namespace.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. /*
  137. * vfsmount lock must be held for write
  138. */
  139. unsigned int mnt_get_count(struct vfsmount *mnt)
  140. {
  141. #ifdef CONFIG_SMP
  142. unsigned int count = 0;
  143. int cpu;
  144. for_each_possible_cpu(cpu) {
  145. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  146. }
  147. return count;
  148. #else
  149. return mnt->mnt_count;
  150. #endif
  151. }
  152. static struct vfsmount *alloc_vfsmnt(const char *name)
  153. {
  154. struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  155. if (p) {
  156. struct vfsmount *mnt = &p->mnt;
  157. int err;
  158. err = mnt_alloc_id(mnt);
  159. if (err)
  160. goto out_free_cache;
  161. if (name) {
  162. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  163. if (!mnt->mnt_devname)
  164. goto out_free_id;
  165. }
  166. #ifdef CONFIG_SMP
  167. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  168. if (!mnt->mnt_pcp)
  169. goto out_free_devname;
  170. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  171. #else
  172. mnt->mnt_count = 1;
  173. mnt->mnt_writers = 0;
  174. #endif
  175. INIT_LIST_HEAD(&mnt->mnt_hash);
  176. INIT_LIST_HEAD(&mnt->mnt_child);
  177. INIT_LIST_HEAD(&mnt->mnt_mounts);
  178. INIT_LIST_HEAD(&mnt->mnt_list);
  179. INIT_LIST_HEAD(&mnt->mnt_expire);
  180. INIT_LIST_HEAD(&mnt->mnt_share);
  181. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  182. INIT_LIST_HEAD(&mnt->mnt_slave);
  183. #ifdef CONFIG_FSNOTIFY
  184. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  185. #endif
  186. }
  187. return &p->mnt;
  188. #ifdef CONFIG_SMP
  189. out_free_devname:
  190. kfree(p->mnt.mnt_devname);
  191. #endif
  192. out_free_id:
  193. mnt_free_id(&p->mnt);
  194. out_free_cache:
  195. kmem_cache_free(mnt_cache, p);
  196. return NULL;
  197. }
  198. /*
  199. * Most r/o checks on a fs are for operations that take
  200. * discrete amounts of time, like a write() or unlink().
  201. * We must keep track of when those operations start
  202. * (for permission checks) and when they end, so that
  203. * we can determine when writes are able to occur to
  204. * a filesystem.
  205. */
  206. /*
  207. * __mnt_is_readonly: check whether a mount is read-only
  208. * @mnt: the mount to check for its write status
  209. *
  210. * This shouldn't be used directly ouside of the VFS.
  211. * It does not guarantee that the filesystem will stay
  212. * r/w, just that it is right *now*. This can not and
  213. * should not be used in place of IS_RDONLY(inode).
  214. * mnt_want/drop_write() will _keep_ the filesystem
  215. * r/w.
  216. */
  217. int __mnt_is_readonly(struct vfsmount *mnt)
  218. {
  219. if (mnt->mnt_flags & MNT_READONLY)
  220. return 1;
  221. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  222. return 1;
  223. return 0;
  224. }
  225. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  226. static inline void mnt_inc_writers(struct vfsmount *mnt)
  227. {
  228. #ifdef CONFIG_SMP
  229. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  230. #else
  231. mnt->mnt_writers++;
  232. #endif
  233. }
  234. static inline void mnt_dec_writers(struct vfsmount *mnt)
  235. {
  236. #ifdef CONFIG_SMP
  237. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  238. #else
  239. mnt->mnt_writers--;
  240. #endif
  241. }
  242. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. unsigned int count = 0;
  246. int cpu;
  247. for_each_possible_cpu(cpu) {
  248. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  249. }
  250. return count;
  251. #else
  252. return mnt->mnt_writers;
  253. #endif
  254. }
  255. /*
  256. * Most r/o checks on a fs are for operations that take
  257. * discrete amounts of time, like a write() or unlink().
  258. * We must keep track of when those operations start
  259. * (for permission checks) and when they end, so that
  260. * we can determine when writes are able to occur to
  261. * a filesystem.
  262. */
  263. /**
  264. * mnt_want_write - get write access to a mount
  265. * @mnt: the mount on which to take a write
  266. *
  267. * This tells the low-level filesystem that a write is
  268. * about to be performed to it, and makes sure that
  269. * writes are allowed before returning success. When
  270. * the write operation is finished, mnt_drop_write()
  271. * must be called. This is effectively a refcount.
  272. */
  273. int mnt_want_write(struct vfsmount *mnt)
  274. {
  275. int ret = 0;
  276. preempt_disable();
  277. mnt_inc_writers(mnt);
  278. /*
  279. * The store to mnt_inc_writers must be visible before we pass
  280. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  281. * incremented count after it has set MNT_WRITE_HOLD.
  282. */
  283. smp_mb();
  284. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  285. cpu_relax();
  286. /*
  287. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  288. * be set to match its requirements. So we must not load that until
  289. * MNT_WRITE_HOLD is cleared.
  290. */
  291. smp_rmb();
  292. if (__mnt_is_readonly(mnt)) {
  293. mnt_dec_writers(mnt);
  294. ret = -EROFS;
  295. goto out;
  296. }
  297. out:
  298. preempt_enable();
  299. return ret;
  300. }
  301. EXPORT_SYMBOL_GPL(mnt_want_write);
  302. /**
  303. * mnt_clone_write - get write access to a mount
  304. * @mnt: the mount on which to take a write
  305. *
  306. * This is effectively like mnt_want_write, except
  307. * it must only be used to take an extra write reference
  308. * on a mountpoint that we already know has a write reference
  309. * on it. This allows some optimisation.
  310. *
  311. * After finished, mnt_drop_write must be called as usual to
  312. * drop the reference.
  313. */
  314. int mnt_clone_write(struct vfsmount *mnt)
  315. {
  316. /* superblock may be r/o */
  317. if (__mnt_is_readonly(mnt))
  318. return -EROFS;
  319. preempt_disable();
  320. mnt_inc_writers(mnt);
  321. preempt_enable();
  322. return 0;
  323. }
  324. EXPORT_SYMBOL_GPL(mnt_clone_write);
  325. /**
  326. * mnt_want_write_file - get write access to a file's mount
  327. * @file: the file who's mount on which to take a write
  328. *
  329. * This is like mnt_want_write, but it takes a file and can
  330. * do some optimisations if the file is open for write already
  331. */
  332. int mnt_want_write_file(struct file *file)
  333. {
  334. struct inode *inode = file->f_dentry->d_inode;
  335. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  336. return mnt_want_write(file->f_path.mnt);
  337. else
  338. return mnt_clone_write(file->f_path.mnt);
  339. }
  340. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  341. /**
  342. * mnt_drop_write - give up write access to a mount
  343. * @mnt: the mount on which to give up write access
  344. *
  345. * Tells the low-level filesystem that we are done
  346. * performing writes to it. Must be matched with
  347. * mnt_want_write() call above.
  348. */
  349. void mnt_drop_write(struct vfsmount *mnt)
  350. {
  351. preempt_disable();
  352. mnt_dec_writers(mnt);
  353. preempt_enable();
  354. }
  355. EXPORT_SYMBOL_GPL(mnt_drop_write);
  356. void mnt_drop_write_file(struct file *file)
  357. {
  358. mnt_drop_write(file->f_path.mnt);
  359. }
  360. EXPORT_SYMBOL(mnt_drop_write_file);
  361. static int mnt_make_readonly(struct vfsmount *mnt)
  362. {
  363. int ret = 0;
  364. br_write_lock(vfsmount_lock);
  365. mnt->mnt_flags |= MNT_WRITE_HOLD;
  366. /*
  367. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  368. * should be visible before we do.
  369. */
  370. smp_mb();
  371. /*
  372. * With writers on hold, if this value is zero, then there are
  373. * definitely no active writers (although held writers may subsequently
  374. * increment the count, they'll have to wait, and decrement it after
  375. * seeing MNT_READONLY).
  376. *
  377. * It is OK to have counter incremented on one CPU and decremented on
  378. * another: the sum will add up correctly. The danger would be when we
  379. * sum up each counter, if we read a counter before it is incremented,
  380. * but then read another CPU's count which it has been subsequently
  381. * decremented from -- we would see more decrements than we should.
  382. * MNT_WRITE_HOLD protects against this scenario, because
  383. * mnt_want_write first increments count, then smp_mb, then spins on
  384. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  385. * we're counting up here.
  386. */
  387. if (mnt_get_writers(mnt) > 0)
  388. ret = -EBUSY;
  389. else
  390. mnt->mnt_flags |= MNT_READONLY;
  391. /*
  392. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  393. * that become unheld will see MNT_READONLY.
  394. */
  395. smp_wmb();
  396. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  397. br_write_unlock(vfsmount_lock);
  398. return ret;
  399. }
  400. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  401. {
  402. br_write_lock(vfsmount_lock);
  403. mnt->mnt_flags &= ~MNT_READONLY;
  404. br_write_unlock(vfsmount_lock);
  405. }
  406. static void free_vfsmnt(struct vfsmount *mnt)
  407. {
  408. struct mount *p = real_mount(mnt);
  409. kfree(mnt->mnt_devname);
  410. mnt_free_id(mnt);
  411. #ifdef CONFIG_SMP
  412. free_percpu(mnt->mnt_pcp);
  413. #endif
  414. kmem_cache_free(mnt_cache, p);
  415. }
  416. /*
  417. * find the first or last mount at @dentry on vfsmount @mnt depending on
  418. * @dir. If @dir is set return the first mount else return the last mount.
  419. * vfsmount_lock must be held for read or write.
  420. */
  421. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  422. int dir)
  423. {
  424. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  425. struct list_head *tmp = head;
  426. struct mount *p, *found = NULL;
  427. for (;;) {
  428. tmp = dir ? tmp->next : tmp->prev;
  429. p = NULL;
  430. if (tmp == head)
  431. break;
  432. p = list_entry(tmp, struct mount, mnt.mnt_hash);
  433. if (p->mnt.mnt_parent == mnt && p->mnt.mnt_mountpoint == dentry) {
  434. found = p;
  435. break;
  436. }
  437. }
  438. return found;
  439. }
  440. /*
  441. * lookup_mnt increments the ref count before returning
  442. * the vfsmount struct.
