sched.c 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <asm/tlb.h>
  55. #include <asm/unistd.h>
  56. /*
  57. * Convert user-nice values [ -20 ... 0 ... 19 ]
  58. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  59. * and back.
  60. */
  61. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  62. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  63. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  64. /*
  65. * 'User priority' is the nice value converted to something we
  66. * can work with better when scaling various scheduler parameters,
  67. * it's a [ 0 ... 39 ] range.
  68. */
  69. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  70. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  71. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  72. /*
  73. * Some helpers for converting nanosecond timing to jiffy resolution
  74. */
  75. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  76. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  77. /*
  78. * These are the 'tuning knobs' of the scheduler:
  79. *
  80. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  81. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  82. * Timeslices get refilled after they expire.
  83. */
  84. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  85. #define DEF_TIMESLICE (100 * HZ / 1000)
  86. #define ON_RUNQUEUE_WEIGHT 30
  87. #define CHILD_PENALTY 95
  88. #define PARENT_PENALTY 100
  89. #define EXIT_WEIGHT 3
  90. #define PRIO_BONUS_RATIO 25
  91. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  92. #define INTERACTIVE_DELTA 2
  93. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  94. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  95. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  96. /*
  97. * If a task is 'interactive' then we reinsert it in the active
  98. * array after it has expired its current timeslice. (it will not
  99. * continue to run immediately, it will still roundrobin with
  100. * other interactive tasks.)
  101. *
  102. * This part scales the interactivity limit depending on niceness.
  103. *
  104. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  105. * Here are a few examples of different nice levels:
  106. *
  107. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  108. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  109. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  110. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  111. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  112. *
  113. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  114. * priority range a task can explore, a value of '1' means the
  115. * task is rated interactive.)
  116. *
  117. * Ie. nice +19 tasks can never get 'interactive' enough to be
  118. * reinserted into the active array. And only heavily CPU-hog nice -20
  119. * tasks will be expired. Default nice 0 tasks are somewhere between,
  120. * it takes some effort for them to get interactive, but it's not
  121. * too hard.
  122. */
  123. #define CURRENT_BONUS(p) \
  124. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  125. MAX_SLEEP_AVG)
  126. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  127. #ifdef CONFIG_SMP
  128. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  129. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  130. num_online_cpus())
  131. #else
  132. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  133. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  134. #endif
  135. #define SCALE(v1,v1_max,v2_max) \
  136. (v1) * (v2_max) / (v1_max)
  137. #define DELTA(p) \
  138. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  139. INTERACTIVE_DELTA)
  140. #define TASK_INTERACTIVE(p) \
  141. ((p)->prio <= (p)->static_prio - DELTA(p))
  142. #define INTERACTIVE_SLEEP(p) \
  143. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  144. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  145. #define TASK_PREEMPTS_CURR(p, rq) \
  146. ((p)->prio < (rq)->curr->prio)
  147. #define SCALE_PRIO(x, prio) \
  148. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  149. static unsigned int static_prio_timeslice(int static_prio)
  150. {
  151. if (static_prio < NICE_TO_PRIO(0))
  152. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  153. else
  154. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  155. }
  156. /*
  157. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  158. * to time slice values: [800ms ... 100ms ... 5ms]
  159. *
  160. * The higher a thread's priority, the bigger timeslices
  161. * it gets during one round of execution. But even the lowest
  162. * priority thread gets MIN_TIMESLICE worth of execution time.
  163. */
  164. static inline unsigned int task_timeslice(struct task_struct *p)
  165. {
  166. return static_prio_timeslice(p->static_prio);
  167. }
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. struct prio_array {
  172. unsigned int nr_active;
  173. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  174. struct list_head queue[MAX_PRIO];
  175. };
  176. /*
  177. * This is the main, per-CPU runqueue data structure.
  178. *
  179. * Locking rule: those places that want to lock multiple runqueues
  180. * (such as the load balancing or the thread migration code), lock
  181. * acquire operations must be ordered by ascending &runqueue.
  182. */
  183. struct rq {
  184. spinlock_t lock;
  185. /*
  186. * nr_running and cpu_load should be in the same cacheline because
  187. * remote CPUs use both these fields when doing load calculation.
  188. */
  189. unsigned long nr_running;
  190. unsigned long raw_weighted_load;
  191. #ifdef CONFIG_SMP
  192. unsigned long cpu_load[3];
  193. #endif
  194. unsigned long long nr_switches;
  195. /*
  196. * This is part of a global counter where only the total sum
  197. * over all CPUs matters. A task can increase this counter on
  198. * one CPU and if it got migrated afterwards it may decrease
  199. * it on another CPU. Always updated under the runqueue lock:
  200. */
  201. unsigned long nr_uninterruptible;
  202. unsigned long expired_timestamp;
  203. /* Cached timestamp set by update_cpu_clock() */
  204. unsigned long long most_recent_timestamp;
  205. struct task_struct *curr, *idle;
  206. unsigned long next_balance;
  207. struct mm_struct *prev_mm;
  208. struct prio_array *active, *expired, arrays[2];
  209. int best_expired_prio;
  210. atomic_t nr_iowait;
  211. #ifdef CONFIG_SMP
  212. struct sched_domain *sd;
  213. /* For active balancing */
  214. int active_balance;
  215. int push_cpu;
  216. int cpu; /* cpu of this runqueue */
  217. struct task_struct *migration_thread;
  218. struct list_head migration_queue;
  219. #endif
  220. #ifdef CONFIG_SCHEDSTATS
  221. /* latency stats */
  222. struct sched_info rq_sched_info;
  223. /* sys_sched_yield() stats */
  224. unsigned long yld_exp_empty;
  225. unsigned long yld_act_empty;
  226. unsigned long yld_both_empty;
  227. unsigned long yld_cnt;
  228. /* schedule() stats */
  229. unsigned long sched_switch;
  230. unsigned long sched_cnt;
  231. unsigned long sched_goidle;
  232. /* try_to_wake_up() stats */
  233. unsigned long ttwu_cnt;
  234. unsigned long ttwu_local;
  235. #endif
  236. struct lock_class_key rq_lock_key;
  237. };
  238. static DEFINE_PER_CPU(struct rq, runqueues);
  239. static inline int cpu_of(struct rq *rq)
  240. {
  241. #ifdef CONFIG_SMP
  242. return rq->cpu;
  243. #else
  244. return 0;
  245. #endif
  246. }
  247. /*
  248. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  249. * See detach_destroy_domains: synchronize_sched for details.
  250. *
  251. * The domain tree of any CPU may only be accessed from within
  252. * preempt-disabled sections.
  253. */
  254. #define for_each_domain(cpu, __sd) \
  255. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  256. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  257. #define this_rq() (&__get_cpu_var(runqueues))
  258. #define task_rq(p) cpu_rq(task_cpu(p))
  259. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  260. #ifndef prepare_arch_switch
  261. # define prepare_arch_switch(next) do { } while (0)
  262. #endif
  263. #ifndef finish_arch_switch
  264. # define finish_arch_switch(prev) do { } while (0)
  265. #endif
  266. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  267. static inline int task_running(struct rq *rq, struct task_struct *p)
  268. {
  269. return rq->curr == p;
  270. }
  271. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  272. {
  273. }
  274. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  275. {
  276. #ifdef CONFIG_DEBUG_SPINLOCK
  277. /* this is a valid case when another task releases the spinlock */
  278. rq->lock.owner = current;
  279. #endif
  280. /*
  281. * If we are tracking spinlock dependencies then we have to
  282. * fix up the runqueue lock - which gets 'carried over' from
  283. * prev into current:
  284. */
  285. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  286. spin_unlock_irq(&rq->lock);
  287. }
  288. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  289. static inline int task_running(struct rq *rq, struct task_struct *p)
  290. {
  291. #ifdef CONFIG_SMP
  292. return p->oncpu;
  293. #else
  294. return rq->curr == p;
  295. #endif
  296. }
  297. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  298. {
  299. #ifdef CONFIG_SMP
  300. /*
  301. * We can optimise this out completely for !SMP, because the
  302. * SMP rebalancing from interrupt is the only thing that cares
  303. * here.
  304. */
  305. next->oncpu = 1;
  306. #endif
  307. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  308. spin_unlock_irq(&rq->lock);
  309. #else
  310. spin_unlock(&rq->lock);
  311. #endif
  312. }
  313. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  314. {
  315. #ifdef CONFIG_SMP
  316. /*
  317. * After ->oncpu is cleared, the task can be moved to a different CPU.
  318. * We must ensure this doesn't happen until the switch is completely
  319. * finished.
  320. */
  321. smp_wmb();
  322. prev->oncpu = 0;
  323. #endif
  324. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  325. local_irq_enable();
  326. #endif
  327. }
  328. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  329. /*
  330. * __task_rq_lock - lock the runqueue a given task resides on.
  331. * Must be called interrupts disabled.
  332. */
  333. static inline struct rq *__task_rq_lock(struct task_struct *p)
  334. __acquires(rq->lock)
  335. {
  336. struct rq *rq;
  337. repeat_lock_task:
  338. rq = task_rq(p);
  339. spin_lock(&rq->lock);
  340. if (unlikely(rq != task_rq(p))) {
  341. spin_unlock(&rq->lock);
  342. goto repeat_lock_task;
  343. }
  344. return rq;
  345. }
  346. /*
  347. * task_rq_lock - lock the runqueue a given task resides on and disable
  348. * interrupts. Note the ordering: we can safely lookup the task_rq without
  349. * explicitly disabling preemption.
