i915_gem.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. struct change_domains {
  37. uint32_t invalidate_domains;
  38. uint32_t flush_domains;
  39. uint32_t flush_rings;
  40. };
  41. static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
  42. struct intel_ring_buffer *pipelined);
  43. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45. static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  46. bool write);
  47. static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  48. uint64_t offset,
  49. uint64_t size);
  50. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  51. static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  52. bool interruptible);
  53. static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  54. unsigned alignment,
  55. bool map_and_fenceable);
  56. static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
  57. static int i915_gem_phys_pwrite(struct drm_device *dev,
  58. struct drm_i915_gem_object *obj,
  59. struct drm_i915_gem_pwrite *args,
  60. struct drm_file *file);
  61. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  62. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  63. int nr_to_scan,
  64. gfp_t gfp_mask);
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  79. struct drm_i915_gem_object *obj)
  80. {
  81. dev_priv->mm.gtt_count++;
  82. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  83. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  84. dev_priv->mm.mappable_gtt_used +=
  85. min_t(size_t, obj->gtt_space->size,
  86. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  87. }
  88. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  89. }
  90. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  91. struct drm_i915_gem_object *obj)
  92. {
  93. dev_priv->mm.gtt_count--;
  94. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  95. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  96. dev_priv->mm.mappable_gtt_used -=
  97. min_t(size_t, obj->gtt_space->size,
  98. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  99. }
  100. list_del_init(&obj->gtt_list);
  101. }
  102. /**
  103. * Update the mappable working set counters. Call _only_ when there is a change
  104. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  105. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  106. */
  107. static void
  108. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  109. struct drm_i915_gem_object *obj,
  110. bool mappable)
  111. {
  112. if (mappable) {
  113. if (obj->pin_mappable && obj->fault_mappable)
  114. /* Combined state was already mappable. */
  115. return;
  116. dev_priv->mm.gtt_mappable_count++;
  117. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  118. } else {
  119. if (obj->pin_mappable || obj->fault_mappable)
  120. /* Combined state still mappable. */
  121. return;
  122. dev_priv->mm.gtt_mappable_count--;
  123. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  124. }
  125. }
  126. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  127. struct drm_i915_gem_object *obj,
  128. bool mappable)
  129. {
  130. dev_priv->mm.pin_count++;
  131. dev_priv->mm.pin_memory += obj->gtt_space->size;
  132. if (mappable) {
  133. obj->pin_mappable = true;
  134. i915_gem_info_update_mappable(dev_priv, obj, true);
  135. }
  136. }
  137. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  138. struct drm_i915_gem_object *obj)
  139. {
  140. dev_priv->mm.pin_count--;
  141. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  142. if (obj->pin_mappable) {
  143. obj->pin_mappable = false;
  144. i915_gem_info_update_mappable(dev_priv, obj, false);
  145. }
  146. }
  147. int
  148. i915_gem_check_is_wedged(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct completion *x = &dev_priv->error_completion;
  152. unsigned long flags;
  153. int ret;
  154. if (!atomic_read(&dev_priv->mm.wedged))
  155. return 0;
  156. ret = wait_for_completion_interruptible(x);
  157. if (ret)
  158. return ret;
  159. /* Success, we reset the GPU! */
  160. if (!atomic_read(&dev_priv->mm.wedged))
  161. return 0;
  162. /* GPU is hung, bump the completion count to account for
  163. * the token we just consumed so that we never hit zero and
  164. * end up waiting upon a subsequent completion event that
  165. * will never happen.
  166. */
  167. spin_lock_irqsave(&x->wait.lock, flags);
  168. x->done++;
  169. spin_unlock_irqrestore(&x->wait.lock, flags);
  170. return -EIO;
  171. }
  172. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  173. {
  174. struct drm_i915_private *dev_priv = dev->dev_private;
  175. int ret;
  176. ret = i915_gem_check_is_wedged(dev);
  177. if (ret)
  178. return ret;
  179. ret = mutex_lock_interruptible(&dev->struct_mutex);
  180. if (ret)
  181. return ret;
  182. if (atomic_read(&dev_priv->mm.wedged)) {
  183. mutex_unlock(&dev->struct_mutex);
  184. return -EAGAIN;
  185. }
  186. WARN_ON(i915_verify_lists(dev));
  187. return 0;
  188. }
  189. static inline bool
  190. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  191. {
  192. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  193. }
  194. int i915_gem_do_init(struct drm_device *dev,
  195. unsigned long start,
  196. unsigned long mappable_end,
  197. unsigned long end)
  198. {
  199. drm_i915_private_t *dev_priv = dev->dev_private;
  200. if (start >= end ||
  201. (start & (PAGE_SIZE - 1)) != 0 ||
  202. (end & (PAGE_SIZE - 1)) != 0) {
  203. return -EINVAL;
  204. }
  205. drm_mm_init(&dev_priv->mm.gtt_space, start,
  206. end - start);
  207. dev_priv->mm.gtt_total = end - start;
  208. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  209. dev_priv->mm.gtt_mappable_end = mappable_end;
  210. return 0;
  211. }
  212. int
  213. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  214. struct drm_file *file)
  215. {
  216. struct drm_i915_gem_init *args = data;
  217. int ret;
  218. mutex_lock(&dev->struct_mutex);
  219. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  220. mutex_unlock(&dev->struct_mutex);
  221. return ret;
  222. }
  223. int
  224. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  225. struct drm_file *file)
  226. {
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. struct drm_i915_gem_get_aperture *args = data;
  229. if (!(dev->driver->driver_features & DRIVER_GEM))
  230. return -ENODEV;
  231. mutex_lock(&dev->struct_mutex);
  232. args->aper_size = dev_priv->mm.gtt_total;
  233. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  234. mutex_unlock(&dev->struct_mutex);
  235. return 0;
  236. }
  237. /**
  238. * Creates a new mm object and returns a handle to it.
  239. */
  240. int
  241. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  242. struct drm_file *file)
  243. {
  244. struct drm_i915_gem_create *args = data;
  245. struct drm_i915_gem_object *obj;
  246. int ret;
  247. u32 handle;
  248. args->size = roundup(args->size, PAGE_SIZE);
  249. /* Allocate the new object */
  250. obj = i915_gem_alloc_object(dev, args->size);
  251. if (obj == NULL)
  252. return -ENOMEM;
  253. ret = drm_gem_handle_create(file, &obj->base, &handle);
  254. if (ret) {
  255. drm_gem_object_release(&obj->base);
  256. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  257. kfree(obj);
  258. return ret;
  259. }
  260. /* drop reference from allocate - handle holds it now */
  261. drm_gem_object_unreference(&obj->base);
  262. trace_i915_gem_object_create(obj);
  263. args->handle = handle;
  264. return 0;
  265. }
  266. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  267. {
  268. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  269. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  270. obj->tiling_mode != I915_TILING_NONE;
  271. }
  272. static inline void
  273. slow_shmem_copy(struct page *dst_page,
  274. int dst_offset,
  275. struct page *src_page,
  276. int src_offset,
  277. int length)
  278. {
  279. char *dst_vaddr, *src_vaddr;
  280. dst_vaddr = kmap(dst_page);
  281. src_vaddr = kmap(src_page);
  282. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  283. kunmap(src_page);
  284. kunmap(dst_page);
  285. }
  286. static inline void
  287. slow_shmem_bit17_copy(struct page *gpu_page,
  288. int gpu_offset,
  289. struct page *cpu_page,
  290. int cpu_offset,
  291. int length,
  292. int is_read)
  293. {
  294. char *gpu_vaddr, *cpu_vaddr;
  295. /* Use the unswizzled path if this page isn't affected. */
  296. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  297. if (is_read)
  298. return slow_shmem_copy(cpu_page, cpu_offset,
  299. gpu_page, gpu_offset, length);
  300. else
  301. return slow_shmem_copy(gpu_page, gpu_offset,
  302. cpu_page, cpu_offset, length);
  303. }
  304. gpu_vaddr = kmap(gpu_page);
  305. cpu_vaddr = kmap(cpu_page);
  306. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  307. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  308. */
  309. while (length > 0) {
  310. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  311. int this_length = min(cacheline_end - gpu_offset, length);
  312. int swizzled_gpu_offset = gpu_offset ^ 64;
  313. if (is_read) {
  314. memcpy(cpu_vaddr + cpu_offset,
  315. gpu_vaddr + swizzled_gpu_offset,
  316. this_length);
  317. } else {
  318. memcpy(gpu_vaddr + swizzled_gpu_offset,
  319. cpu_vaddr + cpu_offset,
  320. this_length);
  321. }
  322. cpu_offset += this_length;
  323. gpu_offset += this_length;
  324. length -= this_length;
  325. }
  326. kunmap(cpu_page);
  327. kunmap(gpu_page);
  328. }
  329. /**
  330. * This is the fast shmem pread path, which attempts to copy_from_user directly
  331. * from the backing pages of the object to the user's address space. On a
  332. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  333. */
  334. static int
  335. i915_gem_shmem_pread_fast(struct drm_device *dev,
  336. struct drm_i915_gem_object *obj,
  337. struct drm_i915_gem_pread *args,
  338. struct drm_file *file)
  339. {
  340. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  341. ssize_t remain;
  342. loff_t offset;
  343. char __user *user_data;
  344. int page_offset, page_length;
  345. user_data = (char __user *) (uintptr_t) args->data_ptr;
  346. remain = args->size;
  347. offset = args->offset;
  348. while (remain > 0) {
  349. struct page *page;
  350. char *vaddr;
  351. int ret;
  352. /* Operation in this page
  353. *
  354. * page_offset = offset within page
  355. * page_length = bytes to copy for this page
  356. */
  357. page_offset = offset & (PAGE_SIZE-1);
  358. page_length = remain;
  359. if ((page_offset + remain) > PAGE_SIZE)
  360. page_length = PAGE_SIZE - page_offset;
  361. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  362. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  363. if (IS_ERR(page))
  364. return PTR_ERR(page);
  365. vaddr = kmap_atomic(page);
  366. ret = __copy_to_user_inatomic(user_data,
  367. vaddr + page_offset,
  368. page_length);
  369. kunmap_atomic(vaddr);
  370. mark_page_accessed(page);
  371. page_cache_release(page);
  372. if (ret)
  373. return -EFAULT;
  374. remain -= page_length;
  375. user_data += page_length;
  376. offset += page_length;
  377. }
  378. return 0;
  379. }
  380. /**
  381. * This is the fallback shmem pread path, which allocates temporary storage
  382. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  383. * can copy out of the object's backing pages while holding the struct mutex
  384. * and not take page faults.
  385. */
  386. static int
  387. i915_gem_shmem_pread_slow(struct drm_device *dev,
  388. struct drm_i915_gem_object *obj,
  389. struct drm_i915_gem_pread *args,
  390. struct drm_file *file)
  391. {
  392. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  393. struct mm_struct *mm = current->mm;
  394. struct page **user_pages;
  395. ssize_t remain;
  396. loff_t offset, pinned_pages, i;
  397. loff_t first_data_page, last_data_page, num_pages;
  398. int shmem_page_offset;
  399. int data_page_index, data_page_offset;
  400. int page_length;
  401. int ret;
  402. uint64_t data_ptr = args->data_ptr;
  403. int do_bit17_swizzling;
  404. remain = args->size;
  405. /* Pin the user pages containing the data. We can't fault while
  406. * holding the struct mutex, yet we want to hold it while
  407. * dereferencing the user data.
  408. */
  409. first_data_page = data_ptr / PAGE_SIZE;
  410. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  411. num_pages = last_data_page - first_data_page + 1;
  412. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  413. if (user_pages == NULL)
  414. return -ENOMEM;
  415. mutex_unlock(&dev->struct_mutex);
  416. down_read(&mm->mmap_sem);
  417. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  418. num_pages, 1, 0, user_pages, NULL);
  419. up_read(&mm->mmap_sem);
  420. mutex_lock(&dev->struct_mutex);
  421. if (pinned_pages < num_pages) {
  422. ret = -EFAULT;
  423. goto out;
  424. }
  425. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  426. args->offset,
  427. args->size);
  428. if (ret)
  429. goto out;
  430. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  431. offset = args->offset;
  432. while (remain > 0) {
  433. struct page *page;
  434. /* Operation in this page
  435. *
  436. * shmem_page_offset = offset within page in shmem file
  437. * data_page_index = page number in get_user_pages return
  438. * data_page_offset = offset with data_page_index page.
  439. * page_length = bytes to copy for this page
  440. */
  441. shmem_page_offset = offset & ~PAGE_MASK;
  442. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  443. data_page_offset = data_ptr & ~PAGE_MASK;
  444. page_length = remain;
  445. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  446. page_length = PAGE_SIZE - shmem_page_offset;
  447. if ((data_page_offset + page_length) > PAGE_SIZE)
  448. page_length = PAGE_SIZE - data_page_offset;
  449. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  450. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  451. if (IS_ERR(page))
  452. return PTR_ERR(page);
  453. if (do_bit17_swizzling) {
  454. slow_shmem_bit17_copy(page,
  455. shmem_page_offset,
  456. user_pages[data_page_index],
  457. data_page_offset,
  458. page_length,
  459. 1);
  460. } else {
  461. slow_shmem_copy(user_pages[data_page_index],
  462. data_page_offset,
  463. page,
  464. shmem_page_offset,
  465. page_length);
  466. }
  467. mark_page_accessed(page);
  468. page_cache_release(page);
  469. remain -= page_length;
  470. data_ptr += page_length;
  471. offset += page_length;
  472. }
  473. out:
  474. for (i = 0; i < pinned_pages; i++) {
  475. SetPageDirty(user_pages[i]);
  476. mark_page_accessed(user_pages[i]);
  477. page_cache_release(user_pages[i]);
  478. }
  479. drm_free_large(user_pages);
  480. return ret;
  481. }
  482. /**
  483. * Reads data from the object referenced by handle.
  484. *
  485. * On error, the contents of *data are undefined.
  486. */
  487. int
  488. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  489. struct drm_file *file)
  490. {
  491. struct drm_i915_gem_pread *args = data;
  492. struct drm_i915_gem_object *obj;
  493. int ret = 0;
  494. if (args->size == 0)
  495. return 0;
  496. if (!access_ok(VERIFY_WRITE,
  497. (char __user *)(uintptr_t)args->data_ptr,
  498. args->size))
  499. return -EFAULT;
  500. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  501. args->size);
  502. if (ret)
  503. return -EFAULT;
  504. ret = i915_mutex_lock_interruptible(dev);
  505. if (ret)
  506. return ret;
  507. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  508. if (obj == NULL) {
  509. ret = -ENOENT;
  510. goto unlock;
  511. }
  512. /* Bounds check source. */
  513. if (args->offset > obj->base.size ||
  514. args->size > obj->base.size - args->offset) {
  515. ret = -EINVAL;
  516. goto out;
  517. }
  518. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  519. args->offset,
  520. args->size);
  521. if (ret)
  522. goto out;
  523. ret = -EFAULT;
  524. if (!i915_gem_object_needs_bit17_swizzle(obj))
  525. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  526. if (ret == -EFAULT)
  527. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  528. out:
  529. drm_gem_object_unreference(&obj->base);
  530. unlock:
  531. mutex_unlock(&dev->struct_mutex);
  532. return ret;
  533. }
  534. /* This is the fast write path which cannot handle
  535. * page faults in the source data
  536. */
  537. static inline int
  538. fast_user_write(struct io_mapping *mapping,
  539. loff_t page_base, int page_offset,
  540. char __user *user_data,
  541. int length)
  542. {
  543. char *vaddr_atomic;
  544. unsigned long unwritten;
  545. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  546. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  547. user_data, length);
  548. io_mapping_unmap_atomic(vaddr_atomic);
  549. return unwritten;
  550. }
  551. /* Here's the write path which can sleep for
  552. * page faults
  553. */
  554. static inline void
  555. slow_kernel_write(struct io_mapping *mapping,
  556. loff_t gtt_base, int gtt_offset,
  557. struct page *user_page, int user_offset,
  558. int length)
  559. {
  560. char __iomem *dst_vaddr;
  561. char *src_vaddr;
  562. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  563. src_vaddr = kmap(user_page);
  564. memcpy_toio(dst_vaddr + gtt_offset,
  565. src_vaddr + user_offset,
  566. length);
  567. kunmap(user_page);
  568. io_mapping_unmap(dst_vaddr);
  569. }
  570. /**
  571. * This is the fast pwrite path, where we copy the data directly from the
  572. * user into the GTT, uncached.
  573. */
  574. static int
  575. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  576. struct drm_i915_gem_object *obj,
  577. struct drm_i915_gem_pwrite *args,
  578. struct drm_file *file)
  579. {
  580. drm_i915_private_t *dev_priv = dev->dev_private;
  581. ssize_t remain;
  582. loff_t offset, page_base;
  583. char __user *user_data;
  584. int page_offset, page_length;
  585. user_data = (char __user *) (uintptr_t) args->data_ptr;
  586. remain = args->size;
  587. offset = obj->gtt_offset + args->offset;
  588. while (remain > 0) {
  589. /* Operation in this page
  590. *
  591. * page_base = page offset within aperture
  592. * page_offset = offset within page
  593. * page_length = bytes to copy for this page
  594. */
  595. page_base = (offset & ~(PAGE_SIZE-1));
  596. page_offset = offset & (PAGE_SIZE-1);
  597. page_length = remain;
  598. if ((page_offset + remain) > PAGE_SIZE)
  599. page_length = PAGE_SIZE - page_offset;
  600. /* If we get a fault while copying data, then (presumably) our
  601. * source page isn't available. Return the error and we'll
  602. * retry in the slow path.
  603. */
  604. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  605. page_offset, user_data, page_length))
  606. return -EFAULT;
  607. remain -= page_length;
  608. user_data += page_length;
  609. offset += page_length;
  610. }
  611. return 0;
  612. }
  613. /**
  614. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  615. * the memory and maps it using kmap_atomic for copying.
  616. *
  617. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  618. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  619. */
  620. static int
  621. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  622. struct drm_i915_gem_object *obj,
  623. struct drm_i915_gem_pwrite *args,
  624. struct drm_file *file)
  625. {
  626. drm_i915_private_t *dev_priv = dev->dev_private;
  627. ssize_t remain;
  628. loff_t gtt_page_base, offset;
  629. loff_t first_data_page, last_data_page, num_pages;
  630. loff_t pinned_pages, i;
  631. struct page **user_pages;
  632. struct mm_struct *mm = current->mm;
  633. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  634. int ret;
  635. uint64_t data_ptr = args->data_ptr;
  636. remain = args->size;
  637. /* Pin the user pages containing the data. We can't fault while
  638. * holding the struct mutex, and all of the pwrite implementations
  639. * want to hold it while dereferencing the user data.