  443. */
  444. struct vfsmount *lookup_mnt(struct path *path)
  445. {
  446. struct mount *child_mnt;
  447. br_read_lock(vfsmount_lock);
  448. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  449. if (child_mnt) {
  450. mnt_add_count(child_mnt, 1);
  451. br_read_unlock(vfsmount_lock);
  452. return &child_mnt->mnt;
  453. } else {
  454. br_read_unlock(vfsmount_lock);
  455. return NULL;
  456. }
  457. }
  458. static inline int check_mnt(struct vfsmount *mnt)
  459. {
  460. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  461. }
  462. /*
  463. * vfsmount lock must be held for write
  464. */
  465. static void touch_mnt_namespace(struct mnt_namespace *ns)
  466. {
  467. if (ns) {
  468. ns->event = ++event;
  469. wake_up_interruptible(&ns->poll);
  470. }
  471. }
  472. /*
  473. * vfsmount lock must be held for write
  474. */
  475. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  476. {
  477. if (ns && ns->event != event) {
  478. ns->event = event;
  479. wake_up_interruptible(&ns->poll);
  480. }
  481. }
  482. /*
  483. * Clear dentry's mounted state if it has no remaining mounts.
  484. * vfsmount_lock must be held for write.
  485. */
  486. static void dentry_reset_mounted(struct dentry *dentry)
  487. {
  488. unsigned u;
  489. for (u = 0; u < HASH_SIZE; u++) {
  490. struct vfsmount *p;
  491. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  492. if (p->mnt_mountpoint == dentry)
  493. return;
  494. }
  495. }
  496. spin_lock(&dentry->d_lock);
  497. dentry->d_flags &= ~DCACHE_MOUNTED;
  498. spin_unlock(&dentry->d_lock);
  499. }
  500. /*
  501. * vfsmount lock must be held for write
  502. */
  503. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  504. {
  505. old_path->dentry = mnt->mnt_mountpoint;
  506. old_path->mnt = mnt->mnt_parent;
  507. mnt->mnt_parent = mnt;
  508. mnt->mnt_mountpoint = mnt->mnt_root;
  509. list_del_init(&mnt->mnt_child);
  510. list_del_init(&mnt->mnt_hash);
  511. dentry_reset_mounted(old_path->dentry);
  512. }
  513. /*
  514. * vfsmount lock must be held for write
  515. */
  516. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  517. struct vfsmount *child_mnt)
  518. {
  519. child_mnt->mnt_parent = mntget(mnt);
  520. child_mnt->mnt_mountpoint = dget(dentry);
  521. spin_lock(&dentry->d_lock);
  522. dentry->d_flags |= DCACHE_MOUNTED;
  523. spin_unlock(&dentry->d_lock);
  524. }
  525. /*
  526. * vfsmount lock must be held for write
  527. */
  528. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  529. {
  530. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  531. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  532. hash(path->mnt, path->dentry));
  533. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  534. }
  535. static inline void __mnt_make_longterm(struct vfsmount *mnt)
  536. {
  537. #ifdef CONFIG_SMP
  538. atomic_inc(&mnt->mnt_longterm);
  539. #endif
  540. }
  541. /* needs vfsmount lock for write */
  542. static inline void __mnt_make_shortterm(struct vfsmount *mnt)
  543. {
  544. #ifdef CONFIG_SMP
  545. atomic_dec(&mnt->mnt_longterm);
  546. #endif
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void commit_tree(struct vfsmount *mnt)
  552. {
  553. struct vfsmount *parent = mnt->mnt_parent;
  554. struct vfsmount *m;
  555. LIST_HEAD(head);
  556. struct mnt_namespace *n = parent->mnt_ns;
  557. BUG_ON(parent == mnt);
  558. list_add_tail(&head, &mnt->mnt_list);
  559. list_for_each_entry(m, &head, mnt_list) {
  560. m->mnt_ns = n;
  561. __mnt_make_longterm(m);
  562. }
  563. list_splice(&head, n->list.prev);
  564. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  565. hash(parent, mnt->mnt_mountpoint));
  566. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  567. touch_mnt_namespace(n);
  568. }
  569. static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
  570. {
  571. struct list_head *next = p->mnt.mnt_mounts.next;
  572. if (next == &p->mnt.mnt_mounts) {
  573. while (1) {
  574. if (&p->mnt == root)
  575. return NULL;
  576. next = p->mnt.mnt_child.next;
  577. if (next != &p->mnt.mnt_parent->mnt_mounts)
  578. break;
  579. p = real_mount(p->mnt.mnt_parent);
  580. }
  581. }
  582. return list_entry(next, struct mount, mnt.mnt_child);
  583. }
  584. static struct mount *skip_mnt_tree(struct mount *p)
  585. {
  586. struct list_head *prev = p->mnt.mnt_mounts.prev;
  587. while (prev != &p->mnt.mnt_mounts) {
  588. p = list_entry(prev, struct mount, mnt.mnt_child);
  589. prev = p->mnt.mnt_mounts.prev;
  590. }
  591. return p;
  592. }
  593. struct vfsmount *
  594. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  595. {
  596. struct vfsmount *mnt;
  597. struct dentry *root;
  598. if (!type)
  599. return ERR_PTR(-ENODEV);
  600. mnt = alloc_vfsmnt(name);
  601. if (!mnt)
  602. return ERR_PTR(-ENOMEM);
  603. if (flags & MS_KERNMOUNT)
  604. mnt->mnt_flags = MNT_INTERNAL;
  605. root = mount_fs(type, flags, name, data);
  606. if (IS_ERR(root)) {
  607. free_vfsmnt(mnt);
  608. return ERR_CAST(root);
  609. }
  610. mnt->mnt_root = root;
  611. mnt->mnt_sb = root->d_sb;
  612. mnt->mnt_mountpoint = mnt->mnt_root;
  613. mnt->mnt_parent = mnt;
  614. return mnt;
  615. }
  616. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  617. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  618. int flag)
  619. {
  620. struct super_block *sb = old->mnt_sb;
  621. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  622. if (mnt) {
  623. if (flag & (CL_SLAVE | CL_PRIVATE))
  624. mnt->mnt_group_id = 0; /* not a peer of original */
  625. else
  626. mnt->mnt_group_id = old->mnt_group_id;
  627. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  628. int err = mnt_alloc_group_id(mnt);
  629. if (err)
  630. goto out_free;
  631. }
  632. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  633. atomic_inc(&sb->s_active);
  634. mnt->mnt_sb = sb;
  635. mnt->mnt_root = dget(root);
  636. mnt->mnt_mountpoint = mnt->mnt_root;
  637. mnt->mnt_parent = mnt;
  638. if (flag & CL_SLAVE) {
  639. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  640. mnt->mnt_master = old;
  641. CLEAR_MNT_SHARED(mnt);
  642. } else if (!(flag & CL_PRIVATE)) {
  643. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  644. list_add(&mnt->mnt_share, &old->mnt_share);
  645. if (IS_MNT_SLAVE(old))
  646. list_add(&mnt->mnt_slave, &old->mnt_slave);
  647. mnt->mnt_master = old->mnt_master;
  648. }
  649. if (flag & CL_MAKE_SHARED)
  650. set_mnt_shared(mnt);
  651. /* stick the duplicate mount on the same expiry list
  652. * as the original if that was on one */
  653. if (flag & CL_EXPIRE) {
  654. if (!list_empty(&old->mnt_expire))
  655. list_add(&mnt->mnt_expire, &old->mnt_expire);
  656. }
  657. }
  658. return mnt;
  659. out_free:
  660. free_vfsmnt(mnt);
  661. return NULL;
  662. }
  663. static inline void mntfree(struct vfsmount *mnt)
  664. {
  665. struct super_block *sb = mnt->mnt_sb;
  666. /*
  667. * This probably indicates that somebody messed
  668. * up a mnt_want/drop_write() pair. If this
  669. * happens, the filesystem was probably unable
  670. * to make r/w->r/o transitions.
  671. */
  672. /*
  673. * The locking used to deal with mnt_count decrement provides barriers,
  674. * so mnt_get_writers() below is safe.
  675. */
  676. WARN_ON(mnt_get_writers(mnt));
  677. fsnotify_vfsmount_delete(mnt);
  678. dput(mnt->mnt_root);
  679. free_vfsmnt(mnt);
  680. deactivate_super(sb);
  681. }
  682. static void mntput_no_expire(struct vfsmount *mnt)
  683. {
  684. put_again:
  685. #ifdef CONFIG_SMP
  686. br_read_lock(vfsmount_lock);
  687. if (likely(atomic_read(&mnt->mnt_longterm))) {
  688. mnt_add_count(mnt, -1);
  689. br_read_unlock(vfsmount_lock);
  690. return;
  691. }
  692. br_read_unlock(vfsmount_lock);
  693. br_write_lock(vfsmount_lock);
  694. mnt_add_count(mnt, -1);
  695. if (mnt_get_count(mnt)) {
  696. br_write_unlock(vfsmount_lock);
  697. return;
  698. }
  699. #else
  700. mnt_add_count(mnt, -1);
  701. if (likely(mnt_get_count(mnt)))
  702. return;
  703. br_write_lock(vfsmount_lock);
  704. #endif
  705. if (unlikely(mnt->mnt_pinned)) {
  706. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  707. mnt->mnt_pinned = 0;
  708. br_write_unlock(vfsmount_lock);
  709. acct_auto_close_mnt(mnt);
  710. goto put_again;
  711. }
  712. br_write_unlock(vfsmount_lock);
  713. mntfree(mnt);
  714. }
  715. void mntput(struct vfsmount *mnt)
  716. {
  717. if (mnt) {
  718. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  719. if (unlikely(mnt->mnt_expiry_mark))
  720. mnt->mnt_expiry_mark = 0;
  721. mntput_no_expire(mnt);
  722. }
  723. }
  724. EXPORT_SYMBOL(mntput);
  725. struct vfsmount *mntget(struct vfsmount *mnt)
  726. {
  727. if (mnt)
  728. mnt_add_count(mnt, 1);
  729. return mnt;
  730. }
  731. EXPORT_SYMBOL(mntget);
  732. void mnt_pin(struct vfsmount *mnt)
  733. {
  734. br_write_lock(vfsmount_lock);
  735. mnt->mnt_pinned++;
  736. br_write_unlock(vfsmount_lock);
  737. }
  738. EXPORT_SYMBOL(mnt_pin);
  739. void mnt_unpin(struct vfsmount *mnt)
  740. {
  741. br_write_lock(vfsmount_lock);
  742. if (mnt->mnt_pinned) {
  743. mnt_add_count(mnt, 1);
  744. mnt->mnt_pinned--;
  745. }
  746. br_write_unlock(vfsmount_lock);
  747. }
  748. EXPORT_SYMBOL(mnt_unpin);
  749. static inline void mangle(struct seq_file *m, const char *s)
  750. {
  751. seq_escape(m, s, " \t\n\\");
  752. }
  753. /*
  754. * Simple .show_options callback for filesystems which don't want to
  755. * implement more complex mount option showing.
