filemap.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650
  1. /*
  2. * linux/mm/filemap.c
  3. *
  4. * Copyright (C) 1994-1999 Linus Torvalds
  5. */
  6. /*
  7. * This file handles the generic file mmap semantics used by
  8. * most "normal" filesystems (but you don't /have/ to use this:
  9. * the NFS filesystem used to do this differently, for example)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/compiler.h>
  13. #include <linux/fs.h>
  14. #include <linux/uaccess.h>
  15. #include <linux/aio.h>
  16. #include <linux/capability.h>
  17. #include <linux/kernel_stat.h>
  18. #include <linux/gfp.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/hash.h>
  26. #include <linux/writeback.h>
  27. #include <linux/backing-dev.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/security.h>
  31. #include <linux/syscalls.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34. #include <linux/memcontrol.h>
  35. #include <linux/cleancache.h>
  36. #include "internal.h"
  37. /*
  38. * FIXME: remove all knowledge of the buffer layer from the core VM
  39. */
  40. #include <linux/buffer_head.h> /* for try_to_free_buffers */
  41. #include <asm/mman.h>
  42. /*
  43. * Shared mappings implemented 30.11.1994. It's not fully working yet,
  44. * though.
  45. *
  46. * Shared mappings now work. 15.8.1995 Bruno.
  47. *
  48. * finished 'unifying' the page and buffer cache and SMP-threaded the
  49. * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  50. *
  51. * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  52. */
  53. /*
  54. * Lock ordering:
  55. *
  56. * ->i_mmap_mutex (truncate_pagecache)
  57. * ->private_lock (__free_pte->__set_page_dirty_buffers)
  58. * ->swap_lock (exclusive_swap_page, others)
  59. * ->mapping->tree_lock
  60. *
  61. * ->i_mutex
  62. * ->i_mmap_mutex (truncate->unmap_mapping_range)
  63. *
  64. * ->mmap_sem
  65. * ->i_mmap_mutex
  66. * ->page_table_lock or pte_lock (various, mainly in memory.c)
  67. * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
  68. *
  69. * ->mmap_sem
  70. * ->lock_page (access_process_vm)
  71. *
  72. * ->i_mutex (generic_file_buffered_write)
  73. * ->mmap_sem (fault_in_pages_readable->do_page_fault)
  74. *
  75. * bdi->wb.list_lock
  76. * sb_lock (fs/fs-writeback.c)
  77. * ->mapping->tree_lock (__sync_single_inode)
  78. *
  79. * ->i_mmap_mutex
  80. * ->anon_vma.lock (vma_adjust)
  81. *
  82. * ->anon_vma.lock
  83. * ->page_table_lock or pte_lock (anon_vma_prepare and various)
  84. *
  85. * ->page_table_lock or pte_lock
  86. * ->swap_lock (try_to_unmap_one)
  87. * ->private_lock (try_to_unmap_one)
  88. * ->tree_lock (try_to_unmap_one)
  89. * ->zone.lru_lock (follow_page->mark_page_accessed)
  90. * ->zone.lru_lock (check_pte_range->isolate_lru_page)
  91. * ->private_lock (page_remove_rmap->set_page_dirty)
  92. * ->tree_lock (page_remove_rmap->set_page_dirty)
  93. * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
  94. * ->inode->i_lock (page_remove_rmap->set_page_dirty)
  95. * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
  96. * ->inode->i_lock (zap_pte_range->set_page_dirty)
  97. * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
  98. *
  99. * (code doesn't rely on that order, so you could switch it around)
  100. * ->tasklist_lock (memory_failure, collect_procs_ao)
  101. * ->i_mmap_mutex
  102. */
  103. /*
  104. * Delete a page from the page cache and free it. Caller has to make
  105. * sure the page is locked and that nobody else uses it - or that usage
  106. * is safe. The caller must hold the mapping's tree_lock.
  107. */
  108. void __delete_from_page_cache(struct page *page)
  109. {
  110. struct address_space *mapping = page->mapping;
  111. /*
  112. * if we're uptodate, flush out into the cleancache, otherwise
  113. * invalidate any existing cleancache entries. We can't leave
  114. * stale data around in the cleancache once our page is gone
  115. */
  116. if (PageUptodate(page) && PageMappedToDisk(page))
  117. cleancache_put_page(page);
  118. else
  119. cleancache_flush_page(mapping, page);
  120. radix_tree_delete(&mapping->page_tree, page->index);
  121. page->mapping = NULL;
  122. /* Leave page->index set: truncation lookup relies upon it */
  123. mapping->nrpages--;
  124. __dec_zone_page_state(page, NR_FILE_PAGES);
  125. if (PageSwapBacked(page))
  126. __dec_zone_page_state(page, NR_SHMEM);
  127. BUG_ON(page_mapped(page));
  128. /*
  129. * Some filesystems seem to re-dirty the page even after
  130. * the VM has canceled the dirty bit (eg ext3 journaling).
  131. *
  132. * Fix it up by doing a final dirty accounting check after
  133. * having removed the page entirely.
  134. */
  135. if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
  136. dec_zone_page_state(page, NR_FILE_DIRTY);
  137. dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  138. }
  139. }
  140. /**
  141. * delete_from_page_cache - delete page from page cache
  142. * @page: the page which the kernel is trying to remove from page cache
  143. *
  144. * This must be called only on pages that have been verified to be in the page
  145. * cache and locked. It will never put the page into the free list, the caller
  146. * has a reference on the page.
  147. */
  148. void delete_from_page_cache(struct page *page)
  149. {
  150. struct address_space *mapping = page->mapping;
  151. void (*freepage)(struct page *);
  152. BUG_ON(!PageLocked(page));
  153. freepage = mapping->a_ops->freepage;
  154. spin_lock_irq(&mapping->tree_lock);
  155. __delete_from_page_cache(page);
  156. spin_unlock_irq(&mapping->tree_lock);
  157. mem_cgroup_uncharge_cache_page(page);
  158. if (freepage)
  159. freepage(page);
  160. page_cache_release(page);
  161. }
  162. EXPORT_SYMBOL(delete_from_page_cache);
  163. static int sleep_on_page(void *word)
  164. {
  165. io_schedule();
  166. return 0;
  167. }
  168. static int sleep_on_page_killable(void *word)
  169. {
  170. sleep_on_page(word);
  171. return fatal_signal_pending(current) ? -EINTR : 0;
  172. }
  173. /**
  174. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  175. * @mapping: address space structure to write
  176. * @start: offset in bytes where the range starts
  177. * @end: offset in bytes where the range ends (inclusive)
  178. * @sync_mode: enable synchronous operation
  179. *
  180. * Start writeback against all of a mapping's dirty pages that lie
  181. * within the byte offsets <start, end> inclusive.
  182. *
  183. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  184. * opposed to a regular memory cleansing writeback. The difference between
  185. * these two operations is that if a dirty page/buffer is encountered, it must
  186. * be waited upon, and not just skipped over.
  187. */
  188. int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  189. loff_t end, int sync_mode)
  190. {
  191. int ret;
  192. struct writeback_control wbc = {
  193. .sync_mode = sync_mode,
  194. .nr_to_write = LONG_MAX,
  195. .range_start = start,
  196. .range_end = end,
  197. };
  198. if (!mapping_cap_writeback_dirty(mapping))
  199. return 0;
  200. ret = do_writepages(mapping, &wbc);
  201. return ret;
  202. }
  203. static inline int __filemap_fdatawrite(struct address_space *mapping,
  204. int sync_mode)
  205. {
  206. return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  207. }
  208. int filemap_fdatawrite(struct address_space *mapping)
  209. {
  210. return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  211. }
  212. EXPORT_SYMBOL(filemap_fdatawrite);
  213. int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  214. loff_t end)
  215. {
  216. return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  217. }
  218. EXPORT_SYMBOL(filemap_fdatawrite_range);
  219. /**
  220. * filemap_flush - mostly a non-blocking flush
  221. * @mapping: target address_space
  222. *
  223. * This is a mostly non-blocking flush. Not suitable for data-integrity
  224. * purposes - I/O may not be started against all dirty pages.
  225. */
  226. int filemap_flush(struct address_space *mapping)
  227. {
  228. return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  229. }
  230. EXPORT_SYMBOL(filemap_flush);
  231. /**
  232. * filemap_fdatawait_range - wait for writeback to complete
  233. * @mapping: address space structure to wait for
  234. * @start_byte: offset in bytes where the range starts
  235. * @end_byte: offset in bytes where the range ends (inclusive)
  236. *
  237. * Walk the list of under-writeback pages of the given address space
  238. * in the given range and wait for all of them.
  239. */
  240. int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
  241. loff_t end_byte)
  242. {
  243. pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
  244. pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
  245. struct pagevec pvec;
  246. int nr_pages;
  247. int ret = 0;
  248. if (end_byte < start_byte)
  249. return 0;
  250. pagevec_init(&pvec, 0);
  251. while ((index <= end) &&
  252. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  253. PAGECACHE_TAG_WRITEBACK,
  254. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  255. unsigned i;
  256. for (i = 0; i < nr_pages; i++) {
  257. struct page *page = pvec.pages[i];
  258. /* until radix tree lookup accepts end_index */
  259. if (page->index > end)
  260. continue;
  261. wait_on_page_writeback(page);
  262. if (TestClearPageError(page))
  263. ret = -EIO;
  264. }
  265. pagevec_release(&pvec);
  266. cond_resched();
  267. }
  268. /* Check for outstanding write errors */
  269. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  270. ret = -ENOSPC;
  271. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  272. ret = -EIO;
  273. return ret;
  274. }
  275. EXPORT_SYMBOL(filemap_fdatawait_range);
  276. /**
  277. * filemap_fdatawait - wait for all under-writeback pages to complete
  278. * @mapping: address space structure to wait for
  279. *
  280. * Walk the list of under-writeback pages of the given address space
  281. * and wait for all of them.
  282. */
  283. int filemap_fdatawait(struct address_space *mapping)
  284. {
  285. loff_t i_size = i_size_read(mapping->host);
  286. if (i_size == 0)
  287. return 0;
  288. return filemap_fdatawait_range(mapping, 0, i_size - 1);
  289. }
  290. EXPORT_SYMBOL(filemap_fdatawait);
  291. int filemap_write_and_wait(struct address_space *mapping)
  292. {
  293. int err = 0;
  294. if (mapping->nrpages) {
  295. err = filemap_fdatawrite(mapping);
  296. /*
  297. * Even if the above returned error, the pages may be
  298. * written partially (e.g. -ENOSPC), so we wait for it.
  299. * But the -EIO is special case, it may indicate the worst
  300. * thing (e.g. bug) happened, so we avoid waiting for it.