  640. */
  641. first_data_page = data_ptr / PAGE_SIZE;
  642. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  643. num_pages = last_data_page - first_data_page + 1;
  644. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  645. if (user_pages == NULL)
  646. return -ENOMEM;
  647. mutex_unlock(&dev->struct_mutex);
  648. down_read(&mm->mmap_sem);
  649. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  650. num_pages, 0, 0, user_pages, NULL);
  651. up_read(&mm->mmap_sem);
  652. mutex_lock(&dev->struct_mutex);
  653. if (pinned_pages < num_pages) {
  654. ret = -EFAULT;
  655. goto out_unpin_pages;
  656. }
  657. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  658. if (ret)
  659. goto out_unpin_pages;
  660. offset = obj->gtt_offset + args->offset;
  661. while (remain > 0) {
  662. /* Operation in this page
  663. *
  664. * gtt_page_base = page offset within aperture
  665. * gtt_page_offset = offset within page in aperture
  666. * data_page_index = page number in get_user_pages return
  667. * data_page_offset = offset with data_page_index page.
  668. * page_length = bytes to copy for this page
  669. */
  670. gtt_page_base = offset & PAGE_MASK;
  671. gtt_page_offset = offset & ~PAGE_MASK;
  672. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  673. data_page_offset = data_ptr & ~PAGE_MASK;
  674. page_length = remain;
  675. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  676. page_length = PAGE_SIZE - gtt_page_offset;
  677. if ((data_page_offset + page_length) > PAGE_SIZE)
  678. page_length = PAGE_SIZE - data_page_offset;
  679. slow_kernel_write(dev_priv->mm.gtt_mapping,
  680. gtt_page_base, gtt_page_offset,
  681. user_pages[data_page_index],
  682. data_page_offset,
  683. page_length);
  684. remain -= page_length;
  685. offset += page_length;
  686. data_ptr += page_length;
  687. }
  688. out_unpin_pages:
  689. for (i = 0; i < pinned_pages; i++)
  690. page_cache_release(user_pages[i]);
  691. drm_free_large(user_pages);
  692. return ret;
  693. }
  694. /**
  695. * This is the fast shmem pwrite path, which attempts to directly
  696. * copy_from_user into the kmapped pages backing the object.
  697. */
  698. static int
  699. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  700. struct drm_i915_gem_object *obj,
  701. struct drm_i915_gem_pwrite *args,
  702. struct drm_file *file)
  703. {
  704. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  705. ssize_t remain;
  706. loff_t offset;
  707. char __user *user_data;
  708. int page_offset, page_length;
  709. user_data = (char __user *) (uintptr_t) args->data_ptr;
  710. remain = args->size;
  711. offset = args->offset;
  712. obj->dirty = 1;
  713. while (remain > 0) {
  714. struct page *page;
  715. char *vaddr;
  716. int ret;
  717. /* Operation in this page
  718. *
  719. * page_offset = offset within page
  720. * page_length = bytes to copy for this page
  721. */
  722. page_offset = offset & (PAGE_SIZE-1);
  723. page_length = remain;
  724. if ((page_offset + remain) > PAGE_SIZE)
  725. page_length = PAGE_SIZE - page_offset;
  726. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  727. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  728. if (IS_ERR(page))
  729. return PTR_ERR(page);
  730. vaddr = kmap_atomic(page, KM_USER0);
  731. ret = __copy_from_user_inatomic(vaddr + page_offset,
  732. user_data,
  733. page_length);
  734. kunmap_atomic(vaddr, KM_USER0);
  735. set_page_dirty(page);
  736. mark_page_accessed(page);
  737. page_cache_release(page);
  738. /* If we get a fault while copying data, then (presumably) our
  739. * source page isn't available. Return the error and we'll
  740. * retry in the slow path.
  741. */
  742. if (ret)
  743. return -EFAULT;
  744. remain -= page_length;
  745. user_data += page_length;
  746. offset += page_length;
  747. }
  748. return 0;
  749. }
  750. /**
  751. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  752. * the memory and maps it using kmap_atomic for copying.
  753. *
  754. * This avoids taking mmap_sem for faulting on the user's address while the
  755. * struct_mutex is held.
  756. */
  757. static int
  758. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  759. struct drm_i915_gem_object *obj,
  760. struct drm_i915_gem_pwrite *args,
  761. struct drm_file *file)
  762. {
  763. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  764. struct mm_struct *mm = current->mm;
  765. struct page **user_pages;
  766. ssize_t remain;
  767. loff_t offset, pinned_pages, i;
  768. loff_t first_data_page, last_data_page, num_pages;
  769. int shmem_page_offset;
  770. int data_page_index, data_page_offset;
  771. int page_length;
  772. int ret;
  773. uint64_t data_ptr = args->data_ptr;
  774. int do_bit17_swizzling;
  775. remain = args->size;
  776. /* Pin the user pages containing the data. We can't fault while
  777. * holding the struct mutex, and all of the pwrite implementations
  778. * want to hold it while dereferencing the user data.
  779. */
  780. first_data_page = data_ptr / PAGE_SIZE;
  781. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  782. num_pages = last_data_page - first_data_page + 1;
  783. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  784. if (user_pages == NULL)
  785. return -ENOMEM;
  786. mutex_unlock(&dev->struct_mutex);
  787. down_read(&mm->mmap_sem);
  788. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  789. num_pages, 0, 0, user_pages, NULL);
  790. up_read(&mm->mmap_sem);
  791. mutex_lock(&dev->struct_mutex);
  792. if (pinned_pages < num_pages) {
  793. ret = -EFAULT;
  794. goto out;
  795. }
  796. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  797. if (ret)
  798. goto out;
  799. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  800. offset = args->offset;
  801. obj->dirty = 1;
  802. while (remain > 0) {
  803. struct page *page;
  804. /* Operation in this page
  805. *
  806. * shmem_page_offset = offset within page in shmem file
  807. * data_page_index = page number in get_user_pages return
  808. * data_page_offset = offset with data_page_index page.
  809. * page_length = bytes to copy for this page
  810. */
  811. shmem_page_offset = offset & ~PAGE_MASK;
  812. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  813. data_page_offset = data_ptr & ~PAGE_MASK;
  814. page_length = remain;
  815. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  816. page_length = PAGE_SIZE - shmem_page_offset;
  817. if ((data_page_offset + page_length) > PAGE_SIZE)
  818. page_length = PAGE_SIZE - data_page_offset;
  819. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  820. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  821. if (IS_ERR(page)) {
  822. ret = PTR_ERR(page);
  823. goto out;
  824. }
  825. if (do_bit17_swizzling) {
  826. slow_shmem_bit17_copy(page,
  827. shmem_page_offset,
  828. user_pages[data_page_index],
  829. data_page_offset,
  830. page_length,
  831. 0);
  832. } else {
  833. slow_shmem_copy(page,
  834. shmem_page_offset,
  835. user_pages[data_page_index],
  836. data_page_offset,
  837. page_length);
  838. }
  839. set_page_dirty(page);
  840. mark_page_accessed(page);
  841. page_cache_release(page);
  842. remain -= page_length;
  843. data_ptr += page_length;
  844. offset += page_length;
  845. }
  846. out:
  847. for (i = 0; i < pinned_pages; i++)
  848. page_cache_release(user_pages[i]);
  849. drm_free_large(user_pages);
  850. return ret;
  851. }
  852. /**
  853. * Writes data to the object referenced by handle.
  854. *
  855. * On error, the contents of the buffer that were to be modified are undefined.
  856. */
  857. int
  858. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_pwrite *args = data;
  862. struct drm_i915_gem_object *obj;
  863. int ret;
  864. if (args->size == 0)
  865. return 0;
  866. if (!access_ok(VERIFY_READ,
  867. (char __user *)(uintptr_t)args->data_ptr,
  868. args->size))
  869. return -EFAULT;
  870. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  871. args->size);
  872. if (ret)
  873. return -EFAULT;
  874. ret = i915_mutex_lock_interruptible(dev);
  875. if (ret)
  876. return ret;
  877. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  878. if (obj == NULL) {
  879. ret = -ENOENT;
  880. goto unlock;
  881. }
  882. /* Bounds check destination. */
  883. if (args->offset > obj->base.size ||
  884. args->size > obj->base.size - args->offset) {
  885. ret = -EINVAL;
  886. goto out;
  887. }
  888. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  889. * it would end up going through the fenced access, and we'll get
  890. * different detiling behavior between reading and writing.
  891. * pread/pwrite currently are reading and writing from the CPU
  892. * perspective, requiring manual detiling by the client.
  893. */
  894. if (obj->phys_obj)
  895. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  896. else if (obj->tiling_mode == I915_TILING_NONE &&
  897. obj->gtt_space &&
  898. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  899. ret = i915_gem_object_pin(obj, 0, true);
  900. if (ret)
  901. goto out;
  902. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  903. if (ret)
  904. goto out_unpin;
  905. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  906. if (ret == -EFAULT)
  907. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  908. out_unpin:
  909. i915_gem_object_unpin(obj);
  910. } else {
  911. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  912. if (ret)
  913. goto out;
  914. ret = -EFAULT;
  915. if (!i915_gem_object_needs_bit17_swizzle(obj))
  916. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  917. if (ret == -EFAULT)
  918. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  919. }
  920. out:
  921. drm_gem_object_unreference(&obj->base);
  922. unlock:
  923. mutex_unlock(&dev->struct_mutex);
  924. return ret;
  925. }
  926. /**
  927. * Called when user space prepares to use an object with the CPU, either
  928. * through the mmap ioctl's mapping or a GTT mapping.
  929. */
  930. int
  931. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  932. struct drm_file *file)
  933. {
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. struct drm_i915_gem_set_domain *args = data;
  936. struct drm_i915_gem_object *obj;
  937. uint32_t read_domains = args->read_domains;
  938. uint32_t write_domain = args->write_domain;
  939. int ret;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. /* Only handle setting domains to types used by the CPU. */
  943. if (write_domain & I915_GEM_GPU_DOMAINS)
  944. return -EINVAL;
  945. if (read_domains & I915_GEM_GPU_DOMAINS)
  946. return -EINVAL;
  947. /* Having something in the write domain implies it's in the read
  948. * domain, and only that read domain. Enforce that in the request.
  949. */
  950. if (write_domain != 0 && read_domains != write_domain)
  951. return -EINVAL;
  952. ret = i915_mutex_lock_interruptible(dev);
  953. if (ret)
  954. return ret;
  955. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  956. if (obj == NULL) {
  957. ret = -ENOENT;
  958. goto unlock;
  959. }
  960. intel_mark_busy(dev, obj);
  961. if (read_domains & I915_GEM_DOMAIN_GTT) {
  962. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  963. /* Update the LRU on the fence for the CPU access that's
  964. * about to occur.
  965. */
  966. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  967. struct drm_i915_fence_reg *reg =
  968. &dev_priv->fence_regs[obj->fence_reg];
  969. list_move_tail(&reg->lru_list,
  970. &dev_priv->mm.fence_list);
  971. }
  972. /* Silently promote "you're not bound, there was nothing to do"
  973. * to success, since the client was just asking us to
  974. * make sure everything was done.
  975. */
  976. if (ret == -EINVAL)
  977. ret = 0;
  978. } else {
  979. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  980. }
  981. /* Maintain LRU order of "inactive" objects */
  982. if (ret == 0 && i915_gem_object_is_inactive(obj))
  983. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  984. drm_gem_object_unreference(&obj->base);
  985. unlock:
  986. mutex_unlock(&dev->struct_mutex);
  987. return ret;
  988. }
  989. /**
  990. * Called when user space has done writes to this buffer
  991. */
  992. int
  993. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  994. struct drm_file *file)
  995. {
  996. struct drm_i915_gem_sw_finish *args = data;
  997. struct drm_i915_gem_object *obj;
  998. int ret = 0;
  999. if (!(dev->driver->driver_features & DRIVER_GEM))
  1000. return -ENODEV;
  1001. ret = i915_mutex_lock_interruptible(dev);
  1002. if (ret)
  1003. return ret;
  1004. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1005. if (obj == NULL) {
  1006. ret = -ENOENT;
  1007. goto unlock;
  1008. }
  1009. /* Pinned buffers may be scanout, so flush the cache */
  1010. if (obj->pin_count)
  1011. i915_gem_object_flush_cpu_write_domain(obj);
  1012. drm_gem_object_unreference(&obj->base);
  1013. unlock:
  1014. mutex_unlock(&dev->struct_mutex);
  1015. return ret;
  1016. }
  1017. /**
  1018. * Maps the contents of an object, returning the address it is mapped
  1019. * into.
  1020. *
  1021. * While the mapping holds a reference on the contents of the object, it doesn't
  1022. * imply a ref on the object itself.
  1023. */
  1024. int
  1025. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1026. struct drm_file *file)
  1027. {
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. struct drm_i915_gem_mmap *args = data;
  1030. struct drm_gem_object *obj;
  1031. loff_t offset;
  1032. unsigned long addr;
  1033. if (!(dev->driver->driver_features & DRIVER_GEM))
  1034. return -ENODEV;
  1035. obj = drm_gem_object_lookup(dev, file, args->handle);
  1036. if (obj == NULL)
  1037. return -ENOENT;
  1038. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1039. drm_gem_object_unreference_unlocked(obj);
  1040. return -E2BIG;
  1041. }
  1042. offset = args->offset;
  1043. down_write(&current->mm->mmap_sem);
  1044. addr = do_mmap(obj->filp, 0, args->size,
  1045. PROT_READ | PROT_WRITE, MAP_SHARED,
  1046. args->offset);
  1047. up_write(&current->mm->mmap_sem);
  1048. drm_gem_object_unreference_unlocked(obj);
  1049. if (IS_ERR((void *)addr))
  1050. return addr;
  1051. args->addr_ptr = (uint64_t) addr;
  1052. return 0;
  1053. }
  1054. /**
  1055. * i915_gem_fault - fault a page into the GTT
  1056. * vma: VMA in question
  1057. * vmf: fault info
  1058. *
  1059. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1060. * from userspace. The fault handler takes care of binding the object to
  1061. * the GTT (if needed), allocating and programming a fence register (again,
  1062. * only if needed based on whether the old reg is still valid or the object
  1063. * is tiled) and inserting a new PTE into the faulting process.
  1064. *
  1065. * Note that the faulting process may involve evicting existing objects
  1066. * from the GTT and/or fence registers to make room. So performance may
  1067. * suffer if the GTT working set is large or there are few fence registers
  1068. * left.
  1069. */
  1070. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1071. {
  1072. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1073. struct drm_device *dev = obj->base.dev;
  1074. drm_i915_private_t *dev_priv = dev->dev_private;
  1075. pgoff_t page_offset;
  1076. unsigned long pfn;
  1077. int ret = 0;
  1078. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1079. /* We don't use vmf->pgoff since that has the fake offset */
  1080. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1081. PAGE_SHIFT;
  1082. /* Now bind it into the GTT if needed */
  1083. mutex_lock(&dev->struct_mutex);
  1084. BUG_ON(obj->pin_count && !obj->pin_mappable);
  1085. if (!obj->map_and_fenceable) {
  1086. ret = i915_gem_object_unbind(obj);
  1087. if (ret)
  1088. goto unlock;
  1089. }
  1090. if (!obj->gtt_space) {
  1091. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1092. if (ret)
  1093. goto unlock;
  1094. }
  1095. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1096. if (ret)
  1097. goto unlock;
  1098. if (!obj->fault_mappable) {
  1099. obj->fault_mappable = true;
  1100. i915_gem_info_update_mappable(dev_priv, obj, true);
  1101. }
  1102. /* Need a new fence register? */
  1103. if (obj->tiling_mode != I915_TILING_NONE) {
  1104. ret = i915_gem_object_get_fence_reg(obj, true);
  1105. if (ret)
  1106. goto unlock;
  1107. }
  1108. if (i915_gem_object_is_inactive(obj))
  1109. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1110. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1111. page_offset;
  1112. /* Finally, remap it using the new GTT offset */
  1113. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1114. unlock:
  1115. mutex_unlock(&dev->struct_mutex);
  1116. switch (ret) {
  1117. case -EAGAIN:
  1118. set_need_resched();
  1119. case 0:
  1120. case -ERESTARTSYS:
  1121. return VM_FAULT_NOPAGE;
  1122. case -ENOMEM:
  1123. return VM_FAULT_OOM;
  1124. default:
  1125. return VM_FAULT_SIGBUS;
  1126. }
  1127. }
  1128. /**
  1129. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1130. * @obj: obj in question
  1131. *
  1132. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1133. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1134. * up the object based on the offset and sets up the various memory mapping
  1135. * structures.
  1136. *
  1137. * This routine allocates and attaches a fake offset for @obj.
  1138. */
  1139. static int
  1140. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1141. {
  1142. struct drm_device *dev = obj->base.dev;
  1143. struct drm_gem_mm *mm = dev->mm_private;
  1144. struct drm_map_list *list;
  1145. struct drm_local_map *map;
  1146. int ret = 0;
  1147. /* Set the object up for mmap'ing */
  1148. list = &obj->base.map_list;
  1149. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1150. if (!list->map)
  1151. return -ENOMEM;
  1152. map = list->map;
  1153. map->type = _DRM_GEM;
  1154. map->size = obj->base.size;
  1155. map->handle = obj;
  1156. /* Get a DRM GEM mmap offset allocated... */
  1157. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1158. obj->base.size / PAGE_SIZE,
  1159. 0, 0);
  1160. if (!list->file_offset_node) {
  1161. DRM_ERROR("failed to allocate offset for bo %d\n",
  1162. obj->base.name);
  1163. ret = -ENOSPC;
  1164. goto out_free_list;
  1165. }
  1166. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1167. obj->base.size / PAGE_SIZE,
  1168. 0);
  1169. if (!list->file_offset_node) {
  1170. ret = -ENOMEM;
  1171. goto out_free_list;
  1172. }
  1173. list->hash.key = list->file_offset_node->start;
  1174. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1175. if (ret) {
  1176. DRM_ERROR("failed to add to map hash\n");
  1177. goto out_free_mm;
  1178. }
  1179. return 0;
  1180. out_free_mm:
  1181. drm_mm_put_block(list->file_offset_node);
  1182. out_free_list:
  1183. kfree(list->map);
  1184. list->map = NULL;
  1185. return ret;
  1186. }
  1187. /**
  1188. * i915_gem_release_mmap - remove physical page mappings
  1189. * @obj: obj in question
  1190. *
  1191. * Preserve the reservation of the mmapping with the DRM core code, but
  1192. * relinquish ownership of the pages back to the system.
  1193. *
  1194. * It is vital that we remove the page mapping if we have mapped a tiled
  1195. * object through the GTT and then lose the fence register due to
  1196. * resource pressure. Similarly if the object has been moved out of the
  1197. * aperture, than pages mapped into userspace must be revoked. Removing the
  1198. * mapping will then trigger a page fault on the next user access, allowing
  1199. * fixup by i915_gem_fault().