  756. *
  757. * See also save_mount_options().
  758. */
  759. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  760. {
  761. const char *options;
  762. rcu_read_lock();
  763. options = rcu_dereference(mnt->mnt_sb->s_options);
  764. if (options != NULL && options[0]) {
  765. seq_putc(m, ',');
  766. mangle(m, options);
  767. }
  768. rcu_read_unlock();
  769. return 0;
  770. }
  771. EXPORT_SYMBOL(generic_show_options);
  772. /*
  773. * If filesystem uses generic_show_options(), this function should be
  774. * called from the fill_super() callback.
  775. *
  776. * The .remount_fs callback usually needs to be handled in a special
  777. * way, to make sure, that previous options are not overwritten if the
  778. * remount fails.
  779. *
  780. * Also note, that if the filesystem's .remount_fs function doesn't
  781. * reset all options to their default value, but changes only newly
  782. * given options, then the displayed options will not reflect reality
  783. * any more.
  784. */
  785. void save_mount_options(struct super_block *sb, char *options)
  786. {
  787. BUG_ON(sb->s_options);
  788. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  789. }
  790. EXPORT_SYMBOL(save_mount_options);
  791. void replace_mount_options(struct super_block *sb, char *options)
  792. {
  793. char *old = sb->s_options;
  794. rcu_assign_pointer(sb->s_options, options);
  795. if (old) {
  796. synchronize_rcu();
  797. kfree(old);
  798. }
  799. }
  800. EXPORT_SYMBOL(replace_mount_options);
  801. #ifdef CONFIG_PROC_FS
  802. /* iterator */
  803. static void *m_start(struct seq_file *m, loff_t *pos)
  804. {
  805. struct proc_mounts *p = m->private;
  806. down_read(&namespace_sem);
  807. return seq_list_start(&p->ns->list, *pos);
  808. }
  809. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  810. {
  811. struct proc_mounts *p = m->private;
  812. return seq_list_next(v, &p->ns->list, pos);
  813. }
  814. static void m_stop(struct seq_file *m, void *v)
  815. {
  816. up_read(&namespace_sem);
  817. }
  818. int mnt_had_events(struct proc_mounts *p)
  819. {
  820. struct mnt_namespace *ns = p->ns;
  821. int res = 0;
  822. br_read_lock(vfsmount_lock);
  823. if (p->m.poll_event != ns->event) {
  824. p->m.poll_event = ns->event;
  825. res = 1;
  826. }
  827. br_read_unlock(vfsmount_lock);
  828. return res;
  829. }
  830. struct proc_fs_info {
  831. int flag;
  832. const char *str;
  833. };
  834. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  835. {
  836. static const struct proc_fs_info fs_info[] = {
  837. { MS_SYNCHRONOUS, ",sync" },
  838. { MS_DIRSYNC, ",dirsync" },
  839. { MS_MANDLOCK, ",mand" },
  840. { 0, NULL }
  841. };
  842. const struct proc_fs_info *fs_infop;
  843. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  844. if (sb->s_flags & fs_infop->flag)
  845. seq_puts(m, fs_infop->str);
  846. }
  847. return security_sb_show_options(m, sb);
  848. }
  849. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  850. {
  851. static const struct proc_fs_info mnt_info[] = {
  852. { MNT_NOSUID, ",nosuid" },
  853. { MNT_NODEV, ",nodev" },
  854. { MNT_NOEXEC, ",noexec" },
  855. { MNT_NOATIME, ",noatime" },
  856. { MNT_NODIRATIME, ",nodiratime" },
  857. { MNT_RELATIME, ",relatime" },
  858. { 0, NULL }
  859. };
  860. const struct proc_fs_info *fs_infop;
  861. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  862. if (mnt->mnt_flags & fs_infop->flag)
  863. seq_puts(m, fs_infop->str);
  864. }
  865. }
  866. static void show_type(struct seq_file *m, struct super_block *sb)
  867. {
  868. mangle(m, sb->s_type->name);
  869. if (sb->s_subtype && sb->s_subtype[0]) {
  870. seq_putc(m, '.');
  871. mangle(m, sb->s_subtype);
  872. }
  873. }
  874. static int show_vfsmnt(struct seq_file *m, void *v)
  875. {
  876. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  877. int err = 0;
  878. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  879. if (mnt->mnt_sb->s_op->show_devname) {
  880. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  881. if (err)
  882. goto out;
  883. } else {
  884. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  885. }
  886. seq_putc(m, ' ');
  887. seq_path(m, &mnt_path, " \t\n\\");
  888. seq_putc(m, ' ');
  889. show_type(m, mnt->mnt_sb);
  890. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  891. err = show_sb_opts(m, mnt->mnt_sb);
  892. if (err)
  893. goto out;
  894. show_mnt_opts(m, mnt);
  895. if (mnt->mnt_sb->s_op->show_options)
  896. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  897. seq_puts(m, " 0 0\n");
  898. out:
  899. return err;
  900. }
  901. const struct seq_operations mounts_op = {
  902. .start = m_start,
  903. .next = m_next,
  904. .stop = m_stop,
  905. .show = show_vfsmnt
  906. };
  907. static int show_mountinfo(struct seq_file *m, void *v)
  908. {
  909. struct proc_mounts *p = m->private;
  910. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  911. struct super_block *sb = mnt->mnt_sb;
  912. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  913. struct path root = p->root;
  914. int err = 0;
  915. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  916. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  917. if (sb->s_op->show_path)
  918. err = sb->s_op->show_path(m, mnt);
  919. else
  920. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  921. if (err)
  922. goto out;
  923. seq_putc(m, ' ');
  924. /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
  925. err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
  926. if (err)
  927. goto out;
  928. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  929. show_mnt_opts(m, mnt);
  930. /* Tagged fields ("foo:X" or "bar") */
  931. if (IS_MNT_SHARED(mnt))
  932. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  933. if (IS_MNT_SLAVE(mnt)) {
  934. int master = mnt->mnt_master->mnt_group_id;
  935. int dom = get_dominating_id(mnt, &p->root);
  936. seq_printf(m, " master:%i", master);
  937. if (dom && dom != master)
  938. seq_printf(m, " propagate_from:%i", dom);
  939. }
  940. if (IS_MNT_UNBINDABLE(mnt))
  941. seq_puts(m, " unbindable");
  942. /* Filesystem specific data */
  943. seq_puts(m, " - ");
  944. show_type(m, sb);
  945. seq_putc(m, ' ');
  946. if (sb->s_op->show_devname)
  947. err = sb->s_op->show_devname(m, mnt);
  948. else
  949. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  950. if (err)
  951. goto out;
  952. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  953. err = show_sb_opts(m, sb);
  954. if (err)
  955. goto out;
  956. if (sb->s_op->show_options)
  957. err = sb->s_op->show_options(m, mnt);
  958. seq_putc(m, '\n');
  959. out:
  960. return err;
  961. }
  962. const struct seq_operations mountinfo_op = {
  963. .start = m_start,
  964. .next = m_next,
  965. .stop = m_stop,
  966. .show = show_mountinfo,
  967. };
  968. static int show_vfsstat(struct seq_file *m, void *v)
  969. {
  970. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  971. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  972. int err = 0;
  973. /* device */
  974. if (mnt->mnt_sb->s_op->show_devname) {
  975. seq_puts(m, "device ");
  976. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  977. } else {
  978. if (mnt->mnt_devname) {
  979. seq_puts(m, "device ");
  980. mangle(m, mnt->mnt_devname);
  981. } else
  982. seq_puts(m, "no device");
  983. }
  984. /* mount point */
  985. seq_puts(m, " mounted on ");
  986. seq_path(m, &mnt_path, " \t\n\\");
  987. seq_putc(m, ' ');
  988. /* file system type */
  989. seq_puts(m, "with fstype ");
  990. show_type(m, mnt->mnt_sb);
  991. /* optional statistics */
  992. if (mnt->mnt_sb->s_op->show_stats) {
  993. seq_putc(m, ' ');
  994. if (!err)
  995. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  996. }
  997. seq_putc(m, '\n');
  998. return err;
  999. }
  1000. const struct seq_operations mountstats_op = {
  1001. .start = m_start,
  1002. .next = m_next,
  1003. .stop = m_stop,
  1004. .show = show_vfsstat,
  1005. };
  1006. #endif /* CONFIG_PROC_FS */
  1007. /**
  1008. * may_umount_tree - check if a mount tree is busy
  1009. * @mnt: root of mount tree
  1010. *
  1011. * This is called to check if a tree of mounts has any
  1012. * open files, pwds, chroots or sub mounts that are
  1013. * busy.