  301. */
  302. if (err != -EIO) {
  303. int err2 = filemap_fdatawait(mapping);
  304. if (!err)
  305. err = err2;
  306. }
  307. }
  308. return err;
  309. }
  310. EXPORT_SYMBOL(filemap_write_and_wait);
  311. /**
  312. * filemap_write_and_wait_range - write out & wait on a file range
  313. * @mapping: the address_space for the pages
  314. * @lstart: offset in bytes where the range starts
  315. * @lend: offset in bytes where the range ends (inclusive)
  316. *
  317. * Write out and wait upon file offsets lstart->lend, inclusive.
  318. *
  319. * Note that `lend' is inclusive (describes the last byte to be written) so
  320. * that this function can be used to write to the very end-of-file (end = -1).
  321. */
  322. int filemap_write_and_wait_range(struct address_space *mapping,
  323. loff_t lstart, loff_t lend)
  324. {
  325. int err = 0;
  326. if (mapping->nrpages) {
  327. err = __filemap_fdatawrite_range(mapping, lstart, lend,
  328. WB_SYNC_ALL);
  329. /* See comment of filemap_write_and_wait() */
  330. if (err != -EIO) {
  331. int err2 = filemap_fdatawait_range(mapping,
  332. lstart, lend);
  333. if (!err)
  334. err = err2;
  335. }
  336. }
  337. return err;
  338. }
  339. EXPORT_SYMBOL(filemap_write_and_wait_range);
  340. /**
  341. * replace_page_cache_page - replace a pagecache page with a new one
  342. * @old: page to be replaced
  343. * @new: page to replace with
  344. * @gfp_mask: allocation mode
  345. *
  346. * This function replaces a page in the pagecache with a new one. On
  347. * success it acquires the pagecache reference for the new page and
  348. * drops it for the old page. Both the old and new pages must be
  349. * locked. This function does not add the new page to the LRU, the
  350. * caller must do that.
  351. *
  352. * The remove + add is atomic. The only way this function can fail is
  353. * memory allocation failure.
  354. */
  355. int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
  356. {
  357. int error;
  358. struct mem_cgroup *memcg = NULL;
  359. VM_BUG_ON(!PageLocked(old));
  360. VM_BUG_ON(!PageLocked(new));
  361. VM_BUG_ON(new->mapping);
  362. /*
  363. * This is not page migration, but prepare_migration and
  364. * end_migration does enough work for charge replacement.
  365. *
  366. * In the longer term we probably want a specialized function
  367. * for moving the charge from old to new in a more efficient
  368. * manner.
  369. */
  370. error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
  371. if (error)
  372. return error;
  373. error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  374. if (!error) {
  375. struct address_space *mapping = old->mapping;
  376. void (*freepage)(struct page *);
  377. pgoff_t offset = old->index;
  378. freepage = mapping->a_ops->freepage;
  379. page_cache_get(new);
  380. new->mapping = mapping;
  381. new->index = offset;
  382. spin_lock_irq(&mapping->tree_lock);
  383. __delete_from_page_cache(old);
  384. error = radix_tree_insert(&mapping->page_tree, offset, new);
  385. BUG_ON(error);
  386. mapping->nrpages++;
  387. __inc_zone_page_state(new, NR_FILE_PAGES);
  388. if (PageSwapBacked(new))
  389. __inc_zone_page_state(new, NR_SHMEM);
  390. spin_unlock_irq(&mapping->tree_lock);
  391. radix_tree_preload_end();
  392. if (freepage)
  393. freepage(old);
  394. page_cache_release(old);
  395. mem_cgroup_end_migration(memcg, old, new, true);
  396. } else {
  397. mem_cgroup_end_migration(memcg, old, new, false);
  398. }
  399. return error;
  400. }
  401. EXPORT_SYMBOL_GPL(replace_page_cache_page);
  402. /**
  403. * add_to_page_cache_locked - add a locked page to the pagecache
  404. * @page: page to add
  405. * @mapping: the page's address_space
  406. * @offset: page index
  407. * @gfp_mask: page allocation mode
  408. *
  409. * This function is used to add a page to the pagecache. It must be locked.
  410. * This function does not add the page to the LRU. The caller must do that.
  411. */
  412. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  413. pgoff_t offset, gfp_t gfp_mask)
  414. {
  415. int error;
  416. VM_BUG_ON(!PageLocked(page));
  417. VM_BUG_ON(PageSwapBacked(page));
  418. error = mem_cgroup_cache_charge(page, current->mm,
  419. gfp_mask & GFP_RECLAIM_MASK);
  420. if (error)
  421. goto out;
  422. error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  423. if (error == 0) {
  424. page_cache_get(page);
  425. page->mapping = mapping;
  426. page->index = offset;
  427. spin_lock_irq(&mapping->tree_lock);
  428. error = radix_tree_insert(&mapping->page_tree, offset, page);
  429. if (likely(!error)) {
  430. mapping->nrpages++;
  431. __inc_zone_page_state(page, NR_FILE_PAGES);
  432. spin_unlock_irq(&mapping->tree_lock);
  433. } else {
  434. page->mapping = NULL;
  435. /* Leave page->index set: truncation relies upon it */
  436. spin_unlock_irq(&mapping->tree_lock);
  437. mem_cgroup_uncharge_cache_page(page);
  438. page_cache_release(page);
  439. }
  440. radix_tree_preload_end();
  441. } else
  442. mem_cgroup_uncharge_cache_page(page);
  443. out:
  444. return error;
  445. }
  446. EXPORT_SYMBOL(add_to_page_cache_locked);
  447. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  448. pgoff_t offset, gfp_t gfp_mask)
  449. {
  450. int ret;
  451. ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  452. if (ret == 0)
  453. lru_cache_add_file(page);
  454. return ret;
  455. }
  456. EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
  457. #ifdef CONFIG_NUMA
  458. struct page *__page_cache_alloc(gfp_t gfp)
  459. {
  460. int n;
  461. struct page *page;
  462. if (cpuset_do_page_mem_spread()) {
  463. get_mems_allowed();
  464. n = cpuset_mem_spread_node();
  465. page = alloc_pages_exact_node(n, gfp, 0);
  466. put_mems_allowed();
  467. return page;
  468. }
  469. return alloc_pages(gfp, 0);
  470. }
  471. EXPORT_SYMBOL(__page_cache_alloc);
  472. #endif
  473. /*
  474. * In order to wait for pages to become available there must be
  475. * waitqueues associated with pages. By using a hash table of
  476. * waitqueues where the bucket discipline is to maintain all
  477. * waiters on the same queue and wake all when any of the pages
  478. * become available, and for the woken contexts to check to be
  479. * sure the appropriate page became available, this saves space
  480. * at a cost of "thundering herd" phenomena during rare hash
  481. * collisions.
  482. */
  483. static wait_queue_head_t *page_waitqueue(struct page *page)
  484. {
  485. const struct zone *zone = page_zone(page);
  486. return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  487. }
  488. static inline void wake_up_page(struct page *page, int bit)
  489. {
  490. __wake_up_bit(page_waitqueue(page), &page->flags, bit);
  491. }
  492. void wait_on_page_bit(struct page *page, int bit_nr)
  493. {
  494. DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  495. if (test_bit(bit_nr, &page->flags))
  496. __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
  497. TASK_UNINTERRUPTIBLE);
  498. }
  499. EXPORT_SYMBOL(wait_on_page_bit);
  500. int wait_on_page_bit_killable(struct page *page, int bit_nr)
  501. {
  502. DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  503. if (!test_bit(bit_nr, &page->flags))
  504. return 0;
  505. return __wait_on_bit(page_waitqueue(page), &wait,
  506. sleep_on_page_killable, TASK_KILLABLE);
  507. }
  508. /**
  509. * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
  510. * @page: Page defining the wait queue of interest
  511. * @waiter: Waiter to add to the queue
  512. *
  513. * Add an arbitrary @waiter to the wait queue for the nominated @page.
  514. */
  515. void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
  516. {
  517. wait_queue_head_t *q = page_waitqueue(page);
  518. unsigned long flags;
  519. spin_lock_irqsave(&q->lock, flags);
  520. __add_wait_queue(q, waiter);
  521. spin_unlock_irqrestore(&q->lock, flags);
  522. }
  523. EXPORT_SYMBOL_GPL(add_page_wait_queue);
  524. /**
  525. * unlock_page - unlock a locked page
  526. * @page: the page
  527. *
  528. * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
  529. * Also wakes sleepers in wait_on_page_writeback() because the wakeup
  530. * mechananism between PageLocked pages and PageWriteback pages is shared.
  531. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
  532. *
  533. * The mb is necessary to enforce ordering between the clear_bit and the read
  534. * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
  535. */
  536. void unlock_page(struct page *page)
  537. {
  538. VM_BUG_ON(!PageLocked(page));
  539. clear_bit_unlock(PG_locked, &page->flags);
  540. smp_mb__after_clear_bit();
  541. wake_up_page(page, PG_locked);
  542. }
  543. EXPORT_SYMBOL(unlock_page);
  544. /**
  545. * end_page_writeback - end writeback against a page
  546. * @page: the page
  547. */
  548. void end_page_writeback(struct page *page)
  549. {
  550. if (TestClearPageReclaim(page))
  551. rotate_reclaimable_page(page);
  552. if (!test_clear_page_writeback(page))
  553. BUG();
  554. smp_mb__after_clear_bit();
  555. wake_up_page(page, PG_writeback);
  556. }
  557. EXPORT_SYMBOL(end_page_writeback);
  558. /**
  559. * __lock_page - get a lock on the page, assuming we need to sleep to get it
  560. * @page: the page to lock
  561. */
  562. void __lock_page(struct page *page)
  563. {
  564. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  565. __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
  566. TASK_UNINTERRUPTIBLE);
  567. }
  568. EXPORT_SYMBOL(__lock_page);
  569. int __lock_page_killable(struct page *page)
  570. {
  571. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  572. return __wait_on_bit_lock(page_waitqueue(page), &wait,
  573. sleep_on_page_killable, TASK_KILLABLE);
  574. }
  575. EXPORT_SYMBOL_GPL(__lock_page_killable);
  576. int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
  577. unsigned int flags)
  578. {
  579. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  580. /*
  581. * CAUTION! In this case, mmap_sem is not released
  582. * even though return 0.
  583. */
  584. if (flags & FAULT_FLAG_RETRY_NOWAIT)
  585. return 0;
  586. up_read(&mm->mmap_sem);
  587. if (flags & FAULT_FLAG_KILLABLE)
  588. wait_on_page_locked_killable(page);
  589. else
  590. wait_on_page_locked(page);
  591. return 0;
  592. } else {
  593. if (flags & FAULT_FLAG_KILLABLE) {
  594. int ret;
  595. ret = __lock_page_killable(page);
  596. if (ret) {
  597. up_read(&mm->mmap_sem);
  598. return 0;
  599. }
  600. } else
  601. __lock_page(page);
  602. return 1;
  603. }
  604. }
  605. /**
  606. * find_get_page - find and get a page reference
  607. * @mapping: the address_space to search
  608. * @offset: the page index
  609. *
  610. * Is there a pagecache struct page at the given (mapping, offset) tuple?