  1200. */
  1201. void
  1202. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1203. {
  1204. struct drm_device *dev = obj->base.dev;
  1205. struct drm_i915_private *dev_priv = dev->dev_private;
  1206. if (unlikely(obj->base.map_list.map && dev->dev_mapping))
  1207. unmap_mapping_range(dev->dev_mapping,
  1208. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1209. obj->base.size, 1);
  1210. if (obj->fault_mappable) {
  1211. obj->fault_mappable = false;
  1212. i915_gem_info_update_mappable(dev_priv, obj, false);
  1213. }
  1214. }
  1215. static void
  1216. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1217. {
  1218. struct drm_device *dev = obj->base.dev;
  1219. struct drm_gem_mm *mm = dev->mm_private;
  1220. struct drm_map_list *list = &obj->base.map_list;
  1221. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1222. drm_mm_put_block(list->file_offset_node);
  1223. kfree(list->map);
  1224. list->map = NULL;
  1225. }
  1226. static uint32_t
  1227. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1228. {
  1229. struct drm_device *dev = obj->base.dev;
  1230. uint32_t size;
  1231. if (INTEL_INFO(dev)->gen >= 4 ||
  1232. obj->tiling_mode == I915_TILING_NONE)
  1233. return obj->base.size;
  1234. /* Previous chips need a power-of-two fence region when tiling */
  1235. if (INTEL_INFO(dev)->gen == 3)
  1236. size = 1024*1024;
  1237. else
  1238. size = 512*1024;
  1239. while (size < obj->base.size)
  1240. size <<= 1;
  1241. return size;
  1242. }
  1243. /**
  1244. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1245. * @obj: object to check
  1246. *
  1247. * Return the required GTT alignment for an object, taking into account
  1248. * potential fence register mapping.
  1249. */
  1250. static uint32_t
  1251. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1252. {
  1253. struct drm_device *dev = obj->base.dev;
  1254. /*
  1255. * Minimum alignment is 4k (GTT page size), but might be greater
  1256. * if a fence register is needed for the object.
  1257. */
  1258. if (INTEL_INFO(dev)->gen >= 4 ||
  1259. obj->tiling_mode == I915_TILING_NONE)
  1260. return 4096;
  1261. /*
  1262. * Previous chips need to be aligned to the size of the smallest
  1263. * fence register that can contain the object.
  1264. */
  1265. return i915_gem_get_gtt_size(obj);
  1266. }
  1267. /**
  1268. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1269. * unfenced object
  1270. * @obj: object to check
  1271. *
  1272. * Return the required GTT alignment for an object, only taking into account
  1273. * unfenced tiled surface requirements.
  1274. */
  1275. static uint32_t
  1276. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1277. {
  1278. struct drm_device *dev = obj->base.dev;
  1279. int tile_height;
  1280. /*
  1281. * Minimum alignment is 4k (GTT page size) for sane hw.
  1282. */
  1283. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1284. obj->tiling_mode == I915_TILING_NONE)
  1285. return 4096;
  1286. /*
  1287. * Older chips need unfenced tiled buffers to be aligned to the left
  1288. * edge of an even tile row (where tile rows are counted as if the bo is
  1289. * placed in a fenced gtt region).
  1290. */
  1291. if (IS_GEN2(dev) ||
  1292. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1293. tile_height = 32;
  1294. else
  1295. tile_height = 8;
  1296. return tile_height * obj->stride * 2;
  1297. }
  1298. /**
  1299. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1300. * @dev: DRM device
  1301. * @data: GTT mapping ioctl data
  1302. * @file: GEM object info
  1303. *
  1304. * Simply returns the fake offset to userspace so it can mmap it.
  1305. * The mmap call will end up in drm_gem_mmap(), which will set things
  1306. * up so we can get faults in the handler above.
  1307. *
  1308. * The fault handler will take care of binding the object into the GTT
  1309. * (since it may have been evicted to make room for something), allocating
  1310. * a fence register, and mapping the appropriate aperture address into
  1311. * userspace.
  1312. */
  1313. int
  1314. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1315. struct drm_file *file)
  1316. {
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. struct drm_i915_gem_mmap_gtt *args = data;
  1319. struct drm_i915_gem_object *obj;
  1320. int ret;
  1321. if (!(dev->driver->driver_features & DRIVER_GEM))
  1322. return -ENODEV;
  1323. ret = i915_mutex_lock_interruptible(dev);
  1324. if (ret)
  1325. return ret;
  1326. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1327. if (obj == NULL) {
  1328. ret = -ENOENT;
  1329. goto unlock;
  1330. }
  1331. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1332. ret = -E2BIG;
  1333. goto unlock;
  1334. }
  1335. if (obj->madv != I915_MADV_WILLNEED) {
  1336. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1337. ret = -EINVAL;
  1338. goto out;
  1339. }
  1340. if (!obj->base.map_list.map) {
  1341. ret = i915_gem_create_mmap_offset(obj);
  1342. if (ret)
  1343. goto out;
  1344. }
  1345. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1346. out:
  1347. drm_gem_object_unreference(&obj->base);
  1348. unlock:
  1349. mutex_unlock(&dev->struct_mutex);
  1350. return ret;
  1351. }
  1352. static int
  1353. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1354. gfp_t gfpmask)
  1355. {
  1356. int page_count, i;
  1357. struct address_space *mapping;
  1358. struct inode *inode;
  1359. struct page *page;
  1360. /* Get the list of pages out of our struct file. They'll be pinned
  1361. * at this point until we release them.
  1362. */
  1363. page_count = obj->base.size / PAGE_SIZE;
  1364. BUG_ON(obj->pages != NULL);
  1365. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1366. if (obj->pages == NULL)
  1367. return -ENOMEM;
  1368. inode = obj->base.filp->f_path.dentry->d_inode;
  1369. mapping = inode->i_mapping;
  1370. for (i = 0; i < page_count; i++) {
  1371. page = read_cache_page_gfp(mapping, i,
  1372. GFP_HIGHUSER |
  1373. __GFP_COLD |
  1374. __GFP_RECLAIMABLE |
  1375. gfpmask);
  1376. if (IS_ERR(page))
  1377. goto err_pages;
  1378. obj->pages[i] = page;
  1379. }
  1380. if (obj->tiling_mode != I915_TILING_NONE)
  1381. i915_gem_object_do_bit_17_swizzle(obj);
  1382. return 0;
  1383. err_pages:
  1384. while (i--)
  1385. page_cache_release(obj->pages[i]);
  1386. drm_free_large(obj->pages);
  1387. obj->pages = NULL;
  1388. return PTR_ERR(page);
  1389. }
  1390. static void
  1391. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1392. {
  1393. int page_count = obj->base.size / PAGE_SIZE;
  1394. int i;
  1395. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1396. if (obj->tiling_mode != I915_TILING_NONE)
  1397. i915_gem_object_save_bit_17_swizzle(obj);
  1398. if (obj->madv == I915_MADV_DONTNEED)
  1399. obj->dirty = 0;
  1400. for (i = 0; i < page_count; i++) {
  1401. if (obj->dirty)
  1402. set_page_dirty(obj->pages[i]);
  1403. if (obj->madv == I915_MADV_WILLNEED)
  1404. mark_page_accessed(obj->pages[i]);
  1405. page_cache_release(obj->pages[i]);
  1406. }
  1407. obj->dirty = 0;
  1408. drm_free_large(obj->pages);
  1409. obj->pages = NULL;
  1410. }
  1411. static uint32_t
  1412. i915_gem_next_request_seqno(struct drm_device *dev,
  1413. struct intel_ring_buffer *ring)
  1414. {
  1415. drm_i915_private_t *dev_priv = dev->dev_private;
  1416. return ring->outstanding_lazy_request = dev_priv->next_seqno;
  1417. }
  1418. static void
  1419. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1420. struct intel_ring_buffer *ring)
  1421. {
  1422. struct drm_device *dev = obj->base.dev;
  1423. struct drm_i915_private *dev_priv = dev->dev_private;
  1424. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1425. BUG_ON(ring == NULL);
  1426. obj->ring = ring;
  1427. /* Add a reference if we're newly entering the active list. */
  1428. if (!obj->active) {
  1429. drm_gem_object_reference(&obj->base);
  1430. obj->active = 1;
  1431. }
  1432. /* Move from whatever list we were on to the tail of execution. */
  1433. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1434. list_move_tail(&obj->ring_list, &ring->active_list);
  1435. obj->last_rendering_seqno = seqno;
  1436. if (obj->fenced_gpu_access) {
  1437. struct drm_i915_fence_reg *reg;
  1438. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1439. obj->last_fenced_seqno = seqno;
  1440. obj->last_fenced_ring = ring;
  1441. reg = &dev_priv->fence_regs[obj->fence_reg];
  1442. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1443. }
  1444. }
  1445. static void
  1446. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1447. {
  1448. list_del_init(&obj->ring_list);
  1449. obj->last_rendering_seqno = 0;
  1450. obj->last_fenced_seqno = 0;
  1451. }
  1452. static void
  1453. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1454. {
  1455. struct drm_device *dev = obj->base.dev;
  1456. drm_i915_private_t *dev_priv = dev->dev_private;
  1457. BUG_ON(!obj->active);
  1458. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1459. i915_gem_object_move_off_active(obj);
  1460. }
  1461. static void
  1462. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1463. {
  1464. struct drm_device *dev = obj->base.dev;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. if (obj->pin_count != 0)
  1467. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1468. else
  1469. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1470. BUG_ON(!list_empty(&obj->gpu_write_list));
  1471. BUG_ON(!obj->active);
  1472. obj->ring = NULL;
  1473. i915_gem_object_move_off_active(obj);
  1474. obj->fenced_gpu_access = false;
  1475. obj->last_fenced_ring = NULL;
  1476. obj->active = 0;
  1477. drm_gem_object_unreference(&obj->base);
  1478. WARN_ON(i915_verify_lists(dev));
  1479. }
  1480. /* Immediately discard the backing storage */
  1481. static void
  1482. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1483. {
  1484. struct inode *inode;
  1485. /* Our goal here is to return as much of the memory as
  1486. * is possible back to the system as we are called from OOM.
  1487. * To do this we must instruct the shmfs to drop all of its
  1488. * backing pages, *now*. Here we mirror the actions taken
  1489. * when by shmem_delete_inode() to release the backing store.
  1490. */
  1491. inode = obj->base.filp->f_path.dentry->d_inode;
  1492. truncate_inode_pages(inode->i_mapping, 0);
  1493. if (inode->i_op->truncate_range)
  1494. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1495. obj->madv = __I915_MADV_PURGED;
  1496. }
  1497. static inline int
  1498. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1499. {
  1500. return obj->madv == I915_MADV_DONTNEED;
  1501. }
  1502. static void
  1503. i915_gem_process_flushing_list(struct drm_device *dev,
  1504. uint32_t flush_domains,
  1505. struct intel_ring_buffer *ring)
  1506. {
  1507. struct drm_i915_gem_object *obj, *next;
  1508. list_for_each_entry_safe(obj, next,
  1509. &ring->gpu_write_list,
  1510. gpu_write_list) {
  1511. if (obj->base.write_domain & flush_domains) {
  1512. uint32_t old_write_domain = obj->base.write_domain;
  1513. obj->base.write_domain = 0;
  1514. list_del_init(&obj->gpu_write_list);
  1515. i915_gem_object_move_to_active(obj, ring);
  1516. trace_i915_gem_object_change_domain(obj,
  1517. obj->base.read_domains,
  1518. old_write_domain);
  1519. }
  1520. }
  1521. }
  1522. int
  1523. i915_add_request(struct drm_device *dev,
  1524. struct drm_file *file,
  1525. struct drm_i915_gem_request *request,
  1526. struct intel_ring_buffer *ring)
  1527. {
  1528. drm_i915_private_t *dev_priv = dev->dev_private;
  1529. struct drm_i915_file_private *file_priv = NULL;
  1530. uint32_t seqno;
  1531. int was_empty;
  1532. int ret;
  1533. BUG_ON(request == NULL);
  1534. if (file != NULL)
  1535. file_priv = file->driver_priv;
  1536. ret = ring->add_request(ring, &seqno);
  1537. if (ret)
  1538. return ret;
  1539. ring->outstanding_lazy_request = false;
  1540. request->seqno = seqno;
  1541. request->ring = ring;
  1542. request->emitted_jiffies = jiffies;
  1543. was_empty = list_empty(&ring->request_list);
  1544. list_add_tail(&request->list, &ring->request_list);
  1545. if (file_priv) {
  1546. spin_lock(&file_priv->mm.lock);
  1547. request->file_priv = file_priv;
  1548. list_add_tail(&request->client_list,
  1549. &file_priv->mm.request_list);
  1550. spin_unlock(&file_priv->mm.lock);
  1551. }
  1552. if (!dev_priv->mm.suspended) {
  1553. mod_timer(&dev_priv->hangcheck_timer,
  1554. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1555. if (was_empty)
  1556. queue_delayed_work(dev_priv->wq,
  1557. &dev_priv->mm.retire_work, HZ);
  1558. }
  1559. return 0;
  1560. }
  1561. /**
  1562. * Command execution barrier
  1563. *
  1564. * Ensures that all commands in the ring are finished
  1565. * before signalling the CPU
  1566. */
  1567. static void
  1568. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1569. {
  1570. uint32_t flush_domains = 0;
  1571. /* The sampler always gets flushed on i965 (sigh) */
  1572. if (INTEL_INFO(dev)->gen >= 4)
  1573. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1574. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1575. }
  1576. static inline void
  1577. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1578. {
  1579. struct drm_i915_file_private *file_priv = request->file_priv;
  1580. if (!file_priv)
  1581. return;
  1582. spin_lock(&file_priv->mm.lock);
  1583. list_del(&request->client_list);
  1584. request->file_priv = NULL;
  1585. spin_unlock(&file_priv->mm.lock);
  1586. }
  1587. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1588. struct intel_ring_buffer *ring)
  1589. {
  1590. while (!list_empty(&ring->request_list)) {
  1591. struct drm_i915_gem_request *request;
  1592. request = list_first_entry(&ring->request_list,
  1593. struct drm_i915_gem_request,
  1594. list);
  1595. list_del(&request->list);
  1596. i915_gem_request_remove_from_client(request);
  1597. kfree(request);
  1598. }
  1599. while (!list_empty(&ring->active_list)) {
  1600. struct drm_i915_gem_object *obj;
  1601. obj = list_first_entry(&ring->active_list,
  1602. struct drm_i915_gem_object,
  1603. ring_list);
  1604. obj->base.write_domain = 0;
  1605. list_del_init(&obj->gpu_write_list);
  1606. i915_gem_object_move_to_inactive(obj);
  1607. }
  1608. }
  1609. static void i915_gem_reset_fences(struct drm_device *dev)
  1610. {
  1611. struct drm_i915_private *dev_priv = dev->dev_private;
  1612. int i;
  1613. for (i = 0; i < 16; i++) {
  1614. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1615. if (reg->obj)
  1616. i915_gem_clear_fence_reg(reg->obj);
  1617. }
  1618. }
  1619. void i915_gem_reset(struct drm_device *dev)
  1620. {
  1621. struct drm_i915_private *dev_priv = dev->dev_private;
  1622. struct drm_i915_gem_object *obj;
  1623. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1624. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1625. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1626. /* Remove anything from the flushing lists. The GPU cache is likely
  1627. * to be lost on reset along with the data, so simply move the
  1628. * lost bo to the inactive list.
  1629. */
  1630. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1631. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1632. struct drm_i915_gem_object,
  1633. mm_list);
  1634. obj->base.write_domain = 0;
  1635. list_del_init(&obj->gpu_write_list);
  1636. i915_gem_object_move_to_inactive(obj);
  1637. }
  1638. /* Move everything out of the GPU domains to ensure we do any
  1639. * necessary invalidation upon reuse.
  1640. */
  1641. list_for_each_entry(obj,
  1642. &dev_priv->mm.inactive_list,
  1643. mm_list)
  1644. {
  1645. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1646. }
  1647. /* The fence registers are invalidated so clear them out */
  1648. i915_gem_reset_fences(dev);
  1649. }
  1650. /**
  1651. * This function clears the request list as sequence numbers are passed.
  1652. */
  1653. static void
  1654. i915_gem_retire_requests_ring(struct drm_device *dev,
  1655. struct intel_ring_buffer *ring)
  1656. {
  1657. drm_i915_private_t *dev_priv = dev->dev_private;
  1658. uint32_t seqno;
  1659. if (!ring->status_page.page_addr ||
  1660. list_empty(&ring->request_list))
  1661. return;
  1662. WARN_ON(i915_verify_lists(dev));
  1663. seqno = ring->get_seqno(ring);
  1664. while (!list_empty(&ring->request_list)) {
  1665. struct drm_i915_gem_request *request;
  1666. request = list_first_entry(&ring->request_list,
  1667. struct drm_i915_gem_request,
  1668. list);
  1669. if (!i915_seqno_passed(seqno, request->seqno))
  1670. break;
  1671. trace_i915_gem_request_retire(dev, request->seqno);
  1672. list_del(&request->list);
  1673. i915_gem_request_remove_from_client(request);
  1674. kfree(request);
  1675. }
  1676. /* Move any buffers on the active list that are no longer referenced
  1677. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1678. */
  1679. while (!list_empty(&ring->active_list)) {
  1680. struct drm_i915_gem_object *obj;
  1681. obj= list_first_entry(&ring->active_list,
  1682. struct drm_i915_gem_object,
  1683. ring_list);
  1684. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1685. break;
  1686. if (obj->base.write_domain != 0)
  1687. i915_gem_object_move_to_flushing(obj);
  1688. else
  1689. i915_gem_object_move_to_inactive(obj);
  1690. }
  1691. if (unlikely (dev_priv->trace_irq_seqno &&
  1692. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1693. ring->user_irq_put(ring);
  1694. dev_priv->trace_irq_seqno = 0;
  1695. }
  1696. WARN_ON(i915_verify_lists(dev));
  1697. }
  1698. void
  1699. i915_gem_retire_requests(struct drm_device *dev)
  1700. {
  1701. drm_i915_private_t *dev_priv = dev->dev_private;
  1702. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1703. struct drm_i915_gem_object *obj, *next;
  1704. /* We must be careful that during unbind() we do not
  1705. * accidentally infinitely recurse into retire requests.