  1014. */
  1015. int may_umount_tree(struct vfsmount *mnt)
  1016. {
  1017. int actual_refs = 0;
  1018. int minimum_refs = 0;
  1019. struct mount *p;
  1020. BUG_ON(!mnt);
  1021. /* write lock needed for mnt_get_count */
  1022. br_write_lock(vfsmount_lock);
  1023. for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
  1024. actual_refs += mnt_get_count(&p->mnt);
  1025. minimum_refs += 2;
  1026. }
  1027. br_write_unlock(vfsmount_lock);
  1028. if (actual_refs > minimum_refs)
  1029. return 0;
  1030. return 1;
  1031. }
  1032. EXPORT_SYMBOL(may_umount_tree);
  1033. /**
  1034. * may_umount - check if a mount point is busy
  1035. * @mnt: root of mount
  1036. *
  1037. * This is called to check if a mount point has any
  1038. * open files, pwds, chroots or sub mounts. If the
  1039. * mount has sub mounts this will return busy
  1040. * regardless of whether the sub mounts are busy.
  1041. *
  1042. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1043. * give false negatives. The main reason why it's here is that we need
  1044. * a non-destructive way to look for easily umountable filesystems.
  1045. */
  1046. int may_umount(struct vfsmount *mnt)
  1047. {
  1048. int ret = 1;
  1049. down_read(&namespace_sem);
  1050. br_write_lock(vfsmount_lock);
  1051. if (propagate_mount_busy(mnt, 2))
  1052. ret = 0;
  1053. br_write_unlock(vfsmount_lock);
  1054. up_read(&namespace_sem);
  1055. return ret;
  1056. }
  1057. EXPORT_SYMBOL(may_umount);
  1058. void release_mounts(struct list_head *head)
  1059. {
  1060. struct vfsmount *mnt;
  1061. while (!list_empty(head)) {
  1062. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1063. list_del_init(&mnt->mnt_hash);
  1064. if (mnt_has_parent(mnt)) {
  1065. struct dentry *dentry;
  1066. struct vfsmount *m;
  1067. br_write_lock(vfsmount_lock);
  1068. dentry = mnt->mnt_mountpoint;
  1069. m = mnt->mnt_parent;
  1070. mnt->mnt_mountpoint = mnt->mnt_root;
  1071. mnt->mnt_parent = mnt;
  1072. m->mnt_ghosts--;
  1073. br_write_unlock(vfsmount_lock);
  1074. dput(dentry);
  1075. mntput(m);
  1076. }
  1077. mntput(mnt);
  1078. }
  1079. }
  1080. /*
  1081. * vfsmount lock must be held for write
  1082. * namespace_sem must be held for write
  1083. */
  1084. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1085. {
  1086. LIST_HEAD(tmp_list);
  1087. struct mount *p;
  1088. for (p = real_mount(mnt); p; p = next_mnt(p, mnt))
  1089. list_move(&p->mnt.mnt_hash, &tmp_list);
  1090. if (propagate)
  1091. propagate_umount(&tmp_list);
  1092. list_for_each_entry(p, &tmp_list, mnt.mnt_hash) {
  1093. list_del_init(&p->mnt.mnt_expire);
  1094. list_del_init(&p->mnt.mnt_list);
  1095. __touch_mnt_namespace(p->mnt.mnt_ns);
  1096. p->mnt.mnt_ns = NULL;
  1097. __mnt_make_shortterm(&p->mnt);
  1098. list_del_init(&p->mnt.mnt_child);
  1099. if (mnt_has_parent(&p->mnt)) {
  1100. p->mnt.mnt_parent->mnt_ghosts++;
  1101. dentry_reset_mounted(p->mnt.mnt_mountpoint);
  1102. }
  1103. change_mnt_propagation(&p->mnt, MS_PRIVATE);
  1104. }
  1105. list_splice(&tmp_list, kill);
  1106. }
  1107. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1108. static int do_umount(struct vfsmount *mnt, int flags)
  1109. {
  1110. struct super_block *sb = mnt->mnt_sb;
  1111. int retval;
  1112. LIST_HEAD(umount_list);
  1113. retval = security_sb_umount(mnt, flags);
  1114. if (retval)
  1115. return retval;
  1116. /*
  1117. * Allow userspace to request a mountpoint be expired rather than
  1118. * unmounting unconditionally. Unmount only happens if:
  1119. * (1) the mark is already set (the mark is cleared by mntput())
  1120. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1121. */
  1122. if (flags & MNT_EXPIRE) {
  1123. if (mnt == current->fs->root.mnt ||
  1124. flags & (MNT_FORCE | MNT_DETACH))
  1125. return -EINVAL;
  1126. /*
  1127. * probably don't strictly need the lock here if we examined
  1128. * all race cases, but it's a slowpath.
  1129. */
  1130. br_write_lock(vfsmount_lock);
  1131. if (mnt_get_count(mnt) != 2) {
  1132. br_write_unlock(vfsmount_lock);
  1133. return -EBUSY;
  1134. }
  1135. br_write_unlock(vfsmount_lock);
  1136. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1137. return -EAGAIN;
  1138. }
  1139. /*
  1140. * If we may have to abort operations to get out of this
  1141. * mount, and they will themselves hold resources we must
  1142. * allow the fs to do things. In the Unix tradition of
  1143. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1144. * might fail to complete on the first run through as other tasks
  1145. * must return, and the like. Thats for the mount program to worry
  1146. * about for the moment.
  1147. */
  1148. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1149. sb->s_op->umount_begin(sb);
  1150. }
  1151. /*
  1152. * No sense to grab the lock for this test, but test itself looks
  1153. * somewhat bogus. Suggestions for better replacement?
  1154. * Ho-hum... In principle, we might treat that as umount + switch
  1155. * to rootfs. GC would eventually take care of the old vfsmount.
  1156. * Actually it makes sense, especially if rootfs would contain a
  1157. * /reboot - static binary that would close all descriptors and
  1158. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1159. */
  1160. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1161. /*
  1162. * Special case for "unmounting" root ...
  1163. * we just try to remount it readonly.
  1164. */
  1165. down_write(&sb->s_umount);
  1166. if (!(sb->s_flags & MS_RDONLY))
  1167. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1168. up_write(&sb->s_umount);
  1169. return retval;
  1170. }
  1171. down_write(&namespace_sem);
  1172. br_write_lock(vfsmount_lock);
  1173. event++;
  1174. if (!(flags & MNT_DETACH))
  1175. shrink_submounts(mnt, &umount_list);
  1176. retval = -EBUSY;
  1177. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1178. if (!list_empty(&mnt->mnt_list))
  1179. umount_tree(mnt, 1, &umount_list);
  1180. retval = 0;
  1181. }
  1182. br_write_unlock(vfsmount_lock);
  1183. up_write(&namespace_sem);
  1184. release_mounts(&umount_list);
  1185. return retval;
  1186. }
  1187. /*
  1188. * Now umount can handle mount points as well as block devices.
  1189. * This is important for filesystems which use unnamed block devices.
  1190. *
  1191. * We now support a flag for forced unmount like the other 'big iron'
  1192. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1193. */
  1194. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1195. {
  1196. struct path path;
  1197. int retval;
  1198. int lookup_flags = 0;
  1199. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1200. return -EINVAL;
  1201. if (!(flags & UMOUNT_NOFOLLOW))
  1202. lookup_flags |= LOOKUP_FOLLOW;
  1203. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1204. if (retval)
  1205. goto out;
  1206. retval = -EINVAL;
  1207. if (path.dentry != path.mnt->mnt_root)
  1208. goto dput_and_out;
  1209. if (!check_mnt(path.mnt))
  1210. goto dput_and_out;
  1211. retval = -EPERM;
  1212. if (!capable(CAP_SYS_ADMIN))
  1213. goto dput_and_out;
  1214. retval = do_umount(path.mnt, flags);
  1215. dput_and_out:
  1216. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1217. dput(path.dentry);
  1218. mntput_no_expire(path.mnt);
  1219. out:
  1220. return retval;
  1221. }
  1222. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1223. /*
  1224. * The 2.0 compatible umount. No flags.
  1225. */
  1226. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1227. {
  1228. return sys_umount(name, 0);
  1229. }
  1230. #endif
  1231. static int mount_is_safe(struct path *path)
  1232. {
  1233. if (capable(CAP_SYS_ADMIN))
  1234. return 0;
  1235. return -EPERM;
  1236. #ifdef notyet
  1237. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1238. return -EPERM;
  1239. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1240. if (current_uid() != path->dentry->d_inode->i_uid)
  1241. return -EPERM;
  1242. }
  1243. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1244. return -EPERM;
  1245. return 0;
  1246. #endif
  1247. }
  1248. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1249. int flag)
  1250. {
  1251. struct vfsmount *res, *p, *q, *r;
  1252. struct path path;
  1253. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1254. return NULL;
  1255. res = q = clone_mnt(mnt, dentry, flag);
  1256. if (!q)
  1257. goto Enomem;
  1258. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1259. p = mnt;
  1260. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1261. struct mount *s;
  1262. if (!is_subdir(r->mnt_mountpoint, dentry))
  1263. continue;
  1264. for (s = real_mount(r); s; s = next_mnt(s, r)) {
  1265. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
  1266. s = skip_mnt_tree(s);
  1267. continue;
  1268. }
  1269. while (p != s->mnt.mnt_parent) {
  1270. p = p->mnt_parent;
  1271. q = q->mnt_parent;
  1272. }
  1273. p = &s->mnt;
  1274. path.mnt = q;
  1275. path.dentry = p->mnt_mountpoint;
  1276. q = clone_mnt(p, p->mnt_root, flag);
  1277. if (!q)
  1278. goto Enomem;
  1279. br_write_lock(vfsmount_lock);
  1280. list_add_tail(&q->mnt_list, &res->mnt_list);
  1281. attach_mnt(q, &path);
  1282. br_write_unlock(vfsmount_lock);
  1283. }
  1284. }
  1285. return res;
  1286. Enomem:
  1287. if (res) {
  1288. LIST_HEAD(umount_list);
  1289. br_write_lock(vfsmount_lock);
  1290. umount_tree(res, 0, &umount_list);
  1291. br_write_unlock(vfsmount_lock);
  1292. release_mounts(&umount_list);
  1293. }
  1294. return NULL;
  1295. }
  1296. struct vfsmount *collect_mounts(struct path *path)
  1297. {
  1298. struct vfsmount *tree;
  1299. down_write(&namespace_sem);
  1300. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1301. up_write(&namespace_sem);
  1302. return tree;
  1303. }
  1304. void drop_collected_mounts(struct vfsmount *mnt)
  1305. {
  1306. LIST_HEAD(umount_list);
  1307. down_write(&namespace_sem);
  1308. br_write_lock(vfsmount_lock);
  1309. umount_tree(mnt, 0, &umount_list);
  1310. br_write_unlock(vfsmount_lock);
  1311. up_write(&namespace_sem);
  1312. release_mounts(&umount_list);
  1313. }
  1314. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1315. struct vfsmount *root)
  1316. {
  1317. struct vfsmount *mnt;
  1318. int res = f(root, arg);
  1319. if (res)
  1320. return res;
  1321. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1322. res = f(mnt, arg);
  1323. if (res)
  1324. return res;
  1325. }
  1326. return 0;
  1327. }
  1328. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1329. {
  1330. struct mount *p;
  1331. for (p = real_mount(mnt); &p->mnt != end; p = next_mnt(p, mnt)) {
  1332. if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
  1333. mnt_release_group_id(&p->mnt);
  1334. }
  1335. }
  1336. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1337. {
  1338. struct mount *p;
  1339. for (p = real_mount(mnt); p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1340. if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
  1341. int err = mnt_alloc_group_id(&p->mnt);
  1342. if (err) {
  1343. cleanup_group_ids(mnt, &p->mnt);
  1344. return err;
  1345. }
  1346. }
  1347. }
  1348. return 0;
  1349. }
  1350. /*
  1351. * @source_mnt : mount tree to be attached
  1352. * @nd : place the mount tree @source_mnt is attached
  1353. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1354. * store the parent mount and mountpoint dentry.