  350. */
  351. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  352. __acquires(rq->lock)
  353. {
  354. struct rq *rq;
  355. repeat_lock_task:
  356. local_irq_save(*flags);
  357. rq = task_rq(p);
  358. spin_lock(&rq->lock);
  359. if (unlikely(rq != task_rq(p))) {
  360. spin_unlock_irqrestore(&rq->lock, *flags);
  361. goto repeat_lock_task;
  362. }
  363. return rq;
  364. }
  365. static inline void __task_rq_unlock(struct rq *rq)
  366. __releases(rq->lock)
  367. {
  368. spin_unlock(&rq->lock);
  369. }
  370. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  371. __releases(rq->lock)
  372. {
  373. spin_unlock_irqrestore(&rq->lock, *flags);
  374. }
  375. #ifdef CONFIG_SCHEDSTATS
  376. /*
  377. * bump this up when changing the output format or the meaning of an existing
  378. * format, so that tools can adapt (or abort)
  379. */
  380. #define SCHEDSTAT_VERSION 14
  381. static int show_schedstat(struct seq_file *seq, void *v)
  382. {
  383. int cpu;
  384. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  385. seq_printf(seq, "timestamp %lu\n", jiffies);
  386. for_each_online_cpu(cpu) {
  387. struct rq *rq = cpu_rq(cpu);
  388. #ifdef CONFIG_SMP
  389. struct sched_domain *sd;
  390. int dcnt = 0;
  391. #endif
  392. /* runqueue-specific stats */
  393. seq_printf(seq,
  394. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  395. cpu, rq->yld_both_empty,
  396. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  397. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  398. rq->ttwu_cnt, rq->ttwu_local,
  399. rq->rq_sched_info.cpu_time,
  400. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  401. seq_printf(seq, "\n");
  402. #ifdef CONFIG_SMP
  403. /* domain-specific stats */
  404. preempt_disable();
  405. for_each_domain(cpu, sd) {
  406. enum idle_type itype;
  407. char mask_str[NR_CPUS];
  408. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  409. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  410. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  411. itype++) {
  412. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
  413. "%lu",
  414. sd->lb_cnt[itype],
  415. sd->lb_balanced[itype],
  416. sd->lb_failed[itype],
  417. sd->lb_imbalance[itype],
  418. sd->lb_gained[itype],
  419. sd->lb_hot_gained[itype],
  420. sd->lb_nobusyq[itype],
  421. sd->lb_nobusyg[itype]);
  422. }
  423. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
  424. " %lu %lu %lu\n",
  425. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  426. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  427. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  428. sd->ttwu_wake_remote, sd->ttwu_move_affine,
  429. sd->ttwu_move_balance);
  430. }
  431. preempt_enable();
  432. #endif
  433. }
  434. return 0;
  435. }
  436. static int schedstat_open(struct inode *inode, struct file *file)
  437. {
  438. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  439. char *buf = kmalloc(size, GFP_KERNEL);
  440. struct seq_file *m;
  441. int res;
  442. if (!buf)
  443. return -ENOMEM;
  444. res = single_open(file, show_schedstat, NULL);
  445. if (!res) {
  446. m = file->private_data;
  447. m->buf = buf;
  448. m->size = size;
  449. } else
  450. kfree(buf);
  451. return res;
  452. }
  453. const struct file_operations proc_schedstat_operations = {
  454. .open = schedstat_open,
  455. .read = seq_read,
  456. .llseek = seq_lseek,
  457. .release = single_release,
  458. };
  459. /*
  460. * Expects runqueue lock to be held for atomicity of update
  461. */
  462. static inline void
  463. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  464. {
  465. if (rq) {
  466. rq->rq_sched_info.run_delay += delta_jiffies;
  467. rq->rq_sched_info.pcnt++;
  468. }
  469. }
  470. /*
  471. * Expects runqueue lock to be held for atomicity of update
  472. */
  473. static inline void
  474. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  475. {
  476. if (rq)
  477. rq->rq_sched_info.cpu_time += delta_jiffies;
  478. }
  479. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  480. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  481. #else /* !CONFIG_SCHEDSTATS */
  482. static inline void
  483. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  484. {}
  485. static inline void
  486. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  487. {}
  488. # define schedstat_inc(rq, field) do { } while (0)
  489. # define schedstat_add(rq, field, amt) do { } while (0)
  490. #endif
  491. /*
  492. * this_rq_lock - lock this runqueue and disable interrupts.
  493. */
  494. static inline struct rq *this_rq_lock(void)
  495. __acquires(rq->lock)
  496. {
  497. struct rq *rq;
  498. local_irq_disable();
  499. rq = this_rq();
  500. spin_lock(&rq->lock);
  501. return rq;
  502. }
  503. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  504. /*
  505. * Called when a process is dequeued from the active array and given
  506. * the cpu. We should note that with the exception of interactive
  507. * tasks, the expired queue will become the active queue after the active
  508. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  509. * expired queue. (Interactive tasks may be requeued directly to the
  510. * active queue, thus delaying tasks in the expired queue from running;
  511. * see scheduler_tick()).
  512. *
  513. * This function is only called from sched_info_arrive(), rather than
  514. * dequeue_task(). Even though a task may be queued and dequeued multiple
  515. * times as it is shuffled about, we're really interested in knowing how
  516. * long it was from the *first* time it was queued to the time that it
  517. * finally hit a cpu.
  518. */
  519. static inline void sched_info_dequeued(struct task_struct *t)
  520. {
  521. t->sched_info.last_queued = 0;
  522. }
  523. /*
  524. * Called when a task finally hits the cpu. We can now calculate how
  525. * long it was waiting to run. We also note when it began so that we
  526. * can keep stats on how long its timeslice is.
  527. */
  528. static void sched_info_arrive(struct task_struct *t)
  529. {
  530. unsigned long now = jiffies, delta_jiffies = 0;
  531. if (t->sched_info.last_queued)
  532. delta_jiffies = now - t->sched_info.last_queued;
  533. sched_info_dequeued(t);
  534. t->sched_info.run_delay += delta_jiffies;
  535. t->sched_info.last_arrival = now;
  536. t->sched_info.pcnt++;
  537. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  538. }
  539. /*
  540. * Called when a process is queued into either the active or expired
  541. * array. The time is noted and later used to determine how long we
  542. * had to wait for us to reach the cpu. Since the expired queue will
  543. * become the active queue after active queue is empty, without dequeuing
  544. * and requeuing any tasks, we are interested in queuing to either. It
  545. * is unusual but not impossible for tasks to be dequeued and immediately
  546. * requeued in the same or another array: this can happen in sched_yield(),
  547. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  548. * to runqueue.
  549. *
  550. * This function is only called from enqueue_task(), but also only updates
  551. * the timestamp if it is already not set. It's assumed that
  552. * sched_info_dequeued() will clear that stamp when appropriate.
  553. */
  554. static inline void sched_info_queued(struct task_struct *t)
  555. {
  556. if (unlikely(sched_info_on()))
  557. if (!t->sched_info.last_queued)
  558. t->sched_info.last_queued = jiffies;
  559. }
  560. /*
  561. * Called when a process ceases being the active-running process, either
  562. * voluntarily or involuntarily. Now we can calculate how long we ran.
  563. */
  564. static inline void sched_info_depart(struct task_struct *t)
  565. {
  566. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  567. t->sched_info.cpu_time += delta_jiffies;
  568. rq_sched_info_depart(task_rq(t), delta_jiffies);
  569. }
  570. /*
  571. * Called when tasks are switched involuntarily due, typically, to expiring
  572. * their time slice. (This may also be called when switching to or from
  573. * the idle task.) We are only called when prev != next.
  574. */
  575. static inline void
  576. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  577. {
  578. struct rq *rq = task_rq(prev);
  579. /*
  580. * prev now departs the cpu. It's not interesting to record
  581. * stats about how efficient we were at scheduling the idle
  582. * process, however.
  583. */
  584. if (prev != rq->idle)
  585. sched_info_depart(prev);
  586. if (next != rq->idle)
  587. sched_info_arrive(next);
  588. }
  589. static inline void
  590. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  591. {
  592. if (unlikely(sched_info_on()))
  593. __sched_info_switch(prev, next);
  594. }
  595. #else
  596. #define sched_info_queued(t) do { } while (0)
  597. #define sched_info_switch(t, next) do { } while (0)
  598. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  599. /*
  600. * Adding/removing a task to/from a priority array:
  601. */
  602. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  603. {
  604. array->nr_active--;
  605. list_del(&p->run_list);
  606. if (list_empty(array->queue + p->prio))
  607. __clear_bit(p->prio, array->bitmap);
  608. }
  609. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  610. {
  611. sched_info_queued(p);
  612. list_add_tail(&p->run_list, array->queue + p->prio);
  613. __set_bit(p->prio, array->bitmap);
  614. array->nr_active++;
  615. p->array = array;
  616. }
  617. /*
  618. * Put task to the end of the run list without the overhead of dequeue
  619. * followed by enqueue.
  620. */
  621. static void requeue_task(struct task_struct *p, struct prio_array *array)
  622. {
  623. list_move_tail(&p->run_list, array->queue + p->prio);
  624. }
  625. static inline void
  626. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  627. {
  628. list_add(&p->run_list, array->queue + p->prio);
  629. __set_bit(p->prio, array->bitmap);
  630. array->nr_active++;
  631. p->array = array;
  632. }
  633. /*
  634. * __normal_prio - return the priority that is based on the static
  635. * priority but is modified by bonuses/penalties.
  636. *
  637. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  638. * into the -5 ... 0 ... +5 bonus/penalty range.
  639. *
  640. * We use 25% of the full 0...39 priority range so that:
  641. *
  642. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  643. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  644. *
  645. * Both properties are important to certain workloads.
  646. */
  647. static inline int __normal_prio(struct task_struct *p)
  648. {
  649. int bonus, prio;
  650. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  651. prio = p->static_prio - bonus;
  652. if (prio < MAX_RT_PRIO)
  653. prio = MAX_RT_PRIO;
  654. if (prio > MAX_PRIO-1)
  655. prio = MAX_PRIO-1;
  656. return prio;
  657. }
  658. /*
  659. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  660. * of tasks with abnormal "nice" values across CPUs the contribution that
  661. * each task makes to its run queue's load is weighted according to its
  662. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  663. * scaled version of the new time slice allocation that they receive on time
  664. * slice expiry etc.
  665. */
  666. /*
  667. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  668. * If static_prio_timeslice() is ever changed to break this assumption then
  669. * this code will need modification
  670. */
  671. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  672. #define LOAD_WEIGHT(lp) \
  673. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  674. #define PRIO_TO_LOAD_WEIGHT(prio) \
  675. LOAD_WEIGHT(static_prio_timeslice(prio))
  676. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  677. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  678. static void set_load_weight(struct task_struct *p)
  679. {
  680. if (has_rt_policy(p)) {
  681. #ifdef CONFIG_SMP
  682. if (p == task_rq(p)->migration_thread)
  683. /*
  684. * The migration thread does the actual balancing.
  685. * Giving its load any weight will skew balancing
  686. * adversely.
  687. */
  688. p->load_weight = 0;
  689. else
  690. #endif
  691. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  692. } else
  693. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  694. }
  695. static inline void
  696. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  697. {
  698. rq->raw_weighted_load += p->load_weight;
  699. }
  700. static inline void
  701. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  702. {
  703. rq->raw_weighted_load -= p->load_weight;
  704. }
  705. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  706. {
  707. rq->nr_running++;
  708. inc_raw_weighted_load(rq, p);
  709. }
  710. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  711. {
  712. rq->nr_running--;
  713. dec_raw_weighted_load(rq, p);
  714. }
  715. /*
  716. * Calculate the expected normal priority: i.e. priority
  717. * without taking RT-inheritance into account. Might be
  718. * boosted by interactivity modifiers. Changes upon fork,
  719. * setprio syscalls, and whenever the interactivity
  720. * estimator recalculates.
  721. */
  722. static inline int normal_prio(struct task_struct *p)
  723. {
  724. int prio;
  725. if (has_rt_policy(p))
  726. prio = MAX_RT_PRIO-1 - p->rt_priority;
  727. else
  728. prio = __normal_prio(p);
  729. return prio;
  730. }
  731. /*
  732. * Calculate the current priority, i.e. the priority
  733. * taken into account by the scheduler. This value might
  734. * be boosted by RT tasks, or might be boosted by
  735. * interactivity modifiers. Will be RT if the task got
  736. * RT-boosted. If not then it returns p->normal_prio.
  737. */
  738. static int effective_prio(struct task_struct *p)
  739. {
  740. p->normal_prio = normal_prio(p);
  741. /*
  742. * If we are RT tasks or we were boosted to RT priority,
  743. * keep the priority unchanged. Otherwise, update priority
  744. * to the normal priority:
  745. */
  746. if (!rt_prio(p->prio))
  747. return p->normal_prio;
  748. return p->prio;
  749. }
  750. /*
  751. * __activate_task - move a task to the runqueue.
  752. */
  753. static void __activate_task(struct task_struct *p, struct rq *rq)
  754. {
  755. struct prio_array *target = rq->active;
  756. if (batch_task(p))
  757. target = rq->expired;
  758. enqueue_task(p, target);
  759. inc_nr_running(p, rq);
  760. }
  761. /*
  762. * __activate_idle_task - move idle task to the _front_ of runqueue.