  1706. * Currently:
  1707. * retire -> free -> unbind -> wait -> retire_ring
  1708. */
  1709. list_for_each_entry_safe(obj, next,
  1710. &dev_priv->mm.deferred_free_list,
  1711. mm_list)
  1712. i915_gem_free_object_tail(obj);
  1713. }
  1714. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1715. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1716. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1717. }
  1718. static void
  1719. i915_gem_retire_work_handler(struct work_struct *work)
  1720. {
  1721. drm_i915_private_t *dev_priv;
  1722. struct drm_device *dev;
  1723. dev_priv = container_of(work, drm_i915_private_t,
  1724. mm.retire_work.work);
  1725. dev = dev_priv->dev;
  1726. /* Come back later if the device is busy... */
  1727. if (!mutex_trylock(&dev->struct_mutex)) {
  1728. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1729. return;
  1730. }
  1731. i915_gem_retire_requests(dev);
  1732. if (!dev_priv->mm.suspended &&
  1733. (!list_empty(&dev_priv->render_ring.request_list) ||
  1734. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1735. !list_empty(&dev_priv->blt_ring.request_list)))
  1736. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1737. mutex_unlock(&dev->struct_mutex);
  1738. }
  1739. int
  1740. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1741. bool interruptible, struct intel_ring_buffer *ring)
  1742. {
  1743. drm_i915_private_t *dev_priv = dev->dev_private;
  1744. u32 ier;
  1745. int ret = 0;
  1746. BUG_ON(seqno == 0);
  1747. if (atomic_read(&dev_priv->mm.wedged))
  1748. return -EAGAIN;
  1749. if (seqno == ring->outstanding_lazy_request) {
  1750. struct drm_i915_gem_request *request;
  1751. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1752. if (request == NULL)
  1753. return -ENOMEM;
  1754. ret = i915_add_request(dev, NULL, request, ring);
  1755. if (ret) {
  1756. kfree(request);
  1757. return ret;
  1758. }
  1759. seqno = request->seqno;
  1760. }
  1761. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1762. if (HAS_PCH_SPLIT(dev))
  1763. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1764. else
  1765. ier = I915_READ(IER);
  1766. if (!ier) {
  1767. DRM_ERROR("something (likely vbetool) disabled "
  1768. "interrupts, re-enabling\n");
  1769. i915_driver_irq_preinstall(dev);
  1770. i915_driver_irq_postinstall(dev);
  1771. }
  1772. trace_i915_gem_request_wait_begin(dev, seqno);
  1773. ring->waiting_seqno = seqno;
  1774. ring->user_irq_get(ring);
  1775. if (interruptible)
  1776. ret = wait_event_interruptible(ring->irq_queue,
  1777. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1778. || atomic_read(&dev_priv->mm.wedged));
  1779. else
  1780. wait_event(ring->irq_queue,
  1781. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1782. || atomic_read(&dev_priv->mm.wedged));
  1783. ring->user_irq_put(ring);
  1784. ring->waiting_seqno = 0;
  1785. trace_i915_gem_request_wait_end(dev, seqno);
  1786. }
  1787. if (atomic_read(&dev_priv->mm.wedged))
  1788. ret = -EAGAIN;
  1789. if (ret && ret != -ERESTARTSYS)
  1790. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1791. __func__, ret, seqno, ring->get_seqno(ring),
  1792. dev_priv->next_seqno);
  1793. /* Directly dispatch request retiring. While we have the work queue
  1794. * to handle this, the waiter on a request often wants an associated
  1795. * buffer to have made it to the inactive list, and we would need
  1796. * a separate wait queue to handle that.
  1797. */
  1798. if (ret == 0)
  1799. i915_gem_retire_requests_ring(dev, ring);
  1800. return ret;
  1801. }
  1802. /**
  1803. * Waits for a sequence number to be signaled, and cleans up the
  1804. * request and object lists appropriately for that event.
  1805. */
  1806. static int
  1807. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1808. struct intel_ring_buffer *ring)
  1809. {
  1810. return i915_do_wait_request(dev, seqno, 1, ring);
  1811. }
  1812. static void
  1813. i915_gem_flush_ring(struct drm_device *dev,
  1814. struct intel_ring_buffer *ring,
  1815. uint32_t invalidate_domains,
  1816. uint32_t flush_domains)
  1817. {
  1818. ring->flush(ring, invalidate_domains, flush_domains);
  1819. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1820. }
  1821. static void
  1822. i915_gem_flush(struct drm_device *dev,
  1823. uint32_t invalidate_domains,
  1824. uint32_t flush_domains,
  1825. uint32_t flush_rings)
  1826. {
  1827. drm_i915_private_t *dev_priv = dev->dev_private;
  1828. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1829. intel_gtt_chipset_flush();
  1830. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1831. if (flush_rings & RING_RENDER)
  1832. i915_gem_flush_ring(dev, &dev_priv->render_ring,
  1833. invalidate_domains, flush_domains);
  1834. if (flush_rings & RING_BSD)
  1835. i915_gem_flush_ring(dev, &dev_priv->bsd_ring,
  1836. invalidate_domains, flush_domains);
  1837. if (flush_rings & RING_BLT)
  1838. i915_gem_flush_ring(dev, &dev_priv->blt_ring,
  1839. invalidate_domains, flush_domains);
  1840. }
  1841. }
  1842. /**
  1843. * Ensures that all rendering to the object has completed and the object is
  1844. * safe to unbind from the GTT or access from the CPU.
  1845. */
  1846. static int
  1847. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1848. bool interruptible)
  1849. {
  1850. struct drm_device *dev = obj->base.dev;
  1851. int ret;
  1852. /* This function only exists to support waiting for existing rendering,
  1853. * not for emitting required flushes.
  1854. */
  1855. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1856. /* If there is rendering queued on the buffer being evicted, wait for
  1857. * it.
  1858. */
  1859. if (obj->active) {
  1860. ret = i915_do_wait_request(dev,
  1861. obj->last_rendering_seqno,
  1862. interruptible,
  1863. obj->ring);
  1864. if (ret)
  1865. return ret;
  1866. }
  1867. return 0;
  1868. }
  1869. /**
  1870. * Unbinds an object from the GTT aperture.
  1871. */
  1872. int
  1873. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1874. {
  1875. struct drm_device *dev = obj->base.dev;
  1876. struct drm_i915_private *dev_priv = dev->dev_private;
  1877. int ret = 0;
  1878. if (obj->gtt_space == NULL)
  1879. return 0;
  1880. if (obj->pin_count != 0) {
  1881. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1882. return -EINVAL;
  1883. }
  1884. /* blow away mappings if mapped through GTT */
  1885. i915_gem_release_mmap(obj);
  1886. /* Move the object to the CPU domain to ensure that
  1887. * any possible CPU writes while it's not in the GTT
  1888. * are flushed when we go to remap it. This will
  1889. * also ensure that all pending GPU writes are finished
  1890. * before we unbind.
  1891. */
  1892. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1893. if (ret == -ERESTARTSYS)
  1894. return ret;
  1895. /* Continue on if we fail due to EIO, the GPU is hung so we
  1896. * should be safe and we need to cleanup or else we might
  1897. * cause memory corruption through use-after-free.
  1898. */
  1899. if (ret) {
  1900. i915_gem_clflush_object(obj);
  1901. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1902. }
  1903. /* release the fence reg _after_ flushing */
  1904. if (obj->fence_reg != I915_FENCE_REG_NONE)
  1905. i915_gem_clear_fence_reg(obj);
  1906. i915_gem_gtt_unbind_object(obj);
  1907. i915_gem_object_put_pages_gtt(obj);
  1908. i915_gem_info_remove_gtt(dev_priv, obj);
  1909. list_del_init(&obj->mm_list);
  1910. /* Avoid an unnecessary call to unbind on rebind. */
  1911. obj->map_and_fenceable = true;
  1912. drm_mm_put_block(obj->gtt_space);
  1913. obj->gtt_space = NULL;
  1914. obj->gtt_offset = 0;
  1915. if (i915_gem_object_is_purgeable(obj))
  1916. i915_gem_object_truncate(obj);
  1917. trace_i915_gem_object_unbind(obj);
  1918. return ret;
  1919. }
  1920. static int i915_ring_idle(struct drm_device *dev,
  1921. struct intel_ring_buffer *ring)
  1922. {
  1923. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1924. return 0;
  1925. i915_gem_flush_ring(dev, ring,
  1926. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1927. return i915_wait_request(dev,
  1928. i915_gem_next_request_seqno(dev, ring),
  1929. ring);
  1930. }
  1931. int
  1932. i915_gpu_idle(struct drm_device *dev)
  1933. {
  1934. drm_i915_private_t *dev_priv = dev->dev_private;
  1935. bool lists_empty;
  1936. int ret;
  1937. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1938. list_empty(&dev_priv->mm.active_list));
  1939. if (lists_empty)
  1940. return 0;
  1941. /* Flush everything onto the inactive list. */
  1942. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1943. if (ret)
  1944. return ret;
  1945. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1946. if (ret)
  1947. return ret;
  1948. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1949. if (ret)
  1950. return ret;
  1951. return 0;
  1952. }
  1953. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1954. struct intel_ring_buffer *pipelined)
  1955. {
  1956. struct drm_device *dev = obj->base.dev;
  1957. drm_i915_private_t *dev_priv = dev->dev_private;
  1958. u32 size = obj->gtt_space->size;
  1959. int regnum = obj->fence_reg;
  1960. uint64_t val;
  1961. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1962. 0xfffff000) << 32;
  1963. val |= obj->gtt_offset & 0xfffff000;
  1964. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1965. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1966. if (obj->tiling_mode == I915_TILING_Y)
  1967. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1968. val |= I965_FENCE_REG_VALID;
  1969. if (pipelined) {
  1970. int ret = intel_ring_begin(pipelined, 6);
  1971. if (ret)
  1972. return ret;
  1973. intel_ring_emit(pipelined, MI_NOOP);
  1974. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1975. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1976. intel_ring_emit(pipelined, (u32)val);
  1977. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1978. intel_ring_emit(pipelined, (u32)(val >> 32));
  1979. intel_ring_advance(pipelined);
  1980. } else
  1981. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1982. return 0;
  1983. }
  1984. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1985. struct intel_ring_buffer *pipelined)
  1986. {
  1987. struct drm_device *dev = obj->base.dev;
  1988. drm_i915_private_t *dev_priv = dev->dev_private;
  1989. u32 size = obj->gtt_space->size;
  1990. int regnum = obj->fence_reg;
  1991. uint64_t val;
  1992. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1993. 0xfffff000) << 32;
  1994. val |= obj->gtt_offset & 0xfffff000;
  1995. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1996. if (obj->tiling_mode == I915_TILING_Y)
  1997. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1998. val |= I965_FENCE_REG_VALID;
  1999. if (pipelined) {
  2000. int ret = intel_ring_begin(pipelined, 6);
  2001. if (ret)
  2002. return ret;
  2003. intel_ring_emit(pipelined, MI_NOOP);
  2004. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  2005. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  2006. intel_ring_emit(pipelined, (u32)val);
  2007. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  2008. intel_ring_emit(pipelined, (u32)(val >> 32));
  2009. intel_ring_advance(pipelined);
  2010. } else
  2011. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  2012. return 0;
  2013. }
  2014. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  2015. struct intel_ring_buffer *pipelined)
  2016. {
  2017. struct drm_device *dev = obj->base.dev;
  2018. drm_i915_private_t *dev_priv = dev->dev_private;
  2019. u32 size = obj->gtt_space->size;
  2020. u32 fence_reg, val, pitch_val;
  2021. int tile_width;
  2022. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2023. (size & -size) != size ||
  2024. (obj->gtt_offset & (size - 1)),
  2025. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2026. obj->gtt_offset, obj->map_and_fenceable, size))
  2027. return -EINVAL;
  2028. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2029. tile_width = 128;
  2030. else
  2031. tile_width = 512;
  2032. /* Note: pitch better be a power of two tile widths */
  2033. pitch_val = obj->stride / tile_width;
  2034. pitch_val = ffs(pitch_val) - 1;
  2035. val = obj->gtt_offset;
  2036. if (obj->tiling_mode == I915_TILING_Y)
  2037. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2038. val |= I915_FENCE_SIZE_BITS(size);
  2039. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2040. val |= I830_FENCE_REG_VALID;
  2041. fence_reg = obj->fence_reg;
  2042. if (fence_reg < 8)
  2043. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2044. else
  2045. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2046. if (pipelined) {
  2047. int ret = intel_ring_begin(pipelined, 4);
  2048. if (ret)
  2049. return ret;
  2050. intel_ring_emit(pipelined, MI_NOOP);
  2051. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2052. intel_ring_emit(pipelined, fence_reg);
  2053. intel_ring_emit(pipelined, val);
  2054. intel_ring_advance(pipelined);
  2055. } else
  2056. I915_WRITE(fence_reg, val);
  2057. return 0;
  2058. }
  2059. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2060. struct intel_ring_buffer *pipelined)
  2061. {
  2062. struct drm_device *dev = obj->base.dev;
  2063. drm_i915_private_t *dev_priv = dev->dev_private;
  2064. u32 size = obj->gtt_space->size;
  2065. int regnum = obj->fence_reg;
  2066. uint32_t val;
  2067. uint32_t pitch_val;
  2068. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2069. (size & -size) != size ||
  2070. (obj->gtt_offset & (size - 1)),
  2071. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2072. obj->gtt_offset, size))
  2073. return -EINVAL;
  2074. pitch_val = obj->stride / 128;
  2075. pitch_val = ffs(pitch_val) - 1;
  2076. val = obj->gtt_offset;
  2077. if (obj->tiling_mode == I915_TILING_Y)
  2078. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2079. val |= I830_FENCE_SIZE_BITS(size);
  2080. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2081. val |= I830_FENCE_REG_VALID;
  2082. if (pipelined) {
  2083. int ret = intel_ring_begin(pipelined, 4);
  2084. if (ret)
  2085. return ret;
  2086. intel_ring_emit(pipelined, MI_NOOP);
  2087. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2088. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2089. intel_ring_emit(pipelined, val);
  2090. intel_ring_advance(pipelined);
  2091. } else
  2092. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2093. return 0;
  2094. }
  2095. static int i915_find_fence_reg(struct drm_device *dev,
  2096. bool interruptible)
  2097. {
  2098. struct drm_i915_private *dev_priv = dev->dev_private;
  2099. struct drm_i915_fence_reg *reg;
  2100. struct drm_i915_gem_object *obj = NULL;
  2101. int i, avail, ret;
  2102. /* First try to find a free reg */
  2103. avail = 0;
  2104. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2105. reg = &dev_priv->fence_regs[i];
  2106. if (!reg->obj)
  2107. return i;
  2108. if (!reg->obj->pin_count)
  2109. avail++;
  2110. }
  2111. if (avail == 0)
  2112. return -ENOSPC;
  2113. /* None available, try to steal one or wait for a user to finish */
  2114. avail = I915_FENCE_REG_NONE;
  2115. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2116. lru_list) {
  2117. obj = reg->obj;
  2118. if (obj->pin_count)
  2119. continue;
  2120. /* found one! */
  2121. avail = obj->fence_reg;
  2122. break;
  2123. }
  2124. BUG_ON(avail == I915_FENCE_REG_NONE);
  2125. /* We only have a reference on obj from the active list. put_fence_reg
  2126. * might drop that one, causing a use-after-free in it. So hold a
  2127. * private reference to obj like the other callers of put_fence_reg
  2128. * (set_tiling ioctl) do. */
  2129. drm_gem_object_reference(&obj->base);
  2130. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2131. drm_gem_object_unreference(&obj->base);
  2132. if (ret != 0)
  2133. return ret;
  2134. return avail;
  2135. }
  2136. /**
  2137. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2138. * @obj: object to map through a fence reg
  2139. *
  2140. * When mapping objects through the GTT, userspace wants to be able to write
  2141. * to them without having to worry about swizzling if the object is tiled.
  2142. *
  2143. * This function walks the fence regs looking for a free one for @obj,
  2144. * stealing one if it can't find any.
  2145. *
  2146. * It then sets up the reg based on the object's properties: address, pitch
  2147. * and tiling format.
  2148. */
  2149. int
  2150. i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
  2151. bool interruptible)
  2152. {
  2153. struct drm_device *dev = obj->base.dev;
  2154. struct drm_i915_private *dev_priv = dev->dev_private;
  2155. struct drm_i915_fence_reg *reg = NULL;
  2156. struct intel_ring_buffer *pipelined = NULL;
  2157. int ret;
  2158. /* Just update our place in the LRU if our fence is getting used. */
  2159. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2160. reg = &dev_priv->fence_regs[obj->fence_reg];
  2161. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2162. return 0;
  2163. }
  2164. switch (obj->tiling_mode) {
  2165. case I915_TILING_NONE:
  2166. WARN(1, "allocating a fence for non-tiled object?\n");
  2167. break;
  2168. case I915_TILING_X:
  2169. if (!obj->stride)
  2170. return -EINVAL;
  2171. WARN((obj->stride & (512 - 1)),
  2172. "object 0x%08x is X tiled but has non-512B pitch\n",
  2173. obj->gtt_offset);
  2174. break;
  2175. case I915_TILING_Y:
  2176. if (!obj->stride)
  2177. return -EINVAL;
  2178. WARN((obj->stride & (128 - 1)),
  2179. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2180. obj->gtt_offset);
  2181. break;
  2182. }
  2183. ret = i915_find_fence_reg(dev, interruptible);
  2184. if (ret < 0)
  2185. return ret;
  2186. obj->fence_reg = ret;
  2187. reg = &dev_priv->fence_regs[obj->fence_reg];
  2188. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2189. reg->obj = obj;
  2190. switch (INTEL_INFO(dev)->gen) {
  2191. case 6:
  2192. ret = sandybridge_write_fence_reg(obj, pipelined);
  2193. break;
  2194. case 5:
  2195. case 4:
  2196. ret = i965_write_fence_reg(obj, pipelined);
  2197. break;
  2198. case 3:
  2199. ret = i915_write_fence_reg(obj, pipelined);
  2200. break;
  2201. case 2:
  2202. ret = i830_write_fence_reg(obj, pipelined);
  2203. break;
  2204. }
  2205. trace_i915_gem_object_get_fence(obj,
  2206. obj->fence_reg,
  2207. obj->tiling_mode);
  2208. return ret;
  2209. }
  2210. /**
  2211. * i915_gem_clear_fence_reg - clear out fence register info
  2212. * @obj: object to clear
  2213. *
  2214. * Zeroes out the fence register itself and clears out the associated
  2215. * data structures in dev_priv and obj.
  2216. */
  2217. static void
  2218. i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
  2219. {
  2220. struct drm_device *dev = obj->base.dev;
  2221. drm_i915_private_t *dev_priv = dev->dev_private;
  2222. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
  2223. uint32_t fence_reg;
  2224. switch (INTEL_INFO(dev)->gen) {
  2225. case 6:
  2226. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2227. (obj->fence_reg * 8), 0);
  2228. break;
  2229. case 5:
  2230. case 4:
  2231. I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
  2232. break;
  2233. case 3:
  2234. if (obj->fence_reg >= 8)
  2235. fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
  2236. else
  2237. case 2:
  2238. fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
  2239. I915_WRITE(fence_reg, 0);
  2240. break;
  2241. }
  2242. reg->obj = NULL;
  2243. obj->fence_reg = I915_FENCE_REG_NONE;
  2244. list_del_init(&reg->lru_list);
  2245. }
  2246. /**
  2247. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2248. * to the buffer to finish, and then resets the fence register.
  2249. * @obj: tiled object holding a fence register.
  2250. * @bool: whether the wait upon the fence is interruptible
  2251. *
  2252. * Zeroes out the fence register itself and clears out the associated
  2253. * data structures in dev_priv and obj.