  1355. * (done when source_mnt is moved)
  1356. *
  1357. * NOTE: in the table below explains the semantics when a source mount
  1358. * of a given type is attached to a destination mount of a given type.
  1359. * ---------------------------------------------------------------------------
  1360. * | BIND MOUNT OPERATION |
  1361. * |**************************************************************************
  1362. * | source-->| shared | private | slave | unbindable |
  1363. * | dest | | | | |
  1364. * | | | | | | |
  1365. * | v | | | | |
  1366. * |**************************************************************************
  1367. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1368. * | | | | | |
  1369. * |non-shared| shared (+) | private | slave (*) | invalid |
  1370. * ***************************************************************************
  1371. * A bind operation clones the source mount and mounts the clone on the
  1372. * destination mount.
  1373. *
  1374. * (++) the cloned mount is propagated to all the mounts in the propagation
  1375. * tree of the destination mount and the cloned mount is added to
  1376. * the peer group of the source mount.
  1377. * (+) the cloned mount is created under the destination mount and is marked
  1378. * as shared. The cloned mount is added to the peer group of the source
  1379. * mount.
  1380. * (+++) the mount is propagated to all the mounts in the propagation tree
  1381. * of the destination mount and the cloned mount is made slave
  1382. * of the same master as that of the source mount. The cloned mount
  1383. * is marked as 'shared and slave'.
  1384. * (*) the cloned mount is made a slave of the same master as that of the
  1385. * source mount.
  1386. *
  1387. * ---------------------------------------------------------------------------
  1388. * | MOVE MOUNT OPERATION |
  1389. * |**************************************************************************
  1390. * | source-->| shared | private | slave | unbindable |
  1391. * | dest | | | | |
  1392. * | | | | | | |
  1393. * | v | | | | |
  1394. * |**************************************************************************
  1395. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1396. * | | | | | |
  1397. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1398. * ***************************************************************************
  1399. *
  1400. * (+) the mount is moved to the destination. And is then propagated to
  1401. * all the mounts in the propagation tree of the destination mount.
  1402. * (+*) the mount is moved to the destination.
  1403. * (+++) the mount is moved to the destination and is then propagated to
  1404. * all the mounts belonging to the destination mount's propagation tree.
  1405. * the mount is marked as 'shared and slave'.
  1406. * (*) the mount continues to be a slave at the new location.
  1407. *
  1408. * if the source mount is a tree, the operations explained above is
  1409. * applied to each mount in the tree.
  1410. * Must be called without spinlocks held, since this function can sleep
  1411. * in allocations.
  1412. */
  1413. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1414. struct path *path, struct path *parent_path)
  1415. {
  1416. LIST_HEAD(tree_list);
  1417. struct vfsmount *dest_mnt = path->mnt;
  1418. struct dentry *dest_dentry = path->dentry;
  1419. struct mount *child, *p;
  1420. int err;
  1421. if (IS_MNT_SHARED(dest_mnt)) {
  1422. err = invent_group_ids(source_mnt, true);
  1423. if (err)
  1424. goto out;
  1425. }
  1426. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1427. if (err)
  1428. goto out_cleanup_ids;
  1429. br_write_lock(vfsmount_lock);
  1430. if (IS_MNT_SHARED(dest_mnt)) {
  1431. for (p = real_mount(source_mnt); p; p = next_mnt(p, source_mnt))
  1432. set_mnt_shared(&p->mnt);
  1433. }
  1434. if (parent_path) {
  1435. detach_mnt(source_mnt, parent_path);
  1436. attach_mnt(source_mnt, path);
  1437. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1438. } else {
  1439. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1440. commit_tree(source_mnt);
  1441. }
  1442. list_for_each_entry_safe(child, p, &tree_list, mnt.mnt_hash) {
  1443. list_del_init(&child->mnt.mnt_hash);
  1444. commit_tree(&child->mnt);
  1445. }
  1446. br_write_unlock(vfsmount_lock);
  1447. return 0;
  1448. out_cleanup_ids:
  1449. if (IS_MNT_SHARED(dest_mnt))
  1450. cleanup_group_ids(source_mnt, NULL);
  1451. out:
  1452. return err;
  1453. }
  1454. static int lock_mount(struct path *path)
  1455. {
  1456. struct vfsmount *mnt;
  1457. retry:
  1458. mutex_lock(&path->dentry->d_inode->i_mutex);
  1459. if (unlikely(cant_mount(path->dentry))) {
  1460. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1461. return -ENOENT;
  1462. }
  1463. down_write(&namespace_sem);
  1464. mnt = lookup_mnt(path);
  1465. if (likely(!mnt))
  1466. return 0;
  1467. up_write(&namespace_sem);
  1468. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1469. path_put(path);
  1470. path->mnt = mnt;
  1471. path->dentry = dget(mnt->mnt_root);
  1472. goto retry;
  1473. }
  1474. static void unlock_mount(struct path *path)
  1475. {
  1476. up_write(&namespace_sem);
  1477. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1478. }
  1479. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1480. {
  1481. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1482. return -EINVAL;
  1483. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1484. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1485. return -ENOTDIR;
  1486. if (d_unlinked(path->dentry))
  1487. return -ENOENT;
  1488. return attach_recursive_mnt(mnt, path, NULL);
  1489. }
  1490. /*
  1491. * Sanity check the flags to change_mnt_propagation.
  1492. */
  1493. static int flags_to_propagation_type(int flags)
  1494. {
  1495. int type = flags & ~(MS_REC | MS_SILENT);
  1496. /* Fail if any non-propagation flags are set */
  1497. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1498. return 0;
  1499. /* Only one propagation flag should be set */
  1500. if (!is_power_of_2(type))
  1501. return 0;
  1502. return type;
  1503. }
  1504. /*
  1505. * recursively change the type of the mountpoint.
  1506. */
  1507. static int do_change_type(struct path *path, int flag)
  1508. {
  1509. struct mount *m;
  1510. struct vfsmount *mnt = path->mnt;
  1511. int recurse = flag & MS_REC;
  1512. int type;
  1513. int err = 0;
  1514. if (!capable(CAP_SYS_ADMIN))
  1515. return -EPERM;
  1516. if (path->dentry != path->mnt->mnt_root)
  1517. return -EINVAL;
  1518. type = flags_to_propagation_type(flag);
  1519. if (!type)
  1520. return -EINVAL;
  1521. down_write(&namespace_sem);
  1522. if (type == MS_SHARED) {
  1523. err = invent_group_ids(mnt, recurse);
  1524. if (err)
  1525. goto out_unlock;
  1526. }
  1527. br_write_lock(vfsmount_lock);
  1528. for (m = real_mount(mnt); m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1529. change_mnt_propagation(&m->mnt, type);
  1530. br_write_unlock(vfsmount_lock);
  1531. out_unlock:
  1532. up_write(&namespace_sem);
  1533. return err;
  1534. }
  1535. /*
  1536. * do loopback mount.
  1537. */
  1538. static int do_loopback(struct path *path, char *old_name,
  1539. int recurse)
  1540. {
  1541. LIST_HEAD(umount_list);
  1542. struct path old_path;
  1543. struct vfsmount *mnt = NULL;
  1544. int err = mount_is_safe(path);
  1545. if (err)
  1546. return err;
  1547. if (!old_name || !*old_name)
  1548. return -EINVAL;
  1549. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1550. if (err)
  1551. return err;
  1552. err = lock_mount(path);
  1553. if (err)
  1554. goto out;
  1555. err = -EINVAL;
  1556. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1557. goto out2;
  1558. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1559. goto out2;
  1560. err = -ENOMEM;
  1561. if (recurse)
  1562. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1563. else
  1564. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1565. if (!mnt)
  1566. goto out2;
  1567. err = graft_tree(mnt, path);
  1568. if (err) {
  1569. br_write_lock(vfsmount_lock);
  1570. umount_tree(mnt, 0, &umount_list);
  1571. br_write_unlock(vfsmount_lock);
  1572. }
  1573. out2:
  1574. unlock_mount(path);
  1575. release_mounts(&umount_list);
  1576. out:
  1577. path_put(&old_path);
  1578. return err;
  1579. }
  1580. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1581. {
  1582. int error = 0;
  1583. int readonly_request = 0;
  1584. if (ms_flags & MS_RDONLY)
  1585. readonly_request = 1;
  1586. if (readonly_request == __mnt_is_readonly(mnt))
  1587. return 0;
  1588. if (readonly_request)
  1589. error = mnt_make_readonly(mnt);
  1590. else
  1591. __mnt_unmake_readonly(mnt);
  1592. return error;
  1593. }
  1594. /*
  1595. * change filesystem flags. dir should be a physical root of filesystem.
