_init(&fs_info->volume_mutex);
  1908. init_rwsem(&fs_info->extent_commit_sem);
  1909. init_rwsem(&fs_info->cleanup_work_sem);
  1910. init_rwsem(&fs_info->subvol_sem);
  1911. fs_info->dev_replace.lock_owner = 0;
  1912. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1913. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1914. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1915. mutex_init(&fs_info->dev_replace.lock);
  1916. spin_lock_init(&fs_info->qgroup_lock);
  1917. fs_info->qgroup_tree = RB_ROOT;
  1918. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1919. fs_info->qgroup_seq = 1;
  1920. fs_info->quota_enabled = 0;
  1921. fs_info->pending_quota_state = 0;
  1922. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1923. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1924. init_waitqueue_head(&fs_info->transaction_throttle);
  1925. init_waitqueue_head(&fs_info->transaction_wait);
  1926. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1927. init_waitqueue_head(&fs_info->async_submit_wait);
  1928. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1929. if (ret) {
  1930. err = ret;
  1931. goto fail_alloc;
  1932. }
  1933. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1934. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1935. invalidate_bdev(fs_devices->latest_bdev);
  1936. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1937. if (!bh) {
  1938. err = -EINVAL;
  1939. goto fail_alloc;
  1940. }
  1941. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1942. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1943. sizeof(*fs_info->super_for_commit));
  1944. brelse(bh);
  1945. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1946. disk_super = fs_info->super_copy;
  1947. if (!btrfs_super_root(disk_super))
  1948. goto fail_alloc;
  1949. /* check FS state, whether FS is broken. */
  1950. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1951. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1952. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1953. if (ret) {
  1954. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1955. err = ret;
  1956. goto fail_alloc;
  1957. }
  1958. /*
  1959. * run through our array of backup supers and setup
  1960. * our ring pointer to the oldest one
  1961. */
  1962. generation = btrfs_super_generation(disk_super);
  1963. find_oldest_super_backup(fs_info, generation);
  1964. /*
  1965. * In the long term, we'll store the compression type in the super
  1966. * block, and it'll be used for per file compression control.
  1967. */
  1968. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1969. ret = btrfs_parse_options(tree_root, options);
  1970. if (ret) {
  1971. err = ret;
  1972. goto fail_alloc;
  1973. }
  1974. features = btrfs_super_incompat_flags(disk_super) &
  1975. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1976. if (features) {
  1977. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1978. "unsupported optional features (%Lx).\n",
  1979. (unsigned long long)features);
  1980. err = -EINVAL;
  1981. goto fail_alloc;
  1982. }
  1983. if (btrfs_super_leafsize(disk_super) !=
  1984. btrfs_super_nodesize(disk_super)) {
  1985. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1986. "blocksizes don't match. node %d leaf %d\n",
  1987. btrfs_super_nodesize(disk_super),
  1988. btrfs_super_leafsize(disk_super));
  1989. err = -EINVAL;
  1990. goto fail_alloc;
  1991. }
  1992. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1993. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1994. "blocksize (%d) was too large\n",
  1995. btrfs_super_leafsize(disk_super));
  1996. err = -EINVAL;
  1997. goto fail_alloc;
  1998. }
  1999. features = btrfs_super_incompat_flags(disk_super);
  2000. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2001. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2002. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2003. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2004. printk(KERN_ERR "btrfs: has skinny extents\n");
  2005. /*
  2006. * flag our filesystem as having big metadata blocks if
  2007. * they are bigger than the page size
  2008. */
  2009. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2010. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2011. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2012. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2013. }
  2014. nodesize = btrfs_super_nodesize(disk_super);
  2015. leafsize = btrfs_super_leafsize(disk_super);
  2016. sectorsize = btrfs_super_sectorsize(disk_super);
  2017. stripesize = btrfs_super_stripesize(disk_super);
  2018. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2019. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2020. /*
  2021. * mixed block groups end up with duplicate but slightly offset
  2022. * extent buffers for the same range. It leads to corruptions
  2023. */
  2024. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2025. (sectorsize != leafsize)) {
  2026. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2027. "are not allowed for mixed block groups on %s\n",
  2028. sb->s_id);
  2029. goto fail_alloc;
  2030. }
  2031. btrfs_set_super_incompat_flags(disk_super, features);
  2032. features = btrfs_super_compat_ro_flags(disk_super) &
  2033. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2034. if (!(sb->s_flags & MS_RDONLY) && features) {
  2035. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2036. "unsupported option features (%Lx).\n",
  2037. (unsigned long long)features);
  2038. err = -EINVAL;
  2039. goto fail_alloc;
  2040. }
  2041. btrfs_init_workers(&fs_info->generic_worker,
  2042. "genwork", 1, NULL);
  2043. btrfs_init_workers(&fs_info->workers, "worker",
  2044. fs_info->thread_pool_size,
  2045. &fs_info->generic_worker);
  2046. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2047. fs_info->thread_pool_size,
  2048. &fs_info->generic_worker);
  2049. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2050. fs_info->thread_pool_size,
  2051. &fs_info->generic_worker);
  2052. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2053. min_t(u64, fs_devices->num_devices,
  2054. fs_info->thread_pool_size),
  2055. &fs_info->generic_worker);
  2056. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2057. 2, &fs_info->generic_worker);
  2058. /* a higher idle thresh on the submit workers makes it much more
  2059. * likely that bios will be send down in a sane order to the
  2060. * devices
  2061. */
  2062. fs_info->submit_workers.idle_thresh = 64;
  2063. fs_info->workers.idle_thresh = 16;
  2064. fs_info->workers.ordered = 1;
  2065. fs_info->delalloc_workers.idle_thresh = 2;
  2066. fs_info->delalloc_workers.ordered = 1;
  2067. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2068. &fs_info->generic_worker);
  2069. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2070. fs_info->thread_pool_size,
  2071. &fs_info->generic_worker);
  2072. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2073. fs_info->thread_pool_size,
  2074. &fs_info->generic_worker);
  2075. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2076. "endio-meta-write", fs_info->thread_pool_size,
  2077. &fs_info->generic_worker);
  2078. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2079. "endio-raid56", fs_info->thread_pool_size,
  2080. &fs_info->generic_worker);
  2081. btrfs_init_workers(&fs_info->rmw_workers,
  2082. "rmw", fs_info->thread_pool_size,
  2083. &fs_info->generic_worker);
  2084. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2085. fs_info->thread_pool_size,
  2086. &fs_info->generic_worker);
  2087. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2088. 1, &fs_info->generic_worker);
  2089. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2090. fs_info->thread_pool_size,
  2091. &fs_info->generic_worker);
  2092. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2093. fs_info->thread_pool_size,
  2094. &fs_info->generic_worker);
  2095. /*
  2096. * endios are largely parallel and should have a very
  2097. * low idle thresh
  2098. */
  2099. fs_info->endio_workers.idle_thresh = 4;
  2100. fs_info->endio_meta_workers.idle_thresh = 4;
  2101. fs_info->endio_raid56_workers.idle_thresh = 4;
  2102. fs_info->rmw_workers.idle_thresh = 2;
  2103. fs_info->endio_write_workers.idle_thresh = 2;
  2104. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2105. fs_info->readahead_workers.idle_thresh = 2;
  2106. /*
  2107. * btrfs_start_workers can really only fail because of ENOMEM so just
  2108. * return -ENOMEM if any of these fail.