  763. */
  764. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  765. {
  766. enqueue_task_head(p, rq->active);
  767. inc_nr_running(p, rq);
  768. }
  769. /*
  770. * Recalculate p->normal_prio and p->prio after having slept,
  771. * updating the sleep-average too:
  772. */
  773. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  774. {
  775. /* Caller must always ensure 'now >= p->timestamp' */
  776. unsigned long sleep_time = now - p->timestamp;
  777. if (batch_task(p))
  778. sleep_time = 0;
  779. if (likely(sleep_time > 0)) {
  780. /*
  781. * This ceiling is set to the lowest priority that would allow
  782. * a task to be reinserted into the active array on timeslice
  783. * completion.
  784. */
  785. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  786. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  787. /*
  788. * Prevents user tasks from achieving best priority
  789. * with one single large enough sleep.
  790. */
  791. p->sleep_avg = ceiling;
  792. /*
  793. * Using INTERACTIVE_SLEEP() as a ceiling places a
  794. * nice(0) task 1ms sleep away from promotion, and
  795. * gives it 700ms to round-robin with no chance of
  796. * being demoted. This is more than generous, so
  797. * mark this sleep as non-interactive to prevent the
  798. * on-runqueue bonus logic from intervening should
  799. * this task not receive cpu immediately.
  800. */
  801. p->sleep_type = SLEEP_NONINTERACTIVE;
  802. } else {
  803. /*
  804. * Tasks waking from uninterruptible sleep are
  805. * limited in their sleep_avg rise as they
  806. * are likely to be waiting on I/O
  807. */
  808. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  809. if (p->sleep_avg >= ceiling)
  810. sleep_time = 0;
  811. else if (p->sleep_avg + sleep_time >=
  812. ceiling) {
  813. p->sleep_avg = ceiling;
  814. sleep_time = 0;
  815. }
  816. }
  817. /*
  818. * This code gives a bonus to interactive tasks.
  819. *
  820. * The boost works by updating the 'average sleep time'
  821. * value here, based on ->timestamp. The more time a
  822. * task spends sleeping, the higher the average gets -
  823. * and the higher the priority boost gets as well.
  824. */
  825. p->sleep_avg += sleep_time;
  826. }
  827. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  828. p->sleep_avg = NS_MAX_SLEEP_AVG;
  829. }
  830. return effective_prio(p);
  831. }
  832. /*
  833. * activate_task - move a task to the runqueue and do priority recalculation
  834. *
  835. * Update all the scheduling statistics stuff. (sleep average
  836. * calculation, priority modifiers, etc.)
  837. */
  838. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  839. {
  840. unsigned long long now;
  841. if (rt_task(p))
  842. goto out;
  843. now = sched_clock();
  844. #ifdef CONFIG_SMP
  845. if (!local) {
  846. /* Compensate for drifting sched_clock */
  847. struct rq *this_rq = this_rq();
  848. now = (now - this_rq->most_recent_timestamp)
  849. + rq->most_recent_timestamp;
  850. }
  851. #endif
  852. /*
  853. * Sleep time is in units of nanosecs, so shift by 20 to get a
  854. * milliseconds-range estimation of the amount of time that the task
  855. * spent sleeping:
  856. */
  857. if (unlikely(prof_on == SLEEP_PROFILING)) {
  858. if (p->state == TASK_UNINTERRUPTIBLE)
  859. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  860. (now - p->timestamp) >> 20);
  861. }
  862. p->prio = recalc_task_prio(p, now);
  863. /*
  864. * This checks to make sure it's not an uninterruptible task
  865. * that is now waking up.
  866. */
  867. if (p->sleep_type == SLEEP_NORMAL) {
  868. /*
  869. * Tasks which were woken up by interrupts (ie. hw events)
  870. * are most likely of interactive nature. So we give them
  871. * the credit of extending their sleep time to the period
  872. * of time they spend on the runqueue, waiting for execution
  873. * on a CPU, first time around:
  874. */
  875. if (in_interrupt())
  876. p->sleep_type = SLEEP_INTERRUPTED;
  877. else {
  878. /*
  879. * Normal first-time wakeups get a credit too for
  880. * on-runqueue time, but it will be weighted down:
  881. */
  882. p->sleep_type = SLEEP_INTERACTIVE;
  883. }
  884. }
  885. p->timestamp = now;
  886. out:
  887. __activate_task(p, rq);
  888. }
  889. /*
  890. * deactivate_task - remove a task from the runqueue.
  891. */
  892. static void deactivate_task(struct task_struct *p, struct rq *rq)
  893. {
  894. dec_nr_running(p, rq);
  895. dequeue_task(p, p->array);
  896. p->array = NULL;
  897. }
  898. /*
  899. * resched_task - mark a task 'to be rescheduled now'.
  900. *
  901. * On UP this means the setting of the need_resched flag, on SMP it
  902. * might also involve a cross-CPU call to trigger the scheduler on
  903. * the target CPU.
  904. */
  905. #ifdef CONFIG_SMP
  906. #ifndef tsk_is_polling
  907. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  908. #endif
  909. static void resched_task(struct task_struct *p)
  910. {
  911. int cpu;
  912. assert_spin_locked(&task_rq(p)->lock);
  913. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  914. return;
  915. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  916. cpu = task_cpu(p);
  917. if (cpu == smp_processor_id())
  918. return;
  919. /* NEED_RESCHED must be visible before we test polling */
  920. smp_mb();
  921. if (!tsk_is_polling(p))
  922. smp_send_reschedule(cpu);
  923. }
  924. #else
  925. static inline void resched_task(struct task_struct *p)
  926. {
  927. assert_spin_locked(&task_rq(p)->lock);
  928. set_tsk_need_resched(p);
  929. }
  930. #endif
  931. /**
  932. * task_curr - is this task currently executing on a CPU?
  933. * @p: the task in question.
  934. */
  935. inline int task_curr(const struct task_struct *p)
  936. {
  937. return cpu_curr(task_cpu(p)) == p;
  938. }
  939. /* Used instead of source_load when we know the type == 0 */
  940. unsigned long weighted_cpuload(const int cpu)
  941. {
  942. return cpu_rq(cpu)->raw_weighted_load;
  943. }
  944. #ifdef CONFIG_SMP
  945. struct migration_req {
  946. struct list_head list;
  947. struct task_struct *task;
  948. int dest_cpu;
  949. struct completion done;
  950. };
  951. /*
  952. * The task's runqueue lock must be held.
  953. * Returns true if you have to wait for migration thread.
  954. */
  955. static int
  956. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  957. {
  958. struct rq *rq = task_rq(p);
  959. /*
  960. * If the task is not on a runqueue (and not running), then
  961. * it is sufficient to simply update the task's cpu field.
  962. */
  963. if (!p->array && !task_running(rq, p)) {
  964. set_task_cpu(p, dest_cpu);
  965. return 0;
  966. }
  967. init_completion(&req->done);
  968. req->task = p;
  969. req->dest_cpu = dest_cpu;
  970. list_add(&req->list, &rq->migration_queue);
  971. return 1;
  972. }
  973. /*
  974. * wait_task_inactive - wait for a thread to unschedule.
  975. *
  976. * The caller must ensure that the task *will* unschedule sometime soon,
  977. * else this function might spin for a *long* time. This function can't
  978. * be called with interrupts off, or it may introduce deadlock with
  979. * smp_call_function() if an IPI is sent by the same process we are
  980. * waiting to become inactive.
  981. */
  982. void wait_task_inactive(struct task_struct *p)
  983. {
  984. unsigned long flags;
  985. struct rq *rq;
  986. int preempted;
  987. repeat:
  988. rq = task_rq_lock(p, &flags);
  989. /* Must be off runqueue entirely, not preempted. */
  990. if (unlikely(p->array || task_running(rq, p))) {
  991. /* If it's preempted, we yield. It could be a while. */
  992. preempted = !task_running(rq, p);
  993. task_rq_unlock(rq, &flags);
  994. cpu_relax();
  995. if (preempted)
  996. yield();
  997. goto repeat;
  998. }
  999. task_rq_unlock(rq, &flags);
  1000. }
  1001. /***
  1002. * kick_process - kick a running thread to enter/exit the kernel
  1003. * @p: the to-be-kicked thread
  1004. *
  1005. * Cause a process which is running on another CPU to enter
  1006. * kernel-mode, without any delay. (to get signals handled.)
  1007. *
  1008. * NOTE: this function doesnt have to take the runqueue lock,
  1009. * because all it wants to ensure is that the remote task enters
  1010. * the kernel. If the IPI races and the task has been migrated
  1011. * to another CPU then no harm is done and the purpose has been
  1012. * achieved as well.
  1013. */
  1014. void kick_process(struct task_struct *p)
  1015. {
  1016. int cpu;
  1017. preempt_disable();
  1018. cpu = task_cpu(p);
  1019. if ((cpu != smp_processor_id()) && task_curr(p))
  1020. smp_send_reschedule(cpu);
  1021. preempt_enable();
  1022. }
  1023. /*
  1024. * Return a low guess at the load of a migration-source cpu weighted
  1025. * according to the scheduling class and "nice" value.
  1026. *
  1027. * We want to under-estimate the load of migration sources, to
  1028. * balance conservatively.
  1029. */
  1030. static inline unsigned long source_load(int cpu, int type)
  1031. {
  1032. struct rq *rq = cpu_rq(cpu);
  1033. if (type == 0)
  1034. return rq->raw_weighted_load;
  1035. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1036. }
  1037. /*
  1038. * Return a high guess at the load of a migration-target cpu weighted
  1039. * according to the scheduling class and "nice" value.
  1040. */
  1041. static inline unsigned long target_load(int cpu, int type)
  1042. {
  1043. struct rq *rq = cpu_rq(cpu);
  1044. if (type == 0)
  1045. return rq->raw_weighted_load;
  1046. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1047. }
  1048. /*
  1049. * Return the average load per task on the cpu's run queue
  1050. */
  1051. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1052. {
  1053. struct rq *rq = cpu_rq(cpu);
  1054. unsigned long n = rq->nr_running;
  1055. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1056. }
  1057. /*
  1058. * find_idlest_group finds and returns the least busy CPU group within the
  1059. * domain.
  1060. */
  1061. static struct sched_group *
  1062. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1063. {
  1064. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1065. unsigned long min_load = ULONG_MAX, this_load = 0;
  1066. int load_idx = sd->forkexec_idx;
  1067. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1068. do {
  1069. unsigned long load, avg_load;
  1070. int local_group;
  1071. int i;
  1072. /* Skip over this group if it has no CPUs allowed */
  1073. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1074. goto nextgroup;
  1075. local_group = cpu_isset(this_cpu, group->cpumask);
  1076. /* Tally up the load of all CPUs in the group */
  1077. avg_load = 0;
  1078. for_each_cpu_mask(i, group->cpumask) {
  1079. /* Bias balancing toward cpus of our domain */
  1080. if (local_group)
  1081. load = source_load(i, load_idx);
  1082. else
  1083. load = target_load(i, load_idx);
  1084. avg_load += load;
  1085. }
  1086. /* Adjust by relative CPU power of the group */
  1087. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1088. if (local_group) {
  1089. this_load = avg_load;
  1090. this = group;
  1091. } else if (avg_load < min_load) {
  1092. min_load = avg_load;
  1093. idlest = group;
  1094. }
  1095. nextgroup:
  1096. group = group->next;
  1097. } while (group != sd->groups);
  1098. if (!idlest || 100*this_load < imbalance*min_load)
  1099. return NULL;
  1100. return idlest;
  1101. }
  1102. /*
  1103. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1104. */
  1105. static int
  1106. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1107. {
  1108. cpumask_t tmp;
  1109. unsigned long load, min_load = ULONG_MAX;
  1110. int idlest = -1;
  1111. int i;
  1112. /* Traverse only the allowed CPUs */
  1113. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1114. for_each_cpu_mask(i, tmp) {
  1115. load = weighted_cpuload(i);
  1116. if (load < min_load || (load == min_load && i == this_cpu)) {
  1117. min_load = load;
  1118. idlest = i;
  1119. }
  1120. }
  1121. return idlest;
  1122. }
  1123. /*
  1124. * sched_balance_self: balance the current task (running on cpu) in domains
  1125. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1126. * SD_BALANCE_EXEC.