  1596. * If you've mounted a non-root directory somewhere and want to do remount
  1597. * on it - tough luck.
  1598. */
  1599. static int do_remount(struct path *path, int flags, int mnt_flags,
  1600. void *data)
  1601. {
  1602. int err;
  1603. struct super_block *sb = path->mnt->mnt_sb;
  1604. if (!capable(CAP_SYS_ADMIN))
  1605. return -EPERM;
  1606. if (!check_mnt(path->mnt))
  1607. return -EINVAL;
  1608. if (path->dentry != path->mnt->mnt_root)
  1609. return -EINVAL;
  1610. err = security_sb_remount(sb, data);
  1611. if (err)
  1612. return err;
  1613. down_write(&sb->s_umount);
  1614. if (flags & MS_BIND)
  1615. err = change_mount_flags(path->mnt, flags);
  1616. else
  1617. err = do_remount_sb(sb, flags, data, 0);
  1618. if (!err) {
  1619. br_write_lock(vfsmount_lock);
  1620. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1621. path->mnt->mnt_flags = mnt_flags;
  1622. br_write_unlock(vfsmount_lock);
  1623. }
  1624. up_write(&sb->s_umount);
  1625. if (!err) {
  1626. br_write_lock(vfsmount_lock);
  1627. touch_mnt_namespace(path->mnt->mnt_ns);
  1628. br_write_unlock(vfsmount_lock);
  1629. }
  1630. return err;
  1631. }
  1632. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1633. {
  1634. struct mount *p;
  1635. for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
  1636. if (IS_MNT_UNBINDABLE(&p->mnt))
  1637. return 1;
  1638. }
  1639. return 0;
  1640. }
  1641. static int do_move_mount(struct path *path, char *old_name)
  1642. {
  1643. struct path old_path, parent_path;
  1644. struct vfsmount *p;
  1645. int err = 0;
  1646. if (!capable(CAP_SYS_ADMIN))
  1647. return -EPERM;
  1648. if (!old_name || !*old_name)
  1649. return -EINVAL;
  1650. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1651. if (err)
  1652. return err;
  1653. err = lock_mount(path);
  1654. if (err < 0)
  1655. goto out;
  1656. err = -EINVAL;
  1657. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1658. goto out1;
  1659. if (d_unlinked(path->dentry))
  1660. goto out1;
  1661. err = -EINVAL;
  1662. if (old_path.dentry != old_path.mnt->mnt_root)
  1663. goto out1;
  1664. if (!mnt_has_parent(old_path.mnt))
  1665. goto out1;
  1666. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1667. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1668. goto out1;
  1669. /*
  1670. * Don't move a mount residing in a shared parent.
  1671. */
  1672. if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1673. goto out1;
  1674. /*
  1675. * Don't move a mount tree containing unbindable mounts to a destination
  1676. * mount which is shared.
  1677. */
  1678. if (IS_MNT_SHARED(path->mnt) &&
  1679. tree_contains_unbindable(old_path.mnt))
  1680. goto out1;
  1681. err = -ELOOP;
  1682. for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
  1683. if (p == old_path.mnt)
  1684. goto out1;
  1685. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1686. if (err)
  1687. goto out1;
  1688. /* if the mount is moved, it should no longer be expire
  1689. * automatically */
  1690. list_del_init(&old_path.mnt->mnt_expire);
  1691. out1:
  1692. unlock_mount(path);
  1693. out:
  1694. if (!err)
  1695. path_put(&parent_path);
  1696. path_put(&old_path);
  1697. return err;
  1698. }
  1699. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1700. {
  1701. int err;
  1702. const char *subtype = strchr(fstype, '.');
  1703. if (subtype) {
  1704. subtype++;
  1705. err = -EINVAL;
  1706. if (!subtype[0])
  1707. goto err;
  1708. } else
  1709. subtype = "";
  1710. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1711. err = -ENOMEM;
  1712. if (!mnt->mnt_sb->s_subtype)
  1713. goto err;
  1714. return mnt;
  1715. err:
  1716. mntput(mnt);
  1717. return ERR_PTR(err);
  1718. }
  1719. static struct vfsmount *
  1720. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1721. {
  1722. struct file_system_type *type = get_fs_type(fstype);
  1723. struct vfsmount *mnt;
  1724. if (!type)
  1725. return ERR_PTR(-ENODEV);
  1726. mnt = vfs_kern_mount(type, flags, name, data);
  1727. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1728. !mnt->mnt_sb->s_subtype)
  1729. mnt = fs_set_subtype(mnt, fstype);
  1730. put_filesystem(type);
  1731. return mnt;
  1732. }
  1733. /*
  1734. * add a mount into a namespace's mount tree
  1735. */
  1736. static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1737. {
  1738. int err;
  1739. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1740. err = lock_mount(path);
  1741. if (err)
  1742. return err;
  1743. err = -EINVAL;
  1744. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1745. goto unlock;
  1746. /* Refuse the same filesystem on the same mount point */
  1747. err = -EBUSY;
  1748. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1749. path->mnt->mnt_root == path->dentry)
  1750. goto unlock;
  1751. err = -EINVAL;
  1752. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1753. goto unlock;
  1754. newmnt->mnt_flags = mnt_flags;
  1755. err = graft_tree(newmnt, path);
  1756. unlock:
  1757. unlock_mount(path);
  1758. return err;
  1759. }
  1760. /*
  1761. * create a new mount for userspace and request it to be added into the
  1762. * namespace's tree
  1763. */
  1764. static int do_new_mount(struct path *path, char *type, int flags,
  1765. int mnt_flags, char *name, void *data)
  1766. {
  1767. struct vfsmount *mnt;
  1768. int err;
  1769. if (!type)
  1770. return -EINVAL;
  1771. /* we need capabilities... */
  1772. if (!capable(CAP_SYS_ADMIN))
  1773. return -EPERM;
  1774. mnt = do_kern_mount(type, flags, name, data);
  1775. if (IS_ERR(mnt))
  1776. return PTR_ERR(mnt);
  1777. err = do_add_mount(mnt, path, mnt_flags);
  1778. if (err)
  1779. mntput(mnt);
  1780. return err;
  1781. }
  1782. int finish_automount(struct vfsmount *m, struct path *path)
  1783. {
  1784. int err;
  1785. /* The new mount record should have at least 2 refs to prevent it being
  1786. * expired before we get a chance to add it
  1787. */
  1788. BUG_ON(mnt_get_count(m) < 2);
  1789. if (m->mnt_sb == path->mnt->mnt_sb &&
  1790. m->mnt_root == path->dentry) {
  1791. err = -ELOOP;
  1792. goto fail;
  1793. }
  1794. err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1795. if (!err)
  1796. return 0;
  1797. fail:
  1798. /* remove m from any expiration list it may be on */
  1799. if (!list_empty(&m->mnt_expire)) {
  1800. down_write(&namespace_sem);
  1801. br_write_lock(vfsmount_lock);
  1802. list_del_init(&m->mnt_expire);
  1803. br_write_unlock(vfsmount_lock);
  1804. up_write(&namespace_sem);
  1805. }
  1806. mntput(m);
  1807. mntput(m);
  1808. return err;
  1809. }
  1810. /**
  1811. * mnt_set_expiry - Put a mount on an expiration list
  1812. * @mnt: The mount to list.
  1813. * @expiry_list: The list to add the mount to.
  1814. */
  1815. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1816. {
  1817. down_write(&namespace_sem);
  1818. br_write_lock(vfsmount_lock);
  1819. list_add_tail(&mnt->mnt_expire, expiry_list);
  1820. br_write_unlock(vfsmount_lock);
  1821. up_write(&namespace_sem);
  1822. }
  1823. EXPORT_SYMBOL(mnt_set_expiry);
  1824. /*
  1825. * process a list of expirable mountpoints with the intent of discarding any
  1826. * mountpoints that aren't in use and haven't been touched since last we came
  1827. * here
  1828. */
  1829. void mark_mounts_for_expiry(struct list_head *mounts)
  1830. {
  1831. struct vfsmount *mnt, *next;
  1832. LIST_HEAD(graveyard);
  1833. LIST_HEAD(umounts);
  1834. if (list_empty(mounts))
  1835. return;
  1836. down_write(&namespace_sem);
  1837. br_write_lock(vfsmount_lock);
  1838. /* extract from the expiration list every vfsmount that matches the
  1839. * following criteria:
  1840. * - only referenced by its parent vfsmount
  1841. * - still marked for expiry (marked on the last call here; marks are
  1842. * cleared by mntput())
  1843. */
  1844. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1845. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1846. propagate_mount_busy(mnt, 1))
  1847. continue;
  1848. list_move(&mnt->mnt_expire, &graveyard);
  1849. }
  1850. while (!list_empty(&graveyard)) {
  1851. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1852. touch_mnt_namespace(mnt->mnt_ns);
  1853. umount_tree(mnt, 1, &umounts);
  1854. }
  1855. br_write_unlock(vfsmount_lock);
  1856. up_write(&namespace_sem);
  1857. release_mounts(&umounts);
  1858. }
  1859. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1860. /*
  1861. * Ripoff of 'select_parent()'
  1862. *
  1863. * search the list of submounts for a given mountpoint, and move any
  1864. * shrinkable submounts to the 'graveyard' list.
  1865. */
  1866. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1867. {
  1868. struct vfsmount *this_parent = parent;
  1869. struct list_head *next;
  1870. int found = 0;
  1871. repeat:
  1872. next = this_parent->mnt_mounts.next;
  1873. resume:
  1874. while (next != &this_parent->mnt_mounts) {
  1875. struct list_head *tmp = next;
  1876. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1877. next = tmp->next;
  1878. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1879. continue;
  1880. /*
  1881. * Descend a level if the d_mounts list is non-empty.