  2109. */
  2110. ret = btrfs_start_workers(&fs_info->workers);
  2111. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2112. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2113. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2114. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2115. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2116. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2117. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2118. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2119. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2120. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2121. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2122. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2123. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2124. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2125. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2126. if (ret) {
  2127. err = -ENOMEM;
  2128. goto fail_sb_buffer;
  2129. }
  2130. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2131. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2132. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2133. tree_root->nodesize = nodesize;
  2134. tree_root->leafsize = leafsize;
  2135. tree_root->sectorsize = sectorsize;
  2136. tree_root->stripesize = stripesize;
  2137. sb->s_blocksize = sectorsize;
  2138. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2139. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2140. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2141. goto fail_sb_buffer;
  2142. }
  2143. if (sectorsize != PAGE_SIZE) {
  2144. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2145. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2146. goto fail_sb_buffer;
  2147. }
  2148. mutex_lock(&fs_info->chunk_mutex);
  2149. ret = btrfs_read_sys_array(tree_root);
  2150. mutex_unlock(&fs_info->chunk_mutex);
  2151. if (ret) {
  2152. printk(KERN_WARNING "btrfs: failed to read the system "
  2153. "array on %s\n", sb->s_id);
  2154. goto fail_sb_buffer;
  2155. }
  2156. blocksize = btrfs_level_size(tree_root,
  2157. btrfs_super_chunk_root_level(disk_super));
  2158. generation = btrfs_super_chunk_root_generation(disk_super);
  2159. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2160. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2161. chunk_root->node = read_tree_block(chunk_root,
  2162. btrfs_super_chunk_root(disk_super),
  2163. blocksize, generation);
  2164. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2165. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2166. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2167. sb->s_id);
  2168. goto fail_tree_roots;
  2169. }
  2170. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2171. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2172. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2173. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2174. BTRFS_UUID_SIZE);
  2175. ret = btrfs_read_chunk_tree(chunk_root);
  2176. if (ret) {
  2177. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2178. sb->s_id);
  2179. goto fail_tree_roots;
  2180. }
  2181. /*
  2182. * keep the device that is marked to be the target device for the
  2183. * dev_replace procedure
  2184. */
  2185. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2186. if (!fs_devices->latest_bdev) {
  2187. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2188. sb->s_id);
  2189. goto fail_tree_roots;
  2190. }
  2191. retry_root_backup:
  2192. blocksize = btrfs_level_size(tree_root,
  2193. btrfs_super_root_level(disk_super));
  2194. generation = btrfs_super_generation(disk_super);
  2195. tree_root->node = read_tree_block(tree_root,
  2196. btrfs_super_root(disk_super),
  2197. blocksize, generation);
  2198. if (!tree_root->node ||
  2199. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2200. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2201. sb->s_id);
  2202. goto recovery_tree_root;
  2203. }
  2204. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2205. tree_root->commit_root = btrfs_root_node(tree_root);
  2206. ret = find_and_setup_root(tree_root, fs_info,
  2207. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2208. if (ret)
  2209. goto recovery_tree_root;
  2210. extent_root->track_dirty = 1;
  2211. ret = find_and_setup_root(tree_root, fs_info,
  2212. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2213. if (ret)
  2214. goto recovery_tree_root;
  2215. dev_root->track_dirty = 1;
  2216. ret = find_and_setup_root(tree_root, fs_info,
  2217. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2218. if (ret)
  2219. goto recovery_tree_root;
  2220. csum_root->track_dirty = 1;
  2221. ret = find_and_setup_root(tree_root, fs_info,
  2222. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2223. if (ret) {
  2224. kfree(quota_root);
  2225. quota_root = fs_info->quota_root = NULL;
  2226. } else {
  2227. quota_root->track_dirty = 1;
  2228. fs_info->quota_enabled = 1;
  2229. fs_info->pending_quota_state = 1;
  2230. }
  2231. fs_info->generation = generation;
  2232. fs_info->last_trans_committed = generation;
  2233. ret = btrfs_recover_balance(fs_info);
  2234. if (ret) {
  2235. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2236. goto fail_block_groups;
  2237. }
  2238. ret = btrfs_init_dev_stats(fs_info);
  2239. if (ret) {
  2240. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2241. ret);
  2242. goto fail_block_groups;
  2243. }
  2244. ret = btrfs_init_dev_replace(fs_info);
  2245. if (ret) {
  2246. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2247. goto fail_block_groups;
  2248. }
  2249. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2250. ret = btrfs_init_space_info(fs_info);
  2251. if (ret) {
  2252. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2253. goto fail_block_groups;
  2254. }
  2255. ret = btrfs_read_block_groups(extent_root);
  2256. if (ret) {
  2257. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2258. goto fail_block_groups;
  2259. }
  2260. fs_info->num_tolerated_disk_barrier_failures =
  2261. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2262. if (fs_info->fs_devices->missing_devices >
  2263. fs_info->num_tolerated_disk_barrier_failures &&
  2264. !(sb->s_flags & MS_RDONLY)) {
  2265. printk(KERN_WARNING
  2266. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2267. goto fail_block_groups;
  2268. }
  2269. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2270. "btrfs-cleaner");
  2271. if (IS_ERR(fs_info->cleaner_kthread))
  2272. goto fail_block_groups;
  2273. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2274. tree_root,
  2275. "btrfs-transaction");
  2276. if (IS_ERR(fs_info->transaction_kthread))
  2277. goto fail_cleaner;
  2278. if (!btrfs_test_opt(tree_root, SSD) &&
  2279. !btrfs_test_opt(tree_root, NOSSD) &&
  2280. !fs_info->fs_devices->rotating) {
  2281. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2282. "mode\n");
  2283. btrfs_set_opt(fs_info->mount_opt, SSD);
  2284. }