  2254. */
  2255. int
  2256. i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
  2257. bool interruptible)
  2258. {
  2259. struct drm_device *dev = obj->base.dev;
  2260. int ret;
  2261. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2262. return 0;
  2263. /* If we've changed tiling, GTT-mappings of the object
  2264. * need to re-fault to ensure that the correct fence register
  2265. * setup is in place.
  2266. */
  2267. i915_gem_release_mmap(obj);
  2268. /* On the i915, GPU access to tiled buffers is via a fence,
  2269. * therefore we must wait for any outstanding access to complete
  2270. * before clearing the fence.
  2271. */
  2272. if (obj->fenced_gpu_access) {
  2273. ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
  2274. if (ret)
  2275. return ret;
  2276. obj->fenced_gpu_access = false;
  2277. }
  2278. if (obj->last_fenced_seqno) {
  2279. ret = i915_do_wait_request(dev,
  2280. obj->last_fenced_seqno,
  2281. interruptible,
  2282. obj->last_fenced_ring);
  2283. if (ret)
  2284. return ret;
  2285. obj->last_fenced_seqno = false;
  2286. }
  2287. i915_gem_object_flush_gtt_write_domain(obj);
  2288. i915_gem_clear_fence_reg(obj);
  2289. return 0;
  2290. }
  2291. /**
  2292. * Finds free space in the GTT aperture and binds the object there.
  2293. */
  2294. static int
  2295. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2296. unsigned alignment,
  2297. bool map_and_fenceable)
  2298. {
  2299. struct drm_device *dev = obj->base.dev;
  2300. drm_i915_private_t *dev_priv = dev->dev_private;
  2301. struct drm_mm_node *free_space;
  2302. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2303. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2304. bool mappable, fenceable;
  2305. int ret;
  2306. if (obj->madv != I915_MADV_WILLNEED) {
  2307. DRM_ERROR("Attempting to bind a purgeable object\n");
  2308. return -EINVAL;
  2309. }
  2310. fence_size = i915_gem_get_gtt_size(obj);
  2311. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2312. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2313. if (alignment == 0)
  2314. alignment = map_and_fenceable ? fence_alignment :
  2315. unfenced_alignment;
  2316. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2317. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2318. return -EINVAL;
  2319. }
  2320. size = map_and_fenceable ? fence_size : obj->base.size;
  2321. /* If the object is bigger than the entire aperture, reject it early
  2322. * before evicting everything in a vain attempt to find space.
  2323. */
  2324. if (obj->base.size >
  2325. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2326. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2327. return -E2BIG;
  2328. }
  2329. search_free:
  2330. if (map_and_fenceable)
  2331. free_space =
  2332. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2333. size, alignment, 0,
  2334. dev_priv->mm.gtt_mappable_end,
  2335. 0);
  2336. else
  2337. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2338. size, alignment, 0);
  2339. if (free_space != NULL) {
  2340. if (map_and_fenceable)
  2341. obj->gtt_space =
  2342. drm_mm_get_block_range_generic(free_space,
  2343. size, alignment, 0,
  2344. dev_priv->mm.gtt_mappable_end,
  2345. 0);
  2346. else
  2347. obj->gtt_space =
  2348. drm_mm_get_block(free_space, size, alignment);
  2349. }
  2350. if (obj->gtt_space == NULL) {
  2351. /* If the gtt is empty and we're still having trouble
  2352. * fitting our object in, we're out of memory.
  2353. */
  2354. ret = i915_gem_evict_something(dev, size, alignment,
  2355. map_and_fenceable);
  2356. if (ret)
  2357. return ret;
  2358. goto search_free;
  2359. }
  2360. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2361. if (ret) {
  2362. drm_mm_put_block(obj->gtt_space);
  2363. obj->gtt_space = NULL;
  2364. if (ret == -ENOMEM) {
  2365. /* first try to clear up some space from the GTT */
  2366. ret = i915_gem_evict_something(dev, size,
  2367. alignment,
  2368. map_and_fenceable);
  2369. if (ret) {
  2370. /* now try to shrink everyone else */
  2371. if (gfpmask) {
  2372. gfpmask = 0;
  2373. goto search_free;
  2374. }
  2375. return ret;
  2376. }
  2377. goto search_free;
  2378. }
  2379. return ret;
  2380. }
  2381. ret = i915_gem_gtt_bind_object(obj);
  2382. if (ret) {
  2383. i915_gem_object_put_pages_gtt(obj);
  2384. drm_mm_put_block(obj->gtt_space);
  2385. obj->gtt_space = NULL;
  2386. ret = i915_gem_evict_something(dev, size,
  2387. alignment, map_and_fenceable);
  2388. if (ret)
  2389. return ret;
  2390. goto search_free;
  2391. }
  2392. obj->gtt_offset = obj->gtt_space->start;
  2393. /* keep track of bounds object by adding it to the inactive list */
  2394. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2395. i915_gem_info_add_gtt(dev_priv, obj);
  2396. /* Assert that the object is not currently in any GPU domain. As it
  2397. * wasn't in the GTT, there shouldn't be any way it could have been in
  2398. * a GPU cache
  2399. */
  2400. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2401. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2402. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2403. fenceable =
  2404. obj->gtt_space->size == fence_size &&
  2405. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2406. mappable =
  2407. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2408. obj->map_and_fenceable = mappable && fenceable;
  2409. return 0;
  2410. }
  2411. void
  2412. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2413. {
  2414. /* If we don't have a page list set up, then we're not pinned
  2415. * to GPU, and we can ignore the cache flush because it'll happen
  2416. * again at bind time.
  2417. */
  2418. if (obj->pages == NULL)
  2419. return;
  2420. trace_i915_gem_object_clflush(obj);
  2421. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2422. }
  2423. /** Flushes any GPU write domain for the object if it's dirty. */
  2424. static int
  2425. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
  2426. struct intel_ring_buffer *pipelined)
  2427. {
  2428. struct drm_device *dev = obj->base.dev;
  2429. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2430. return 0;
  2431. /* Queue the GPU write cache flushing we need. */
  2432. i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2433. BUG_ON(obj->base.write_domain);
  2434. if (pipelined && pipelined == obj->ring)
  2435. return 0;
  2436. return i915_gem_object_wait_rendering(obj, true);
  2437. }
  2438. /** Flushes the GTT write domain for the object if it's dirty. */
  2439. static void
  2440. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2441. {
  2442. uint32_t old_write_domain;
  2443. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2444. return;
  2445. /* No actual flushing is required for the GTT write domain. Writes
  2446. * to it immediately go to main memory as far as we know, so there's
  2447. * no chipset flush. It also doesn't land in render cache.
  2448. */
  2449. i915_gem_release_mmap(obj);
  2450. old_write_domain = obj->base.write_domain;
  2451. obj->base.write_domain = 0;
  2452. trace_i915_gem_object_change_domain(obj,
  2453. obj->base.read_domains,
  2454. old_write_domain);
  2455. }
  2456. /** Flushes the CPU write domain for the object if it's dirty. */
  2457. static void
  2458. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2459. {
  2460. uint32_t old_write_domain;
  2461. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2462. return;
  2463. i915_gem_clflush_object(obj);
  2464. intel_gtt_chipset_flush();
  2465. old_write_domain = obj->base.write_domain;
  2466. obj->base.write_domain = 0;
  2467. trace_i915_gem_object_change_domain(obj,
  2468. obj->base.read_domains,
  2469. old_write_domain);
  2470. }
  2471. /**
  2472. * Moves a single object to the GTT read, and possibly write domain.
  2473. *
  2474. * This function returns when the move is complete, including waiting on
  2475. * flushes to occur.
  2476. */
  2477. int
  2478. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, int write)
  2479. {
  2480. uint32_t old_write_domain, old_read_domains;
  2481. int ret;
  2482. /* Not valid to be called on unbound objects. */
  2483. if (obj->gtt_space == NULL)
  2484. return -EINVAL;
  2485. ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
  2486. if (ret != 0)
  2487. return ret;
  2488. i915_gem_object_flush_cpu_write_domain(obj);
  2489. if (write) {
  2490. ret = i915_gem_object_wait_rendering(obj, true);
  2491. if (ret)
  2492. return ret;
  2493. }
  2494. old_write_domain = obj->base.write_domain;
  2495. old_read_domains = obj->base.read_domains;
  2496. /* It should now be out of any other write domains, and we can update
  2497. * the domain values for our changes.
  2498. */
  2499. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2500. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2501. if (write) {
  2502. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2503. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2504. obj->dirty = 1;
  2505. }
  2506. trace_i915_gem_object_change_domain(obj,
  2507. old_read_domains,
  2508. old_write_domain);
  2509. return 0;
  2510. }
  2511. /*
  2512. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2513. * wait, as in modesetting process we're not supposed to be interrupted.
  2514. */
  2515. int
  2516. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2517. struct intel_ring_buffer *pipelined)
  2518. {
  2519. uint32_t old_read_domains;
  2520. int ret;
  2521. /* Not valid to be called on unbound objects. */
  2522. if (obj->gtt_space == NULL)
  2523. return -EINVAL;
  2524. ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
  2525. if (ret)
  2526. return ret;
  2527. /* Currently, we are always called from an non-interruptible context. */
  2528. if (!pipelined) {
  2529. ret = i915_gem_object_wait_rendering(obj, false);
  2530. if (ret)
  2531. return ret;
  2532. }
  2533. i915_gem_object_flush_cpu_write_domain(obj);
  2534. old_read_domains = obj->base.read_domains;
  2535. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2536. trace_i915_gem_object_change_domain(obj,
  2537. old_read_domains,
  2538. obj->base.write_domain);
  2539. return 0;
  2540. }
  2541. int
  2542. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2543. bool interruptible)
  2544. {
  2545. if (!obj->active)
  2546. return 0;
  2547. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2548. i915_gem_flush_ring(obj->base.dev, obj->ring,
  2549. 0, obj->base.write_domain);
  2550. return i915_gem_object_wait_rendering(obj, interruptible);
  2551. }
  2552. /**
  2553. * Moves a single object to the CPU read, and possibly write domain.
  2554. *
  2555. * This function returns when the move is complete, including waiting on
  2556. * flushes to occur.
  2557. */
  2558. static int
  2559. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2560. {
  2561. uint32_t old_write_domain, old_read_domains;
  2562. int ret;
  2563. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2564. if (ret != 0)
  2565. return ret;
  2566. i915_gem_object_flush_gtt_write_domain(obj);
  2567. /* If we have a partially-valid cache of the object in the CPU,
  2568. * finish invalidating it and free the per-page flags.
  2569. */
  2570. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2571. if (write) {
  2572. ret = i915_gem_object_wait_rendering(obj, true);
  2573. if (ret)
  2574. return ret;
  2575. }
  2576. old_write_domain = obj->base.write_domain;
  2577. old_read_domains = obj->base.read_domains;
  2578. /* Flush the CPU cache if it's still invalid. */
  2579. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2580. i915_gem_clflush_object(obj);
  2581. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2582. }
  2583. /* It should now be out of any other write domains, and we can update
  2584. * the domain values for our changes.
  2585. */
  2586. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2587. /* If we're writing through the CPU, then the GPU read domains will
  2588. * need to be invalidated at next use.
  2589. */
  2590. if (write) {
  2591. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2592. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2593. }
  2594. trace_i915_gem_object_change_domain(obj,
  2595. old_read_domains,
  2596. old_write_domain);
  2597. return 0;
  2598. }
  2599. /*
  2600. * Set the next domain for the specified object. This
  2601. * may not actually perform the necessary flushing/invaliding though,
  2602. * as that may want to be batched with other set_domain operations
  2603. *
  2604. * This is (we hope) the only really tricky part of gem. The goal
  2605. * is fairly simple -- track which caches hold bits of the object
  2606. * and make sure they remain coherent. A few concrete examples may
  2607. * help to explain how it works. For shorthand, we use the notation
  2608. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2609. * a pair of read and write domain masks.
  2610. *
  2611. * Case 1: the batch buffer
  2612. *
  2613. * 1. Allocated
  2614. * 2. Written by CPU
  2615. * 3. Mapped to GTT
  2616. * 4. Read by GPU
  2617. * 5. Unmapped from GTT
  2618. * 6. Freed
  2619. *
  2620. * Let's take these a step at a time
  2621. *
  2622. * 1. Allocated
  2623. * Pages allocated from the kernel may still have
  2624. * cache contents, so we set them to (CPU, CPU) always.
  2625. * 2. Written by CPU (using pwrite)
  2626. * The pwrite function calls set_domain (CPU, CPU) and
  2627. * this function does nothing (as nothing changes)
  2628. * 3. Mapped by GTT
  2629. * This function asserts that the object is not
  2630. * currently in any GPU-based read or write domains
  2631. * 4. Read by GPU
  2632. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2633. * As write_domain is zero, this function adds in the
  2634. * current read domains (CPU+COMMAND, 0).
  2635. * flush_domains is set to CPU.
  2636. * invalidate_domains is set to COMMAND
  2637. * clflush is run to get data out of the CPU caches
  2638. * then i915_dev_set_domain calls i915_gem_flush to
  2639. * emit an MI_FLUSH and drm_agp_chipset_flush
  2640. * 5. Unmapped from GTT
  2641. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2642. * flush_domains and invalidate_domains end up both zero
  2643. * so no flushing/invalidating happens
  2644. * 6. Freed
  2645. * yay, done
  2646. *
  2647. * Case 2: The shared render buffer
  2648. *
  2649. * 1. Allocated
  2650. * 2. Mapped to GTT
  2651. * 3. Read/written by GPU
  2652. * 4. set_domain to (CPU,CPU)
  2653. * 5. Read/written by CPU
  2654. * 6. Read/written by GPU
  2655. *
  2656. * 1. Allocated
  2657. * Same as last example, (CPU, CPU)
  2658. * 2. Mapped to GTT
  2659. * Nothing changes (assertions find that it is not in the GPU)
  2660. * 3. Read/written by GPU
  2661. * execbuffer calls set_domain (RENDER, RENDER)
  2662. * flush_domains gets CPU
  2663. * invalidate_domains gets GPU
  2664. * clflush (obj)
  2665. * MI_FLUSH and drm_agp_chipset_flush
  2666. * 4. set_domain (CPU, CPU)
  2667. * flush_domains gets GPU
  2668. * invalidate_domains gets CPU
  2669. * wait_rendering (obj) to make sure all drawing is complete.
  2670. * This will include an MI_FLUSH to get the data from GPU
  2671. * to memory
  2672. * clflush (obj) to invalidate the CPU cache
  2673. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2674. * 5. Read/written by CPU
  2675. * cache lines are loaded and dirtied
  2676. * 6. Read written by GPU
  2677. * Same as last GPU access
  2678. *
  2679. * Case 3: The constant buffer
  2680. *
  2681. * 1. Allocated
  2682. * 2. Written by CPU
  2683. * 3. Read by GPU
  2684. * 4. Updated (written) by CPU again
  2685. * 5. Read by GPU
  2686. *
  2687. * 1. Allocated
  2688. * (CPU, CPU)
  2689. * 2. Written by CPU
  2690. * (CPU, CPU)
  2691. * 3. Read by GPU
  2692. * (CPU+RENDER, 0)
  2693. * flush_domains = CPU
  2694. * invalidate_domains = RENDER
  2695. * clflush (obj)
  2696. * MI_FLUSH
  2697. * drm_agp_chipset_flush
  2698. * 4. Updated (written) by CPU again
  2699. * (CPU, CPU)
  2700. * flush_domains = 0 (no previous write domain)
  2701. * invalidate_domains = 0 (no new read domains)
  2702. * 5. Read by GPU
  2703. * (CPU+RENDER, 0)
  2704. * flush_domains = CPU
  2705. * invalidate_domains = RENDER
  2706. * clflush (obj)
  2707. * MI_FLUSH
  2708. * drm_agp_chipset_flush
  2709. */
  2710. static void
  2711. i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
  2712. struct intel_ring_buffer *ring,
  2713. struct change_domains *cd)
  2714. {
  2715. uint32_t invalidate_domains = 0, flush_domains = 0;
  2716. /*
  2717. * If the object isn't moving to a new write domain,
  2718. * let the object stay in multiple read domains
  2719. */
  2720. if (obj->base.pending_write_domain == 0)
  2721. obj->base.pending_read_domains |= obj->base.read_domains;
  2722. /*
  2723. * Flush the current write domain if
  2724. * the new read domains don't match. Invalidate
  2725. * any read domains which differ from the old
  2726. * write domain
  2727. */
  2728. if (obj->base.write_domain &&
  2729. (((obj->base.write_domain != obj->base.pending_read_domains ||
  2730. obj->ring != ring)) ||
  2731. (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
  2732. flush_domains |= obj->base.write_domain;
  2733. invalidate_domains |=
  2734. obj->base.pending_read_domains & ~obj->base.write_domain;
  2735. }
  2736. /*
  2737. * Invalidate any read caches which may have
  2738. * stale data. That is, any new read domains.
  2739. */
  2740. invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
  2741. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2742. i915_gem_clflush_object(obj);
  2743. /* blow away mappings if mapped through GTT */
  2744. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2745. i915_gem_release_mmap(obj);
  2746. /* The actual obj->write_domain will be updated with
  2747. * pending_write_domain after we emit the accumulated flush for all
  2748. * of our domain changes in execbuffers (which clears objects'
  2749. * write_domains). So if we have a current write domain that we
  2750. * aren't changing, set pending_write_domain to that.
  2751. */
  2752. if (flush_domains == 0 && obj->base.pending_write_domain == 0)
  2753. obj->base.pending_write_domain = obj->base.write_domain;
  2754. cd->invalidate_domains |= invalidate_domains;
  2755. cd->flush_domains |= flush_domains;
  2756. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2757. cd->flush_rings |= obj->ring->id;
  2758. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2759. cd->flush_rings |= ring->id;
  2760. }
  2761. /**
  2762. * Moves the object from a partially CPU read to a full one.
  2763. *
  2764. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2765. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2766. */
  2767. static void
  2768. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2769. {
  2770. if (!obj->page_cpu_valid)
  2771. return;
  2772. /* If we're partially in the CPU read domain, finish moving it in.
  2773. */
  2774. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2775. int i;
  2776. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2777. if (obj->page_cpu_valid[i])
  2778. continue;
  2779. drm_clflush_pages(obj->pages + i, 1);
  2780. }
  2781. }
  2782. /* Free the page_cpu_valid mappings which are now stale, whether
  2783. * or not we've got I915_GEM_DOMAIN_CPU.
  2784. */
  2785. kfree(obj->page_cpu_valid);
  2786. obj->page_cpu_valid = NULL;
  2787. }
  2788. /**
  2789. * Set the CPU read domain on a range of the object.
  2790. *
  2791. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2792. * not entirely valid. The page_cpu_valid member of the object flags which
  2793. * pages have been flushed, and will be respected by
  2794. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2795. * of the whole object.