  1882. */
  1883. if (!list_empty(&mnt->mnt_mounts)) {
  1884. this_parent = mnt;
  1885. goto repeat;
  1886. }
  1887. if (!propagate_mount_busy(mnt, 1)) {
  1888. list_move_tail(&mnt->mnt_expire, graveyard);
  1889. found++;
  1890. }
  1891. }
  1892. /*
  1893. * All done at this level ... ascend and resume the search
  1894. */
  1895. if (this_parent != parent) {
  1896. next = this_parent->mnt_child.next;
  1897. this_parent = this_parent->mnt_parent;
  1898. goto resume;
  1899. }
  1900. return found;
  1901. }
  1902. /*
  1903. * process a list of expirable mountpoints with the intent of discarding any
  1904. * submounts of a specific parent mountpoint
  1905. *
  1906. * vfsmount_lock must be held for write
  1907. */
  1908. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1909. {
  1910. LIST_HEAD(graveyard);
  1911. struct vfsmount *m;
  1912. /* extract submounts of 'mountpoint' from the expiration list */
  1913. while (select_submounts(mnt, &graveyard)) {
  1914. while (!list_empty(&graveyard)) {
  1915. m = list_first_entry(&graveyard, struct vfsmount,
  1916. mnt_expire);
  1917. touch_mnt_namespace(m->mnt_ns);
  1918. umount_tree(m, 1, umounts);
  1919. }
  1920. }
  1921. }
  1922. /*
  1923. * Some copy_from_user() implementations do not return the exact number of
  1924. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1925. * Note that this function differs from copy_from_user() in that it will oops
  1926. * on bad values of `to', rather than returning a short copy.
  1927. */
  1928. static long exact_copy_from_user(void *to, const void __user * from,
  1929. unsigned long n)
  1930. {
  1931. char *t = to;
  1932. const char __user *f = from;
  1933. char c;
  1934. if (!access_ok(VERIFY_READ, from, n))
  1935. return n;
  1936. while (n) {
  1937. if (__get_user(c, f)) {
  1938. memset(t, 0, n);
  1939. break;
  1940. }
  1941. *t++ = c;
  1942. f++;
  1943. n--;
  1944. }
  1945. return n;
  1946. }
  1947. int copy_mount_options(const void __user * data, unsigned long *where)
  1948. {
  1949. int i;
  1950. unsigned long page;
  1951. unsigned long size;
  1952. *where = 0;
  1953. if (!data)
  1954. return 0;
  1955. if (!(page = __get_free_page(GFP_KERNEL)))
  1956. return -ENOMEM;
  1957. /* We only care that *some* data at the address the user
  1958. * gave us is valid. Just in case, we'll zero
  1959. * the remainder of the page.
  1960. */
  1961. /* copy_from_user cannot cross TASK_SIZE ! */
  1962. size = TASK_SIZE - (unsigned long)data;
  1963. if (size > PAGE_SIZE)
  1964. size = PAGE_SIZE;
  1965. i = size - exact_copy_from_user((void *)page, data, size);
  1966. if (!i) {
  1967. free_page(page);
  1968. return -EFAULT;
  1969. }
  1970. if (i != PAGE_SIZE)
  1971. memset((char *)page + i, 0, PAGE_SIZE - i);
  1972. *where = page;
  1973. return 0;
  1974. }
  1975. int copy_mount_string(const void __user *data, char **where)
  1976. {
  1977. char *tmp;
  1978. if (!data) {
  1979. *where = NULL;
  1980. return 0;
  1981. }
  1982. tmp = strndup_user(data, PAGE_SIZE);
  1983. if (IS_ERR(tmp))
  1984. return PTR_ERR(tmp);
  1985. *where = tmp;
  1986. return 0;
  1987. }
  1988. /*
  1989. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1990. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1991. *
  1992. * data is a (void *) that can point to any structure up to
  1993. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1994. * information (or be NULL).
  1995. *
  1996. * Pre-0.97 versions of mount() didn't have a flags word.
  1997. * When the flags word was introduced its top half was required
  1998. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1999. * Therefore, if this magic number is present, it carries no information
  2000. * and must be discarded.
  2001. */
  2002. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2003. unsigned long flags, void *data_page)
  2004. {
  2005. struct path path;
  2006. int retval = 0;
  2007. int mnt_flags = 0;
  2008. /* Discard magic */
  2009. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2010. flags &= ~MS_MGC_MSK;
  2011. /* Basic sanity checks */
  2012. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2013. return -EINVAL;
  2014. if (data_page)
  2015. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2016. /* ... and get the mountpoint */
  2017. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2018. if (retval)
  2019. return retval;
  2020. retval = security_sb_mount(dev_name, &path,
  2021. type_page, flags, data_page);
  2022. if (retval)
  2023. goto dput_out;
  2024. /* Default to relatime unless overriden */
  2025. if (!(flags & MS_NOATIME))
  2026. mnt_flags |= MNT_RELATIME;
  2027. /* Separate the per-mountpoint flags */
  2028. if (flags & MS_NOSUID)
  2029. mnt_flags |= MNT_NOSUID;
  2030. if (flags & MS_NODEV)
  2031. mnt_flags |= MNT_NODEV;
  2032. if (flags & MS_NOEXEC)
  2033. mnt_flags |= MNT_NOEXEC;
  2034. if (flags & MS_NOATIME)
  2035. mnt_flags |= MNT_NOATIME;
  2036. if (flags & MS_NODIRATIME)
  2037. mnt_flags |= MNT_NODIRATIME;
  2038. if (flags & MS_STRICTATIME)
  2039. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2040. if (flags & MS_RDONLY)
  2041. mnt_flags |= MNT_READONLY;
  2042. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2043. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2044. MS_STRICTATIME);
  2045. if (flags & MS_REMOUNT)
  2046. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2047. data_page);
  2048. else if (flags & MS_BIND)
  2049. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2050. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2051. retval = do_change_type(&path, flags);
  2052. else if (flags & MS_MOVE)
  2053. retval = do_move_mount(&path, dev_name);
  2054. else
  2055. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2056. dev_name, data_page);
  2057. dput_out:
  2058. path_put(&path);
  2059. return retval;
  2060. }
  2061. static struct mnt_namespace *alloc_mnt_ns(void)
  2062. {
  2063. struct mnt_namespace *new_ns;
  2064. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2065. if (!new_ns)
  2066. return ERR_PTR(-ENOMEM);
  2067. atomic_set(&new_ns->count, 1);
  2068. new_ns->root = NULL;
  2069. INIT_LIST_HEAD(&new_ns->list);
  2070. init_waitqueue_head(&new_ns->poll);
  2071. new_ns->event = 0;
  2072. return new_ns;
  2073. }
  2074. void mnt_make_longterm(struct vfsmount *mnt)
  2075. {
  2076. __mnt_make_longterm(mnt);
  2077. }
  2078. void mnt_make_shortterm(struct vfsmount *mnt)
  2079. {
  2080. #ifdef CONFIG_SMP
  2081. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2082. return;
  2083. br_write_lock(vfsmount_lock);
  2084. atomic_dec(&mnt->mnt_longterm);
  2085. br_write_unlock(vfsmount_lock);
  2086. #endif
  2087. }
  2088. /*
  2089. * Allocate a new namespace structure and populate it with contents
  2090. * copied from the namespace of the passed in task structure.
  2091. */
  2092. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2093. struct fs_struct *fs)
  2094. {
  2095. struct mnt_namespace *new_ns;
  2096. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2097. struct mount *p, *q;
  2098. new_ns = alloc_mnt_ns();
  2099. if (IS_ERR(new_ns))
  2100. return new_ns;
  2101. down_write(&namespace_sem);
  2102. /* First pass: copy the tree topology */
  2103. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  2104. CL_COPY_ALL | CL_EXPIRE);
  2105. if (!new_ns->root) {
  2106. up_write(&namespace_sem);
  2107. kfree(new_ns);
  2108. return ERR_PTR(-ENOMEM);
  2109. }
  2110. br_write_lock(vfsmount_lock);
  2111. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2112. br_write_unlock(vfsmount_lock);
  2113. /*
  2114. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2115. * as belonging to new namespace. We have already acquired a private
  2116. * fs_struct, so tsk->fs->lock is not needed.