  1127. *
  1128. * Balance, ie. select the least loaded group.
  1129. *
  1130. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1131. *
  1132. * preempt must be disabled.
  1133. */
  1134. static int sched_balance_self(int cpu, int flag)
  1135. {
  1136. struct task_struct *t = current;
  1137. struct sched_domain *tmp, *sd = NULL;
  1138. for_each_domain(cpu, tmp) {
  1139. /*
  1140. * If power savings logic is enabled for a domain, stop there.
  1141. */
  1142. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1143. break;
  1144. if (tmp->flags & flag)
  1145. sd = tmp;
  1146. }
  1147. while (sd) {
  1148. cpumask_t span;
  1149. struct sched_group *group;
  1150. int new_cpu, weight;
  1151. if (!(sd->flags & flag)) {
  1152. sd = sd->child;
  1153. continue;
  1154. }
  1155. span = sd->span;
  1156. group = find_idlest_group(sd, t, cpu);
  1157. if (!group) {
  1158. sd = sd->child;
  1159. continue;
  1160. }
  1161. new_cpu = find_idlest_cpu(group, t, cpu);
  1162. if (new_cpu == -1 || new_cpu == cpu) {
  1163. /* Now try balancing at a lower domain level of cpu */
  1164. sd = sd->child;
  1165. continue;
  1166. }
  1167. /* Now try balancing at a lower domain level of new_cpu */
  1168. cpu = new_cpu;
  1169. sd = NULL;
  1170. weight = cpus_weight(span);
  1171. for_each_domain(cpu, tmp) {
  1172. if (weight <= cpus_weight(tmp->span))
  1173. break;
  1174. if (tmp->flags & flag)
  1175. sd = tmp;
  1176. }
  1177. /* while loop will break here if sd == NULL */
  1178. }
  1179. return cpu;
  1180. }
  1181. #endif /* CONFIG_SMP */
  1182. /*
  1183. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1184. * not idle and an idle cpu is available. The span of cpus to
  1185. * search starts with cpus closest then further out as needed,
  1186. * so we always favor a closer, idle cpu.
  1187. *
  1188. * Returns the CPU we should wake onto.
  1189. */
  1190. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1191. static int wake_idle(int cpu, struct task_struct *p)
  1192. {
  1193. cpumask_t tmp;
  1194. struct sched_domain *sd;
  1195. int i;
  1196. if (idle_cpu(cpu))
  1197. return cpu;
  1198. for_each_domain(cpu, sd) {
  1199. if (sd->flags & SD_WAKE_IDLE) {
  1200. cpus_and(tmp, sd->span, p->cpus_allowed);
  1201. for_each_cpu_mask(i, tmp) {
  1202. if (idle_cpu(i))
  1203. return i;
  1204. }
  1205. }
  1206. else
  1207. break;
  1208. }
  1209. return cpu;
  1210. }
  1211. #else
  1212. static inline int wake_idle(int cpu, struct task_struct *p)
  1213. {
  1214. return cpu;
  1215. }
  1216. #endif
  1217. /***
  1218. * try_to_wake_up - wake up a thread
  1219. * @p: the to-be-woken-up thread
  1220. * @state: the mask of task states that can be woken
  1221. * @sync: do a synchronous wakeup?
  1222. *
  1223. * Put it on the run-queue if it's not already there. The "current"
  1224. * thread is always on the run-queue (except when the actual
  1225. * re-schedule is in progress), and as such you're allowed to do
  1226. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1227. * runnable without the overhead of this.
  1228. *
  1229. * returns failure only if the task is already active.
  1230. */
  1231. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1232. {
  1233. int cpu, this_cpu, success = 0;
  1234. unsigned long flags;
  1235. long old_state;
  1236. struct rq *rq;
  1237. #ifdef CONFIG_SMP
  1238. struct sched_domain *sd, *this_sd = NULL;
  1239. unsigned long load, this_load;
  1240. int new_cpu;
  1241. #endif
  1242. rq = task_rq_lock(p, &flags);
  1243. old_state = p->state;
  1244. if (!(old_state & state))
  1245. goto out;
  1246. if (p->array)
  1247. goto out_running;
  1248. cpu = task_cpu(p);
  1249. this_cpu = smp_processor_id();
  1250. #ifdef CONFIG_SMP
  1251. if (unlikely(task_running(rq, p)))
  1252. goto out_activate;
  1253. new_cpu = cpu;
  1254. schedstat_inc(rq, ttwu_cnt);
  1255. if (cpu == this_cpu) {
  1256. schedstat_inc(rq, ttwu_local);
  1257. goto out_set_cpu;
  1258. }
  1259. for_each_domain(this_cpu, sd) {
  1260. if (cpu_isset(cpu, sd->span)) {
  1261. schedstat_inc(sd, ttwu_wake_remote);
  1262. this_sd = sd;
  1263. break;
  1264. }
  1265. }
  1266. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1267. goto out_set_cpu;
  1268. /*
  1269. * Check for affine wakeup and passive balancing possibilities.
  1270. */
  1271. if (this_sd) {
  1272. int idx = this_sd->wake_idx;
  1273. unsigned int imbalance;
  1274. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1275. load = source_load(cpu, idx);
  1276. this_load = target_load(this_cpu, idx);
  1277. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1278. if (this_sd->flags & SD_WAKE_AFFINE) {
  1279. unsigned long tl = this_load;
  1280. unsigned long tl_per_task;
  1281. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1282. /*
  1283. * If sync wakeup then subtract the (maximum possible)
  1284. * effect of the currently running task from the load
  1285. * of the current CPU:
  1286. */
  1287. if (sync)
  1288. tl -= current->load_weight;
  1289. if ((tl <= load &&
  1290. tl + target_load(cpu, idx) <= tl_per_task) ||
  1291. 100*(tl + p->load_weight) <= imbalance*load) {
  1292. /*
  1293. * This domain has SD_WAKE_AFFINE and
  1294. * p is cache cold in this domain, and
  1295. * there is no bad imbalance.
  1296. */
  1297. schedstat_inc(this_sd, ttwu_move_affine);
  1298. goto out_set_cpu;
  1299. }
  1300. }
  1301. /*
  1302. * Start passive balancing when half the imbalance_pct
  1303. * limit is reached.
  1304. */
  1305. if (this_sd->flags & SD_WAKE_BALANCE) {
  1306. if (imbalance*this_load <= 100*load) {
  1307. schedstat_inc(this_sd, ttwu_move_balance);
  1308. goto out_set_cpu;
  1309. }
  1310. }
  1311. }
  1312. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1313. out_set_cpu:
  1314. new_cpu = wake_idle(new_cpu, p);
  1315. if (new_cpu != cpu) {
  1316. set_task_cpu(p, new_cpu);
  1317. task_rq_unlock(rq, &flags);
  1318. /* might preempt at this point */
  1319. rq = task_rq_lock(p, &flags);
  1320. old_state = p->state;
  1321. if (!(old_state & state))
  1322. goto out;
  1323. if (p->array)
  1324. goto out_running;
  1325. this_cpu = smp_processor_id();
  1326. cpu = task_cpu(p);
  1327. }
  1328. out_activate:
  1329. #endif /* CONFIG_SMP */
  1330. if (old_state == TASK_UNINTERRUPTIBLE) {
  1331. rq->nr_uninterruptible--;
  1332. /*
  1333. * Tasks on involuntary sleep don't earn
  1334. * sleep_avg beyond just interactive state.
  1335. */
  1336. p->sleep_type = SLEEP_NONINTERACTIVE;
  1337. } else
  1338. /*
  1339. * Tasks that have marked their sleep as noninteractive get
  1340. * woken up with their sleep average not weighted in an
  1341. * interactive way.
  1342. */
  1343. if (old_state & TASK_NONINTERACTIVE)
  1344. p->sleep_type = SLEEP_NONINTERACTIVE;
  1345. activate_task(p, rq, cpu == this_cpu);
  1346. /*
  1347. * Sync wakeups (i.e. those types of wakeups where the waker
  1348. * has indicated that it will leave the CPU in short order)
  1349. * don't trigger a preemption, if the woken up task will run on
  1350. * this cpu. (in this case the 'I will reschedule' promise of
  1351. * the waker guarantees that the freshly woken up task is going
  1352. * to be considered on this CPU.)
  1353. */
  1354. if (!sync || cpu != this_cpu) {
  1355. if (TASK_PREEMPTS_CURR(p, rq))
  1356. resched_task(rq->curr);
  1357. }
  1358. success = 1;
  1359. out_running:
  1360. p->state = TASK_RUNNING;
  1361. out:
  1362. task_rq_unlock(rq, &flags);
  1363. return success;
  1364. }
  1365. int fastcall wake_up_process(struct task_struct *p)
  1366. {
  1367. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1368. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1369. }
  1370. EXPORT_SYMBOL(wake_up_process);
  1371. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1372. {
  1373. return try_to_wake_up(p, state, 0);
  1374. }
  1375. /*
  1376. * Perform scheduler related setup for a newly forked process p.
  1377. * p is forked by current.
  1378. */
  1379. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1380. {
  1381. int cpu = get_cpu();
  1382. #ifdef CONFIG_SMP
  1383. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1384. #endif
  1385. set_task_cpu(p, cpu);
  1386. /*
  1387. * We mark the process as running here, but have not actually
  1388. * inserted it onto the runqueue yet. This guarantees that
  1389. * nobody will actually run it, and a signal or other external
  1390. * event cannot wake it up and insert it on the runqueue either.
  1391. */
  1392. p->state = TASK_RUNNING;
  1393. /*
  1394. * Make sure we do not leak PI boosting priority to the child:
  1395. */
  1396. p->prio = current->normal_prio;
  1397. INIT_LIST_HEAD(&p->run_list);
  1398. p->array = NULL;
  1399. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1400. if (unlikely(sched_info_on()))
  1401. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1402. #endif
  1403. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1404. p->oncpu = 0;
  1405. #endif
  1406. #ifdef CONFIG_PREEMPT
  1407. /* Want to start with kernel preemption disabled. */
  1408. task_thread_info(p)->preempt_count = 1;
  1409. #endif
  1410. /*
  1411. * Share the timeslice between parent and child, thus the
  1412. * total amount of pending timeslices in the system doesn't change,
  1413. * resulting in more scheduling fairness.
  1414. */
  1415. local_irq_disable();
  1416. p->time_slice = (current->time_slice + 1) >> 1;
  1417. /*
  1418. * The remainder of the first timeslice might be recovered by
  1419. * the parent if the child exits early enough.
  1420. */
  1421. p->first_time_slice = 1;
  1422. current->time_slice >>= 1;
  1423. p->timestamp = sched_clock();
  1424. if (unlikely(!current->time_slice)) {
  1425. /*
  1426. * This case is rare, it happens when the parent has only
  1427. * a single jiffy left from its timeslice. Taking the
  1428. * runqueue lock is not a problem.