  2285. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2286. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2287. ret = btrfsic_mount(tree_root, fs_devices,
  2288. btrfs_test_opt(tree_root,
  2289. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2290. 1 : 0,
  2291. fs_info->check_integrity_print_mask);
  2292. if (ret)
  2293. printk(KERN_WARNING "btrfs: failed to initialize"
  2294. " integrity check module %s\n", sb->s_id);
  2295. }
  2296. #endif
  2297. ret = btrfs_read_qgroup_config(fs_info);
  2298. if (ret)
  2299. goto fail_trans_kthread;
  2300. /* do not make disk changes in broken FS */
  2301. if (btrfs_super_log_root(disk_super) != 0) {
  2302. u64 bytenr = btrfs_super_log_root(disk_super);
  2303. if (fs_devices->rw_devices == 0) {
  2304. printk(KERN_WARNING "Btrfs log replay required "
  2305. "on RO media\n");
  2306. err = -EIO;
  2307. goto fail_qgroup;
  2308. }
  2309. blocksize =
  2310. btrfs_level_size(tree_root,
  2311. btrfs_super_log_root_level(disk_super));
  2312. log_tree_root = btrfs_alloc_root(fs_info);
  2313. if (!log_tree_root) {
  2314. err = -ENOMEM;
  2315. goto fail_qgroup;
  2316. }
  2317. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2318. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2319. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2320. blocksize,
  2321. generation + 1);
  2322. /* returns with log_tree_root freed on success */
  2323. ret = btrfs_recover_log_trees(log_tree_root);
  2324. if (ret) {
  2325. btrfs_error(tree_root->fs_info, ret,
  2326. "Failed to recover log tree");
  2327. free_extent_buffer(log_tree_root->node);
  2328. kfree(log_tree_root);
  2329. goto fail_trans_kthread;
  2330. }
  2331. if (sb->s_flags & MS_RDONLY) {
  2332. ret = btrfs_commit_super(tree_root);
  2333. if (ret)
  2334. goto fail_trans_kthread;
  2335. }
  2336. }
  2337. ret = btrfs_find_orphan_roots(tree_root);
  2338. if (ret)
  2339. goto fail_trans_kthread;
  2340. if (!(sb->s_flags & MS_RDONLY)) {
  2341. ret = btrfs_cleanup_fs_roots(fs_info);
  2342. if (ret)
  2343. goto fail_trans_kthread;
  2344. ret = btrfs_recover_relocation(tree_root);
  2345. if (ret < 0) {
  2346. printk(KERN_WARNING
  2347. "btrfs: failed to recover relocation\n");
  2348. err = -EINVAL;
  2349. goto fail_qgroup;
  2350. }
  2351. }
  2352. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2353. location.type = BTRFS_ROOT_ITEM_KEY;
  2354. location.offset = (u64)-1;
  2355. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2356. if (!fs_info->fs_root)
  2357. goto fail_qgroup;
  2358. if (IS_ERR(fs_info->fs_root)) {
  2359. err = PTR_ERR(fs_info->fs_root);
  2360. goto fail_qgroup;
  2361. }
  2362. if (sb->s_flags & MS_RDONLY)
  2363. return 0;
  2364. down_read(&fs_info->cleanup_work_sem);
  2365. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2366. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2367. up_read(&fs_info->cleanup_work_sem);
  2368. close_ctree(tree_root);
  2369. return ret;
  2370. }
  2371. up_read(&fs_info->cleanup_work_sem);
  2372. ret = btrfs_resume_balance_async(fs_info);
  2373. if (ret) {
  2374. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2375. close_ctree(tree_root);
  2376. return ret;
  2377. }
  2378. ret = btrfs_resume_dev_replace_async(fs_info);
  2379. if (ret) {
  2380. pr_warn("btrfs: failed to resume dev_replace\n");
  2381. close_ctree(tree_root);
  2382. return ret;
  2383. }
  2384. return 0;
  2385. fail_qgroup:
  2386. btrfs_free_qgroup_config(fs_info);
  2387. fail_trans_kthread:
  2388. kthread_stop(fs_info->transaction_kthread);
  2389. fail_cleaner:
  2390. kthread_stop(fs_info->cleaner_kthread);
  2391. /*
  2392. * make sure we're done with the btree inode before we stop our
  2393. * kthreads
  2394. */
  2395. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2396. fail_block_groups:
  2397. btrfs_free_block_groups(fs_info);
  2398. fail_tree_roots:
  2399. free_root_pointers(fs_info, 1);
  2400. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2401. fail_sb_buffer:
  2402. btrfs_stop_workers(&fs_info->generic_worker);
  2403. btrfs_stop_workers(&fs_info->readahead_workers);
  2404. btrfs_stop_workers(&fs_info->fixup_workers);
  2405. btrfs_stop_workers(&fs_info->delalloc_workers);
  2406. btrfs_stop_workers(&fs_info->workers);
  2407. btrfs_stop_workers(&fs_info->endio_workers);
  2408. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2409. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2410. btrfs_stop_workers(&fs_info->rmw_workers);
  2411. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2412. btrfs_stop_workers(&fs_info->endio_write_workers);
  2413. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2414. btrfs_stop_workers(&fs_info->submit_workers);
  2415. btrfs_stop_workers(&fs_info->delayed_workers);
  2416. btrfs_stop_workers(&fs_info->caching_workers);
  2417. btrfs_stop_workers(&fs_info->flush_workers);
  2418. fail_alloc:
  2419. fail_iput:
  2420. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2421. iput(fs_info->btree_inode);
  2422. fail_delalloc_bytes:
  2423. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2424. fail_dirty_metadata_bytes:
  2425. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2426. fail_bdi:
  2427. bdi_destroy(&fs_info->bdi);
  2428. fail_srcu:
  2429. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2430. fail:
  2431. btrfs_free_stripe_hash_table(fs_info);
  2432. btrfs_close_devices(fs_info->fs_devices);
  2433. return err;
  2434. recovery_tree_root:
  2435. if (!btrfs_test_opt(tree_root, RECOVERY))
  2436. goto fail_tree_roots;
  2437. free_root_pointers(fs_info, 0);
  2438. /* don't use the log in recovery mode, it won't be valid */
  2439. btrfs_set_super_log_root(disk_super, 0);
  2440. /* we can't trust the free space cache either */
  2441. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2442. ret = next_root_backup(fs_info, fs_info->super_copy,
  2443. &num_backups_tried, &backup_index);
  2444. if (ret == -1)
  2445. goto fail_block_groups;
  2446. goto retry_root_backup;
  2447. }
  2448. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2449. {
  2450. if (uptodate) {
  2451. set_buffer_uptodate(bh);
  2452. } else {
  2453. struct btrfs_device *device = (struct btrfs_device *)
  2454. bh->b_private;
  2455. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2456. "I/O error on %s\n",
  2457. rcu_str_deref(device->name));
  2458. /* note, we dont' set_buffer_write_io_error because we have
  2459. * our own ways of dealing with the IO errors
  2460. */
  2461. clear_buffer_uptodate(bh);
  2462. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2463. }
  2464. unlock_buffer(bh);
  2465. put_bh(bh);
  2466. }
  2467. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2468. {
  2469. struct buffer_head *bh;
  2470. struct buffer_head *latest = NULL;
  2471. struct btrfs_super_block *super;
  2472. int i;
  2473. u64 transid = 0;
  2474. u64 bytenr;
  2475. /* we would like to check all the supers, but that would make
  2476. * a btrfs mount succeed after a mkfs from a different FS.