  611. * If yes, increment its refcount and return it; if no, return NULL.
  612. */
  613. struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
  614. {
  615. void **pagep;
  616. struct page *page;
  617. rcu_read_lock();
  618. repeat:
  619. page = NULL;
  620. pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
  621. if (pagep) {
  622. page = radix_tree_deref_slot(pagep);
  623. if (unlikely(!page))
  624. goto out;
  625. if (radix_tree_exception(page)) {
  626. if (radix_tree_exceptional_entry(page))
  627. goto out;
  628. /* radix_tree_deref_retry(page) */
  629. goto repeat;
  630. }
  631. if (!page_cache_get_speculative(page))
  632. goto repeat;
  633. /*
  634. * Has the page moved?
  635. * This is part of the lockless pagecache protocol. See
  636. * include/linux/pagemap.h for details.
  637. */
  638. if (unlikely(page != *pagep)) {
  639. page_cache_release(page);
  640. goto repeat;
  641. }
  642. }
  643. out:
  644. rcu_read_unlock();
  645. return page;
  646. }
  647. EXPORT_SYMBOL(find_get_page);
  648. /**
  649. * find_lock_page - locate, pin and lock a pagecache page
  650. * @mapping: the address_space to search
  651. * @offset: the page index
  652. *
  653. * Locates the desired pagecache page, locks it, increments its reference
  654. * count and returns its address.
  655. *
  656. * Returns zero if the page was not present. find_lock_page() may sleep.
  657. */
  658. struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
  659. {
  660. struct page *page;
  661. repeat:
  662. page = find_get_page(mapping, offset);
  663. if (page && !radix_tree_exception(page)) {
  664. lock_page(page);
  665. /* Has the page been truncated? */
  666. if (unlikely(page->mapping != mapping)) {
  667. unlock_page(page);
  668. page_cache_release(page);
  669. goto repeat;
  670. }
  671. VM_BUG_ON(page->index != offset);
  672. }
  673. return page;
  674. }
  675. EXPORT_SYMBOL(find_lock_page);
  676. /**
  677. * find_or_create_page - locate or add a pagecache page
  678. * @mapping: the page's address_space
  679. * @index: the page's index into the mapping
  680. * @gfp_mask: page allocation mode
  681. *
  682. * Locates a page in the pagecache. If the page is not present, a new page
  683. * is allocated using @gfp_mask and is added to the pagecache and to the VM's
  684. * LRU list. The returned page is locked and has its reference count
  685. * incremented.
  686. *
  687. * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
  688. * allocation!
  689. *
  690. * find_or_create_page() returns the desired page's address, or zero on
  691. * memory exhaustion.
  692. */
  693. struct page *find_or_create_page(struct address_space *mapping,
  694. pgoff_t index, gfp_t gfp_mask)
  695. {
  696. struct page *page;
  697. int err;
  698. repeat:
  699. page = find_lock_page(mapping, index);
  700. if (!page) {
  701. page = __page_cache_alloc(gfp_mask);
  702. if (!page)
  703. return NULL;
  704. /*
  705. * We want a regular kernel memory (not highmem or DMA etc)
  706. * allocation for the radix tree nodes, but we need to honour
  707. * the context-specific requirements the caller has asked for.
  708. * GFP_RECLAIM_MASK collects those requirements.
  709. */
  710. err = add_to_page_cache_lru(page, mapping, index,
  711. (gfp_mask & GFP_RECLAIM_MASK));
  712. if (unlikely(err)) {
  713. page_cache_release(page);
  714. page = NULL;
  715. if (err == -EEXIST)
  716. goto repeat;
  717. }
  718. }
  719. return page;
  720. }
  721. EXPORT_SYMBOL(find_or_create_page);
  722. /**
  723. * find_get_pages - gang pagecache lookup
  724. * @mapping: The address_space to search
  725. * @start: The starting page index
  726. * @nr_pages: The maximum number of pages
  727. * @pages: Where the resulting pages are placed
  728. *
  729. * find_get_pages() will search for and return a group of up to
  730. * @nr_pages pages in the mapping. The pages are placed at @pages.
  731. * find_get_pages() takes a reference against the returned pages.
  732. *
  733. * The search returns a group of mapping-contiguous pages with ascending
  734. * indexes. There may be holes in the indices due to not-present pages.
  735. *
  736. * find_get_pages() returns the number of pages which were found.
  737. */
  738. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  739. unsigned int nr_pages, struct page **pages)
  740. {
  741. unsigned int i;
  742. unsigned int ret;
  743. unsigned int nr_found;
  744. rcu_read_lock();
  745. restart:
  746. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  747. (void ***)pages, NULL, start, nr_pages);
  748. ret = 0;
  749. for (i = 0; i < nr_found; i++) {
  750. struct page *page;
  751. repeat:
  752. page = radix_tree_deref_slot((void **)pages[i]);
  753. if (unlikely(!page))
  754. continue;
  755. if (radix_tree_exception(page)) {
  756. if (radix_tree_exceptional_entry(page))
  757. continue;
  758. /*
  759. * radix_tree_deref_retry(page):
  760. * can only trigger when entry at index 0 moves out of
  761. * or back to root: none yet gotten, safe to restart.
  762. */
  763. WARN_ON(start | i);
  764. goto restart;
  765. }
  766. if (!page_cache_get_speculative(page))
  767. goto repeat;
  768. /* Has the page moved? */
  769. if (unlikely(page != *((void **)pages[i]))) {
  770. page_cache_release(page);
  771. goto repeat;
  772. }
  773. pages[ret] = page;
  774. ret++;
  775. }
  776. /*
  777. * If all entries were removed before we could secure them,
  778. * try again, because callers stop trying once 0 is returned.
  779. */
  780. if (unlikely(!ret && nr_found))
  781. goto restart;
  782. rcu_read_unlock();
  783. return ret;
  784. }
  785. /**
  786. * find_get_pages_contig - gang contiguous pagecache lookup
  787. * @mapping: The address_space to search
  788. * @index: The starting page index
  789. * @nr_pages: The maximum number of pages
  790. * @pages: Where the resulting pages are placed
  791. *
  792. * find_get_pages_contig() works exactly like find_get_pages(), except
  793. * that the returned number of pages are guaranteed to be contiguous.
  794. *
  795. * find_get_pages_contig() returns the number of pages which were found.
  796. */
  797. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  798. unsigned int nr_pages, struct page **pages)
  799. {
  800. unsigned int i;
  801. unsigned int ret;
  802. unsigned int nr_found;
  803. rcu_read_lock();
  804. restart:
  805. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  806. (void ***)pages, NULL, index, nr_pages);
  807. ret = 0;
  808. for (i = 0; i < nr_found; i++) {
  809. struct page *page;
  810. repeat:
  811. page = radix_tree_deref_slot((void **)pages[i]);
  812. if (unlikely(!page))
  813. continue;
  814. if (radix_tree_exception(page)) {
  815. if (radix_tree_exceptional_entry(page))
  816. break;
  817. /*
  818. * radix_tree_deref_retry(page):
  819. * can only trigger when entry at index 0 moves out of
  820. * or back to root: none yet gotten, safe to restart.
  821. */
  822. goto restart;
  823. }
  824. if (!page_cache_get_speculative(page))
  825. goto repeat;
  826. /* Has the page moved? */
  827. if (unlikely(page != *((void **)pages[i]))) {
  828. page_cache_release(page);
  829. goto repeat;
  830. }
  831. /*
  832. * must check mapping and index after taking the ref.
  833. * otherwise we can get both false positives and false
  834. * negatives, which is just confusing to the caller.
  835. */
  836. if (page->mapping == NULL || page->index != index) {
  837. page_cache_release(page);
  838. break;
  839. }
  840. pages[ret] = page;
  841. ret++;
  842. index++;
  843. }
  844. rcu_read_unlock();
  845. return ret;
  846. }
  847. EXPORT_SYMBOL(find_get_pages_contig);
  848. /**
  849. * find_get_pages_tag - find and return pages that match @tag
  850. * @mapping: the address_space to search
  851. * @index: the starting page index
  852. * @tag: the tag index
  853. * @nr_pages: the maximum number of pages
  854. * @pages: where the resulting pages are placed
  855. *
  856. * Like find_get_pages, except we only return pages which are tagged with
  857. * @tag. We update @index to index the next page for the traversal.
  858. */
  859. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  860. int tag, unsigned int nr_pages, struct page **pages)
  861. {
  862. unsigned int i;
  863. unsigned int ret;
  864. unsigned int nr_found;
  865. rcu_read_lock();
  866. restart:
  867. nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
  868. (void ***)pages, *index, nr_pages, tag);
  869. ret = 0;
  870. for (i = 0; i < nr_found; i++) {
  871. struct page *page;
  872. repeat:
  873. page = radix_tree_deref_slot((void **)pages[i]);
  874. if (unlikely(!page))
  875. continue;
  876. if (radix_tree_exception(page)) {
  877. BUG_ON(radix_tree_exceptional_entry(page));
  878. /*
  879. * radix_tree_deref_retry(page):
  880. * can only trigger when entry at index 0 moves out of
  881. * or back to root: none yet gotten, safe to restart.
  882. */
  883. goto restart;
  884. }
  885. if (!page_cache_get_speculative(page))
  886. goto repeat;
  887. /* Has the page moved? */
  888. if (unlikely(page != *((void **)pages[i]))) {
  889. page_cache_release(page);
  890. goto repeat;
  891. }
  892. pages[ret] = page;
  893. ret++;
  894. }
  895. /*
  896. * If all entries were removed before we could secure them,
  897. * try again, because callers stop trying once 0 is returned.
  898. */
  899. if (unlikely(!ret && nr_found))
  900. goto restart;
  901. rcu_read_unlock();
  902. if (ret)
  903. *index = pages[ret - 1]->index + 1;
  904. return ret;
  905. }
  906. EXPORT_SYMBOL(find_get_pages_tag);
  907. /**
  908. * grab_cache_page_nowait - returns locked page at given index in given cache
  909. * @mapping: target address_space
  910. * @index: the page index
  911. *
  912. * Same as grab_cache_page(), but do not wait if the page is unavailable.
  913. * This is intended for speculative data generators, where the data can
  914. * be regenerated if the page couldn't be grabbed. This routine should
  915. * be safe to call while holding the lock for another page.
  916. *
  917. * Clear __GFP_FS when allocating the page to avoid recursion into the fs
  918. * and deadlock against the caller's locked page.