  1429. */
  1430. current->time_slice = 1;
  1431. scheduler_tick();
  1432. }
  1433. local_irq_enable();
  1434. put_cpu();
  1435. }
  1436. /*
  1437. * wake_up_new_task - wake up a newly created task for the first time.
  1438. *
  1439. * This function will do some initial scheduler statistics housekeeping
  1440. * that must be done for every newly created context, then puts the task
  1441. * on the runqueue and wakes it.
  1442. */
  1443. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1444. {
  1445. struct rq *rq, *this_rq;
  1446. unsigned long flags;
  1447. int this_cpu, cpu;
  1448. rq = task_rq_lock(p, &flags);
  1449. BUG_ON(p->state != TASK_RUNNING);
  1450. this_cpu = smp_processor_id();
  1451. cpu = task_cpu(p);
  1452. /*
  1453. * We decrease the sleep average of forking parents
  1454. * and children as well, to keep max-interactive tasks
  1455. * from forking tasks that are max-interactive. The parent
  1456. * (current) is done further down, under its lock.
  1457. */
  1458. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1459. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1460. p->prio = effective_prio(p);
  1461. if (likely(cpu == this_cpu)) {
  1462. if (!(clone_flags & CLONE_VM)) {
  1463. /*
  1464. * The VM isn't cloned, so we're in a good position to
  1465. * do child-runs-first in anticipation of an exec. This
  1466. * usually avoids a lot of COW overhead.
  1467. */
  1468. if (unlikely(!current->array))
  1469. __activate_task(p, rq);
  1470. else {
  1471. p->prio = current->prio;
  1472. p->normal_prio = current->normal_prio;
  1473. list_add_tail(&p->run_list, &current->run_list);
  1474. p->array = current->array;
  1475. p->array->nr_active++;
  1476. inc_nr_running(p, rq);
  1477. }
  1478. set_need_resched();
  1479. } else
  1480. /* Run child last */
  1481. __activate_task(p, rq);
  1482. /*
  1483. * We skip the following code due to cpu == this_cpu
  1484. *
  1485. * task_rq_unlock(rq, &flags);
  1486. * this_rq = task_rq_lock(current, &flags);
  1487. */
  1488. this_rq = rq;
  1489. } else {
  1490. this_rq = cpu_rq(this_cpu);
  1491. /*
  1492. * Not the local CPU - must adjust timestamp. This should
  1493. * get optimised away in the !CONFIG_SMP case.
  1494. */
  1495. p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
  1496. + rq->most_recent_timestamp;
  1497. __activate_task(p, rq);
  1498. if (TASK_PREEMPTS_CURR(p, rq))
  1499. resched_task(rq->curr);
  1500. /*
  1501. * Parent and child are on different CPUs, now get the
  1502. * parent runqueue to update the parent's ->sleep_avg:
  1503. */
  1504. task_rq_unlock(rq, &flags);
  1505. this_rq = task_rq_lock(current, &flags);
  1506. }
  1507. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1508. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1509. task_rq_unlock(this_rq, &flags);
  1510. }
  1511. /*
  1512. * Potentially available exiting-child timeslices are
  1513. * retrieved here - this way the parent does not get
  1514. * penalized for creating too many threads.
  1515. *
  1516. * (this cannot be used to 'generate' timeslices
  1517. * artificially, because any timeslice recovered here
  1518. * was given away by the parent in the first place.)
  1519. */
  1520. void fastcall sched_exit(struct task_struct *p)
  1521. {
  1522. unsigned long flags;
  1523. struct rq *rq;
  1524. /*
  1525. * If the child was a (relative-) CPU hog then decrease
  1526. * the sleep_avg of the parent as well.
  1527. */
  1528. rq = task_rq_lock(p->parent, &flags);
  1529. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1530. p->parent->time_slice += p->time_slice;
  1531. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1532. p->parent->time_slice = task_timeslice(p);
  1533. }
  1534. if (p->sleep_avg < p->parent->sleep_avg)
  1535. p->parent->sleep_avg = p->parent->sleep_avg /
  1536. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1537. (EXIT_WEIGHT + 1);
  1538. task_rq_unlock(rq, &flags);
  1539. }
  1540. /**
  1541. * prepare_task_switch - prepare to switch tasks
  1542. * @rq: the runqueue preparing to switch
  1543. * @next: the task we are going to switch to.
  1544. *
  1545. * This is called with the rq lock held and interrupts off. It must
  1546. * be paired with a subsequent finish_task_switch after the context
  1547. * switch.
  1548. *
  1549. * prepare_task_switch sets up locking and calls architecture specific
  1550. * hooks.
  1551. */
  1552. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1553. {
  1554. prepare_lock_switch(rq, next);
  1555. prepare_arch_switch(next);
  1556. }
  1557. /**
  1558. * finish_task_switch - clean up after a task-switch
  1559. * @rq: runqueue associated with task-switch
  1560. * @prev: the thread we just switched away from.
  1561. *
  1562. * finish_task_switch must be called after the context switch, paired
  1563. * with a prepare_task_switch call before the context switch.
  1564. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1565. * and do any other architecture-specific cleanup actions.
  1566. *
  1567. * Note that we may have delayed dropping an mm in context_switch(). If
  1568. * so, we finish that here outside of the runqueue lock. (Doing it
  1569. * with the lock held can cause deadlocks; see schedule() for
  1570. * details.)
  1571. */
  1572. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1573. __releases(rq->lock)
  1574. {
  1575. struct mm_struct *mm = rq->prev_mm;
  1576. long prev_state;
  1577. rq->prev_mm = NULL;
  1578. /*
  1579. * A task struct has one reference for the use as "current".
  1580. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1581. * schedule one last time. The schedule call will never return, and
  1582. * the scheduled task must drop that reference.
  1583. * The test for TASK_DEAD must occur while the runqueue locks are
  1584. * still held, otherwise prev could be scheduled on another cpu, die
  1585. * there before we look at prev->state, and then the reference would
  1586. * be dropped twice.
  1587. * Manfred Spraul <manfred@colorfullife.com>
  1588. */
  1589. prev_state = prev->state;
  1590. finish_arch_switch(prev);
  1591. finish_lock_switch(rq, prev);
  1592. if (mm)
  1593. mmdrop(mm);
  1594. if (unlikely(prev_state == TASK_DEAD)) {
  1595. /*
  1596. * Remove function-return probe instances associated with this
  1597. * task and put them back on the free list.
  1598. */
  1599. kprobe_flush_task(prev);
  1600. put_task_struct(prev);
  1601. }
  1602. }
  1603. /**
  1604. * schedule_tail - first thing a freshly forked thread must call.
  1605. * @prev: the thread we just switched away from.
  1606. */
  1607. asmlinkage void schedule_tail(struct task_struct *prev)
  1608. __releases(rq->lock)
  1609. {
  1610. struct rq *rq = this_rq();
  1611. finish_task_switch(rq, prev);
  1612. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1613. /* In this case, finish_task_switch does not reenable preemption */
  1614. preempt_enable();
  1615. #endif
  1616. if (current->set_child_tid)
  1617. put_user(current->pid, current->set_child_tid);
  1618. }
  1619. /*
  1620. * context_switch - switch to the new MM and the new
  1621. * thread's register state.
  1622. */
  1623. static inline struct task_struct *
  1624. context_switch(struct rq *rq, struct task_struct *prev,
  1625. struct task_struct *next)
  1626. {
  1627. struct mm_struct *mm = next->mm;
  1628. struct mm_struct *oldmm = prev->active_mm;
  1629. if (!mm) {
  1630. next->active_mm = oldmm;
  1631. atomic_inc(&oldmm->mm_count);
  1632. enter_lazy_tlb(oldmm, next);
  1633. } else
  1634. switch_mm(oldmm, mm, next);
  1635. if (!prev->mm) {
  1636. prev->active_mm = NULL;
  1637. WARN_ON(rq->prev_mm);
  1638. rq->prev_mm = oldmm;
  1639. }
  1640. /*
  1641. * Since the runqueue lock will be released by the next
  1642. * task (which is an invalid locking op but in the case
  1643. * of the scheduler it's an obvious special-case), so we
  1644. * do an early lockdep release here:
  1645. */
  1646. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1647. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1648. #endif
  1649. /* Here we just switch the register state and the stack. */
  1650. switch_to(prev, next, prev);
  1651. return prev;
  1652. }
  1653. /*
  1654. * nr_running, nr_uninterruptible and nr_context_switches:
  1655. *
  1656. * externally visible scheduler statistics: current number of runnable
  1657. * threads, current number of uninterruptible-sleeping threads, total
  1658. * number of context switches performed since bootup.
  1659. */
  1660. unsigned long nr_running(void)
  1661. {
  1662. unsigned long i, sum = 0;
  1663. for_each_online_cpu(i)
  1664. sum += cpu_rq(i)->nr_running;
  1665. return sum;
  1666. }
  1667. unsigned long nr_uninterruptible(void)
  1668. {
  1669. unsigned long i, sum = 0;
  1670. for_each_possible_cpu(i)
  1671. sum += cpu_rq(i)->nr_uninterruptible;
  1672. /*
  1673. * Since we read the counters lockless, it might be slightly
  1674. * inaccurate. Do not allow it to go below zero though:
  1675. */
  1676. if (unlikely((long)sum < 0))
  1677. sum = 0;
  1678. return sum;
  1679. }
  1680. unsigned long long nr_context_switches(void)
  1681. {
  1682. int i;
  1683. unsigned long long sum = 0;
  1684. for_each_possible_cpu(i)
  1685. sum += cpu_rq(i)->nr_switches;
  1686. return sum;
  1687. }
  1688. unsigned long nr_iowait(void)
  1689. {
  1690. unsigned long i, sum = 0;
  1691. for_each_possible_cpu(i)
  1692. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1693. return sum;
  1694. }
  1695. unsigned long nr_active(void)
  1696. {
  1697. unsigned long i, running = 0, uninterruptible = 0;
  1698. for_each_online_cpu(i) {
  1699. running += cpu_rq(i)->nr_running;
  1700. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1701. }
  1702. if (unlikely((long)uninterruptible < 0))
  1703. uninterruptible = 0;
  1704. return running + uninterruptible;
  1705. }
  1706. #ifdef CONFIG_SMP
  1707. /*
  1708. * Is this task likely cache-hot:
  1709. */
  1710. static inline int
  1711. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1712. {
  1713. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1714. }
  1715. /*
  1716. * double_rq_lock - safely lock two runqueues
  1717. *
  1718. * Note this does not disable interrupts like task_rq_lock,
  1719. * you need to do so manually before calling.
  1720. */
  1721. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1722. __acquires(rq1->lock)
  1723. __acquires(rq2->lock)
  1724. {
  1725. BUG_ON(!irqs_disabled());
  1726. if (rq1 == rq2) {
  1727. spin_lock(&rq1->lock);
  1728. __acquire(rq2->lock); /* Fake it out ;) */
  1729. } else {
  1730. if (rq1 < rq2) {
  1731. spin_lock(&rq1->lock);
  1732. spin_lock(&rq2->lock);
  1733. } else {
  1734. spin_lock(&rq2->lock);
  1735. spin_lock(&rq1->lock);
  1736. }
  1737. }
  1738. }
  1739. /*
  1740. * double_rq_unlock - safely unlock two runqueues
  1741. *
  1742. * Note this does not restore interrupts like task_rq_unlock,
  1743. * you need to do so manually after calling.