  2477. * So, we need to add a special mount option to scan for
  2478. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2479. */
  2480. for (i = 0; i < 1; i++) {
  2481. bytenr = btrfs_sb_offset(i);
  2482. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2483. break;
  2484. bh = __bread(bdev, bytenr / 4096, 4096);
  2485. if (!bh)
  2486. continue;
  2487. super = (struct btrfs_super_block *)bh->b_data;
  2488. if (btrfs_super_bytenr(super) != bytenr ||
  2489. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2490. brelse(bh);
  2491. continue;
  2492. }
  2493. if (!latest || btrfs_super_generation(super) > transid) {
  2494. brelse(latest);
  2495. latest = bh;
  2496. transid = btrfs_super_generation(super);
  2497. } else {
  2498. brelse(bh);
  2499. }
  2500. }
  2501. return latest;
  2502. }
  2503. /*
  2504. * this should be called twice, once with wait == 0 and
  2505. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2506. * we write are pinned.
  2507. *
  2508. * They are released when wait == 1 is done.
  2509. * max_mirrors must be the same for both runs, and it indicates how
  2510. * many supers on this one device should be written.
  2511. *
  2512. * max_mirrors == 0 means to write them all.
  2513. */
  2514. static int write_dev_supers(struct btrfs_device *device,
  2515. struct btrfs_super_block *sb,
  2516. int do_barriers, int wait, int max_mirrors)
  2517. {
  2518. struct buffer_head *bh;
  2519. int i;
  2520. int ret;
  2521. int errors = 0;
  2522. u32 crc;
  2523. u64 bytenr;
  2524. if (max_mirrors == 0)
  2525. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2526. for (i = 0; i < max_mirrors; i++) {
  2527. bytenr = btrfs_sb_offset(i);
  2528. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2529. break;
  2530. if (wait) {
  2531. bh = __find_get_block(device->bdev, bytenr / 4096,
  2532. BTRFS_SUPER_INFO_SIZE);
  2533. BUG_ON(!bh);
  2534. wait_on_buffer(bh);
  2535. if (!buffer_uptodate(bh))
  2536. errors++;
  2537. /* drop our reference */
  2538. brelse(bh);
  2539. /* drop the reference from the wait == 0 run */
  2540. brelse(bh);
  2541. continue;
  2542. } else {
  2543. btrfs_set_super_bytenr(sb, bytenr);
  2544. crc = ~(u32)0;
  2545. crc = btrfs_csum_data((char *)sb +
  2546. BTRFS_CSUM_SIZE, crc,
  2547. BTRFS_SUPER_INFO_SIZE -
  2548. BTRFS_CSUM_SIZE);
  2549. btrfs_csum_final(crc, sb->csum);
  2550. /*
  2551. * one reference for us, and we leave it for the
  2552. * caller
  2553. */
  2554. bh = __getblk(device->bdev, bytenr / 4096,
  2555. BTRFS_SUPER_INFO_SIZE);
  2556. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2557. /* one reference for submit_bh */
  2558. get_bh(bh);
  2559. set_buffer_uptodate(bh);
  2560. lock_buffer(bh);
  2561. bh->b_end_io = btrfs_end_buffer_write_sync;
  2562. bh->b_private = device;
  2563. }
  2564. /*
  2565. * we fua the first super. The others we allow
  2566. * to go down lazy.
  2567. */
  2568. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2569. if (ret)
  2570. errors++;
  2571. }
  2572. return errors < i ? 0 : -1;
  2573. }
  2574. /*
  2575. * endio for the write_dev_flush, this will wake anyone waiting
  2576. * for the barrier when it is done
  2577. */
  2578. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2579. {
  2580. if (err) {
  2581. if (err == -EOPNOTSUPP)
  2582. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2583. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2584. }
  2585. if (bio->bi_private)
  2586. complete(bio->bi_private);
  2587. bio_put(bio);
  2588. }
  2589. /*
  2590. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2591. * sent down. With wait == 1, it waits for the previous flush.
  2592. *
  2593. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2594. * capable
  2595. */
  2596. static int write_dev_flush(struct btrfs_device *device, int wait)
  2597. {
  2598. struct bio *bio;
  2599. int ret = 0;
  2600. if (device->nobarriers)
  2601. return 0;
  2602. if (wait) {
  2603. bio = device->flush_bio;
  2604. if (!bio)
  2605. return 0;
  2606. wait_for_completion(&device->flush_wait);
  2607. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2608. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2609. rcu_str_deref(device->name));
  2610. device->nobarriers = 1;
  2611. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2612. ret = -EIO;
  2613. btrfs_dev_stat_inc_and_print(device,
  2614. BTRFS_DEV_STAT_FLUSH_ERRS);
  2615. }
  2616. /* drop the reference from the wait == 0 run */
  2617. bio_put(bio);
  2618. device->flush_bio = NULL;
  2619. return ret;
  2620. }
  2621. /*
  2622. * one reference for us, and we leave it for the
  2623. * caller
  2624. */
  2625. device->flush_bio = NULL;
  2626. bio = bio_alloc(GFP_NOFS, 0);
  2627. if (!bio)
  2628. return -ENOMEM;
  2629. bio->bi_end_io = btrfs_end_empty_barrier;
  2630. bio->bi_bdev = device->bdev;
  2631. init_completion(&device->flush_wait);
  2632. bio->bi_private = &device->flush_wait;
  2633. device->flush_bio = bio;
  2634. bio_get(bio);
  2635. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2636. return 0;
  2637. }
  2638. /*
  2639. * send an empty flush down to each device in parallel,
  2640. * then wait for them
  2641. */
  2642. static int barrier_all_devices(struct btrfs_fs_info *info)
  2643. {
  2644. struct list_head *head;
  2645. struct btrfs_device *dev;
  2646. int errors_send = 0;
  2647. int errors_wait = 0;
  2648. int ret;
  2649. /* send down all the barriers */
  2650. head = &info->fs_devices->devices;
  2651. list_for_each_entry_rcu(dev, head, dev_list) {
  2652. if (!dev->bdev) {
  2653. errors_send++;
  2654. continue;
  2655. }
  2656. if (!dev->in_fs_metadata || !dev->writeable)
  2657. continue;
  2658. ret = write_dev_flush(dev, 0);
  2659. if (ret)
  2660. errors_send++;
  2661. }
  2662. /* wait for all the barriers */
  2663. list_for_each_entry_rcu(dev, head, dev_list) {
  2664. if (!dev->bdev) {
  2665. errors_wait++;
  2666. continue;
  2667. }
  2668. if (!dev->in_fs_metadata || !dev->writeable)
  2669. continue;
  2670. ret = write_dev_flush(dev, 1);
  2671. if (ret)
  2672. errors_wait++;
  2673. }
  2674. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2675. errors_wait > info->num_tolerated_disk_barrier_failures)
  2676. return -EIO;
  2677. return 0;
  2678. }