  2117. */
  2118. p = real_mount(mnt_ns->root);
  2119. q = real_mount(new_ns->root);
  2120. while (p) {
  2121. q->mnt.mnt_ns = new_ns;
  2122. __mnt_make_longterm(&q->mnt);
  2123. if (fs) {
  2124. if (&p->mnt == fs->root.mnt) {
  2125. fs->root.mnt = mntget(&q->mnt);
  2126. __mnt_make_longterm(&q->mnt);
  2127. mnt_make_shortterm(&p->mnt);
  2128. rootmnt = &p->mnt;
  2129. }
  2130. if (&p->mnt == fs->pwd.mnt) {
  2131. fs->pwd.mnt = mntget(&q->mnt);
  2132. __mnt_make_longterm(&q->mnt);
  2133. mnt_make_shortterm(&p->mnt);
  2134. pwdmnt = &p->mnt;
  2135. }
  2136. }
  2137. p = next_mnt(p, mnt_ns->root);
  2138. q = next_mnt(q, new_ns->root);
  2139. }
  2140. up_write(&namespace_sem);
  2141. if (rootmnt)
  2142. mntput(rootmnt);
  2143. if (pwdmnt)
  2144. mntput(pwdmnt);
  2145. return new_ns;
  2146. }
  2147. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2148. struct fs_struct *new_fs)
  2149. {
  2150. struct mnt_namespace *new_ns;
  2151. BUG_ON(!ns);
  2152. get_mnt_ns(ns);
  2153. if (!(flags & CLONE_NEWNS))
  2154. return ns;
  2155. new_ns = dup_mnt_ns(ns, new_fs);
  2156. put_mnt_ns(ns);
  2157. return new_ns;
  2158. }
  2159. /**
  2160. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2161. * @mnt: pointer to the new root filesystem mountpoint
  2162. */
  2163. static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2164. {
  2165. struct mnt_namespace *new_ns;
  2166. new_ns = alloc_mnt_ns();
  2167. if (!IS_ERR(new_ns)) {
  2168. mnt->mnt_ns = new_ns;
  2169. __mnt_make_longterm(mnt);
  2170. new_ns->root = mnt;
  2171. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2172. } else {
  2173. mntput(mnt);
  2174. }
  2175. return new_ns;
  2176. }
  2177. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2178. {
  2179. struct mnt_namespace *ns;
  2180. struct super_block *s;
  2181. struct path path;
  2182. int err;
  2183. ns = create_mnt_ns(mnt);
  2184. if (IS_ERR(ns))
  2185. return ERR_CAST(ns);
  2186. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2187. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2188. put_mnt_ns(ns);
  2189. if (err)
  2190. return ERR_PTR(err);
  2191. /* trade a vfsmount reference for active sb one */
  2192. s = path.mnt->mnt_sb;
  2193. atomic_inc(&s->s_active);
  2194. mntput(path.mnt);
  2195. /* lock the sucker */
  2196. down_write(&s->s_umount);
  2197. /* ... and return the root of (sub)tree on it */
  2198. return path.dentry;
  2199. }
  2200. EXPORT_SYMBOL(mount_subtree);
  2201. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2202. char __user *, type, unsigned long, flags, void __user *, data)
  2203. {
  2204. int ret;
  2205. char *kernel_type;
  2206. char *kernel_dir;
  2207. char *kernel_dev;
  2208. unsigned long data_page;
  2209. ret = copy_mount_string(type, &kernel_type);
  2210. if (ret < 0)
  2211. goto out_type;
  2212. kernel_dir = getname(dir_name);
  2213. if (IS_ERR(kernel_dir)) {
  2214. ret = PTR_ERR(kernel_dir);
  2215. goto out_dir;
  2216. }
  2217. ret = copy_mount_string(dev_name, &kernel_dev);
  2218. if (ret < 0)
  2219. goto out_dev;
  2220. ret = copy_mount_options(data, &data_page);
  2221. if (ret < 0)
  2222. goto out_data;
  2223. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2224. (void *) data_page);
  2225. free_page(data_page);
  2226. out_data:
  2227. kfree(kernel_dev);
  2228. out_dev:
  2229. putname(kernel_dir);
  2230. out_dir:
  2231. kfree(kernel_type);
  2232. out_type:
  2233. return ret;
  2234. }
  2235. /*
  2236. * Return true if path is reachable from root
  2237. *
  2238. * namespace_sem or vfsmount_lock is held
  2239. */
  2240. bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
  2241. const struct path *root)
  2242. {
  2243. while (mnt != root->mnt && mnt_has_parent(mnt)) {
  2244. dentry = mnt->mnt_mountpoint;
  2245. mnt = mnt->mnt_parent;
  2246. }
  2247. return mnt == root->mnt && is_subdir(dentry, root->dentry);
  2248. }
  2249. int path_is_under(struct path *path1, struct path *path2)
  2250. {
  2251. int res;
  2252. br_read_lock(vfsmount_lock);
  2253. res = is_path_reachable(path1->mnt, path1->dentry, path2);
  2254. br_read_unlock(vfsmount_lock);
  2255. return res;
  2256. }
  2257. EXPORT_SYMBOL(path_is_under);
  2258. /*
  2259. * pivot_root Semantics:
  2260. * Moves the root file system of the current process to the directory put_old,
  2261. * makes new_root as the new root file system of the current process, and sets
  2262. * root/cwd of all processes which had them on the current root to new_root.
  2263. *
  2264. * Restrictions:
  2265. * The new_root and put_old must be directories, and must not be on the
  2266. * same file system as the current process root. The put_old must be
  2267. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2268. * pointed to by put_old must yield the same directory as new_root. No other
  2269. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2270. *
  2271. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2272. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2273. * in this situation.
  2274. *
  2275. * Notes:
  2276. * - we don't move root/cwd if they are not at the root (reason: if something
  2277. * cared enough to change them, it's probably wrong to force them elsewhere)
  2278. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2279. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2280. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2281. * first.
  2282. */
  2283. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2284. const char __user *, put_old)
  2285. {
  2286. struct path new, old, parent_path, root_parent, root;
  2287. int error;
  2288. if (!capable(CAP_SYS_ADMIN))
  2289. return -EPERM;
  2290. error = user_path_dir(new_root, &new);
  2291. if (error)
  2292. goto out0;
  2293. error = user_path_dir(put_old, &old);
  2294. if (error)
  2295. goto out1;
  2296. error = security_sb_pivotroot(&old, &new);
  2297. if (error)
  2298. goto out2;
  2299. get_fs_root(current->fs, &root);
  2300. error = lock_mount(&old);
  2301. if (error)
  2302. goto out3;
  2303. error = -EINVAL;
  2304. if (IS_MNT_SHARED(old.mnt) ||
  2305. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2306. IS_MNT_SHARED(root.mnt->mnt_parent))
  2307. goto out4;
  2308. if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
  2309. goto out4;
  2310. error = -ENOENT;
  2311. if (d_unlinked(new.dentry))
  2312. goto out4;
  2313. if (d_unlinked(old.dentry))
  2314. goto out4;
  2315. error = -EBUSY;
  2316. if (new.mnt == root.mnt ||
  2317. old.mnt == root.mnt)
  2318. goto out4; /* loop, on the same file system */
  2319. error = -EINVAL;
  2320. if (root.mnt->mnt_root != root.dentry)
  2321. goto out4; /* not a mountpoint */
  2322. if (!mnt_has_parent(root.mnt))
  2323. goto out4; /* not attached */
  2324. if (new.mnt->mnt_root != new.dentry)
  2325. goto out4; /* not a mountpoint */
  2326. if (!mnt_has_parent(new.mnt))
  2327. goto out4; /* not attached */
  2328. /* make sure we can reach put_old from new_root */
  2329. if (!is_path_reachable(old.mnt, old.dentry, &new))
  2330. goto out4;
  2331. br_write_lock(vfsmount_lock);
  2332. detach_mnt(new.mnt, &parent_path);
  2333. detach_mnt(root.mnt, &root_parent);
  2334. /* mount old root on put_old */
  2335. attach_mnt(root.mnt, &old);
  2336. /* mount new_root on / */
  2337. attach_mnt(new.mnt, &root_parent);
  2338. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2339. br_write_unlock(vfsmount_lock);
  2340. chroot_fs_refs(&root, &new);
  2341. error = 0;
  2342. out4:
  2343. unlock_mount(&old);
  2344. if (!error) {
  2345. path_put(&root_parent);
  2346. path_put(&parent_path);
  2347. }
  2348. out3:
  2349. path_put(&root);
  2350. out2:
  2351. path_put(&old);
  2352. out1:
  2353. path_put(&new);
  2354. out0:
  2355. return error;
  2356. }
  2357. static void __init init_mount_tree(void)
  2358. {
  2359. struct vfsmount *mnt;
  2360. struct mnt_namespace *ns;
  2361. struct path root;
  2362. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2363. if (IS_ERR(mnt))
  2364. panic("Can't create rootfs");
  2365. ns = create_mnt_ns(mnt);
  2366. if (IS_ERR(ns))
  2367. panic("Can't allocate initial namespace");
  2368. init_task.nsproxy->mnt_ns = ns;
  2369. get_mnt_ns(ns);
  2370. root.mnt = ns->root;
  2371. root.dentry = ns->root->mnt_root;
  2372. set_fs_pwd(current->fs, &root);
  2373. set_fs_root(current->fs, &root);
  2374. }
  2375. void __init mnt_init(void)
  2376. {
  2377. unsigned u;
  2378. int err;
  2379. init_rwsem(&namespace_sem);
  2380. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2381. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2382. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2383. if (!mount_hashtable)
  2384. panic("Failed to allocate mount hash table\n");
  2385. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2386. for (u = 0; u < HASH_SIZE; u++)
  2387. INIT_LIST_HEAD(&mount_hashtable[u]);
  2388. br_lock_init(vfsmount_lock);
  2389. err = sysfs_init();
  2390. if (err)
  2391. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2392. __func__, err);
  2393. fs_kobj = kobject_create_and_add("fs", NULL);
  2394. if (!fs_kobj)
  2395. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2396. init_rootfs();
  2397. init_mount_tree();
  2398. }
  2399. void put_mnt_ns(struct mnt_namespace *ns)
  2400. {
  2401. LIST_HEAD(umount_list);
  2402. if (!atomic_dec_and_test(&ns->count))
  2403. return;
  2404. down_write(&namespace_sem);
  2405. br_write_lock(vfsmount_lock);
  2406. umount_tree(ns->root, 0, &umount_list);
  2407. br_write_unlock(vfsmount_lock);
  2408. up_write(&namespace_sem);
  2409. release_mounts(&umount_list);
  2410. kfree(ns);
  2411. }
  2412. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2413. {
  2414. struct vfsmount *mnt;
  2415. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2416. if (!IS_ERR(mnt)) {
  2417. /*
  2418. * it is a longterm mount, don't release mnt until
  2419. * we unmount before file sys is unregistered
  2420. */
  2421. mnt_make_longterm(mnt);
  2422. }
  2423. return mnt;
  2424. }
  2425. EXPORT_SYMBOL_GPL(kern_mount_data);
  2426. void kern_unmount(struct vfsmount *mnt)
  2427. {
  2428. /* release long term mount so mount point can be released */
  2429. if (!IS_ERR_OR_NULL(mnt)) {
  2430. mnt_make_shortterm(mnt);
  2431. mntput(mnt);
  2432. }
  2433. }
  2434. EXPORT_SYMBOL(kern_unmount);
  2435. bool our_mnt(struct vfsmount *mnt)
  2436. {
  2437. return check_mnt(mnt);
  2438. }