  1744. */
  1745. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1746. __releases(rq1->lock)
  1747. __releases(rq2->lock)
  1748. {
  1749. spin_unlock(&rq1->lock);
  1750. if (rq1 != rq2)
  1751. spin_unlock(&rq2->lock);
  1752. else
  1753. __release(rq2->lock);
  1754. }
  1755. /*
  1756. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1757. */
  1758. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1759. __releases(this_rq->lock)
  1760. __acquires(busiest->lock)
  1761. __acquires(this_rq->lock)
  1762. {
  1763. if (unlikely(!irqs_disabled())) {
  1764. /* printk() doesn't work good under rq->lock */
  1765. spin_unlock(&this_rq->lock);
  1766. BUG_ON(1);
  1767. }
  1768. if (unlikely(!spin_trylock(&busiest->lock))) {
  1769. if (busiest < this_rq) {
  1770. spin_unlock(&this_rq->lock);
  1771. spin_lock(&busiest->lock);
  1772. spin_lock(&this_rq->lock);
  1773. } else
  1774. spin_lock(&busiest->lock);
  1775. }
  1776. }
  1777. /*
  1778. * If dest_cpu is allowed for this process, migrate the task to it.
  1779. * This is accomplished by forcing the cpu_allowed mask to only
  1780. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1781. * the cpu_allowed mask is restored.
  1782. */
  1783. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1784. {
  1785. struct migration_req req;
  1786. unsigned long flags;
  1787. struct rq *rq;
  1788. rq = task_rq_lock(p, &flags);
  1789. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1790. || unlikely(cpu_is_offline(dest_cpu)))
  1791. goto out;
  1792. /* force the process onto the specified CPU */
  1793. if (migrate_task(p, dest_cpu, &req)) {
  1794. /* Need to wait for migration thread (might exit: take ref). */
  1795. struct task_struct *mt = rq->migration_thread;
  1796. get_task_struct(mt);
  1797. task_rq_unlock(rq, &flags);
  1798. wake_up_process(mt);
  1799. put_task_struct(mt);
  1800. wait_for_completion(&req.done);
  1801. return;
  1802. }
  1803. out:
  1804. task_rq_unlock(rq, &flags);
  1805. }
  1806. /*
  1807. * sched_exec - execve() is a valuable balancing opportunity, because at
  1808. * this point the task has the smallest effective memory and cache footprint.
  1809. */
  1810. void sched_exec(void)
  1811. {
  1812. int new_cpu, this_cpu = get_cpu();
  1813. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1814. put_cpu();
  1815. if (new_cpu != this_cpu)
  1816. sched_migrate_task(current, new_cpu);
  1817. }
  1818. /*
  1819. * pull_task - move a task from a remote runqueue to the local runqueue.
  1820. * Both runqueues must be locked.
  1821. */
  1822. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1823. struct task_struct *p, struct rq *this_rq,
  1824. struct prio_array *this_array, int this_cpu)
  1825. {
  1826. dequeue_task(p, src_array);
  1827. dec_nr_running(p, src_rq);
  1828. set_task_cpu(p, this_cpu);
  1829. inc_nr_running(p, this_rq);
  1830. enqueue_task(p, this_array);
  1831. p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
  1832. + this_rq->most_recent_timestamp;
  1833. /*
  1834. * Note that idle threads have a prio of MAX_PRIO, for this test
  1835. * to be always true for them.
  1836. */
  1837. if (TASK_PREEMPTS_CURR(p, this_rq))
  1838. resched_task(this_rq->curr);
  1839. }
  1840. /*
  1841. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1842. */
  1843. static
  1844. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1845. struct sched_domain *sd, enum idle_type idle,
  1846. int *all_pinned)
  1847. {
  1848. /*
  1849. * We do not migrate tasks that are:
  1850. * 1) running (obviously), or
  1851. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1852. * 3) are cache-hot on their current CPU.
  1853. */
  1854. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1855. return 0;
  1856. *all_pinned = 0;
  1857. if (task_running(rq, p))
  1858. return 0;
  1859. /*
  1860. * Aggressive migration if:
  1861. * 1) task is cache cold, or
  1862. * 2) too many balance attempts have failed.
  1863. */
  1864. if (sd->nr_balance_failed > sd->cache_nice_tries) {
  1865. #ifdef CONFIG_SCHEDSTATS
  1866. if (task_hot(p, rq->most_recent_timestamp, sd))
  1867. schedstat_inc(sd, lb_hot_gained[idle]);
  1868. #endif
  1869. return 1;
  1870. }
  1871. if (task_hot(p, rq->most_recent_timestamp, sd))
  1872. return 0;
  1873. return 1;
  1874. }
  1875. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1876. /*
  1877. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1878. * load from busiest to this_rq, as part of a balancing operation within
  1879. * "domain". Returns the number of tasks moved.
  1880. *
  1881. * Called with both runqueues locked.
  1882. */
  1883. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1884. unsigned long max_nr_move, unsigned long max_load_move,
  1885. struct sched_domain *sd, enum idle_type idle,
  1886. int *all_pinned)
  1887. {
  1888. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1889. best_prio_seen, skip_for_load;
  1890. struct prio_array *array, *dst_array;
  1891. struct list_head *head, *curr;
  1892. struct task_struct *tmp;
  1893. long rem_load_move;
  1894. if (max_nr_move == 0 || max_load_move == 0)
  1895. goto out;
  1896. rem_load_move = max_load_move;
  1897. pinned = 1;
  1898. this_best_prio = rq_best_prio(this_rq);
  1899. best_prio = rq_best_prio(busiest);
  1900. /*
  1901. * Enable handling of the case where there is more than one task
  1902. * with the best priority. If the current running task is one
  1903. * of those with prio==best_prio we know it won't be moved
  1904. * and therefore it's safe to override the skip (based on load) of
  1905. * any task we find with that prio.
  1906. */
  1907. best_prio_seen = best_prio == busiest->curr->prio;
  1908. /*
  1909. * We first consider expired tasks. Those will likely not be
  1910. * executed in the near future, and they are most likely to
  1911. * be cache-cold, thus switching CPUs has the least effect
  1912. * on them.
  1913. */
  1914. if (busiest->expired->nr_active) {
  1915. array = busiest->expired;
  1916. dst_array = this_rq->expired;
  1917. } else {
  1918. array = busiest->active;
  1919. dst_array = this_rq->active;
  1920. }
  1921. new_array:
  1922. /* Start searching at priority 0: */
  1923. idx = 0;
  1924. skip_bitmap:
  1925. if (!idx)
  1926. idx = sched_find_first_bit(array->bitmap);
  1927. else
  1928. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1929. if (idx >= MAX_PRIO) {
  1930. if (array == busiest->expired && busiest->active->nr_active) {
  1931. array = busiest->active;
  1932. dst_array = this_rq->active;
  1933. goto new_array;
  1934. }
  1935. goto out;
  1936. }
  1937. head = array->queue + idx;
  1938. curr = head->prev;
  1939. skip_queue:
  1940. tmp = list_entry(curr, struct task_struct, run_list);
  1941. curr = curr->prev;
  1942. /*
  1943. * To help distribute high priority tasks accross CPUs we don't
  1944. * skip a task if it will be the highest priority task (i.e. smallest
  1945. * prio value) on its new queue regardless of its load weight
  1946. */
  1947. skip_for_load = tmp->load_weight > rem_load_move;
  1948. if (skip_for_load && idx < this_best_prio)
  1949. skip_for_load = !best_prio_seen && idx == best_prio;
  1950. if (skip_for_load ||
  1951. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1952. best_prio_seen |= idx == best_prio;
  1953. if (curr != head)
  1954. goto skip_queue;
  1955. idx++;
  1956. goto skip_bitmap;
  1957. }
  1958. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1959. pulled++;
  1960. rem_load_move -= tmp->load_weight;
  1961. /*
  1962. * We only want to steal up to the prescribed number of tasks
  1963. * and the prescribed amount of weighted load.
  1964. */
  1965. if (pulled < max_nr_move && rem_load_move > 0) {
  1966. if (idx < this_best_prio)
  1967. this_best_prio = idx;
  1968. if (curr != head)
  1969. goto skip_queue;
  1970. idx++;
  1971. goto skip_bitmap;
  1972. }
  1973. out:
  1974. /*
  1975. * Right now, this is the only place pull_task() is called,
  1976. * so we can safely collect pull_task() stats here rather than
  1977. * inside pull_task().
  1978. */
  1979. schedstat_add(sd, lb_gained[idle], pulled);
  1980. if (all_pinned)
  1981. *all_pinned = pinned;
  1982. return pulled;
  1983. }
  1984. /*
  1985. * find_busiest_group finds and returns the busiest CPU group within the
  1986. * domain. It calculates and returns the amount of weighted load which
  1987. * should be moved to restore balance via the imbalance parameter.
  1988. */
  1989. static struct sched_group *
  1990. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1991. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  1992. cpumask_t *cpus, int *balance)
  1993. {
  1994. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1995. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1996. unsigned long max_pull;
  1997. unsigned long busiest_load_per_task, busiest_nr_running;
  1998. unsigned long this_load_per_task, this_nr_running;
  1999. int load_idx;
  2000. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2001. int power_savings_balance = 1;
  2002. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2003. unsigned long min_nr_running = ULONG_MAX;
  2004. struct sched_group *group_min = NULL, *group_leader = NULL;
  2005. #endif
  2006. max_load = this_load = total_load = total_pwr = 0;
  2007. busiest_load_per_task = busiest_nr_running = 0;
  2008. this_load_per_task = this_nr_running = 0;
  2009. if (idle == NOT_IDLE)
  2010. load_idx = sd->busy_idx;
  2011. else if (idle == NEWLY_IDLE)
  2012. load_idx = sd->newidle_idx;
  2013. else
  2014. load_idx = sd->idle_idx;
  2015. do {
  2016. unsigned long load, group_capacity;
  2017. int local_group;
  2018. int i;
  2019. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2020. unsigned long sum_nr_running, sum_weighted_load;
  2021. local_group = cpu_isset(this_cpu, group->cpumask);
  2022. if (local_group)
  2023. balance_cpu = first_cpu(group->cpumask);
  2024. /* Tally up the load of all CPUs in the group */
  2025. sum_weighted_load = sum_nr_running = avg_load = 0;
  2026. for_each_cpu_mask(i, group->cpumask) {
  2027. struct rq *rq;
  2028. if (!cpu_isset(i, *cpus))
  2029. continue;
  2030. rq = cpu_rq(i);
  2031. if (*sd_idle && !idle_cpu(i))
  2032. *sd_idle = 0;
  2033. /* Bias balancing toward cpus of our domain */
  2034. if (local_group) {
  2035. if (idle_cpu(i) && !first_idle_cpu) {
  2036. first_idle_cpu = 1;
  2037. balance_cpu = i;
  2038. }
  2039. load = target_load(i, load_idx);
  2040. } else
  2041. load = source_load(i, load_idx);
  2042. avg_load += load;
  2043. sum_nr_running += rq->nr_running;
  2044. sum_weighted_load += rq->raw_weighted_load;
  2045. }
  2046. /*
  2047. * First idle cpu or the first cpu(busiest) in this sched group
  2048. * is eligible for doing load balancing at this and above
  2049. * domains.