  2679. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2680. struct btrfs_fs_info *fs_info)
  2681. {
  2682. struct btrfs_ioctl_space_info space;
  2683. struct btrfs_space_info *sinfo;
  2684. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2685. BTRFS_BLOCK_GROUP_SYSTEM,
  2686. BTRFS_BLOCK_GROUP_METADATA,
  2687. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2688. int num_types = 4;
  2689. int i;
  2690. int c;
  2691. int num_tolerated_disk_barrier_failures =
  2692. (int)fs_info->fs_devices->num_devices;
  2693. for (i = 0; i < num_types; i++) {
  2694. struct btrfs_space_info *tmp;
  2695. sinfo = NULL;
  2696. rcu_read_lock();
  2697. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2698. if (tmp->flags == types[i]) {
  2699. sinfo = tmp;
  2700. break;
  2701. }
  2702. }
  2703. rcu_read_unlock();
  2704. if (!sinfo)
  2705. continue;
  2706. down_read(&sinfo->groups_sem);
  2707. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2708. if (!list_empty(&sinfo->block_groups[c])) {
  2709. u64 flags;
  2710. btrfs_get_block_group_info(
  2711. &sinfo->block_groups[c], &space);
  2712. if (space.total_bytes == 0 ||
  2713. space.used_bytes == 0)
  2714. continue;
  2715. flags = space.flags;
  2716. /*
  2717. * return
  2718. * 0: if dup, single or RAID0 is configured for
  2719. * any of metadata, system or data, else
  2720. * 1: if RAID5 is configured, or if RAID1 or
  2721. * RAID10 is configured and only two mirrors
  2722. * are used, else
  2723. * 2: if RAID6 is configured, else
  2724. * num_mirrors - 1: if RAID1 or RAID10 is
  2725. * configured and more than
  2726. * 2 mirrors are used.
  2727. */
  2728. if (num_tolerated_disk_barrier_failures > 0 &&
  2729. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2730. BTRFS_BLOCK_GROUP_RAID0)) ||
  2731. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2732. == 0)))
  2733. num_tolerated_disk_barrier_failures = 0;
  2734. else if (num_tolerated_disk_barrier_failures > 1) {
  2735. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2736. BTRFS_BLOCK_GROUP_RAID5 |
  2737. BTRFS_BLOCK_GROUP_RAID10)) {
  2738. num_tolerated_disk_barrier_failures = 1;
  2739. } else if (flags &
  2740. BTRFS_BLOCK_GROUP_RAID5) {
  2741. num_tolerated_disk_barrier_failures = 2;
  2742. }
  2743. }
  2744. }
  2745. }
  2746. up_read(&sinfo->groups_sem);
  2747. }
  2748. return num_tolerated_disk_barrier_failures;
  2749. }
  2750. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2751. {
  2752. struct list_head *head;
  2753. struct btrfs_device *dev;
  2754. struct btrfs_super_block *sb;
  2755. struct btrfs_dev_item *dev_item;
  2756. int ret;
  2757. int do_barriers;
  2758. int max_errors;
  2759. int total_errors = 0;
  2760. u64 flags;
  2761. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2762. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2763. backup_super_roots(root->fs_info);
  2764. sb = root->fs_info->super_for_commit;
  2765. dev_item = &sb->dev_item;
  2766. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2767. head = &root->fs_info->fs_devices->devices;
  2768. if (do_barriers) {
  2769. ret = barrier_all_devices(root->fs_info);
  2770. if (ret) {
  2771. mutex_unlock(
  2772. &root->fs_info->fs_devices->device_list_mutex);
  2773. btrfs_error(root->fs_info, ret,
  2774. "errors while submitting device barriers.");
  2775. return ret;
  2776. }
  2777. }
  2778. list_for_each_entry_rcu(dev, head, dev_list) {
  2779. if (!dev->bdev) {
  2780. total_errors++;
  2781. continue;
  2782. }
  2783. if (!dev->in_fs_metadata || !dev->writeable)
  2784. continue;
  2785. btrfs_set_stack_device_generation(dev_item, 0);
  2786. btrfs_set_stack_device_type(dev_item, dev->type);
  2787. btrfs_set_stack_device_id(dev_item, dev->devid);
  2788. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2789. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2790. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2791. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2792. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2793. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2794. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2795. flags = btrfs_super_flags(sb);
  2796. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2797. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2798. if (ret)
  2799. total_errors++;
  2800. }
  2801. if (total_errors > max_errors) {
  2802. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2803. total_errors);
  2804. /* This shouldn't happen. FUA is masked off if unsupported */
  2805. BUG();
  2806. }
  2807. total_errors = 0;
  2808. list_for_each_entry_rcu(dev, head, dev_list) {
  2809. if (!dev->bdev)
  2810. continue;
  2811. if (!dev->in_fs_metadata || !dev->writeable)
  2812. continue;
  2813. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2814. if (ret)
  2815. total_errors++;
  2816. }
  2817. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2818. if (total_errors > max_errors) {
  2819. btrfs_error(root->fs_info, -EIO,
  2820. "%d errors while writing supers", total_errors);
  2821. return -EIO;
  2822. }
  2823. return 0;
  2824. }
  2825. int write_ctree_super(struct btrfs_trans_handle *trans,
  2826. struct btrfs_root *root, int max_mirrors)
  2827. {
  2828. int ret;
  2829. ret = write_all_supers(root, max_mirrors);
  2830. return ret;
  2831. }
  2832. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2833. {
  2834. spin_lock(&fs_info->fs_roots_radix_lock);
  2835. radix_tree_delete(&fs_info->fs_roots_radix,
  2836. (unsigned long)root->root_key.objectid);
  2837. spin_unlock(&fs_info->fs_roots_radix_lock);
  2838. if (btrfs_root_refs(&root->root_item) == 0)
  2839. synchronize_srcu(&fs_info->subvol_srcu);
  2840. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2841. btrfs_free_log(NULL, root);
  2842. btrfs_free_log_root_tree(NULL, fs_info);
  2843. }
  2844. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2845. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2846. free_fs_root(root);
  2847. }
  2848. static void free_fs_root(struct btrfs_root *root)
  2849. {
  2850. iput(root->cache_inode);
  2851. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2852. if (root->anon_dev)
  2853. free_anon_bdev(root->anon_dev);
  2854. free_extent_buffer(root->node);
  2855. free_extent_buffer(root->commit_root);