  919. */
  920. struct page *
  921. grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
  922. {
  923. struct page *page = find_get_page(mapping, index);
  924. if (page) {
  925. if (trylock_page(page))
  926. return page;
  927. page_cache_release(page);
  928. return NULL;
  929. }
  930. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
  931. if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
  932. page_cache_release(page);
  933. page = NULL;
  934. }
  935. return page;
  936. }
  937. EXPORT_SYMBOL(grab_cache_page_nowait);
  938. /*
  939. * CD/DVDs are error prone. When a medium error occurs, the driver may fail
  940. * a _large_ part of the i/o request. Imagine the worst scenario:
  941. *
  942. * ---R__________________________________________B__________
  943. * ^ reading here ^ bad block(assume 4k)
  944. *
  945. * read(R) => miss => readahead(R...B) => media error => frustrating retries
  946. * => failing the whole request => read(R) => read(R+1) =>
  947. * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
  948. * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
  949. * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
  950. *
  951. * It is going insane. Fix it by quickly scaling down the readahead size.
  952. */
  953. static void shrink_readahead_size_eio(struct file *filp,
  954. struct file_ra_state *ra)
  955. {
  956. ra->ra_pages /= 4;
  957. }
  958. /**
  959. * do_generic_file_read - generic file read routine
  960. * @filp: the file to read
  961. * @ppos: current file position
  962. * @desc: read_descriptor
  963. * @actor: read method
  964. *
  965. * This is a generic file read routine, and uses the
  966. * mapping->a_ops->readpage() function for the actual low-level stuff.
  967. *
  968. * This is really ugly. But the goto's actually try to clarify some
  969. * of the logic when it comes to error handling etc.
  970. */
  971. static void do_generic_file_read(struct file *filp, loff_t *ppos,
  972. read_descriptor_t *desc, read_actor_t actor)
  973. {
  974. struct address_space *mapping = filp->f_mapping;
  975. struct inode *inode = mapping->host;
  976. struct file_ra_state *ra = &filp->f_ra;
  977. pgoff_t index;
  978. pgoff_t last_index;
  979. pgoff_t prev_index;
  980. unsigned long offset; /* offset into pagecache page */
  981. unsigned int prev_offset;
  982. int error;
  983. index = *ppos >> PAGE_CACHE_SHIFT;
  984. prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
  985. prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
  986. last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  987. offset = *ppos & ~PAGE_CACHE_MASK;
  988. for (;;) {
  989. struct page *page;
  990. pgoff_t end_index;
  991. loff_t isize;
  992. unsigned long nr, ret;
  993. cond_resched();
  994. find_page:
  995. page = find_get_page(mapping, index);
  996. if (!page) {
  997. page_cache_sync_readahead(mapping,
  998. ra, filp,
  999. index, last_index - index);
  1000. page = find_get_page(mapping, index);
  1001. if (unlikely(page == NULL))
  1002. goto no_cached_page;
  1003. }
  1004. if (PageReadahead(page)) {
  1005. page_cache_async_readahead(mapping,
  1006. ra, filp, page,
  1007. index, last_index - index);
  1008. }
  1009. if (!PageUptodate(page)) {
  1010. if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
  1011. !mapping->a_ops->is_partially_uptodate)
  1012. goto page_not_up_to_date;
  1013. if (!trylock_page(page))
  1014. goto page_not_up_to_date;
  1015. /* Did it get truncated before we got the lock? */
  1016. if (!page->mapping)
  1017. goto page_not_up_to_date_locked;
  1018. if (!mapping->a_ops->is_partially_uptodate(page,
  1019. desc, offset))
  1020. goto page_not_up_to_date_locked;
  1021. unlock_page(page);
  1022. }
  1023. page_ok:
  1024. /*
  1025. * i_size must be checked after we know the page is Uptodate.
  1026. *
  1027. * Checking i_size after the check allows us to calculate
  1028. * the correct value for "nr", which means the zero-filled
  1029. * part of the page is not copied back to userspace (unless
  1030. * another truncate extends the file - this is desired though).
  1031. */
  1032. isize = i_size_read(inode);
  1033. end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  1034. if (unlikely(!isize || index > end_index)) {
  1035. page_cache_release(page);
  1036. goto out;
  1037. }
  1038. /* nr is the maximum number of bytes to copy from this page */
  1039. nr = PAGE_CACHE_SIZE;
  1040. if (index == end_index) {
  1041. nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  1042. if (nr <= offset) {
  1043. page_cache_release(page);
  1044. goto out;
  1045. }
  1046. }
  1047. nr = nr - offset;
  1048. /* If users can be writing to this page using arbitrary
  1049. * virtual addresses, take care about potential aliasing
  1050. * before reading the page on the kernel side.
  1051. */
  1052. if (mapping_writably_mapped(mapping))
  1053. flush_dcache_page(page);
  1054. /*
  1055. * When a sequential read accesses a page several times,
  1056. * only mark it as accessed the first time.
  1057. */
  1058. if (prev_index != index || offset != prev_offset)
  1059. mark_page_accessed(page);
  1060. prev_index = index;
  1061. /*
  1062. * Ok, we have the page, and it's up-to-date, so
  1063. * now we can copy it to user space...
  1064. *
  1065. * The actor routine returns how many bytes were actually used..
  1066. * NOTE! This may not be the same as how much of a user buffer
  1067. * we filled up (we may be padding etc), so we can only update
  1068. * "pos" here (the actor routine has to update the user buffer
  1069. * pointers and the remaining count).
  1070. */
  1071. ret = actor(desc, page, offset, nr);
  1072. offset += ret;
  1073. index += offset >> PAGE_CACHE_SHIFT;
  1074. offset &= ~PAGE_CACHE_MASK;
  1075. prev_offset = offset;
  1076. page_cache_release(page);
  1077. if (ret == nr && desc->count)
  1078. continue;
  1079. goto out;
  1080. page_not_up_to_date:
  1081. /* Get exclusive access to the page ... */
  1082. error = lock_page_killable(page);
  1083. if (unlikely(error))
  1084. goto readpage_error;
  1085. page_not_up_to_date_locked:
  1086. /* Did it get truncated before we got the lock? */
  1087. if (!page->mapping) {
  1088. unlock_page(page);
  1089. page_cache_release(page);
  1090. continue;
  1091. }
  1092. /* Did somebody else fill it already? */
  1093. if (PageUptodate(page)) {
  1094. unlock_page(page);
  1095. goto page_ok;
  1096. }
  1097. readpage:
  1098. /*
  1099. * A previous I/O error may have been due to temporary
  1100. * failures, eg. multipath errors.
  1101. * PG_error will be set again if readpage fails.
  1102. */
  1103. ClearPageError(page);
  1104. /* Start the actual read. The read will unlock the page. */
  1105. error = mapping->a_ops->readpage(filp, page);
  1106. if (unlikely(error)) {
  1107. if (error == AOP_TRUNCATED_PAGE) {
  1108. page_cache_release(page);
  1109. goto find_page;
  1110. }
  1111. goto readpage_error;
  1112. }
  1113. if (!PageUptodate(page)) {
  1114. error = lock_page_killable(page);
  1115. if (unlikely(error))
  1116. goto readpage_error;
  1117. if (!PageUptodate(page)) {
  1118. if (page->mapping == NULL) {
  1119. /*
  1120. * invalidate_mapping_pages got it
  1121. */
  1122. unlock_page(page);
  1123. page_cache_release(page);
  1124. goto find_page;
  1125. }
  1126. unlock_page(page);
  1127. shrink_readahead_size_eio(filp, ra);
  1128. error = -EIO;
  1129. goto readpage_error;
  1130. }
  1131. unlock_page(page);
  1132. }
  1133. goto page_ok;
  1134. readpage_error:
  1135. /* UHHUH! A synchronous read error occurred. Report it */
  1136. desc->error = error;
  1137. page_cache_release(page);
  1138. goto out;
  1139. no_cached_page:
  1140. /*
  1141. * Ok, it wasn't cached, so we need to create a new
  1142. * page..
  1143. */
  1144. page = page_cache_alloc_cold(mapping);
  1145. if (!page) {
  1146. desc->error = -ENOMEM;
  1147. goto out;
  1148. }
  1149. error = add_to_page_cache_lru(page, mapping,
  1150. index, GFP_KERNEL);
  1151. if (error) {
  1152. page_cache_release(page);
  1153. if (error == -EEXIST)
  1154. goto find_page;
  1155. desc->error = error;
  1156. goto out;
  1157. }
  1158. goto readpage;
  1159. }
  1160. out:
  1161. ra->prev_pos = prev_index;
  1162. ra->prev_pos <<= PAGE_CACHE_SHIFT;
  1163. ra->prev_pos |= prev_offset;
  1164. *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
  1165. file_accessed(filp);
  1166. }
  1167. int file_read_actor(read_descriptor_t *desc, struct page *page,
  1168. unsigned long offset, unsigned long size)
  1169. {
  1170. char *kaddr;
  1171. unsigned long left, count = desc->count;
  1172. if (size > count)
  1173. size = count;
  1174. /*
  1175. * Faults on the destination of a read are common, so do it before
  1176. * taking the kmap.
  1177. */
  1178. if (!fault_in_pages_writeable(desc->arg.buf, size)) {
  1179. kaddr = kmap_atomic(page, KM_USER0);
  1180. left = __copy_to_user_inatomic(desc->arg.buf,
  1181. kaddr + offset, size);
  1182. kunmap_atomic(kaddr, KM_USER0);
  1183. if (left == 0)
  1184. goto success;
  1185. }
  1186. /* Do it the slow way */
  1187. kaddr = kmap(page);
  1188. left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
  1189. kunmap(page);
  1190. if (left) {
  1191. size -= left;
  1192. desc->error = -EFAULT;
  1193. }
  1194. success:
  1195. desc->count = count - size;
  1196. desc->written += size;
  1197. desc->arg.buf += size;
  1198. return size;
  1199. }
  1200. /*
  1201. * Performs necessary checks before doing a write
  1202. * @iov: io vector request
  1203. * @nr_segs: number of segments in the iovec
  1204. * @count: number of bytes to write
  1205. * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
  1206. *
  1207. * Adjust number of segments and amount of bytes to write (nr_segs should be
  1208. * properly initialized first). Returns appropriate error code that caller
  1209. * should return or zero in case that write should be allowed.
  1210. */
  1211. int generic_segment_checks(const struct iovec *iov,
  1212. unsigned long *nr_segs, size_t *count, int access_flags)
  1213. {
  1214. unsigned long seg;
  1215. size_t cnt = 0;
  1216. for (seg = 0; seg < *nr_segs; seg++) {
  1217. const struct iovec *iv = &iov[seg];
  1218. /*
  1219. * If any segment has a negative length, or the cumulative
  1220. * length ever wraps negative then return -EINVAL.