  2050. */
  2051. if (local_group && balance_cpu != this_cpu && balance) {
  2052. *balance = 0;
  2053. goto ret;
  2054. }
  2055. total_load += avg_load;
  2056. total_pwr += group->cpu_power;
  2057. /* Adjust by relative CPU power of the group */
  2058. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2059. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  2060. if (local_group) {
  2061. this_load = avg_load;
  2062. this = group;
  2063. this_nr_running = sum_nr_running;
  2064. this_load_per_task = sum_weighted_load;
  2065. } else if (avg_load > max_load &&
  2066. sum_nr_running > group_capacity) {
  2067. max_load = avg_load;
  2068. busiest = group;
  2069. busiest_nr_running = sum_nr_running;
  2070. busiest_load_per_task = sum_weighted_load;
  2071. }
  2072. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2073. /*
  2074. * Busy processors will not participate in power savings
  2075. * balance.
  2076. */
  2077. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2078. goto group_next;
  2079. /*
  2080. * If the local group is idle or completely loaded
  2081. * no need to do power savings balance at this domain
  2082. */
  2083. if (local_group && (this_nr_running >= group_capacity ||
  2084. !this_nr_running))
  2085. power_savings_balance = 0;
  2086. /*
  2087. * If a group is already running at full capacity or idle,
  2088. * don't include that group in power savings calculations
  2089. */
  2090. if (!power_savings_balance || sum_nr_running >= group_capacity
  2091. || !sum_nr_running)
  2092. goto group_next;
  2093. /*
  2094. * Calculate the group which has the least non-idle load.
  2095. * This is the group from where we need to pick up the load
  2096. * for saving power
  2097. */
  2098. if ((sum_nr_running < min_nr_running) ||
  2099. (sum_nr_running == min_nr_running &&
  2100. first_cpu(group->cpumask) <
  2101. first_cpu(group_min->cpumask))) {
  2102. group_min = group;
  2103. min_nr_running = sum_nr_running;
  2104. min_load_per_task = sum_weighted_load /
  2105. sum_nr_running;
  2106. }
  2107. /*
  2108. * Calculate the group which is almost near its
  2109. * capacity but still has some space to pick up some load
  2110. * from other group and save more power
  2111. */
  2112. if (sum_nr_running <= group_capacity - 1) {
  2113. if (sum_nr_running > leader_nr_running ||
  2114. (sum_nr_running == leader_nr_running &&
  2115. first_cpu(group->cpumask) >
  2116. first_cpu(group_leader->cpumask))) {
  2117. group_leader = group;
  2118. leader_nr_running = sum_nr_running;
  2119. }
  2120. }
  2121. group_next:
  2122. #endif
  2123. group = group->next;
  2124. } while (group != sd->groups);
  2125. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2126. goto out_balanced;
  2127. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2128. if (this_load >= avg_load ||
  2129. 100*max_load <= sd->imbalance_pct*this_load)
  2130. goto out_balanced;
  2131. busiest_load_per_task /= busiest_nr_running;
  2132. /*
  2133. * We're trying to get all the cpus to the average_load, so we don't
  2134. * want to push ourselves above the average load, nor do we wish to
  2135. * reduce the max loaded cpu below the average load, as either of these
  2136. * actions would just result in more rebalancing later, and ping-pong
  2137. * tasks around. Thus we look for the minimum possible imbalance.
  2138. * Negative imbalances (*we* are more loaded than anyone else) will
  2139. * be counted as no imbalance for these purposes -- we can't fix that
  2140. * by pulling tasks to us. Be careful of negative numbers as they'll
  2141. * appear as very large values with unsigned longs.
  2142. */
  2143. if (max_load <= busiest_load_per_task)
  2144. goto out_balanced;
  2145. /*
  2146. * In the presence of smp nice balancing, certain scenarios can have
  2147. * max load less than avg load(as we skip the groups at or below
  2148. * its cpu_power, while calculating max_load..)
  2149. */
  2150. if (max_load < avg_load) {
  2151. *imbalance = 0;
  2152. goto small_imbalance;
  2153. }
  2154. /* Don't want to pull so many tasks that a group would go idle */
  2155. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2156. /* How much load to actually move to equalise the imbalance */
  2157. *imbalance = min(max_pull * busiest->cpu_power,
  2158. (avg_load - this_load) * this->cpu_power)
  2159. / SCHED_LOAD_SCALE;
  2160. /*
  2161. * if *imbalance is less than the average load per runnable task
  2162. * there is no gaurantee that any tasks will be moved so we'll have
  2163. * a think about bumping its value to force at least one task to be
  2164. * moved
  2165. */
  2166. if (*imbalance < busiest_load_per_task) {
  2167. unsigned long tmp, pwr_now, pwr_move;
  2168. unsigned int imbn;
  2169. small_imbalance:
  2170. pwr_move = pwr_now = 0;
  2171. imbn = 2;
  2172. if (this_nr_running) {
  2173. this_load_per_task /= this_nr_running;
  2174. if (busiest_load_per_task > this_load_per_task)
  2175. imbn = 1;
  2176. } else
  2177. this_load_per_task = SCHED_LOAD_SCALE;
  2178. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2179. *imbalance = busiest_load_per_task;
  2180. return busiest;
  2181. }
  2182. /*
  2183. * OK, we don't have enough imbalance to justify moving tasks,
  2184. * however we may be able to increase total CPU power used by
  2185. * moving them.
  2186. */
  2187. pwr_now += busiest->cpu_power *
  2188. min(busiest_load_per_task, max_load);
  2189. pwr_now += this->cpu_power *
  2190. min(this_load_per_task, this_load);
  2191. pwr_now /= SCHED_LOAD_SCALE;
  2192. /* Amount of load we'd subtract */
  2193. tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
  2194. busiest->cpu_power;
  2195. if (max_load > tmp)
  2196. pwr_move += busiest->cpu_power *
  2197. min(busiest_load_per_task, max_load - tmp);
  2198. /* Amount of load we'd add */
  2199. if (max_load * busiest->cpu_power <
  2200. busiest_load_per_task * SCHED_LOAD_SCALE)
  2201. tmp = max_load * busiest->cpu_power / this->cpu_power;
  2202. else
  2203. tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
  2204. this->cpu_power;
  2205. pwr_move += this->cpu_power *
  2206. min(this_load_per_task, this_load + tmp);
  2207. pwr_move /= SCHED_LOAD_SCALE;
  2208. /* Move if we gain throughput */
  2209. if (pwr_move <= pwr_now)
  2210. goto out_balanced;
  2211. *imbalance = busiest_load_per_task;
  2212. }
  2213. return busiest;
  2214. out_balanced:
  2215. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2216. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2217. goto ret;
  2218. if (this == group_leader && group_leader != group_min) {
  2219. *imbalance = min_load_per_task;
  2220. return group_min;
  2221. }
  2222. #endif
  2223. ret:
  2224. *imbalance = 0;
  2225. return NULL;
  2226. }
  2227. /*
  2228. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2229. */
  2230. static struct rq *
  2231. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2232. unsigned long imbalance, cpumask_t *cpus)
  2233. {
  2234. struct rq *busiest = NULL, *rq;
  2235. unsigned long max_load = 0;
  2236. int i;
  2237. for_each_cpu_mask(i, group->cpumask) {
  2238. if (!cpu_isset(i, *cpus))
  2239. continue;
  2240. rq = cpu_rq(i);
  2241. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2242. continue;
  2243. if (rq->raw_weighted_load > max_load) {
  2244. max_load = rq->raw_weighted_load;
  2245. busiest = rq;
  2246. }
  2247. }
  2248. return busiest;
  2249. }
  2250. /*
  2251. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2252. * so long as it is large enough.
  2253. */
  2254. #define MAX_PINNED_INTERVAL 512
  2255. static inline unsigned long minus_1_or_zero(unsigned long n)
  2256. {
  2257. return n > 0 ? n - 1 : 0;
  2258. }
  2259. /*
  2260. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2261. * tasks if there is an imbalance.
  2262. */
  2263. static int load_balance(int this_cpu, struct rq *this_rq,
  2264. struct sched_domain *sd, enum idle_type idle,
  2265. int *balance)
  2266. {
  2267. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2268. struct sched_group *group;
  2269. unsigned long imbalance;
  2270. struct rq *busiest;
  2271. cpumask_t cpus = CPU_MASK_ALL;
  2272. unsigned long flags;
  2273. /*
  2274. * When power savings policy is enabled for the parent domain, idle
  2275. * sibling can pick up load irrespective of busy siblings. In this case,
  2276. * let the state of idle sibling percolate up as IDLE, instead of
  2277. * portraying it as NOT_IDLE.
  2278. */
  2279. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2280. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2281. sd_idle = 1;
  2282. schedstat_inc(sd, lb_cnt[idle]);
  2283. redo:
  2284. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2285. &cpus, balance);
  2286. if (*balance == 0)
  2287. goto out_balanced;
  2288. if (!group) {
  2289. schedstat_inc(sd, lb_nobusyg[idle]);
  2290. goto out_balanced;
  2291. }
  2292. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2293. if (!busiest) {
  2294. schedstat_inc(sd, lb_nobusyq[idle]);
  2295. goto out_balanced;
  2296. }
  2297. BUG_ON(busiest == this_rq);
  2298. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2299. nr_moved = 0;
  2300. if (busiest->nr_running > 1) {
  2301. /*
  2302. * Attempt to move tasks. If find_busiest_group has found
  2303. * an imbalance but busiest->nr_running <= 1, the group is
  2304. * still unbalanced. nr_moved simply stays zero, so it is
  2305. * correctly treated as an imbalance.
  2306. */
  2307. local_irq_save(flags);
  2308. double_rq_lock(this_rq, busiest);
  2309. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2310. minus_1_or_zero(busiest->nr_running),
  2311. imbalance, sd, idle, &all_pinned);
  2312. double_rq_unlock(this_rq, busiest);
  2313. local_irq_restore(flags);
  2314. /* All tasks on this runqueue were pinned by CPU affinity */
  2315. if (unlikely(all_pinned)) {
  2316. cpu_clear(cpu_of(busiest), cpus);
  2317. if (!cpus_empty(cpus))
  2318. goto redo;
  2319. goto out_balanced;
  2320. }
  2321. }
  2322. if (!nr_moved) {
  2323. schedstat_inc(sd, lb_failed[idle]);
  2324. sd->nr_balance_failed++;
  2325. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2326. spin_lock_irqsave(&busiest->lock, flags);
  2327. /* don't kick the migration_thread, if the curr
  2328. * task on busiest cpu can't be moved to this_cpu
  2329. */
  2330. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2331. spin_unlock_irqrestore(&busiest->lock, flags);
  2332. all_pinned = 1;
  2333. goto out_one_pinned;
  2334. }
  2335. if (!busiest->active_balance) {
  2336. busiest->active_balance = 1;
  2337. busiest->push_cpu = this_cpu;
  2338. active_balance = 1;
  2339. }
  2340. spin_unlock_irqrestore(&busiest->lock, flags);
  2341. if (active_balance)
  2342. wake_up_process(busiest->migration_thread);
  2343. /*
  2344. * We've kicked active balancing, reset the failure
  2345. * counter.
  2346. */
  2347. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2348. }
  2349. } else
  2350. sd->nr_balance_failed = 0;
  2351. if (likely(!active_balance)) {
  2352. /* We were unbalanced, so reset the balancing interval */
  2353. sd->balance_interval = sd->min_interval;
  2354. } else {
  2355. /*
  2356. * If we've begun active balancing, start to back off. This
  2357. * case may not be covered by the all_pinned logic if there
  2358. * is only 1 task on the busy runqueue (because we don't call
  2359. * move_tasks).