  2856. kfree(root->free_ino_ctl);
  2857. kfree(root->free_ino_pinned);
  2858. kfree(root->name);
  2859. kfree(root);
  2860. }
  2861. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2862. {
  2863. int ret;
  2864. struct btrfs_root *gang[8];
  2865. int i;
  2866. while (!list_empty(&fs_info->dead_roots)) {
  2867. gang[0] = list_entry(fs_info->dead_roots.next,
  2868. struct btrfs_root, root_list);
  2869. list_del(&gang[0]->root_list);
  2870. if (gang[0]->in_radix) {
  2871. btrfs_free_fs_root(fs_info, gang[0]);
  2872. } else {
  2873. free_extent_buffer(gang[0]->node);
  2874. free_extent_buffer(gang[0]->commit_root);
  2875. kfree(gang[0]);
  2876. }
  2877. }
  2878. while (1) {
  2879. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2880. (void **)gang, 0,
  2881. ARRAY_SIZE(gang));
  2882. if (!ret)
  2883. break;
  2884. for (i = 0; i < ret; i++)
  2885. btrfs_free_fs_root(fs_info, gang[i]);
  2886. }
  2887. }
  2888. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2889. {
  2890. u64 root_objectid = 0;
  2891. struct btrfs_root *gang[8];
  2892. int i;
  2893. int ret;
  2894. while (1) {
  2895. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2896. (void **)gang, root_objectid,
  2897. ARRAY_SIZE(gang));
  2898. if (!ret)
  2899. break;
  2900. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2901. for (i = 0; i < ret; i++) {
  2902. int err;
  2903. root_objectid = gang[i]->root_key.objectid;
  2904. err = btrfs_orphan_cleanup(gang[i]);
  2905. if (err)
  2906. return err;
  2907. }
  2908. root_objectid++;
  2909. }
  2910. return 0;
  2911. }
  2912. int btrfs_commit_super(struct btrfs_root *root)
  2913. {
  2914. struct btrfs_trans_handle *trans;
  2915. int ret;
  2916. mutex_lock(&root->fs_info->cleaner_mutex);
  2917. btrfs_run_delayed_iputs(root);
  2918. btrfs_clean_old_snapshots(root);
  2919. mutex_unlock(&root->fs_info->cleaner_mutex);
  2920. /* wait until ongoing cleanup work done */
  2921. down_write(&root->fs_info->cleanup_work_sem);
  2922. up_write(&root->fs_info->cleanup_work_sem);
  2923. trans = btrfs_join_transaction(root);
  2924. if (IS_ERR(trans))
  2925. return PTR_ERR(trans);
  2926. ret = btrfs_commit_transaction(trans, root);
  2927. if (ret)
  2928. return ret;
  2929. /* run commit again to drop the original snapshot */
  2930. trans = btrfs_join_transaction(root);
  2931. if (IS_ERR(trans))
  2932. return PTR_ERR(trans);
  2933. ret = btrfs_commit_transaction(trans, root);
  2934. if (ret)
  2935. return ret;
  2936. ret = btrfs_write_and_wait_transaction(NULL, root);
  2937. if (ret) {
  2938. btrfs_error(root->fs_info, ret,
  2939. "Failed to sync btree inode to disk.");
  2940. return ret;
  2941. }
  2942. ret = write_ctree_super(NULL, root, 0);
  2943. return ret;
  2944. }
  2945. int close_ctree(struct btrfs_root *root)
  2946. {
  2947. struct btrfs_fs_info *fs_info = root->fs_info;
  2948. int ret;
  2949. fs_info->closing = 1;
  2950. smp_mb();
  2951. /* pause restriper - we want to resume on mount */
  2952. btrfs_pause_balance(fs_info);
  2953. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2954. btrfs_scrub_cancel(fs_info);
  2955. /* wait for any defraggers to finish */
  2956. wait_event(fs_info->transaction_wait,
  2957. (atomic_read(&fs_info->defrag_running) == 0));
  2958. /* clear out the rbtree of defraggable inodes */
  2959. btrfs_cleanup_defrag_inodes(fs_info);
  2960. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2961. ret = btrfs_commit_super(root);
  2962. if (ret)
  2963. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2964. }
  2965. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2966. btrfs_error_commit_super(root);
  2967. btrfs_put_block_group_cache(fs_info);
  2968. kthread_stop(fs_info->transaction_kthread);
  2969. kthread_stop(fs_info->cleaner_kthread);
  2970. fs_info->closing = 2;
  2971. smp_mb();
  2972. btrfs_free_qgroup_config(root->fs_info);
  2973. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2974. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2975. percpu_counter_sum(&fs_info->delalloc_bytes));
  2976. }
  2977. free_root_pointers(fs_info, 1);
  2978. btrfs_free_block_groups(fs_info);
  2979. del_fs_roots(fs_info);
  2980. iput(fs_info->btree_inode);
  2981. btrfs_stop_workers(&fs_info->generic_worker);
  2982. btrfs_stop_workers(&fs_info->fixup_workers);
  2983. btrfs_stop_workers(&fs_info->delalloc_workers);
  2984. btrfs_stop_workers(&fs_info->workers);
  2985. btrfs_stop_workers(&fs_info->endio_workers);
  2986. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2987. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2988. btrfs_stop_workers(&fs_info->rmw_workers);
  2989. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2990. btrfs_stop_workers(&fs_info->endio_write_workers);
  2991. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2992. btrfs_stop_workers(&fs_info->submit_workers);
  2993. btrfs_stop_workers(&fs_info->delayed_workers);
  2994. btrfs_stop_workers(&fs_info->caching_workers);
  2995. btrfs_stop_workers(&fs_info->readahead_workers);
  2996. btrfs_stop_workers(&fs_info->flush_workers);
  2997. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2998. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2999. btrfsic_unmount(root, fs_info->fs_devices);
  3000. #endif
  3001. btrfs_close_devices(fs_info->fs_devices);
  3002. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3003. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3004. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3005. bdi_destroy(&fs_info->bdi);
  3006. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3007. btrfs_free_stripe_hash_table(fs_info);
  3008. return 0;
  3009. }
  3010. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3011. int atomic)
  3012. {
  3013. int ret;
  3014. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3015. ret = extent_buffer_uptodate(buf);
  3016. if (!ret)
  3017. return ret;
  3018. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3019. parent_transid, atomic);
  3020. if (ret == -EAGAIN)
  3021. return ret;
  3022. return !ret;
  3023. }
  3024. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3025. {
  3026. return set_extent_buffer_uptodate(buf);
  3027. }
  3028. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3029. {
  3030. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3031. u64 transid = btrfs_header_generation(buf);