  1221. */
  1222. cnt += iv->iov_len;
  1223. if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
  1224. return -EINVAL;
  1225. if (access_ok(access_flags, iv->iov_base, iv->iov_len))
  1226. continue;
  1227. if (seg == 0)
  1228. return -EFAULT;
  1229. *nr_segs = seg;
  1230. cnt -= iv->iov_len; /* This segment is no good */
  1231. break;
  1232. }
  1233. *count = cnt;
  1234. return 0;
  1235. }
  1236. EXPORT_SYMBOL(generic_segment_checks);
  1237. /**
  1238. * generic_file_aio_read - generic filesystem read routine
  1239. * @iocb: kernel I/O control block
  1240. * @iov: io vector request
  1241. * @nr_segs: number of segments in the iovec
  1242. * @pos: current file position
  1243. *
  1244. * This is the "read()" routine for all filesystems
  1245. * that can use the page cache directly.
  1246. */
  1247. ssize_t
  1248. generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
  1249. unsigned long nr_segs, loff_t pos)
  1250. {
  1251. struct file *filp = iocb->ki_filp;
  1252. ssize_t retval;
  1253. unsigned long seg = 0;
  1254. size_t count;
  1255. loff_t *ppos = &iocb->ki_pos;
  1256. struct blk_plug plug;
  1257. count = 0;
  1258. retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
  1259. if (retval)
  1260. return retval;
  1261. blk_start_plug(&plug);
  1262. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  1263. if (filp->f_flags & O_DIRECT) {
  1264. loff_t size;
  1265. struct address_space *mapping;
  1266. struct inode *inode;
  1267. mapping = filp->f_mapping;
  1268. inode = mapping->host;
  1269. if (!count)
  1270. goto out; /* skip atime */
  1271. size = i_size_read(inode);
  1272. if (pos < size) {
  1273. retval = filemap_write_and_wait_range(mapping, pos,
  1274. pos + iov_length(iov, nr_segs) - 1);
  1275. if (!retval) {
  1276. retval = mapping->a_ops->direct_IO(READ, iocb,
  1277. iov, pos, nr_segs);
  1278. }
  1279. if (retval > 0) {
  1280. *ppos = pos + retval;
  1281. count -= retval;
  1282. }
  1283. /*
  1284. * Btrfs can have a short DIO read if we encounter
  1285. * compressed extents, so if there was an error, or if
  1286. * we've already read everything we wanted to, or if
  1287. * there was a short read because we hit EOF, go ahead
  1288. * and return. Otherwise fallthrough to buffered io for
  1289. * the rest of the read.
  1290. */
  1291. if (retval < 0 || !count || *ppos >= size) {
  1292. file_accessed(filp);
  1293. goto out;
  1294. }
  1295. }
  1296. }
  1297. count = retval;
  1298. for (seg = 0; seg < nr_segs; seg++) {
  1299. read_descriptor_t desc;
  1300. loff_t offset = 0;
  1301. /*
  1302. * If we did a short DIO read we need to skip the section of the
  1303. * iov that we've already read data into.
  1304. */
  1305. if (count) {
  1306. if (count > iov[seg].iov_len) {
  1307. count -= iov[seg].iov_len;
  1308. continue;
  1309. }
  1310. offset = count;
  1311. count = 0;
  1312. }
  1313. desc.written = 0;
  1314. desc.arg.buf = iov[seg].iov_base + offset;
  1315. desc.count = iov[seg].iov_len - offset;
  1316. if (desc.count == 0)
  1317. continue;
  1318. desc.error = 0;
  1319. do_generic_file_read(filp, ppos, &desc, file_read_actor);
  1320. retval += desc.written;
  1321. if (desc.error) {
  1322. retval = retval ?: desc.error;
  1323. break;
  1324. }
  1325. if (desc.count > 0)
  1326. break;
  1327. }
  1328. out:
  1329. blk_finish_plug(&plug);
  1330. return retval;
  1331. }
  1332. EXPORT_SYMBOL(generic_file_aio_read);
  1333. static ssize_t
  1334. do_readahead(struct address_space *mapping, struct file *filp,
  1335. pgoff_t index, unsigned long nr)
  1336. {
  1337. if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
  1338. return -EINVAL;
  1339. force_page_cache_readahead(mapping, filp, index, nr);
  1340. return 0;
  1341. }
  1342. SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
  1343. {
  1344. ssize_t ret;
  1345. struct file *file;
  1346. ret = -EBADF;
  1347. file = fget(fd);
  1348. if (file) {
  1349. if (file->f_mode & FMODE_READ) {
  1350. struct address_space *mapping = file->f_mapping;
  1351. pgoff_t start = offset >> PAGE_CACHE_SHIFT;
  1352. pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
  1353. unsigned long len = end - start + 1;
  1354. ret = do_readahead(mapping, file, start, len);
  1355. }
  1356. fput(file);
  1357. }
  1358. return ret;
  1359. }
  1360. #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
  1361. asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
  1362. {
  1363. return SYSC_readahead((int) fd, offset, (size_t) count);
  1364. }
  1365. SYSCALL_ALIAS(sys_readahead, SyS_readahead);
  1366. #endif
  1367. #ifdef CONFIG_MMU
  1368. /**
  1369. * page_cache_read - adds requested page to the page cache if not already there
  1370. * @file: file to read
  1371. * @offset: page index
  1372. *
  1373. * This adds the requested page to the page cache if it isn't already there,
  1374. * and schedules an I/O to read in its contents from disk.
  1375. */
  1376. static int page_cache_read(struct file *file, pgoff_t offset)
  1377. {
  1378. struct address_space *mapping = file->f_mapping;
  1379. struct page *page;
  1380. int ret;
  1381. do {
  1382. page = page_cache_alloc_cold(mapping);
  1383. if (!page)
  1384. return -ENOMEM;
  1385. ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
  1386. if (ret == 0)
  1387. ret = mapping->a_ops->readpage(file, page);
  1388. else if (ret == -EEXIST)
  1389. ret = 0; /* losing race to add is OK */
  1390. page_cache_release(page);
  1391. } while (ret == AOP_TRUNCATED_PAGE);
  1392. return ret;
  1393. }
  1394. #define MMAP_LOTSAMISS (100)
  1395. /*
  1396. * Synchronous readahead happens when we don't even find
  1397. * a page in the page cache at all.
  1398. */
  1399. static void do_sync_mmap_readahead(struct vm_area_struct *vma,
  1400. struct file_ra_state *ra,
  1401. struct file *file,
  1402. pgoff_t offset)
  1403. {
  1404. unsigned long ra_pages;
  1405. struct address_space *mapping = file->f_mapping;
  1406. /* If we don't want any read-ahead, don't bother */
  1407. if (VM_RandomReadHint(vma))
  1408. return;
  1409. if (!ra->ra_pages)
  1410. return;
  1411. if (VM_SequentialReadHint(vma)) {
  1412. page_cache_sync_readahead(mapping, ra, file, offset,
  1413. ra->ra_pages);
  1414. return;
  1415. }
  1416. /* Avoid banging the cache line if not needed */
  1417. if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
  1418. ra->mmap_miss++;
  1419. /*
  1420. * Do we miss much more than hit in this file? If so,
  1421. * stop bothering with read-ahead. It will only hurt.
  1422. */
  1423. if (ra->mmap_miss > MMAP_LOTSAMISS)
  1424. return;
  1425. /*
  1426. * mmap read-around
  1427. */
  1428. ra_pages = max_sane_readahead(ra->ra_pages);
  1429. ra->start = max_t(long, 0, offset - ra_pages / 2);
  1430. ra->size = ra_pages;
  1431. ra->async_size = ra_pages / 4;
  1432. ra_submit(ra, mapping, file);
  1433. }
  1434. /*
  1435. * Asynchronous readahead happens when we find the page and PG_readahead,
  1436. * so we want to possibly extend the readahead further..
  1437. */
  1438. static void do_async_mmap_readahead(struct vm_area_struct *vma,
  1439. struct file_ra_state *ra,
  1440. struct file *file,
  1441. struct page *page,
  1442. pgoff_t offset)
  1443. {
  1444. struct address_space *mapping = file->f_mapping;
  1445. /* If we don't want any read-ahead, don't bother */
  1446. if (VM_RandomReadHint(vma))
  1447. return;
  1448. if (ra->mmap_miss > 0)
  1449. ra->mmap_miss--;
  1450. if (PageReadahead(page))
  1451. page_cache_async_readahead(mapping, ra, file,
  1452. page, offset, ra->ra_pages);
  1453. }
  1454. /**
  1455. * filemap_fault - read in file data for page fault handling
  1456. * @vma: vma in which the fault was taken
  1457. * @vmf: struct vm_fault containing details of the fault
  1458. *
  1459. * filemap_fault() is invoked via the vma operations vector for a
  1460. * mapped memory region to read in file data during a page fault.
  1461. *
  1462. * The goto's are kind of ugly, but this streamlines the normal case of having
  1463. * it in the page cache, and handles the special cases reasonably without
  1464. * having a lot of duplicated code.
  1465. */
  1466. int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1467. {
  1468. int error;
  1469. struct file *file = vma->vm_file;
  1470. struct address_space *mapping = file->f_mapping;
  1471. struct file_ra_state *ra = &file->f_ra;
  1472. struct inode *inode = mapping->host;
  1473. pgoff_t offset = vmf->pgoff;
  1474. struct page *page;
  1475. pgoff_t size;
  1476. int ret = 0;
  1477. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1478. if (offset >= size)
  1479. return VM_FAULT_SIGBUS;
  1480. /*
  1481. * Do we have something in the page cache already?
  1482. */
  1483. page = find_get_page(mapping, offset);
  1484. if (likely(page)) {
  1485. /*
  1486. * We found the page, so try async readahead before
  1487. * waiting for the lock.
  1488. */
  1489. do_async_mmap_readahead(vma, ra, file, page, offset);
  1490. } else {
  1491. /* No page in the page cache at all */
  1492. do_sync_mmap_readahead(vma, ra, file, offset);
  1493. count_vm_event(PGMAJFAULT);
  1494. mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
  1495. ret = VM_FAULT_MAJOR;
  1496. retry_find:
  1497. page = find_get_page(mapping, offset);
  1498. if (!page)
  1499. goto no_cached_page;
  1500. }
  1501. if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
  1502. page_cache_release(page);
  1503. return ret | VM_FAULT_RETRY;
  1504. }
  1505. /* Did it get truncated? */
  1506. if (unlikely(page->mapping != mapping)) {
  1507. unlock_page(page);
  1508. put_page(page);
  1509. goto retry_find;
  1510. }
  1511. VM_BUG_ON(page->index != offset);
  1512. /*
  1513. * We have a locked page in the page cache, now we need to check
  1514. * that it's up-to-date. If not, it is going to be due to an error.