  2796. *
  2797. * This function returns when the move is complete, including waiting on
  2798. * flushes to occur.
  2799. */
  2800. static int
  2801. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2802. uint64_t offset, uint64_t size)
  2803. {
  2804. uint32_t old_read_domains;
  2805. int i, ret;
  2806. if (offset == 0 && size == obj->base.size)
  2807. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2808. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2809. if (ret != 0)
  2810. return ret;
  2811. i915_gem_object_flush_gtt_write_domain(obj);
  2812. /* If we're already fully in the CPU read domain, we're done. */
  2813. if (obj->page_cpu_valid == NULL &&
  2814. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2815. return 0;
  2816. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2817. * newly adding I915_GEM_DOMAIN_CPU
  2818. */
  2819. if (obj->page_cpu_valid == NULL) {
  2820. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2821. GFP_KERNEL);
  2822. if (obj->page_cpu_valid == NULL)
  2823. return -ENOMEM;
  2824. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2825. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2826. /* Flush the cache on any pages that are still invalid from the CPU's
  2827. * perspective.
  2828. */
  2829. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2830. i++) {
  2831. if (obj->page_cpu_valid[i])
  2832. continue;
  2833. drm_clflush_pages(obj->pages + i, 1);
  2834. obj->page_cpu_valid[i] = 1;
  2835. }
  2836. /* It should now be out of any other write domains, and we can update
  2837. * the domain values for our changes.
  2838. */
  2839. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2840. old_read_domains = obj->base.read_domains;
  2841. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2842. trace_i915_gem_object_change_domain(obj,
  2843. old_read_domains,
  2844. obj->base.write_domain);
  2845. return 0;
  2846. }
  2847. static int
  2848. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  2849. struct drm_file *file_priv,
  2850. struct drm_i915_gem_exec_object2 *entry,
  2851. struct drm_i915_gem_relocation_entry *reloc)
  2852. {
  2853. struct drm_device *dev = obj->base.dev;
  2854. struct drm_gem_object *target_obj;
  2855. uint32_t target_offset;
  2856. int ret = -EINVAL;
  2857. target_obj = drm_gem_object_lookup(dev, file_priv,
  2858. reloc->target_handle);
  2859. if (target_obj == NULL)
  2860. return -ENOENT;
  2861. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2862. #if WATCH_RELOC
  2863. DRM_INFO("%s: obj %p offset %08x target %d "
  2864. "read %08x write %08x gtt %08x "
  2865. "presumed %08x delta %08x\n",
  2866. __func__,
  2867. obj,
  2868. (int) reloc->offset,
  2869. (int) reloc->target_handle,
  2870. (int) reloc->read_domains,
  2871. (int) reloc->write_domain,
  2872. (int) target_offset,
  2873. (int) reloc->presumed_offset,
  2874. reloc->delta);
  2875. #endif
  2876. /* The target buffer should have appeared before us in the
  2877. * exec_object list, so it should have a GTT space bound by now.
  2878. */
  2879. if (target_offset == 0) {
  2880. DRM_ERROR("No GTT space found for object %d\n",
  2881. reloc->target_handle);
  2882. goto err;
  2883. }
  2884. /* Validate that the target is in a valid r/w GPU domain */
  2885. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2886. DRM_ERROR("reloc with multiple write domains: "
  2887. "obj %p target %d offset %d "
  2888. "read %08x write %08x",
  2889. obj, reloc->target_handle,
  2890. (int) reloc->offset,
  2891. reloc->read_domains,
  2892. reloc->write_domain);
  2893. goto err;
  2894. }
  2895. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2896. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2897. DRM_ERROR("reloc with read/write CPU domains: "
  2898. "obj %p target %d offset %d "
  2899. "read %08x write %08x",
  2900. obj, reloc->target_handle,
  2901. (int) reloc->offset,
  2902. reloc->read_domains,
  2903. reloc->write_domain);
  2904. goto err;
  2905. }
  2906. if (reloc->write_domain && target_obj->pending_write_domain &&
  2907. reloc->write_domain != target_obj->pending_write_domain) {
  2908. DRM_ERROR("Write domain conflict: "
  2909. "obj %p target %d offset %d "
  2910. "new %08x old %08x\n",
  2911. obj, reloc->target_handle,
  2912. (int) reloc->offset,
  2913. reloc->write_domain,
  2914. target_obj->pending_write_domain);
  2915. goto err;
  2916. }
  2917. target_obj->pending_read_domains |= reloc->read_domains;
  2918. target_obj->pending_write_domain |= reloc->write_domain;
  2919. /* If the relocation already has the right value in it, no
  2920. * more work needs to be done.
  2921. */
  2922. if (target_offset == reloc->presumed_offset)
  2923. goto out;
  2924. /* Check that the relocation address is valid... */
  2925. if (reloc->offset > obj->base.size - 4) {
  2926. DRM_ERROR("Relocation beyond object bounds: "
  2927. "obj %p target %d offset %d size %d.\n",
  2928. obj, reloc->target_handle,
  2929. (int) reloc->offset,
  2930. (int) obj->base.size);
  2931. goto err;
  2932. }
  2933. if (reloc->offset & 3) {
  2934. DRM_ERROR("Relocation not 4-byte aligned: "
  2935. "obj %p target %d offset %d.\n",
  2936. obj, reloc->target_handle,
  2937. (int) reloc->offset);
  2938. goto err;
  2939. }
  2940. /* and points to somewhere within the target object. */
  2941. if (reloc->delta >= target_obj->size) {
  2942. DRM_ERROR("Relocation beyond target object bounds: "
  2943. "obj %p target %d delta %d size %d.\n",
  2944. obj, reloc->target_handle,
  2945. (int) reloc->delta,
  2946. (int) target_obj->size);
  2947. goto err;
  2948. }
  2949. reloc->delta += target_offset;
  2950. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2951. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  2952. char *vaddr;
  2953. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  2954. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  2955. kunmap_atomic(vaddr);
  2956. } else {
  2957. struct drm_i915_private *dev_priv = dev->dev_private;
  2958. uint32_t __iomem *reloc_entry;
  2959. void __iomem *reloc_page;
  2960. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2961. if (ret)
  2962. goto err;
  2963. /* Map the page containing the relocation we're going to perform. */
  2964. reloc->offset += obj->gtt_offset;
  2965. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2966. reloc->offset & PAGE_MASK);
  2967. reloc_entry = (uint32_t __iomem *)
  2968. (reloc_page + (reloc->offset & ~PAGE_MASK));
  2969. iowrite32(reloc->delta, reloc_entry);
  2970. io_mapping_unmap_atomic(reloc_page);
  2971. }
  2972. /* and update the user's relocation entry */
  2973. reloc->presumed_offset = target_offset;
  2974. out:
  2975. ret = 0;
  2976. err:
  2977. drm_gem_object_unreference(target_obj);
  2978. return ret;
  2979. }
  2980. static int
  2981. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  2982. struct drm_file *file_priv,
  2983. struct drm_i915_gem_exec_object2 *entry)
  2984. {
  2985. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2986. int i, ret;
  2987. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2988. for (i = 0; i < entry->relocation_count; i++) {
  2989. struct drm_i915_gem_relocation_entry reloc;
  2990. if (__copy_from_user_inatomic(&reloc,
  2991. user_relocs+i,
  2992. sizeof(reloc)))
  2993. return -EFAULT;
  2994. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
  2995. if (ret)
  2996. return ret;
  2997. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2998. &reloc.presumed_offset,
  2999. sizeof(reloc.presumed_offset)))
  3000. return -EFAULT;
  3001. }
  3002. return 0;
  3003. }
  3004. static int
  3005. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  3006. struct drm_file *file_priv,
  3007. struct drm_i915_gem_exec_object2 *entry,
  3008. struct drm_i915_gem_relocation_entry *relocs)
  3009. {
  3010. int i, ret;
  3011. for (i = 0; i < entry->relocation_count; i++) {
  3012. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
  3013. if (ret)
  3014. return ret;
  3015. }
  3016. return 0;
  3017. }
  3018. static int
  3019. i915_gem_execbuffer_relocate(struct drm_device *dev,
  3020. struct drm_file *file,
  3021. struct drm_i915_gem_object **object_list,
  3022. struct drm_i915_gem_exec_object2 *exec_list,
  3023. int count)
  3024. {
  3025. int i, ret;
  3026. for (i = 0; i < count; i++) {
  3027. struct drm_i915_gem_object *obj = object_list[i];
  3028. obj->base.pending_read_domains = 0;
  3029. obj->base.pending_write_domain = 0;
  3030. ret = i915_gem_execbuffer_relocate_object(obj, file,
  3031. &exec_list[i]);
  3032. if (ret)
  3033. return ret;
  3034. }
  3035. return 0;
  3036. }
  3037. static int
  3038. i915_gem_execbuffer_reserve(struct drm_device *dev,
  3039. struct drm_file *file,
  3040. struct drm_i915_gem_object **object_list,
  3041. struct drm_i915_gem_exec_object2 *exec_list,
  3042. int count)
  3043. {
  3044. int ret, i, retry;
  3045. /* Attempt to pin all of the buffers into the GTT.
  3046. * This is done in 3 phases:
  3047. *
  3048. * 1a. Unbind all objects that do not match the GTT constraints for
  3049. * the execbuffer (fenceable, mappable, alignment etc).
  3050. * 1b. Increment pin count for already bound objects.
  3051. * 2. Bind new objects.
  3052. * 3. Decrement pin count.
  3053. *
  3054. * This avoid unnecessary unbinding of later objects in order to makr
  3055. * room for the earlier objects *unless* we need to defragment.
  3056. */
  3057. retry = 0;
  3058. do {
  3059. ret = 0;
  3060. /* Unbind any ill-fitting objects or pin. */
  3061. for (i = 0; i < count; i++) {
  3062. struct drm_i915_gem_object *obj = object_list[i];
  3063. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3064. bool need_fence, need_mappable;
  3065. if (!obj->gtt_space)
  3066. continue;
  3067. need_fence =
  3068. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3069. obj->tiling_mode != I915_TILING_NONE;
  3070. need_mappable =
  3071. entry->relocation_count ? true : need_fence;
  3072. if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
  3073. (need_mappable && !obj->map_and_fenceable))
  3074. ret = i915_gem_object_unbind(obj);
  3075. else
  3076. ret = i915_gem_object_pin(obj,
  3077. entry->alignment,
  3078. need_mappable);
  3079. if (ret) {
  3080. count = i;
  3081. goto err;
  3082. }
  3083. }
  3084. /* Bind fresh objects */
  3085. for (i = 0; i < count; i++) {
  3086. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3087. struct drm_i915_gem_object *obj = object_list[i];
  3088. bool need_fence;
  3089. need_fence =
  3090. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3091. obj->tiling_mode != I915_TILING_NONE;
  3092. if (!obj->gtt_space) {
  3093. bool need_mappable =
  3094. entry->relocation_count ? true : need_fence;
  3095. ret = i915_gem_object_pin(obj,
  3096. entry->alignment,
  3097. need_mappable);
  3098. if (ret)
  3099. break;
  3100. }
  3101. if (need_fence) {
  3102. ret = i915_gem_object_get_fence_reg(obj, true);
  3103. if (ret)
  3104. break;
  3105. obj->pending_fenced_gpu_access = true;
  3106. }
  3107. entry->offset = obj->gtt_offset;
  3108. }
  3109. err: /* Decrement pin count for bound objects */
  3110. for (i = 0; i < count; i++) {
  3111. struct drm_i915_gem_object *obj = object_list[i];
  3112. if (obj->gtt_space)
  3113. i915_gem_object_unpin(obj);
  3114. }
  3115. if (ret != -ENOSPC || retry > 1)
  3116. return ret;
  3117. /* First attempt, just clear anything that is purgeable.
  3118. * Second attempt, clear the entire GTT.
  3119. */
  3120. ret = i915_gem_evict_everything(dev, retry == 0);
  3121. if (ret)
  3122. return ret;
  3123. retry++;
  3124. } while (1);
  3125. }
  3126. static int
  3127. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  3128. struct drm_file *file,
  3129. struct drm_i915_gem_object **object_list,
  3130. struct drm_i915_gem_exec_object2 *exec_list,
  3131. int count)
  3132. {
  3133. struct drm_i915_gem_relocation_entry *reloc;
  3134. int i, total, ret;
  3135. for (i = 0; i < count; i++)
  3136. object_list[i]->in_execbuffer = false;
  3137. mutex_unlock(&dev->struct_mutex);
  3138. total = 0;
  3139. for (i = 0; i < count; i++)
  3140. total += exec_list[i].relocation_count;
  3141. reloc = drm_malloc_ab(total, sizeof(*reloc));
  3142. if (reloc == NULL) {
  3143. mutex_lock(&dev->struct_mutex);
  3144. return -ENOMEM;
  3145. }
  3146. total = 0;
  3147. for (i = 0; i < count; i++) {
  3148. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3149. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3150. if (copy_from_user(reloc+total, user_relocs,
  3151. exec_list[i].relocation_count *
  3152. sizeof(*reloc))) {
  3153. ret = -EFAULT;
  3154. mutex_lock(&dev->struct_mutex);
  3155. goto err;
  3156. }
  3157. total += exec_list[i].relocation_count;
  3158. }
  3159. ret = i915_mutex_lock_interruptible(dev);
  3160. if (ret) {
  3161. mutex_lock(&dev->struct_mutex);
  3162. goto err;
  3163. }
  3164. ret = i915_gem_execbuffer_reserve(dev, file,
  3165. object_list, exec_list,
  3166. count);
  3167. if (ret)
  3168. goto err;
  3169. total = 0;
  3170. for (i = 0; i < count; i++) {
  3171. struct drm_i915_gem_object *obj = object_list[i];
  3172. obj->base.pending_read_domains = 0;
  3173. obj->base.pending_write_domain = 0;
  3174. ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
  3175. &exec_list[i],
  3176. reloc + total);
  3177. if (ret)
  3178. goto err;
  3179. total += exec_list[i].relocation_count;
  3180. }
  3181. /* Leave the user relocations as are, this is the painfully slow path,
  3182. * and we want to avoid the complication of dropping the lock whilst
  3183. * having buffers reserved in the aperture and so causing spurious
  3184. * ENOSPC for random operations.
  3185. */
  3186. err:
  3187. drm_free_large(reloc);
  3188. return ret;
  3189. }
  3190. static int
  3191. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3192. struct drm_file *file,
  3193. struct intel_ring_buffer *ring,
  3194. struct drm_i915_gem_object **objects,
  3195. int count)
  3196. {
  3197. struct change_domains cd;
  3198. int ret, i;
  3199. cd.invalidate_domains = 0;
  3200. cd.flush_domains = 0;
  3201. cd.flush_rings = 0;
  3202. for (i = 0; i < count; i++)
  3203. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3204. if (cd.invalidate_domains | cd.flush_domains) {
  3205. #if WATCH_EXEC
  3206. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3207. __func__,
  3208. cd.invalidate_domains,
  3209. cd.flush_domains);
  3210. #endif
  3211. i915_gem_flush(dev,
  3212. cd.invalidate_domains,
  3213. cd.flush_domains,
  3214. cd.flush_rings);
  3215. }
  3216. for (i = 0; i < count; i++) {
  3217. struct drm_i915_gem_object *obj = objects[i];
  3218. /* XXX replace with semaphores */
  3219. if (obj->ring && ring != obj->ring) {
  3220. ret = i915_gem_object_wait_rendering(obj, true);
  3221. if (ret)
  3222. return ret;
  3223. }
  3224. }
  3225. return 0;
  3226. }
  3227. /* Throttle our rendering by waiting until the ring has completed our requests
  3228. * emitted over 20 msec ago.
  3229. *
  3230. * Note that if we were to use the current jiffies each time around the loop,
  3231. * we wouldn't escape the function with any frames outstanding if the time to
  3232. * render a frame was over 20ms.
  3233. *
  3234. * This should get us reasonable parallelism between CPU and GPU but also
  3235. * relatively low latency when blocking on a particular request to finish.
  3236. */
  3237. static int
  3238. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3239. {
  3240. struct drm_i915_private *dev_priv = dev->dev_private;
  3241. struct drm_i915_file_private *file_priv = file->driver_priv;
  3242. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3243. struct drm_i915_gem_request *request;
  3244. struct intel_ring_buffer *ring = NULL;
  3245. u32 seqno = 0;
  3246. int ret;
  3247. spin_lock(&file_priv->mm.lock);
  3248. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3249. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3250. break;
  3251. ring = request->ring;
  3252. seqno = request->seqno;
  3253. }
  3254. spin_unlock(&file_priv->mm.lock);
  3255. if (seqno == 0)
  3256. return 0;
  3257. ret = 0;
  3258. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3259. /* And wait for the seqno passing without holding any locks and
  3260. * causing extra latency for others. This is safe as the irq
  3261. * generation is designed to be run atomically and so is
  3262. * lockless.