  3032. int was_dirty;
  3033. btrfs_assert_tree_locked(buf);
  3034. if (transid != root->fs_info->generation)
  3035. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3036. "found %llu running %llu\n",
  3037. (unsigned long long)buf->start,
  3038. (unsigned long long)transid,
  3039. (unsigned long long)root->fs_info->generation);
  3040. was_dirty = set_extent_buffer_dirty(buf);
  3041. if (!was_dirty)
  3042. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3043. buf->len,
  3044. root->fs_info->dirty_metadata_batch);
  3045. }
  3046. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3047. int flush_delayed)
  3048. {
  3049. /*
  3050. * looks as though older kernels can get into trouble with
  3051. * this code, they end up stuck in balance_dirty_pages forever
  3052. */
  3053. int ret;
  3054. if (current->flags & PF_MEMALLOC)
  3055. return;
  3056. if (flush_delayed)
  3057. btrfs_balance_delayed_items(root);
  3058. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3059. BTRFS_DIRTY_METADATA_THRESH);
  3060. if (ret > 0) {
  3061. balance_dirty_pages_ratelimited(
  3062. root->fs_info->btree_inode->i_mapping);
  3063. }
  3064. return;
  3065. }
  3066. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3067. {
  3068. __btrfs_btree_balance_dirty(root, 1);
  3069. }
  3070. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3071. {
  3072. __btrfs_btree_balance_dirty(root, 0);
  3073. }
  3074. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3075. {
  3076. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3077. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3078. }
  3079. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3080. int read_only)
  3081. {
  3082. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3083. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3084. return -EINVAL;
  3085. }
  3086. if (read_only)
  3087. return 0;
  3088. return 0;
  3089. }
  3090. void btrfs_error_commit_super(struct btrfs_root *root)
  3091. {
  3092. mutex_lock(&root->fs_info->cleaner_mutex);
  3093. btrfs_run_delayed_iputs(root);
  3094. mutex_unlock(&root->fs_info->cleaner_mutex);
  3095. down_write(&root->fs_info->cleanup_work_sem);
  3096. up_write(&root->fs_info->cleanup_work_sem);
  3097. /* cleanup FS via transaction */
  3098. btrfs_cleanup_transaction(root);
  3099. }
  3100. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3101. struct btrfs_root *root)
  3102. {
  3103. struct btrfs_inode *btrfs_inode;
  3104. struct list_head splice;
  3105. INIT_LIST_HEAD(&splice);
  3106. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3107. spin_lock(&root->fs_info->ordered_extent_lock);
  3108. list_splice_init(&t->ordered_operations, &splice);
  3109. while (!list_empty(&splice)) {
  3110. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3111. ordered_operations);
  3112. list_del_init(&btrfs_inode->ordered_operations);
  3113. btrfs_invalidate_inodes(btrfs_inode->root);
  3114. }
  3115. spin_unlock(&root->fs_info->ordered_extent_lock);
  3116. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3117. }
  3118. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3119. {
  3120. struct btrfs_ordered_extent *ordered;
  3121. spin_lock(&root->fs_info->ordered_extent_lock);
  3122. /*
  3123. * This will just short circuit the ordered completion stuff which will
  3124. * make sure the ordered extent gets properly cleaned up.
  3125. */
  3126. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3127. root_extent_list)
  3128. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3129. spin_unlock(&root->fs_info->ordered_extent_lock);
  3130. }
  3131. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3132. struct btrfs_root *root)
  3133. {
  3134. struct rb_node *node;
  3135. struct btrfs_delayed_ref_root *delayed_refs;
  3136. struct btrfs_delayed_ref_node *ref;
  3137. int ret = 0;
  3138. delayed_refs = &trans->delayed_refs;
  3139. spin_lock(&delayed_refs->lock);
  3140. if (delayed_refs->num_entries == 0) {
  3141. spin_unlock(&delayed_refs->lock);
  3142. printk(KERN_INFO "delayed_refs has NO entry\n");
  3143. return ret;
  3144. }
  3145. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3146. struct btrfs_delayed_ref_head *head = NULL;
  3147. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3148. atomic_set(&ref->refs, 1);
  3149. if (btrfs_delayed_ref_is_head(ref)) {
  3150. head = btrfs_delayed_node_to_head(ref);
  3151. if (!mutex_trylock(&head->mutex)) {
  3152. atomic_inc(&ref->refs);
  3153. spin_unlock(&delayed_refs->lock);
  3154. /* Need to wait for the delayed ref to run */
  3155. mutex_lock(&head->mutex);
  3156. mutex_unlock(&head->mutex);
  3157. btrfs_put_delayed_ref(ref);
  3158. spin_lock(&delayed_refs->lock);
  3159. continue;
  3160. }
  3161. btrfs_free_delayed_extent_op(head->extent_op);
  3162. delayed_refs->num_heads--;
  3163. if (list_empty(&head->cluster))
  3164. delayed_refs->num_heads_ready--;
  3165. list_del_init(&head->cluster);
  3166. }
  3167. ref->in_tree = 0;
  3168. rb_erase(&ref->rb_node, &delayed_refs->root);
  3169. delayed_refs->num_entries--;
  3170. if (head)
  3171. mutex_unlock(&head->mutex);
  3172. spin_unlock(&delayed_refs->lock);
  3173. btrfs_put_delayed_ref(ref);
  3174. cond_resched();
  3175. spin_lock(&delayed_refs->lock);
  3176. }
  3177. spin_unlock(&delayed_refs->lock);
  3178. return ret;
  3179. }
  3180. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3181. {
  3182. struct btrfs_pending_snapshot *snapshot;
  3183. struct list_head splice;
  3184. INIT_LIST_HEAD(&splice);
  3185. list_splice_init(&t->pending_snapshots, &splice);
  3186. while (!list_empty(&splice)) {
  3187. snapshot = list_entry(splice.next,
  3188. struct btrfs_pending_snapshot,
  3189. list);
  3190. snapshot->error = -ECANCELED;
  3191. list_del_init(&snapshot->list);
  3192. }
  3193. }
  3194. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3195. {
  3196. struct btrfs_inode *btrfs_inode;
  3197. struct list_head splice;
  3198. INIT_LIST_HEAD(&splice);
  3199. spin_lock(&root->fs_info->delalloc_lock);
  3200. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3201. while (!list_empty(&splice)) {
  3202. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3203. delalloc_inodes);
  3204. list_del_init(&btrfs_inode->delalloc_inodes);