  1515. */
  1516. if (unlikely(!PageUptodate(page)))
  1517. goto page_not_uptodate;
  1518. /*
  1519. * Found the page and have a reference on it.
  1520. * We must recheck i_size under page lock.
  1521. */
  1522. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1523. if (unlikely(offset >= size)) {
  1524. unlock_page(page);
  1525. page_cache_release(page);
  1526. return VM_FAULT_SIGBUS;
  1527. }
  1528. vmf->page = page;
  1529. return ret | VM_FAULT_LOCKED;
  1530. no_cached_page:
  1531. /*
  1532. * We're only likely to ever get here if MADV_RANDOM is in
  1533. * effect.
  1534. */
  1535. error = page_cache_read(file, offset);
  1536. /*
  1537. * The page we want has now been added to the page cache.
  1538. * In the unlikely event that someone removed it in the
  1539. * meantime, we'll just come back here and read it again.
  1540. */
  1541. if (error >= 0)
  1542. goto retry_find;
  1543. /*
  1544. * An error return from page_cache_read can result if the
  1545. * system is low on memory, or a problem occurs while trying
  1546. * to schedule I/O.
  1547. */
  1548. if (error == -ENOMEM)
  1549. return VM_FAULT_OOM;
  1550. return VM_FAULT_SIGBUS;
  1551. page_not_uptodate:
  1552. /*
  1553. * Umm, take care of errors if the page isn't up-to-date.
  1554. * Try to re-read it _once_. We do this synchronously,
  1555. * because there really aren't any performance issues here
  1556. * and we need to check for errors.
  1557. */
  1558. ClearPageError(page);
  1559. error = mapping->a_ops->readpage(file, page);
  1560. if (!error) {
  1561. wait_on_page_locked(page);
  1562. if (!PageUptodate(page))
  1563. error = -EIO;
  1564. }
  1565. page_cache_release(page);
  1566. if (!error || error == AOP_TRUNCATED_PAGE)
  1567. goto retry_find;
  1568. /* Things didn't work out. Return zero to tell the mm layer so. */
  1569. shrink_readahead_size_eio(file, ra);
  1570. return VM_FAULT_SIGBUS;
  1571. }
  1572. EXPORT_SYMBOL(filemap_fault);
  1573. const struct vm_operations_struct generic_file_vm_ops = {
  1574. .fault = filemap_fault,
  1575. };
  1576. /* This is used for a general mmap of a disk file */
  1577. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1578. {
  1579. struct address_space *mapping = file->f_mapping;
  1580. if (!mapping->a_ops->readpage)
  1581. return -ENOEXEC;
  1582. file_accessed(file);
  1583. vma->vm_ops = &generic_file_vm_ops;
  1584. vma->vm_flags |= VM_CAN_NONLINEAR;
  1585. return 0;
  1586. }
  1587. /*
  1588. * This is for filesystems which do not implement ->writepage.
  1589. */
  1590. int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
  1591. {
  1592. if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
  1593. return -EINVAL;
  1594. return generic_file_mmap(file, vma);
  1595. }
  1596. #else
  1597. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1598. {
  1599. return -ENOSYS;
  1600. }
  1601. int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
  1602. {
  1603. return -ENOSYS;
  1604. }
  1605. #endif /* CONFIG_MMU */
  1606. EXPORT_SYMBOL(generic_file_mmap);
  1607. EXPORT_SYMBOL(generic_file_readonly_mmap);
  1608. static struct page *__read_cache_page(struct address_space *mapping,
  1609. pgoff_t index,
  1610. int (*filler)(void *, struct page *),
  1611. void *data,
  1612. gfp_t gfp)
  1613. {
  1614. struct page *page;
  1615. int err;
  1616. repeat:
  1617. page = find_get_page(mapping, index);
  1618. if (!page) {
  1619. page = __page_cache_alloc(gfp | __GFP_COLD);
  1620. if (!page)
  1621. return ERR_PTR(-ENOMEM);
  1622. err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
  1623. if (unlikely(err)) {
  1624. page_cache_release(page);
  1625. if (err == -EEXIST)
  1626. goto repeat;
  1627. /* Presumably ENOMEM for radix tree node */
  1628. return ERR_PTR(err);
  1629. }
  1630. err = filler(data, page);
  1631. if (err < 0) {
  1632. page_cache_release(page);
  1633. page = ERR_PTR(err);
  1634. }
  1635. }
  1636. return page;
  1637. }
  1638. static struct page *do_read_cache_page(struct address_space *mapping,
  1639. pgoff_t index,
  1640. int (*filler)(void *, struct page *),
  1641. void *data,
  1642. gfp_t gfp)
  1643. {
  1644. struct page *page;
  1645. int err;
  1646. retry:
  1647. page = __read_cache_page(mapping, index, filler, data, gfp);
  1648. if (IS_ERR(page))
  1649. return page;
  1650. if (PageUptodate(page))
  1651. goto out;
  1652. lock_page(page);
  1653. if (!page->mapping) {
  1654. unlock_page(page);
  1655. page_cache_release(page);
  1656. goto retry;
  1657. }
  1658. if (PageUptodate(page)) {
  1659. unlock_page(page);
  1660. goto out;
  1661. }
  1662. err = filler(data, page);
  1663. if (err < 0) {
  1664. page_cache_release(page);
  1665. return ERR_PTR(err);
  1666. }
  1667. out:
  1668. mark_page_accessed(page);
  1669. return page;
  1670. }
  1671. /**
  1672. * read_cache_page_async - read into page cache, fill it if needed
  1673. * @mapping: the page's address_space
  1674. * @index: the page index
  1675. * @filler: function to perform the read
  1676. * @data: first arg to filler(data, page) function, often left as NULL
  1677. *
  1678. * Same as read_cache_page, but don't wait for page to become unlocked
  1679. * after submitting it to the filler.
  1680. *
  1681. * Read into the page cache. If a page already exists, and PageUptodate() is
  1682. * not set, try to fill the page but don't wait for it to become unlocked.
  1683. *
  1684. * If the page does not get brought uptodate, return -EIO.
  1685. */
  1686. struct page *read_cache_page_async(struct address_space *mapping,
  1687. pgoff_t index,
  1688. int (*filler)(void *, struct page *),
  1689. void *data)
  1690. {
  1691. return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
  1692. }
  1693. EXPORT_SYMBOL(read_cache_page_async);
  1694. static struct page *wait_on_page_read(struct page *page)
  1695. {
  1696. if (!IS_ERR(page)) {
  1697. wait_on_page_locked(page);
  1698. if (!PageUptodate(page)) {
  1699. page_cache_release(page);
  1700. page = ERR_PTR(-EIO);
  1701. }
  1702. }
  1703. return page;
  1704. }
  1705. /**
  1706. * read_cache_page_gfp - read into page cache, using specified page allocation flags.
  1707. * @mapping: the page's address_space
  1708. * @index: the page index
  1709. * @gfp: the page allocator flags to use if allocating
  1710. *
  1711. * This is the same as "read_mapping_page(mapping, index, NULL)", but with
  1712. * any new page allocations done using the specified allocation flags. Note
  1713. * that the Radix tree operations will still use GFP_KERNEL, so you can't
  1714. * expect to do this atomically or anything like that - but you can pass in
  1715. * other page requirements.
  1716. *
  1717. * If the page does not get brought uptodate, return -EIO.
  1718. */
  1719. struct page *read_cache_page_gfp(struct address_space *mapping,
  1720. pgoff_t index,
  1721. gfp_t gfp)
  1722. {
  1723. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  1724. return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
  1725. }
  1726. EXPORT_SYMBOL(read_cache_page_gfp);
  1727. /**
  1728. * read_cache_page - read into page cache, fill it if needed
  1729. * @mapping: the page's address_space
  1730. * @index: the page index
  1731. * @filler: function to perform the read
  1732. * @data: first arg to filler(data, page) function, often left as NULL
  1733. *
  1734. * Read into the page cache. If a page already exists, and PageUptodate() is
  1735. * not set, try to fill the page then wait for it to become unlocked.
  1736. *
  1737. * If the page does not get brought uptodate, return -EIO.
  1738. */
  1739. struct page *read_cache_page(struct address_space *mapping,
  1740. pgoff_t index,
  1741. int (*filler)(void *, struct page *),
  1742. void *data)
  1743. {
  1744. return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
  1745. }
  1746. EXPORT_SYMBOL(read_cache_page);
  1747. /*
  1748. * The logic we want is
  1749. *
  1750. * if suid or (sgid and xgrp)
  1751. * remove privs
  1752. */
  1753. int should_remove_suid(struct dentry *dentry)
  1754. {
  1755. mode_t mode = dentry->d_inode->i_mode;
  1756. int kill = 0;
  1757. /* suid always must be killed */
  1758. if (unlikely(mode & S_ISUID))
  1759. kill = ATTR_KILL_SUID;
  1760. /*
  1761. * sgid without any exec bits is just a mandatory locking mark; leave
  1762. * it alone. If some exec bits are set, it's a real sgid; kill it.
  1763. */
  1764. if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
  1765. kill |= ATTR_KILL_SGID;
  1766. if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
  1767. return kill;
  1768. return 0;
  1769. }
  1770. EXPORT_SYMBOL(should_remove_suid);
  1771. static int __remove_suid(struct dentry *dentry, int kill)
  1772. {
  1773. struct iattr newattrs;
  1774. newattrs.ia_valid = ATTR_FORCE | kill;
  1775. return notify_change(dentry, &newattrs);
  1776. }
  1777. int file_remove_suid(struct file *file)
  1778. {
  1779. struct dentry *dentry = file->f_path.dentry;
  1780. struct inode *inode = dentry->d_inode;
  1781. int killsuid;
  1782. int killpriv;
  1783. int error = 0;
  1784. /* Fast path for nothing security related */
  1785. if (IS_NOSEC(inode))
  1786. return 0;
  1787. killsuid = should_remove_suid(dentry);
  1788. killpriv = security_inode_need_killpriv(dentry);
  1789. if (killpriv < 0)
  1790. return killpriv;
  1791. if (killpriv)
  1792. error = security_inode_killpriv(dentry);
  1793. if (!error && killsuid)
  1794. error = __remove_suid(dentry, killsuid);
  1795. if (!error && (inode->i_sb->s_flags & MS_NOSEC))
  1796. inode->i_flags |= S_NOSEC;
  1797. return error;
  1798. }
  1799. EXPORT_SYMBOL(file_remove_suid);
  1800. static size_t __iovec_copy_from_user_inatomic(char *vaddr,
  1801. const struct iovec *iov, size_t base, size_t bytes)
  1802. {
  1803. size_t copied = 0, left = 0;
  1804. while (bytes) {
  1805. char __user *buf = iov->iov_base + base;
  1806. int copy = min(bytes, iov->iov_len - base);
  1807. base = 0;
  1808. left = __copy_from_user_inatomic(vaddr, buf, copy);
  1809. copied += copy;
  1810. bytes -= copy;
  1811. vaddr += copy;
  1812. iov++;
  1813. if (unlikely(left))
  1814. break;
  1815. }
  1816. return copied - left;
  1817. }
  1818. /*
  1819. * Copy as much as we can into the page and return the number of bytes which
  1820. * were successfully copied. If a fault is encountered then return the number of
  1821. * bytes which were copied.