  3263. */
  3264. ring->user_irq_get(ring);
  3265. ret = wait_event_interruptible(ring->irq_queue,
  3266. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3267. || atomic_read(&dev_priv->mm.wedged));
  3268. ring->user_irq_put(ring);
  3269. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3270. ret = -EIO;
  3271. }
  3272. if (ret == 0)
  3273. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3274. return ret;
  3275. }
  3276. static int
  3277. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3278. uint64_t exec_offset)
  3279. {
  3280. uint32_t exec_start, exec_len;
  3281. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3282. exec_len = (uint32_t) exec->batch_len;
  3283. if ((exec_start | exec_len) & 0x7)
  3284. return -EINVAL;
  3285. if (!exec_start)
  3286. return -EINVAL;
  3287. return 0;
  3288. }
  3289. static int
  3290. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3291. int count)
  3292. {
  3293. int i;
  3294. for (i = 0; i < count; i++) {
  3295. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3296. int length; /* limited by fault_in_pages_readable() */
  3297. /* First check for malicious input causing overflow */
  3298. if (exec[i].relocation_count >
  3299. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3300. return -EINVAL;
  3301. length = exec[i].relocation_count *
  3302. sizeof(struct drm_i915_gem_relocation_entry);
  3303. if (!access_ok(VERIFY_READ, ptr, length))
  3304. return -EFAULT;
  3305. /* we may also need to update the presumed offsets */
  3306. if (!access_ok(VERIFY_WRITE, ptr, length))
  3307. return -EFAULT;
  3308. if (fault_in_pages_readable(ptr, length))
  3309. return -EFAULT;
  3310. }
  3311. return 0;
  3312. }
  3313. static int
  3314. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3315. struct drm_file *file,
  3316. struct drm_i915_gem_execbuffer2 *args,
  3317. struct drm_i915_gem_exec_object2 *exec_list)
  3318. {
  3319. drm_i915_private_t *dev_priv = dev->dev_private;
  3320. struct drm_i915_gem_object **object_list = NULL;
  3321. struct drm_i915_gem_object *batch_obj;
  3322. struct drm_clip_rect *cliprects = NULL;
  3323. struct drm_i915_gem_request *request = NULL;
  3324. int ret, i, flips;
  3325. uint64_t exec_offset;
  3326. struct intel_ring_buffer *ring = NULL;
  3327. ret = i915_gem_check_is_wedged(dev);
  3328. if (ret)
  3329. return ret;
  3330. ret = validate_exec_list(exec_list, args->buffer_count);
  3331. if (ret)
  3332. return ret;
  3333. #if WATCH_EXEC
  3334. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3335. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3336. #endif
  3337. switch (args->flags & I915_EXEC_RING_MASK) {
  3338. case I915_EXEC_DEFAULT:
  3339. case I915_EXEC_RENDER:
  3340. ring = &dev_priv->render_ring;
  3341. break;
  3342. case I915_EXEC_BSD:
  3343. if (!HAS_BSD(dev)) {
  3344. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3345. return -EINVAL;
  3346. }
  3347. ring = &dev_priv->bsd_ring;
  3348. break;
  3349. case I915_EXEC_BLT:
  3350. if (!HAS_BLT(dev)) {
  3351. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3352. return -EINVAL;
  3353. }
  3354. ring = &dev_priv->blt_ring;
  3355. break;
  3356. default:
  3357. DRM_ERROR("execbuf with unknown ring: %d\n",
  3358. (int)(args->flags & I915_EXEC_RING_MASK));
  3359. return -EINVAL;
  3360. }
  3361. if (args->buffer_count < 1) {
  3362. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3363. return -EINVAL;
  3364. }
  3365. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3366. if (object_list == NULL) {
  3367. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3368. args->buffer_count);
  3369. ret = -ENOMEM;
  3370. goto pre_mutex_err;
  3371. }
  3372. if (args->num_cliprects != 0) {
  3373. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3374. GFP_KERNEL);
  3375. if (cliprects == NULL) {
  3376. ret = -ENOMEM;
  3377. goto pre_mutex_err;
  3378. }
  3379. ret = copy_from_user(cliprects,
  3380. (struct drm_clip_rect __user *)
  3381. (uintptr_t) args->cliprects_ptr,
  3382. sizeof(*cliprects) * args->num_cliprects);
  3383. if (ret != 0) {
  3384. DRM_ERROR("copy %d cliprects failed: %d\n",
  3385. args->num_cliprects, ret);
  3386. ret = -EFAULT;
  3387. goto pre_mutex_err;
  3388. }
  3389. }
  3390. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3391. if (request == NULL) {
  3392. ret = -ENOMEM;
  3393. goto pre_mutex_err;
  3394. }
  3395. ret = i915_mutex_lock_interruptible(dev);
  3396. if (ret)
  3397. goto pre_mutex_err;
  3398. if (dev_priv->mm.suspended) {
  3399. mutex_unlock(&dev->struct_mutex);
  3400. ret = -EBUSY;
  3401. goto pre_mutex_err;
  3402. }
  3403. /* Look up object handles */
  3404. for (i = 0; i < args->buffer_count; i++) {
  3405. struct drm_i915_gem_object *obj;
  3406. obj = to_intel_bo (drm_gem_object_lookup(dev, file,
  3407. exec_list[i].handle));
  3408. if (obj == NULL) {
  3409. DRM_ERROR("Invalid object handle %d at index %d\n",
  3410. exec_list[i].handle, i);
  3411. /* prevent error path from reading uninitialized data */
  3412. args->buffer_count = i;
  3413. ret = -ENOENT;
  3414. goto err;
  3415. }
  3416. object_list[i] = obj;
  3417. if (obj->in_execbuffer) {
  3418. DRM_ERROR("Object %p appears more than once in object list\n",
  3419. obj);
  3420. /* prevent error path from reading uninitialized data */
  3421. args->buffer_count = i + 1;
  3422. ret = -EINVAL;
  3423. goto err;
  3424. }
  3425. obj->in_execbuffer = true;
  3426. obj->pending_fenced_gpu_access = false;
  3427. }
  3428. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3429. ret = i915_gem_execbuffer_reserve(dev, file,
  3430. object_list, exec_list,
  3431. args->buffer_count);
  3432. if (ret)
  3433. goto err;
  3434. /* The objects are in their final locations, apply the relocations. */
  3435. ret = i915_gem_execbuffer_relocate(dev, file,
  3436. object_list, exec_list,
  3437. args->buffer_count);
  3438. if (ret) {
  3439. if (ret == -EFAULT) {
  3440. ret = i915_gem_execbuffer_relocate_slow(dev, file,
  3441. object_list,
  3442. exec_list,
  3443. args->buffer_count);
  3444. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  3445. }
  3446. if (ret)
  3447. goto err;
  3448. }
  3449. /* Set the pending read domains for the batch buffer to COMMAND */
  3450. batch_obj = object_list[args->buffer_count-1];
  3451. if (batch_obj->base.pending_write_domain) {
  3452. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3453. ret = -EINVAL;
  3454. goto err;
  3455. }
  3456. batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3457. /* Sanity check the batch buffer */
  3458. exec_offset = batch_obj->gtt_offset;
  3459. ret = i915_gem_check_execbuffer(args, exec_offset);
  3460. if (ret != 0) {
  3461. DRM_ERROR("execbuf with invalid offset/length\n");
  3462. goto err;
  3463. }
  3464. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3465. object_list, args->buffer_count);
  3466. if (ret)
  3467. goto err;
  3468. #if WATCH_COHERENCY
  3469. for (i = 0; i < args->buffer_count; i++) {
  3470. i915_gem_object_check_coherency(object_list[i],
  3471. exec_list[i].handle);
  3472. }
  3473. #endif
  3474. #if WATCH_EXEC
  3475. i915_gem_dump_object(batch_obj,
  3476. args->batch_len,
  3477. __func__,
  3478. ~0);
  3479. #endif
  3480. /* Check for any pending flips. As we only maintain a flip queue depth
  3481. * of 1, we can simply insert a WAIT for the next display flip prior
  3482. * to executing the batch and avoid stalling the CPU.
  3483. */
  3484. flips = 0;
  3485. for (i = 0; i < args->buffer_count; i++) {
  3486. if (object_list[i]->base.write_domain)
  3487. flips |= atomic_read(&object_list[i]->pending_flip);
  3488. }
  3489. if (flips) {
  3490. int plane, flip_mask;
  3491. for (plane = 0; flips >> plane; plane++) {
  3492. if (((flips >> plane) & 1) == 0)
  3493. continue;
  3494. if (plane)
  3495. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3496. else
  3497. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3498. ret = intel_ring_begin(ring, 2);
  3499. if (ret)
  3500. goto err;
  3501. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3502. intel_ring_emit(ring, MI_NOOP);
  3503. intel_ring_advance(ring);
  3504. }
  3505. }
  3506. /* Exec the batchbuffer */
  3507. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3508. if (ret) {
  3509. DRM_ERROR("dispatch failed %d\n", ret);
  3510. goto err;
  3511. }
  3512. for (i = 0; i < args->buffer_count; i++) {
  3513. struct drm_i915_gem_object *obj = object_list[i];
  3514. obj->base.read_domains = obj->base.pending_read_domains;
  3515. obj->base.write_domain = obj->base.pending_write_domain;
  3516. obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
  3517. i915_gem_object_move_to_active(obj, ring);
  3518. if (obj->base.write_domain) {
  3519. obj->dirty = 1;
  3520. list_move_tail(&obj->gpu_write_list,
  3521. &ring->gpu_write_list);
  3522. intel_mark_busy(dev, obj);
  3523. }
  3524. trace_i915_gem_object_change_domain(obj,
  3525. obj->base.read_domains,
  3526. obj->base.write_domain);
  3527. }
  3528. /*
  3529. * Ensure that the commands in the batch buffer are
  3530. * finished before the interrupt fires
  3531. */
  3532. i915_retire_commands(dev, ring);
  3533. if (i915_add_request(dev, file, request, ring))
  3534. i915_gem_next_request_seqno(dev, ring);
  3535. else
  3536. request = NULL;
  3537. err:
  3538. for (i = 0; i < args->buffer_count; i++) {
  3539. object_list[i]->in_execbuffer = false;
  3540. drm_gem_object_unreference(&object_list[i]->base);
  3541. }
  3542. mutex_unlock(&dev->struct_mutex);
  3543. pre_mutex_err:
  3544. drm_free_large(object_list);
  3545. kfree(cliprects);
  3546. kfree(request);
  3547. return ret;
  3548. }
  3549. /*
  3550. * Legacy execbuffer just creates an exec2 list from the original exec object
  3551. * list array and passes it to the real function.
  3552. */
  3553. int
  3554. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3555. struct drm_file *file)
  3556. {
  3557. struct drm_i915_gem_execbuffer *args = data;
  3558. struct drm_i915_gem_execbuffer2 exec2;
  3559. struct drm_i915_gem_exec_object *exec_list = NULL;
  3560. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3561. int ret, i;
  3562. #if WATCH_EXEC
  3563. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3564. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3565. #endif
  3566. if (args->buffer_count < 1) {
  3567. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3568. return -EINVAL;
  3569. }
  3570. /* Copy in the exec list from userland */
  3571. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3572. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3573. if (exec_list == NULL || exec2_list == NULL) {
  3574. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3575. args->buffer_count);
  3576. drm_free_large(exec_list);
  3577. drm_free_large(exec2_list);
  3578. return -ENOMEM;
  3579. }
  3580. ret = copy_from_user(exec_list,
  3581. (struct drm_i915_relocation_entry __user *)
  3582. (uintptr_t) args->buffers_ptr,
  3583. sizeof(*exec_list) * args->buffer_count);
  3584. if (ret != 0) {
  3585. DRM_ERROR("copy %d exec entries failed %d\n",
  3586. args->buffer_count, ret);
  3587. drm_free_large(exec_list);
  3588. drm_free_large(exec2_list);
  3589. return -EFAULT;
  3590. }
  3591. for (i = 0; i < args->buffer_count; i++) {
  3592. exec2_list[i].handle = exec_list[i].handle;
  3593. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3594. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3595. exec2_list[i].alignment = exec_list[i].alignment;
  3596. exec2_list[i].offset = exec_list[i].offset;
  3597. if (INTEL_INFO(dev)->gen < 4)
  3598. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3599. else
  3600. exec2_list[i].flags = 0;
  3601. }
  3602. exec2.buffers_ptr = args->buffers_ptr;
  3603. exec2.buffer_count = args->buffer_count;
  3604. exec2.batch_start_offset = args->batch_start_offset;
  3605. exec2.batch_len = args->batch_len;
  3606. exec2.DR1 = args->DR1;
  3607. exec2.DR4 = args->DR4;
  3608. exec2.num_cliprects = args->num_cliprects;
  3609. exec2.cliprects_ptr = args->cliprects_ptr;
  3610. exec2.flags = I915_EXEC_RENDER;
  3611. ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
  3612. if (!ret) {
  3613. /* Copy the new buffer offsets back to the user's exec list. */
  3614. for (i = 0; i < args->buffer_count; i++)
  3615. exec_list[i].offset = exec2_list[i].offset;
  3616. /* ... and back out to userspace */
  3617. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3618. (uintptr_t) args->buffers_ptr,
  3619. exec_list,
  3620. sizeof(*exec_list) * args->buffer_count);
  3621. if (ret) {
  3622. ret = -EFAULT;
  3623. DRM_ERROR("failed to copy %d exec entries "
  3624. "back to user (%d)\n",
  3625. args->buffer_count, ret);
  3626. }
  3627. }
  3628. drm_free_large(exec_list);
  3629. drm_free_large(exec2_list);
  3630. return ret;
  3631. }
  3632. int
  3633. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3634. struct drm_file *file)
  3635. {
  3636. struct drm_i915_gem_execbuffer2 *args = data;
  3637. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3638. int ret;
  3639. #if WATCH_EXEC
  3640. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3641. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3642. #endif
  3643. if (args->buffer_count < 1) {
  3644. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3645. return -EINVAL;
  3646. }
  3647. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3648. if (exec2_list == NULL) {
  3649. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3650. args->buffer_count);
  3651. return -ENOMEM;
  3652. }
  3653. ret = copy_from_user(exec2_list,
  3654. (struct drm_i915_relocation_entry __user *)
  3655. (uintptr_t) args->buffers_ptr,
  3656. sizeof(*exec2_list) * args->buffer_count);
  3657. if (ret != 0) {
  3658. DRM_ERROR("copy %d exec entries failed %d\n",
  3659. args->buffer_count, ret);
  3660. drm_free_large(exec2_list);
  3661. return -EFAULT;
  3662. }
  3663. ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
  3664. if (!ret) {
  3665. /* Copy the new buffer offsets back to the user's exec list. */
  3666. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3667. (uintptr_t) args->buffers_ptr,
  3668. exec2_list,
  3669. sizeof(*exec2_list) * args->buffer_count);
  3670. if (ret) {
  3671. ret = -EFAULT;
  3672. DRM_ERROR("failed to copy %d exec entries "
  3673. "back to user (%d)\n",
  3674. args->buffer_count, ret);
  3675. }
  3676. }
  3677. drm_free_large(exec2_list);
  3678. return ret;
  3679. }
  3680. int
  3681. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3682. uint32_t alignment,
  3683. bool map_and_fenceable)
  3684. {
  3685. struct drm_device *dev = obj->base.dev;
  3686. struct drm_i915_private *dev_priv = dev->dev_private;
  3687. int ret;
  3688. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3689. WARN_ON(i915_verify_lists(dev));
  3690. if (obj->gtt_space != NULL) {
  3691. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  3692. (map_and_fenceable && !obj->map_and_fenceable)) {
  3693. WARN(obj->pin_count,
  3694. "bo is already pinned with incorrect alignment:"
  3695. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3696. " obj->map_and_fenceable=%d\n",
  3697. obj->gtt_offset, alignment,
  3698. map_and_fenceable,
  3699. obj->map_and_fenceable);
  3700. ret = i915_gem_object_unbind(obj);
  3701. if (ret)
  3702. return ret;
  3703. }
  3704. }
  3705. if (obj->gtt_space == NULL) {
  3706. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3707. map_and_fenceable);
  3708. if (ret)
  3709. return ret;
  3710. }
  3711. if (obj->pin_count++ == 0) {
  3712. i915_gem_info_add_pin(dev_priv, obj, map_and_fenceable);
  3713. if (!obj->active)
  3714. list_move_tail(&obj->mm_list,
  3715. &dev_priv->mm.pinned_list);
  3716. }
  3717. BUG_ON(!obj->pin_mappable && map_and_fenceable);
  3718. WARN_ON(i915_verify_lists(dev));
  3719. return 0;
  3720. }
  3721. void
  3722. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  3723. {
  3724. struct drm_device *dev = obj->base.dev;
  3725. drm_i915_private_t *dev_priv = dev->dev_private;
  3726. WARN_ON(i915_verify_lists(dev));
  3727. BUG_ON(obj->pin_count == 0);
  3728. BUG_ON(obj->gtt_space == NULL);
  3729. if (--obj->pin_count == 0) {
  3730. if (!obj->active)
  3731. list_move_tail(&obj->mm_list,
  3732. &dev_priv->mm.inactive_list);
  3733. i915_gem_info_remove_pin(dev_priv, obj);
  3734. }
  3735. WARN_ON(i915_verify_lists(dev));
  3736. }
  3737. int
  3738. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3739. struct drm_file *file)
  3740. {
  3741. struct drm_i915_gem_pin *args = data;
  3742. struct drm_i915_gem_object *obj;
  3743. int ret;
  3744. ret = i915_mutex_lock_interruptible(dev);
  3745. if (ret)
  3746. return ret;
  3747. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3748. if (obj == NULL) {
  3749. ret = -ENOENT;
  3750. goto unlock;
  3751. }
  3752. if (obj->madv != I915_MADV_WILLNEED) {
  3753. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3754. ret = -EINVAL;
  3755. goto out;
  3756. }
  3757. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3758. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3759. args->handle);
  3760. ret = -EINVAL;
  3761. goto out;
  3762. }
  3763. obj->user_pin_count++;
  3764. obj->pin_filp = file;
  3765. if (obj->user_pin_count == 1) {
  3766. ret = i915_gem_object_pin(obj, args->alignment, true);
  3767. if (ret)
  3768. goto out;
  3769. }
  3770. /* XXX - flush the CPU caches for pinned objects
  3771. * as the X server doesn't manage domains yet
  3772. */
  3773. i915_gem_object_flush_cpu_write_domain(obj);
  3774. args->offset = obj->gtt_offset;
  3775. out:
  3776. drm_gem_object_unreference(&obj->base);
  3777. unlock:
  3778. mutex_unlock(&dev->struct_mutex);
  3779. return ret;
  3780. }
  3781. int
  3782. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3783. struct drm_file *file)
  3784. {
  3785. struct drm_i915_gem_pin *args = data;
  3786. struct drm_i915_gem_object *obj;
  3787. int ret;
  3788. ret = i915_mutex_lock_interruptible(dev);
  3789. if (ret)
  3790. return ret;
  3791. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3792. if (obj == NULL) {
  3793. ret = -ENOENT;
  3794. goto unlock;
  3795. }
  3796. if (obj->pin_filp != file) {
  3797. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3798. args->handle);
  3799. ret = -EINVAL;
  3800. goto out;
  3801. }
  3802. obj->user_pin_count--;
  3803. if (obj->user_pin_count == 0) {
  3804. obj->pin_filp = NULL;
  3805. i915_gem_object_unpin(obj);
  3806. }
  3807. out:
  3808. drm_gem_object_unreference(&obj->base);
  3809. unlock:
  3810. mutex_unlock(&dev->struct_mutex);
  3811. return ret;
  3812. }
  3813. int
  3814. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3815. struct drm_file *file)
  3816. {
  3817. struct drm_i915_gem_busy *args = data;
  3818. struct drm_i915_gem_object *obj;
  3819. int ret;
  3820. ret = i915_mutex_lock_interruptible(dev);
  3821. if (ret)
  3822. return ret;
  3823. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3824. if (obj == NULL) {
  3825. ret = -ENOENT;
  3826. goto unlock;
  3827. }
  3828. /* Count all active objects as busy, even if they are currently not used
  3829. * by the gpu. Users of this interface expect objects to eventually
  3830. * become non-busy without any further actions, therefore emit any
  3831. * necessary flushes here.
  3832. */
  3833. args->busy = obj->active;
  3834. if (args->busy) {
  3835. /* Unconditionally flush objects, even when the gpu still uses this
  3836. * object. Userspace calling this function indicates that it wants to
  3837. * use this buffer rather sooner than later, so issuing the required
  3838. * flush earlier is beneficial.
  3839. */
  3840. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  3841. i915_gem_flush_ring(dev, obj->ring,
  3842. 0, obj->base.write_domain);
  3843. /* Update the active list for the hardware's current position.
  3844. * Otherwise this only updates on a delayed timer or when irqs
  3845. * are actually unmasked, and our working set ends up being
  3846. * larger than required.