  3205. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3206. &btrfs_inode->runtime_flags);
  3207. btrfs_invalidate_inodes(btrfs_inode->root);
  3208. }
  3209. spin_unlock(&root->fs_info->delalloc_lock);
  3210. }
  3211. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3212. struct extent_io_tree *dirty_pages,
  3213. int mark)
  3214. {
  3215. int ret;
  3216. struct page *page;
  3217. struct inode *btree_inode = root->fs_info->btree_inode;
  3218. struct extent_buffer *eb;
  3219. u64 start = 0;
  3220. u64 end;
  3221. u64 offset;
  3222. unsigned long index;
  3223. while (1) {
  3224. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3225. mark, NULL);
  3226. if (ret)
  3227. break;
  3228. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3229. while (start <= end) {
  3230. index = start >> PAGE_CACHE_SHIFT;
  3231. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3232. page = find_get_page(btree_inode->i_mapping, index);
  3233. if (!page)
  3234. continue;
  3235. offset = page_offset(page);
  3236. spin_lock(&dirty_pages->buffer_lock);
  3237. eb = radix_tree_lookup(
  3238. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3239. offset >> PAGE_CACHE_SHIFT);
  3240. spin_unlock(&dirty_pages->buffer_lock);
  3241. if (eb)
  3242. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3243. &eb->bflags);
  3244. if (PageWriteback(page))
  3245. end_page_writeback(page);
  3246. lock_page(page);
  3247. if (PageDirty(page)) {
  3248. clear_page_dirty_for_io(page);
  3249. spin_lock_irq(&page->mapping->tree_lock);
  3250. radix_tree_tag_clear(&page->mapping->page_tree,
  3251. page_index(page),
  3252. PAGECACHE_TAG_DIRTY);
  3253. spin_unlock_irq(&page->mapping->tree_lock);
  3254. }
  3255. unlock_page(page);
  3256. page_cache_release(page);
  3257. }
  3258. }
  3259. return ret;
  3260. }
  3261. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3262. struct extent_io_tree *pinned_extents)
  3263. {
  3264. struct extent_io_tree *unpin;
  3265. u64 start;
  3266. u64 end;
  3267. int ret;
  3268. bool loop = true;
  3269. unpin = pinned_extents;
  3270. again:
  3271. while (1) {
  3272. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3273. EXTENT_DIRTY, NULL);
  3274. if (ret)
  3275. break;
  3276. /* opt_discard */
  3277. if (btrfs_test_opt(root, DISCARD))
  3278. ret = btrfs_error_discard_extent(root, start,
  3279. end + 1 - start,
  3280. NULL);
  3281. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3282. btrfs_error_unpin_extent_range(root, start, end);
  3283. cond_resched();
  3284. }
  3285. if (loop) {
  3286. if (unpin == &root->fs_info->freed_extents[0])
  3287. unpin = &root->fs_info->freed_extents[1];
  3288. else
  3289. unpin = &root->fs_info->freed_extents[0];
  3290. loop = false;
  3291. goto again;
  3292. }
  3293. return 0;
  3294. }
  3295. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3296. struct btrfs_root *root)
  3297. {
  3298. btrfs_destroy_delayed_refs(cur_trans, root);
  3299. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3300. cur_trans->dirty_pages.dirty_bytes);
  3301. /* FIXME: cleanup wait for commit */
  3302. cur_trans->in_commit = 1;
  3303. cur_trans->blocked = 1;
  3304. wake_up(&root->fs_info->transaction_blocked_wait);
  3305. btrfs_evict_pending_snapshots(cur_trans);
  3306. cur_trans->blocked = 0;
  3307. wake_up(&root->fs_info->transaction_wait);
  3308. cur_trans->commit_done = 1;
  3309. wake_up(&cur_trans->commit_wait);
  3310. btrfs_destroy_delayed_inodes(root);
  3311. btrfs_assert_delayed_root_empty(root);
  3312. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3313. EXTENT_DIRTY);
  3314. btrfs_destroy_pinned_extent(root,
  3315. root->fs_info->pinned_extents);
  3316. /*
  3317. memset(cur_trans, 0, sizeof(*cur_trans));
  3318. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3319. */
  3320. }
  3321. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3322. {
  3323. struct btrfs_transaction *t;
  3324. LIST_HEAD(list);
  3325. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3326. spin_lock(&root->fs_info->trans_lock);
  3327. list_splice_init(&root->fs_info->trans_list, &list);
  3328. root->fs_info->trans_no_join = 1;
  3329. spin_unlock(&root->fs_info->trans_lock);
  3330. while (!list_empty(&list)) {
  3331. t = list_entry(list.next, struct btrfs_transaction, list);
  3332. btrfs_destroy_ordered_operations(t, root);
  3333. btrfs_destroy_ordered_extents(root);
  3334. btrfs_destroy_delayed_refs(t, root);
  3335. btrfs_block_rsv_release(root,
  3336. &root->fs_info->trans_block_rsv,
  3337. t->dirty_pages.dirty_bytes);
  3338. /* FIXME: cleanup wait for commit */
  3339. t->in_commit = 1;
  3340. t->blocked = 1;
  3341. smp_mb();
  3342. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3343. wake_up(&root->fs_info->transaction_blocked_wait);
  3344. btrfs_evict_pending_snapshots(t);
  3345. t->blocked = 0;
  3346. smp_mb();
  3347. if (waitqueue_active(&root->fs_info->transaction_wait))
  3348. wake_up(&root->fs_info->transaction_wait);
  3349. t->commit_done = 1;
  3350. smp_mb();
  3351. if (waitqueue_active(&t->commit_wait))
  3352. wake_up(&t->commit_wait);
  3353. btrfs_destroy_delayed_inodes(root);
  3354. btrfs_assert_delayed_root_empty(root);
  3355. btrfs_destroy_delalloc_inodes(root);
  3356. spin_lock(&root->fs_info->trans_lock);
  3357. root->fs_info->running_transaction = NULL;
  3358. spin_unlock(&root->fs_info->trans_lock);
  3359. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3360. EXTENT_DIRTY);
  3361. btrfs_destroy_pinned_extent(root,
  3362. root->fs_info->pinned_extents);
  3363. atomic_set(&t->use_count, 0);
  3364. list_del_init(&t->list);
  3365. memset(t, 0, sizeof(*t));
  3366. kmem_cache_free(btrfs_transaction_cachep, t);
  3367. }
  3368. spin_lock(&root->fs_info->trans_lock);
  3369. root->fs_info->trans_no_join = 0;
  3370. spin_unlock(&root->fs_info->trans_lock);
  3371. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3372. return 0;
  3373. }
  3374. static struct extent_io_ops btree_extent_io_ops = {
  3375. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3376. .readpage_io_failed_hook = btree_io_failed_hook,
  3377. .submit_bio_hook = btree_submit_bio_hook,
  3378. /* note we're sharing with inode.c for the merge bio hook */
  3379. .merge_bio_hook = btrfs_merge_bio_hook,
  3380. };