  1822. */
  1823. size_t iov_iter_copy_from_user_atomic(struct page *page,
  1824. struct iov_iter *i, unsigned long offset, size_t bytes)
  1825. {
  1826. char *kaddr;
  1827. size_t copied;
  1828. BUG_ON(!in_atomic());
  1829. kaddr = kmap_atomic(page, KM_USER0);
  1830. if (likely(i->nr_segs == 1)) {
  1831. int left;
  1832. char __user *buf = i->iov->iov_base + i->iov_offset;
  1833. left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
  1834. copied = bytes - left;
  1835. } else {
  1836. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1837. i->iov, i->iov_offset, bytes);
  1838. }
  1839. kunmap_atomic(kaddr, KM_USER0);
  1840. return copied;
  1841. }
  1842. EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
  1843. /*
  1844. * This has the same sideeffects and return value as
  1845. * iov_iter_copy_from_user_atomic().
  1846. * The difference is that it attempts to resolve faults.
  1847. * Page must not be locked.
  1848. */
  1849. size_t iov_iter_copy_from_user(struct page *page,
  1850. struct iov_iter *i, unsigned long offset, size_t bytes)
  1851. {
  1852. char *kaddr;
  1853. size_t copied;
  1854. kaddr = kmap(page);
  1855. if (likely(i->nr_segs == 1)) {
  1856. int left;
  1857. char __user *buf = i->iov->iov_base + i->iov_offset;
  1858. left = __copy_from_user(kaddr + offset, buf, bytes);
  1859. copied = bytes - left;
  1860. } else {
  1861. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1862. i->iov, i->iov_offset, bytes);
  1863. }
  1864. kunmap(page);
  1865. return copied;
  1866. }
  1867. EXPORT_SYMBOL(iov_iter_copy_from_user);
  1868. void iov_iter_advance(struct iov_iter *i, size_t bytes)
  1869. {
  1870. BUG_ON(i->count < bytes);
  1871. if (likely(i->nr_segs == 1)) {
  1872. i->iov_offset += bytes;
  1873. i->count -= bytes;
  1874. } else {
  1875. const struct iovec *iov = i->iov;
  1876. size_t base = i->iov_offset;
  1877. /*
  1878. * The !iov->iov_len check ensures we skip over unlikely
  1879. * zero-length segments (without overruning the iovec).
  1880. */
  1881. while (bytes || unlikely(i->count && !iov->iov_len)) {
  1882. int copy;
  1883. copy = min(bytes, iov->iov_len - base);
  1884. BUG_ON(!i->count || i->count < copy);
  1885. i->count -= copy;
  1886. bytes -= copy;
  1887. base += copy;
  1888. if (iov->iov_len == base) {
  1889. iov++;
  1890. base = 0;
  1891. }
  1892. }
  1893. i->iov = iov;
  1894. i->iov_offset = base;
  1895. }
  1896. }
  1897. EXPORT_SYMBOL(iov_iter_advance);
  1898. /*
  1899. * Fault in the first iovec of the given iov_iter, to a maximum length
  1900. * of bytes. Returns 0 on success, or non-zero if the memory could not be
  1901. * accessed (ie. because it is an invalid address).
  1902. *
  1903. * writev-intensive code may want this to prefault several iovecs -- that
  1904. * would be possible (callers must not rely on the fact that _only_ the
  1905. * first iovec will be faulted with the current implementation).
  1906. */
  1907. int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
  1908. {
  1909. char __user *buf = i->iov->iov_base + i->iov_offset;
  1910. bytes = min(bytes, i->iov->iov_len - i->iov_offset);
  1911. return fault_in_pages_readable(buf, bytes);
  1912. }
  1913. EXPORT_SYMBOL(iov_iter_fault_in_readable);
  1914. /*
  1915. * Return the count of just the current iov_iter segment.
  1916. */
  1917. size_t iov_iter_single_seg_count(struct iov_iter *i)
  1918. {
  1919. const struct iovec *iov = i->iov;
  1920. if (i->nr_segs == 1)
  1921. return i->count;
  1922. else
  1923. return min(i->count, iov->iov_len - i->iov_offset);
  1924. }
  1925. EXPORT_SYMBOL(iov_iter_single_seg_count);
  1926. /*
  1927. * Performs necessary checks before doing a write
  1928. *
  1929. * Can adjust writing position or amount of bytes to write.
  1930. * Returns appropriate error code that caller should return or
  1931. * zero in case that write should be allowed.
  1932. */
  1933. inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
  1934. {
  1935. struct inode *inode = file->f_mapping->host;
  1936. unsigned long limit = rlimit(RLIMIT_FSIZE);
  1937. if (unlikely(*pos < 0))
  1938. return -EINVAL;
  1939. if (!isblk) {
  1940. /* FIXME: this is for backwards compatibility with 2.4 */
  1941. if (file->f_flags & O_APPEND)
  1942. *pos = i_size_read(inode);
  1943. if (limit != RLIM_INFINITY) {
  1944. if (*pos >= limit) {
  1945. send_sig(SIGXFSZ, current, 0);
  1946. return -EFBIG;
  1947. }
  1948. if (*count > limit - (typeof(limit))*pos) {
  1949. *count = limit - (typeof(limit))*pos;
  1950. }
  1951. }
  1952. }
  1953. /*
  1954. * LFS rule
  1955. */
  1956. if (unlikely(*pos + *count > MAX_NON_LFS &&
  1957. !(file->f_flags & O_LARGEFILE))) {
  1958. if (*pos >= MAX_NON_LFS) {
  1959. return -EFBIG;
  1960. }
  1961. if (*count > MAX_NON_LFS - (unsigned long)*pos) {
  1962. *count = MAX_NON_LFS - (unsigned long)*pos;
  1963. }
  1964. }
  1965. /*
  1966. * Are we about to exceed the fs block limit ?
  1967. *
  1968. * If we have written data it becomes a short write. If we have
  1969. * exceeded without writing data we send a signal and return EFBIG.
  1970. * Linus frestrict idea will clean these up nicely..
  1971. */
  1972. if (likely(!isblk)) {
  1973. if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
  1974. if (*count || *pos > inode->i_sb->s_maxbytes) {
  1975. return -EFBIG;
  1976. }
  1977. /* zero-length writes at ->s_maxbytes are OK */
  1978. }
  1979. if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
  1980. *count = inode->i_sb->s_maxbytes - *pos;
  1981. } else {
  1982. #ifdef CONFIG_BLOCK
  1983. loff_t isize;
  1984. if (bdev_read_only(I_BDEV(inode)))
  1985. return -EPERM;
  1986. isize = i_size_read(inode);
  1987. if (*pos >= isize) {
  1988. if (*count || *pos > isize)
  1989. return -ENOSPC;
  1990. }
  1991. if (*pos + *count > isize)
  1992. *count = isize - *pos;
  1993. #else
  1994. return -EPERM;
  1995. #endif
  1996. }
  1997. return 0;
  1998. }
  1999. EXPORT_SYMBOL(generic_write_checks);
  2000. int pagecache_write_begin(struct file *file, struct address_space *mapping,
  2001. loff_t pos, unsigned len, unsigned flags,
  2002. struct page **pagep, void **fsdata)
  2003. {
  2004. const struct address_space_operations *aops = mapping->a_ops;
  2005. return aops->write_begin(file, mapping, pos, len, flags,
  2006. pagep, fsdata);
  2007. }
  2008. EXPORT_SYMBOL(pagecache_write_begin);
  2009. int pagecache_write_end(struct file *file, struct address_space *mapping,
  2010. loff_t pos, unsigned len, unsigned copied,
  2011. struct page *page, void *fsdata)
  2012. {
  2013. const struct address_space_operations *aops = mapping->a_ops;
  2014. mark_page_accessed(page);
  2015. return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
  2016. }
  2017. EXPORT_SYMBOL(pagecache_write_end);
  2018. ssize_t
  2019. generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  2020. unsigned long *nr_segs, loff_t pos, loff_t *ppos,
  2021. size_t count, size_t ocount)
  2022. {
  2023. struct file *file = iocb->ki_filp;
  2024. struct address_space *mapping = file->f_mapping;
  2025. struct inode *inode = mapping->host;
  2026. ssize_t written;
  2027. size_t write_len;
  2028. pgoff_t end;
  2029. if (count != ocount)
  2030. *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
  2031. write_len = iov_length(iov, *nr_segs);
  2032. end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
  2033. written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
  2034. if (written)
  2035. goto out;
  2036. /*
  2037. * After a write we want buffered reads to be sure to go to disk to get
  2038. * the new data. We invalidate clean cached page from the region we're
  2039. * about to write. We do this *before* the write so that we can return
  2040. * without clobbering -EIOCBQUEUED from ->direct_IO().
  2041. */
  2042. if (mapping->nrpages) {
  2043. written = invalidate_inode_pages2_range(mapping,
  2044. pos >> PAGE_CACHE_SHIFT, end);
  2045. /*
  2046. * If a page can not be invalidated, return 0 to fall back
  2047. * to buffered write.
  2048. */
  2049. if (written) {
  2050. if (written == -EBUSY)
  2051. return 0;
  2052. goto out;
  2053. }
  2054. }
  2055. written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
  2056. /*
  2057. * Finally, try again to invalidate clean pages which might have been
  2058. * cached by non-direct readahead, or faulted in by get_user_pages()
  2059. * if the source of the write was an mmap'ed region of the file
  2060. * we're writing. Either one is a pretty crazy thing to do,
  2061. * so we don't support it 100%. If this invalidation
  2062. * fails, tough, the write still worked...
  2063. */
  2064. if (mapping->nrpages) {
  2065. invalidate_inode_pages2_range(mapping,
  2066. pos >> PAGE_CACHE_SHIFT, end);
  2067. }
  2068. if (written > 0) {
  2069. pos += written;
  2070. if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
  2071. i_size_write(inode, pos);
  2072. mark_inode_dirty(inode);
  2073. }
  2074. *ppos = pos;
  2075. }
  2076. out:
  2077. return written;
  2078. }
  2079. EXPORT_SYMBOL(generic_file_direct_write);
  2080. /*
  2081. * Find or create a page at the given pagecache position. Return the locked
  2082. * page. This function is specifically for buffered writes.