  3847. */
  3848. i915_gem_retire_requests_ring(dev, obj->ring);
  3849. args->busy = obj->active;
  3850. }
  3851. drm_gem_object_unreference(&obj->base);
  3852. unlock:
  3853. mutex_unlock(&dev->struct_mutex);
  3854. return ret;
  3855. }
  3856. int
  3857. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3858. struct drm_file *file_priv)
  3859. {
  3860. return i915_gem_ring_throttle(dev, file_priv);
  3861. }
  3862. int
  3863. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3864. struct drm_file *file_priv)
  3865. {
  3866. struct drm_i915_gem_madvise *args = data;
  3867. struct drm_i915_gem_object *obj;
  3868. int ret;
  3869. switch (args->madv) {
  3870. case I915_MADV_DONTNEED:
  3871. case I915_MADV_WILLNEED:
  3872. break;
  3873. default:
  3874. return -EINVAL;
  3875. }
  3876. ret = i915_mutex_lock_interruptible(dev);
  3877. if (ret)
  3878. return ret;
  3879. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3880. if (obj == NULL) {
  3881. ret = -ENOENT;
  3882. goto unlock;
  3883. }
  3884. if (obj->pin_count) {
  3885. ret = -EINVAL;
  3886. goto out;
  3887. }
  3888. if (obj->madv != __I915_MADV_PURGED)
  3889. obj->madv = args->madv;
  3890. /* if the object is no longer bound, discard its backing storage */
  3891. if (i915_gem_object_is_purgeable(obj) &&
  3892. obj->gtt_space == NULL)
  3893. i915_gem_object_truncate(obj);
  3894. args->retained = obj->madv != __I915_MADV_PURGED;
  3895. out:
  3896. drm_gem_object_unreference(&obj->base);
  3897. unlock:
  3898. mutex_unlock(&dev->struct_mutex);
  3899. return ret;
  3900. }
  3901. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3902. size_t size)
  3903. {
  3904. struct drm_i915_private *dev_priv = dev->dev_private;
  3905. struct drm_i915_gem_object *obj;
  3906. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3907. if (obj == NULL)
  3908. return NULL;
  3909. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3910. kfree(obj);
  3911. return NULL;
  3912. }
  3913. i915_gem_info_add_obj(dev_priv, size);
  3914. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3915. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3916. obj->agp_type = AGP_USER_MEMORY;
  3917. obj->base.driver_private = NULL;
  3918. obj->fence_reg = I915_FENCE_REG_NONE;
  3919. INIT_LIST_HEAD(&obj->mm_list);
  3920. INIT_LIST_HEAD(&obj->gtt_list);
  3921. INIT_LIST_HEAD(&obj->ring_list);
  3922. INIT_LIST_HEAD(&obj->gpu_write_list);
  3923. obj->madv = I915_MADV_WILLNEED;
  3924. /* Avoid an unnecessary call to unbind on the first bind. */
  3925. obj->map_and_fenceable = true;
  3926. return obj;
  3927. }
  3928. int i915_gem_init_object(struct drm_gem_object *obj)
  3929. {
  3930. BUG();
  3931. return 0;
  3932. }
  3933. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3934. {
  3935. struct drm_device *dev = obj->base.dev;
  3936. drm_i915_private_t *dev_priv = dev->dev_private;
  3937. int ret;
  3938. ret = i915_gem_object_unbind(obj);
  3939. if (ret == -ERESTARTSYS) {
  3940. list_move(&obj->mm_list,
  3941. &dev_priv->mm.deferred_free_list);
  3942. return;
  3943. }
  3944. if (obj->base.map_list.map)
  3945. i915_gem_free_mmap_offset(obj);
  3946. drm_gem_object_release(&obj->base);
  3947. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3948. kfree(obj->page_cpu_valid);
  3949. kfree(obj->bit_17);
  3950. kfree(obj);
  3951. }
  3952. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3953. {
  3954. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3955. struct drm_device *dev = obj->base.dev;
  3956. trace_i915_gem_object_destroy(obj);
  3957. while (obj->pin_count > 0)
  3958. i915_gem_object_unpin(obj);
  3959. if (obj->phys_obj)
  3960. i915_gem_detach_phys_object(dev, obj);
  3961. i915_gem_free_object_tail(obj);
  3962. }
  3963. int
  3964. i915_gem_idle(struct drm_device *dev)
  3965. {
  3966. drm_i915_private_t *dev_priv = dev->dev_private;
  3967. int ret;
  3968. mutex_lock(&dev->struct_mutex);
  3969. if (dev_priv->mm.suspended) {
  3970. mutex_unlock(&dev->struct_mutex);
  3971. return 0;
  3972. }
  3973. ret = i915_gpu_idle(dev);
  3974. if (ret) {
  3975. mutex_unlock(&dev->struct_mutex);
  3976. return ret;
  3977. }
  3978. /* Under UMS, be paranoid and evict. */
  3979. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3980. ret = i915_gem_evict_inactive(dev, false);
  3981. if (ret) {
  3982. mutex_unlock(&dev->struct_mutex);
  3983. return ret;
  3984. }
  3985. }
  3986. i915_gem_reset_fences(dev);
  3987. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3988. * We need to replace this with a semaphore, or something.
  3989. * And not confound mm.suspended!
  3990. */
  3991. dev_priv->mm.suspended = 1;
  3992. del_timer_sync(&dev_priv->hangcheck_timer);
  3993. i915_kernel_lost_context(dev);
  3994. i915_gem_cleanup_ringbuffer(dev);
  3995. mutex_unlock(&dev->struct_mutex);
  3996. /* Cancel the retire work handler, which should be idle now. */
  3997. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3998. return 0;
  3999. }
  4000. int
  4001. i915_gem_init_ringbuffer(struct drm_device *dev)
  4002. {
  4003. drm_i915_private_t *dev_priv = dev->dev_private;
  4004. int ret;
  4005. ret = intel_init_render_ring_buffer(dev);
  4006. if (ret)
  4007. return ret;
  4008. if (HAS_BSD(dev)) {
  4009. ret = intel_init_bsd_ring_buffer(dev);
  4010. if (ret)
  4011. goto cleanup_render_ring;
  4012. }
  4013. if (HAS_BLT(dev)) {
  4014. ret = intel_init_blt_ring_buffer(dev);
  4015. if (ret)
  4016. goto cleanup_bsd_ring;
  4017. }
  4018. dev_priv->next_seqno = 1;
  4019. return 0;
  4020. cleanup_bsd_ring:
  4021. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4022. cleanup_render_ring:
  4023. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4024. return ret;
  4025. }
  4026. void
  4027. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4028. {
  4029. drm_i915_private_t *dev_priv = dev->dev_private;
  4030. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4031. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4032. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  4033. }
  4034. int
  4035. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  4036. struct drm_file *file_priv)
  4037. {
  4038. drm_i915_private_t *dev_priv = dev->dev_private;
  4039. int ret;
  4040. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4041. return 0;
  4042. if (atomic_read(&dev_priv->mm.wedged)) {
  4043. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  4044. atomic_set(&dev_priv->mm.wedged, 0);
  4045. }
  4046. mutex_lock(&dev->struct_mutex);
  4047. dev_priv->mm.suspended = 0;
  4048. ret = i915_gem_init_ringbuffer(dev);
  4049. if (ret != 0) {
  4050. mutex_unlock(&dev->struct_mutex);
  4051. return ret;
  4052. }
  4053. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4054. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  4055. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  4056. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  4057. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4058. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4059. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  4060. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  4061. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  4062. mutex_unlock(&dev->struct_mutex);
  4063. ret = drm_irq_install(dev);
  4064. if (ret)
  4065. goto cleanup_ringbuffer;
  4066. return 0;
  4067. cleanup_ringbuffer:
  4068. mutex_lock(&dev->struct_mutex);
  4069. i915_gem_cleanup_ringbuffer(dev);
  4070. dev_priv->mm.suspended = 1;
  4071. mutex_unlock(&dev->struct_mutex);
  4072. return ret;
  4073. }
  4074. int
  4075. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4076. struct drm_file *file_priv)
  4077. {
  4078. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4079. return 0;
  4080. drm_irq_uninstall(dev);
  4081. return i915_gem_idle(dev);
  4082. }
  4083. void
  4084. i915_gem_lastclose(struct drm_device *dev)
  4085. {
  4086. int ret;
  4087. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4088. return;
  4089. ret = i915_gem_idle(dev);
  4090. if (ret)
  4091. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4092. }
  4093. static void
  4094. init_ring_lists(struct intel_ring_buffer *ring)
  4095. {
  4096. INIT_LIST_HEAD(&ring->active_list);
  4097. INIT_LIST_HEAD(&ring->request_list);
  4098. INIT_LIST_HEAD(&ring->gpu_write_list);
  4099. }
  4100. void
  4101. i915_gem_load(struct drm_device *dev)
  4102. {
  4103. int i;
  4104. drm_i915_private_t *dev_priv = dev->dev_private;
  4105. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4106. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4107. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4108. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4109. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4110. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4111. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  4112. init_ring_lists(&dev_priv->render_ring);
  4113. init_ring_lists(&dev_priv->bsd_ring);
  4114. init_ring_lists(&dev_priv->blt_ring);
  4115. for (i = 0; i < 16; i++)
  4116. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4117. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4118. i915_gem_retire_work_handler);
  4119. init_completion(&dev_priv->error_completion);
  4120. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4121. if (IS_GEN3(dev)) {
  4122. u32 tmp = I915_READ(MI_ARB_STATE);
  4123. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4124. /* arb state is a masked write, so set bit + bit in mask */
  4125. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4126. I915_WRITE(MI_ARB_STATE, tmp);
  4127. }
  4128. }
  4129. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4130. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4131. dev_priv->fence_reg_start = 3;
  4132. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4133. dev_priv->num_fence_regs = 16;
  4134. else
  4135. dev_priv->num_fence_regs = 8;
  4136. /* Initialize fence registers to zero */
  4137. switch (INTEL_INFO(dev)->gen) {
  4138. case 6:
  4139. for (i = 0; i < 16; i++)
  4140. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4141. break;
  4142. case 5:
  4143. case 4:
  4144. for (i = 0; i < 16; i++)
  4145. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4146. break;
  4147. case 3:
  4148. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4149. for (i = 0; i < 8; i++)
  4150. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4151. case 2:
  4152. for (i = 0; i < 8; i++)
  4153. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4154. break;
  4155. }
  4156. i915_gem_detect_bit_6_swizzle(dev);
  4157. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4158. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4159. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4160. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4161. }
  4162. /*
  4163. * Create a physically contiguous memory object for this object
  4164. * e.g. for cursor + overlay regs
  4165. */
  4166. static int i915_gem_init_phys_object(struct drm_device *dev,
  4167. int id, int size, int align)
  4168. {
  4169. drm_i915_private_t *dev_priv = dev->dev_private;
  4170. struct drm_i915_gem_phys_object *phys_obj;
  4171. int ret;
  4172. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4173. return 0;
  4174. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4175. if (!phys_obj)
  4176. return -ENOMEM;
  4177. phys_obj->id = id;
  4178. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4179. if (!phys_obj->handle) {
  4180. ret = -ENOMEM;
  4181. goto kfree_obj;
  4182. }
  4183. #ifdef CONFIG_X86
  4184. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4185. #endif
  4186. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4187. return 0;
  4188. kfree_obj:
  4189. kfree(phys_obj);
  4190. return ret;
  4191. }
  4192. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4193. {
  4194. drm_i915_private_t *dev_priv = dev->dev_private;
  4195. struct drm_i915_gem_phys_object *phys_obj;
  4196. if (!dev_priv->mm.phys_objs[id - 1])
  4197. return;
  4198. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4199. if (phys_obj->cur_obj) {
  4200. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4201. }
  4202. #ifdef CONFIG_X86
  4203. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4204. #endif
  4205. drm_pci_free(dev, phys_obj->handle);
  4206. kfree(phys_obj);
  4207. dev_priv->mm.phys_objs[id - 1] = NULL;
  4208. }
  4209. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4210. {
  4211. int i;
  4212. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4213. i915_gem_free_phys_object(dev, i);
  4214. }
  4215. void i915_gem_detach_phys_object(struct drm_device *dev,
  4216. struct drm_i915_gem_object *obj)
  4217. {
  4218. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  4219. char *vaddr;
  4220. int i;
  4221. int page_count;
  4222. if (!obj->phys_obj)
  4223. return;
  4224. vaddr = obj->phys_obj->handle->vaddr;
  4225. page_count = obj->base.size / PAGE_SIZE;
  4226. for (i = 0; i < page_count; i++) {
  4227. struct page *page = read_cache_page_gfp(mapping, i,
  4228. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4229. if (!IS_ERR(page)) {
  4230. char *dst = kmap_atomic(page);
  4231. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4232. kunmap_atomic(dst);
  4233. drm_clflush_pages(&page, 1);
  4234. set_page_dirty(page);
  4235. mark_page_accessed(page);
  4236. page_cache_release(page);
  4237. }
  4238. }
  4239. intel_gtt_chipset_flush();
  4240. obj->phys_obj->cur_obj = NULL;
  4241. obj->phys_obj = NULL;
  4242. }
  4243. int
  4244. i915_gem_attach_phys_object(struct drm_device *dev,
  4245. struct drm_i915_gem_object *obj,
  4246. int id,
  4247. int align)
  4248. {
  4249. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  4250. drm_i915_private_t *dev_priv = dev->dev_private;
  4251. int ret = 0;
  4252. int page_count;
  4253. int i;
  4254. if (id > I915_MAX_PHYS_OBJECT)
  4255. return -EINVAL;
  4256. if (obj->phys_obj) {
  4257. if (obj->phys_obj->id == id)
  4258. return 0;
  4259. i915_gem_detach_phys_object(dev, obj);
  4260. }
  4261. /* create a new object */
  4262. if (!dev_priv->mm.phys_objs[id - 1]) {
  4263. ret = i915_gem_init_phys_object(dev, id,
  4264. obj->base.size, align);
  4265. if (ret) {
  4266. DRM_ERROR("failed to init phys object %d size: %zu\n",
  4267. id, obj->base.size);
  4268. return ret;
  4269. }
  4270. }
  4271. /* bind to the object */
  4272. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4273. obj->phys_obj->cur_obj = obj;
  4274. page_count = obj->base.size / PAGE_SIZE;
  4275. for (i = 0; i < page_count; i++) {
  4276. struct page *page;
  4277. char *dst, *src;
  4278. page = read_cache_page_gfp(mapping, i,
  4279. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4280. if (IS_ERR(page))
  4281. return PTR_ERR(page);
  4282. src = kmap_atomic(page);
  4283. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4284. memcpy(dst, src, PAGE_SIZE);
  4285. kunmap_atomic(src);
  4286. mark_page_accessed(page);
  4287. page_cache_release(page);
  4288. }
  4289. return 0;
  4290. }
  4291. static int
  4292. i915_gem_phys_pwrite(struct drm_device *dev,
  4293. struct drm_i915_gem_object *obj,
  4294. struct drm_i915_gem_pwrite *args,
  4295. struct drm_file *file_priv)
  4296. {
  4297. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  4298. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4299. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4300. unsigned long unwritten;
  4301. /* The physical object once assigned is fixed for the lifetime
  4302. * of the obj, so we can safely drop the lock and continue
  4303. * to access vaddr.
  4304. */
  4305. mutex_unlock(&dev->struct_mutex);
  4306. unwritten = copy_from_user(vaddr, user_data, args->size);
  4307. mutex_lock(&dev->struct_mutex);
  4308. if (unwritten)
  4309. return -EFAULT;
  4310. }
  4311. intel_gtt_chipset_flush();
  4312. return 0;
  4313. }
  4314. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4315. {
  4316. struct drm_i915_file_private *file_priv = file->driver_priv;
  4317. /* Clean up our request list when the client is going away, so that
  4318. * later retire_requests won't dereference our soon-to-be-gone
  4319. * file_priv.
  4320. */
  4321. spin_lock(&file_priv->mm.lock);
  4322. while (!list_empty(&file_priv->mm.request_list)) {
  4323. struct drm_i915_gem_request *request;
  4324. request = list_first_entry(&file_priv->mm.request_list,
  4325. struct drm_i915_gem_request,
  4326. client_list);
  4327. list_del(&request->client_list);
  4328. request->file_priv = NULL;
  4329. }
  4330. spin_unlock(&file_priv->mm.lock);
  4331. }
  4332. static int
  4333. i915_gpu_is_active(struct drm_device *dev)
  4334. {
  4335. drm_i915_private_t *dev_priv = dev->dev_private;
  4336. int lists_empty;
  4337. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4338. list_empty(&dev_priv->mm.active_list);
  4339. return !lists_empty;
  4340. }
  4341. static int
  4342. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4343. int nr_to_scan,
  4344. gfp_t gfp_mask)
  4345. {
  4346. struct drm_i915_private *dev_priv =
  4347. container_of(shrinker,
  4348. struct drm_i915_private,
  4349. mm.inactive_shrinker);
  4350. struct drm_device *dev = dev_priv->dev;
  4351. struct drm_i915_gem_object *obj, *next;
  4352. int cnt;
  4353. if (!mutex_trylock(&dev->struct_mutex))
  4354. return 0;
  4355. /* "fast-path" to count number of available objects */
  4356. if (nr_to_scan == 0) {
  4357. cnt = 0;
  4358. list_for_each_entry(obj,
  4359. &dev_priv->mm.inactive_list,
  4360. mm_list)
  4361. cnt++;
  4362. mutex_unlock(&dev->struct_mutex);
  4363. return cnt / 100 * sysctl_vfs_cache_pressure;
  4364. }
  4365. rescan:
  4366. /* first scan for clean buffers */
  4367. i915_gem_retire_requests(dev);
  4368. list_for_each_entry_safe(obj, next,
  4369. &dev_priv->mm.inactive_list,
  4370. mm_list) {
  4371. if (i915_gem_object_is_purgeable(obj)) {
  4372. i915_gem_object_unbind(obj);
  4373. if (--nr_to_scan == 0)
  4374. break;
  4375. }
  4376. }
  4377. /* second pass, evict/count anything still on the inactive list */
  4378. cnt = 0;
  4379. list_for_each_entry_safe(obj, next,
  4380. &dev_priv->mm.inactive_list,
  4381. mm_list) {
  4382. if (nr_to_scan) {
  4383. i915_gem_object_unbind(obj);
  4384. nr_to_scan--;
  4385. } else
  4386. cnt++;
  4387. }
  4388. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4389. /*
  4390. * We are desperate for pages, so as a last resort, wait
  4391. * for the GPU to finish and discard whatever we can.
  4392. * This has a dramatic impact to reduce the number of
  4393. * OOM-killer events whilst running the GPU aggressively.
  4394. */
  4395. if (i915_gpu_idle(dev) == 0)
  4396. goto rescan;
  4397. }
  4398. mutex_unlock(&dev->struct_mutex);
  4399. return cnt / 100 * sysctl_vfs_cache_pressure;
  4400. }