  2083. */
  2084. struct page *grab_cache_page_write_begin(struct address_space *mapping,
  2085. pgoff_t index, unsigned flags)
  2086. {
  2087. int status;
  2088. struct page *page;
  2089. gfp_t gfp_notmask = 0;
  2090. if (flags & AOP_FLAG_NOFS)
  2091. gfp_notmask = __GFP_FS;
  2092. repeat:
  2093. page = find_lock_page(mapping, index);
  2094. if (page)
  2095. goto found;
  2096. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
  2097. if (!page)
  2098. return NULL;
  2099. status = add_to_page_cache_lru(page, mapping, index,
  2100. GFP_KERNEL & ~gfp_notmask);
  2101. if (unlikely(status)) {
  2102. page_cache_release(page);
  2103. if (status == -EEXIST)
  2104. goto repeat;
  2105. return NULL;
  2106. }
  2107. found:
  2108. wait_on_page_writeback(page);
  2109. return page;
  2110. }
  2111. EXPORT_SYMBOL(grab_cache_page_write_begin);
  2112. static ssize_t generic_perform_write(struct file *file,
  2113. struct iov_iter *i, loff_t pos)
  2114. {
  2115. struct address_space *mapping = file->f_mapping;
  2116. const struct address_space_operations *a_ops = mapping->a_ops;
  2117. long status = 0;
  2118. ssize_t written = 0;
  2119. unsigned int flags = 0;
  2120. /*
  2121. * Copies from kernel address space cannot fail (NFSD is a big user).
  2122. */
  2123. if (segment_eq(get_fs(), KERNEL_DS))
  2124. flags |= AOP_FLAG_UNINTERRUPTIBLE;
  2125. do {
  2126. struct page *page;
  2127. unsigned long offset; /* Offset into pagecache page */
  2128. unsigned long bytes; /* Bytes to write to page */
  2129. size_t copied; /* Bytes copied from user */
  2130. void *fsdata;
  2131. offset = (pos & (PAGE_CACHE_SIZE - 1));
  2132. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  2133. iov_iter_count(i));
  2134. again:
  2135. /*
  2136. * Bring in the user page that we will copy from _first_.
  2137. * Otherwise there's a nasty deadlock on copying from the
  2138. * same page as we're writing to, without it being marked
  2139. * up-to-date.
  2140. *
  2141. * Not only is this an optimisation, but it is also required
  2142. * to check that the address is actually valid, when atomic
  2143. * usercopies are used, below.
  2144. */
  2145. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  2146. status = -EFAULT;
  2147. break;
  2148. }
  2149. status = a_ops->write_begin(file, mapping, pos, bytes, flags,
  2150. &page, &fsdata);
  2151. if (unlikely(status))
  2152. break;
  2153. if (mapping_writably_mapped(mapping))
  2154. flush_dcache_page(page);
  2155. pagefault_disable();
  2156. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  2157. pagefault_enable();
  2158. flush_dcache_page(page);
  2159. mark_page_accessed(page);
  2160. status = a_ops->write_end(file, mapping, pos, bytes, copied,
  2161. page, fsdata);
  2162. if (unlikely(status < 0))
  2163. break;
  2164. copied = status;
  2165. cond_resched();
  2166. iov_iter_advance(i, copied);
  2167. if (unlikely(copied == 0)) {
  2168. /*
  2169. * If we were unable to copy any data at all, we must
  2170. * fall back to a single segment length write.
  2171. *
  2172. * If we didn't fallback here, we could livelock
  2173. * because not all segments in the iov can be copied at
  2174. * once without a pagefault.
  2175. */
  2176. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  2177. iov_iter_single_seg_count(i));
  2178. goto again;
  2179. }
  2180. pos += copied;
  2181. written += copied;
  2182. balance_dirty_pages_ratelimited(mapping);
  2183. } while (iov_iter_count(i));
  2184. return written ? written : status;
  2185. }
  2186. ssize_t
  2187. generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
  2188. unsigned long nr_segs, loff_t pos, loff_t *ppos,
  2189. size_t count, ssize_t written)
  2190. {
  2191. struct file *file = iocb->ki_filp;
  2192. ssize_t status;
  2193. struct iov_iter i;
  2194. iov_iter_init(&i, iov, nr_segs, count, written);
  2195. status = generic_perform_write(file, &i, pos);
  2196. if (likely(status >= 0)) {
  2197. written += status;
  2198. *ppos = pos + status;
  2199. }
  2200. return written ? written : status;
  2201. }
  2202. EXPORT_SYMBOL(generic_file_buffered_write);
  2203. /**
  2204. * __generic_file_aio_write - write data to a file
  2205. * @iocb: IO state structure (file, offset, etc.)
  2206. * @iov: vector with data to write
  2207. * @nr_segs: number of segments in the vector
  2208. * @ppos: position where to write
  2209. *
  2210. * This function does all the work needed for actually writing data to a
  2211. * file. It does all basic checks, removes SUID from the file, updates
  2212. * modification times and calls proper subroutines depending on whether we
  2213. * do direct IO or a standard buffered write.
  2214. *
  2215. * It expects i_mutex to be grabbed unless we work on a block device or similar
  2216. * object which does not need locking at all.
  2217. *
  2218. * This function does *not* take care of syncing data in case of O_SYNC write.
  2219. * A caller has to handle it. This is mainly due to the fact that we want to
  2220. * avoid syncing under i_mutex.
  2221. */
  2222. ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  2223. unsigned long nr_segs, loff_t *ppos)
  2224. {
  2225. struct file *file = iocb->ki_filp;
  2226. struct address_space * mapping = file->f_mapping;
  2227. size_t ocount; /* original count */
  2228. size_t count; /* after file limit checks */
  2229. struct inode *inode = mapping->host;
  2230. loff_t pos;
  2231. ssize_t written;
  2232. ssize_t err;
  2233. ocount = 0;
  2234. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  2235. if (err)
  2236. return err;
  2237. count = ocount;
  2238. pos = *ppos;
  2239. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2240. /* We can write back this queue in page reclaim */
  2241. current->backing_dev_info = mapping->backing_dev_info;
  2242. written = 0;
  2243. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2244. if (err)
  2245. goto out;
  2246. if (count == 0)
  2247. goto out;
  2248. err = file_remove_suid(file);
  2249. if (err)
  2250. goto out;
  2251. file_update_time(file);
  2252. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  2253. if (unlikely(file->f_flags & O_DIRECT)) {
  2254. loff_t endbyte;
  2255. ssize_t written_buffered;
  2256. written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
  2257. ppos, count, ocount);
  2258. if (written < 0 || written == count)
  2259. goto out;
  2260. /*
  2261. * direct-io write to a hole: fall through to buffered I/O
  2262. * for completing the rest of the request.
  2263. */
  2264. pos += written;
  2265. count -= written;
  2266. written_buffered = generic_file_buffered_write(iocb, iov,
  2267. nr_segs, pos, ppos, count,
  2268. written);
  2269. /*
  2270. * If generic_file_buffered_write() retuned a synchronous error
  2271. * then we want to return the number of bytes which were
  2272. * direct-written, or the error code if that was zero. Note
  2273. * that this differs from normal direct-io semantics, which
  2274. * will return -EFOO even if some bytes were written.
  2275. */
  2276. if (written_buffered < 0) {
  2277. err = written_buffered;
  2278. goto out;
  2279. }
  2280. /*
  2281. * We need to ensure that the page cache pages are written to
  2282. * disk and invalidated to preserve the expected O_DIRECT
  2283. * semantics.
  2284. */
  2285. endbyte = pos + written_buffered - written - 1;
  2286. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  2287. if (err == 0) {
  2288. written = written_buffered;
  2289. invalidate_mapping_pages(mapping,
  2290. pos >> PAGE_CACHE_SHIFT,
  2291. endbyte >> PAGE_CACHE_SHIFT);
  2292. } else {
  2293. /*
  2294. * We don't know how much we wrote, so just return
  2295. * the number of bytes which were direct-written
  2296. */
  2297. }
  2298. } else {
  2299. written = generic_file_buffered_write(iocb, iov, nr_segs,
  2300. pos, ppos, count, written);
  2301. }
  2302. out:
  2303. current->backing_dev_info = NULL;
  2304. return written ? written : err;
  2305. }
  2306. EXPORT_SYMBOL(__generic_file_aio_write);
  2307. /**
  2308. * generic_file_aio_write - write data to a file
  2309. * @iocb: IO state structure
  2310. * @iov: vector with data to write
  2311. * @nr_segs: number of segments in the vector
  2312. * @pos: position in file where to write
  2313. *
  2314. * This is a wrapper around __generic_file_aio_write() to be used by most
  2315. * filesystems. It takes care of syncing the file in case of O_SYNC file
  2316. * and acquires i_mutex as needed.
  2317. */
  2318. ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  2319. unsigned long nr_segs, loff_t pos)
  2320. {
  2321. struct file *file = iocb->ki_filp;
  2322. struct inode *inode = file->f_mapping->host;
  2323. struct blk_plug plug;
  2324. ssize_t ret;
  2325. BUG_ON(iocb->ki_pos != pos);
  2326. mutex_lock(&inode->i_mutex);
  2327. blk_start_plug(&plug);
  2328. ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
  2329. mutex_unlock(&inode->i_mutex);
  2330. if (ret > 0 || ret == -EIOCBQUEUED) {
  2331. ssize_t err;
  2332. err = generic_write_sync(file, pos, ret);
  2333. if (err < 0 && ret > 0)
  2334. ret = err;
  2335. }
  2336. blk_finish_plug(&plug);
  2337. return ret;
  2338. }
  2339. EXPORT_SYMBOL(generic_file_aio_write);
  2340. /**
  2341. * try_to_release_page() - release old fs-specific metadata on a page
  2342. *
  2343. * @page: the page which the kernel is trying to free
  2344. * @gfp_mask: memory allocation flags (and I/O mode)
  2345. *
  2346. * The address_space is to try to release any data against the page
  2347. * (presumably at page->private). If the release was successful, return `1'.
  2348. * Otherwise return zero.
  2349. *
  2350. * This may also be called if PG_fscache is set on a page, indicating that the
  2351. * page is known to the local caching routines.
  2352. *
  2353. * The @gfp_mask argument specifies whether I/O may be performed to release
  2354. * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
  2355. *
  2356. */
  2357. int try_to_release_page(struct page *page, gfp_t gfp_mask)
  2358. {
  2359. struct address_space * const mapping = page->mapping;
  2360. BUG_ON(!PageLocked(page));
  2361. if (PageWriteback(page))
  2362. return 0;
  2363. if (mapping && mapping->a_ops->releasepage)
  2364. return mapping->a_ops->releasepage(page, gfp_mask);
  2365. return try_to_free_buffers(page);
  2366. }
  2367. EXPORT_SYMBOL(try_to_release_page);