  2360. */
  2361. if (sd->balance_interval < sd->max_interval)
  2362. sd->balance_interval *= 2;
  2363. }
  2364. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2365. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2366. return -1;
  2367. return nr_moved;
  2368. out_balanced:
  2369. schedstat_inc(sd, lb_balanced[idle]);
  2370. sd->nr_balance_failed = 0;
  2371. out_one_pinned:
  2372. /* tune up the balancing interval */
  2373. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2374. (sd->balance_interval < sd->max_interval))
  2375. sd->balance_interval *= 2;
  2376. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2377. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2378. return -1;
  2379. return 0;
  2380. }
  2381. /*
  2382. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2383. * tasks if there is an imbalance.
  2384. *
  2385. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2386. * this_rq is locked.
  2387. */
  2388. static int
  2389. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2390. {
  2391. struct sched_group *group;
  2392. struct rq *busiest = NULL;
  2393. unsigned long imbalance;
  2394. int nr_moved = 0;
  2395. int sd_idle = 0;
  2396. cpumask_t cpus = CPU_MASK_ALL;
  2397. /*
  2398. * When power savings policy is enabled for the parent domain, idle
  2399. * sibling can pick up load irrespective of busy siblings. In this case,
  2400. * let the state of idle sibling percolate up as IDLE, instead of
  2401. * portraying it as NOT_IDLE.
  2402. */
  2403. if (sd->flags & SD_SHARE_CPUPOWER &&
  2404. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2405. sd_idle = 1;
  2406. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2407. redo:
  2408. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2409. &sd_idle, &cpus, NULL);
  2410. if (!group) {
  2411. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2412. goto out_balanced;
  2413. }
  2414. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2415. &cpus);
  2416. if (!busiest) {
  2417. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2418. goto out_balanced;
  2419. }
  2420. BUG_ON(busiest == this_rq);
  2421. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2422. nr_moved = 0;
  2423. if (busiest->nr_running > 1) {
  2424. /* Attempt to move tasks */
  2425. double_lock_balance(this_rq, busiest);
  2426. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2427. minus_1_or_zero(busiest->nr_running),
  2428. imbalance, sd, NEWLY_IDLE, NULL);
  2429. spin_unlock(&busiest->lock);
  2430. if (!nr_moved) {
  2431. cpu_clear(cpu_of(busiest), cpus);
  2432. if (!cpus_empty(cpus))
  2433. goto redo;
  2434. }
  2435. }
  2436. if (!nr_moved) {
  2437. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2438. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2439. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2440. return -1;
  2441. } else
  2442. sd->nr_balance_failed = 0;
  2443. return nr_moved;
  2444. out_balanced:
  2445. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2446. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2447. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2448. return -1;
  2449. sd->nr_balance_failed = 0;
  2450. return 0;
  2451. }
  2452. /*
  2453. * idle_balance is called by schedule() if this_cpu is about to become
  2454. * idle. Attempts to pull tasks from other CPUs.
  2455. */
  2456. static void idle_balance(int this_cpu, struct rq *this_rq)
  2457. {
  2458. struct sched_domain *sd;
  2459. int pulled_task = 0;
  2460. unsigned long next_balance = jiffies + 60 * HZ;
  2461. for_each_domain(this_cpu, sd) {
  2462. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2463. /* If we've pulled tasks over stop searching: */
  2464. pulled_task = load_balance_newidle(this_cpu,
  2465. this_rq, sd);
  2466. if (time_after(next_balance,
  2467. sd->last_balance + sd->balance_interval))
  2468. next_balance = sd->last_balance
  2469. + sd->balance_interval;
  2470. if (pulled_task)
  2471. break;
  2472. }
  2473. }
  2474. if (!pulled_task)
  2475. /*
  2476. * We are going idle. next_balance may be set based on
  2477. * a busy processor. So reset next_balance.
  2478. */
  2479. this_rq->next_balance = next_balance;
  2480. }
  2481. /*
  2482. * active_load_balance is run by migration threads. It pushes running tasks
  2483. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2484. * running on each physical CPU where possible, and avoids physical /
  2485. * logical imbalances.
  2486. *
  2487. * Called with busiest_rq locked.
  2488. */
  2489. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2490. {
  2491. int target_cpu = busiest_rq->push_cpu;
  2492. struct sched_domain *sd;
  2493. struct rq *target_rq;
  2494. /* Is there any task to move? */
  2495. if (busiest_rq->nr_running <= 1)
  2496. return;
  2497. target_rq = cpu_rq(target_cpu);
  2498. /*
  2499. * This condition is "impossible", if it occurs
  2500. * we need to fix it. Originally reported by
  2501. * Bjorn Helgaas on a 128-cpu setup.
  2502. */
  2503. BUG_ON(busiest_rq == target_rq);
  2504. /* move a task from busiest_rq to target_rq */
  2505. double_lock_balance(busiest_rq, target_rq);
  2506. /* Search for an sd spanning us and the target CPU. */
  2507. for_each_domain(target_cpu, sd) {
  2508. if ((sd->flags & SD_LOAD_BALANCE) &&
  2509. cpu_isset(busiest_cpu, sd->span))
  2510. break;
  2511. }
  2512. if (likely(sd)) {
  2513. schedstat_inc(sd, alb_cnt);
  2514. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2515. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2516. NULL))
  2517. schedstat_inc(sd, alb_pushed);
  2518. else
  2519. schedstat_inc(sd, alb_failed);
  2520. }
  2521. spin_unlock(&target_rq->lock);
  2522. }
  2523. static void update_load(struct rq *this_rq)
  2524. {
  2525. unsigned long this_load;
  2526. int i, scale;
  2527. this_load = this_rq->raw_weighted_load;
  2528. /* Update our load: */
  2529. for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
  2530. unsigned long old_load, new_load;
  2531. old_load = this_rq->cpu_load[i];
  2532. new_load = this_load;
  2533. /*
  2534. * Round up the averaging division if load is increasing. This
  2535. * prevents us from getting stuck on 9 if the load is 10, for
  2536. * example.
  2537. */
  2538. if (new_load > old_load)
  2539. new_load += scale-1;
  2540. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2541. }
  2542. }
  2543. /*
  2544. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2545. *
  2546. * It checks each scheduling domain to see if it is due to be balanced,
  2547. * and initiates a balancing operation if so.
  2548. *
  2549. * Balancing parameters are set up in arch_init_sched_domains.
  2550. */
  2551. static DEFINE_SPINLOCK(balancing);
  2552. static void run_rebalance_domains(struct softirq_action *h)
  2553. {
  2554. int this_cpu = smp_processor_id(), balance = 1;
  2555. struct rq *this_rq = cpu_rq(this_cpu);
  2556. unsigned long interval;
  2557. struct sched_domain *sd;
  2558. /*
  2559. * We are idle if there are no processes running. This
  2560. * is valid even if we are the idle process (SMT).
  2561. */
  2562. enum idle_type idle = !this_rq->nr_running ?
  2563. SCHED_IDLE : NOT_IDLE;
  2564. /* Earliest time when we have to call run_rebalance_domains again */
  2565. unsigned long next_balance = jiffies + 60*HZ;
  2566. for_each_domain(this_cpu, sd) {
  2567. if (!(sd->flags & SD_LOAD_BALANCE))
  2568. continue;
  2569. interval = sd->balance_interval;
  2570. if (idle != SCHED_IDLE)
  2571. interval *= sd->busy_factor;
  2572. /* scale ms to jiffies */
  2573. interval = msecs_to_jiffies(interval);
  2574. if (unlikely(!interval))
  2575. interval = 1;
  2576. if (sd->flags & SD_SERIALIZE) {
  2577. if (!spin_trylock(&balancing))
  2578. goto out;
  2579. }
  2580. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2581. if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
  2582. /*
  2583. * We've pulled tasks over so either we're no
  2584. * longer idle, or one of our SMT siblings is
  2585. * not idle.
  2586. */
  2587. idle = NOT_IDLE;
  2588. }
  2589. sd->last_balance = jiffies;
  2590. }
  2591. if (sd->flags & SD_SERIALIZE)
  2592. spin_unlock(&balancing);
  2593. out:
  2594. if (time_after(next_balance, sd->last_balance + interval))
  2595. next_balance = sd->last_balance + interval;
  2596. /*
  2597. * Stop the load balance at this level. There is another
  2598. * CPU in our sched group which is doing load balancing more
  2599. * actively.
  2600. */
  2601. if (!balance)
  2602. break;
  2603. }
  2604. this_rq->next_balance = next_balance;
  2605. }
  2606. #else
  2607. /*
  2608. * on UP we do not need to balance between CPUs:
  2609. */
  2610. static inline void idle_balance(int cpu, struct rq *rq)
  2611. {
  2612. }
  2613. #endif
  2614. static inline void wake_priority_sleeper(struct rq *rq)
  2615. {
  2616. #ifdef CONFIG_SCHED_SMT
  2617. if (!rq->nr_running)
  2618. return;
  2619. spin_lock(&rq->lock);
  2620. /*
  2621. * If an SMT sibling task has been put to sleep for priority
  2622. * reasons reschedule the idle task to see if it can now run.
  2623. */
  2624. if (rq->nr_running)
  2625. resched_task(rq->idle);
  2626. spin_unlock(&rq->lock);
  2627. #endif
  2628. }
  2629. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2630. EXPORT_PER_CPU_SYMBOL(kstat);
  2631. /*
  2632. * This is called on clock ticks and on context switches.
  2633. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2634. */
  2635. static inline void
  2636. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2637. {
  2638. p->sched_time += now - p->last_ran;
  2639. p->last_ran = rq->most_recent_timestamp = now;
  2640. }
  2641. /*
  2642. * Return current->sched_time plus any more ns on the sched_clock
  2643. * that have not yet been banked.
  2644. */
  2645. unsigned long long current_sched_time(const struct task_struct *p)
  2646. {
  2647. unsigned long long ns;
  2648. unsigned long flags;
  2649. local_irq_save(flags);
  2650. ns = p->sched_time + sched_clock() - p->last_ran;
  2651. local_irq_restore(flags);
  2652. return ns;
  2653. }
  2654. /*
  2655. * We place interactive tasks back into the active array, if possible.
  2656. *
  2657. * To guarantee that this does not starve expired tasks we ignore the
  2658. * interactivity of a task if the first expired task had to wait more
  2659. * than a 'reasonable' amount of time. This deadline timeout is
  2660. * load-dependent, as the frequency of array switched decreases with
  2661. * increasing number of running tasks. We also ignore the interactivity
  2662. * if a better static_prio task has expired:
  2663. */
  2664. static inline int expired_starving(struct rq *rq)
  2665. {
  2666. if (rq->curr->static_prio > rq->best_expired_prio)
  2667. return 1;
  2668. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2669. return 0;
  2670. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2671. return 1;
  2672. return 0;
  2673. }
  2674. /*
  2675. * Account user cpu time to a process.
  2676. * @p: the process that the cpu time gets accounted to
  2677. * @hardirq_offset: the offset to subtract from hardirq_count()
  2678. * @cputime: the cpu time spent in user space since the last update
  2679. */
  2680. void account_user_time(struct task_struct *p, cputime_t cputime)
  2681. {
  2682. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2683. cputime64_t tmp;
  2684. p->utime = cputime_add(p->utime, cputime);
  2685. /* Add user time to cpustat. */
  2686. tmp = cputime_to_cputime64(cputime);
  2687. if (TASK_NICE(p) > 0)
  2688. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2689. else
  2690. cpustat->user = cputime64_add(cpustat->user, tmp);
  2691. }
  2692. /*
  2693. * Account system cpu time to a process.
  2694. * @p: the process that the cpu time gets accounted to
  2695. * @hardirq_offset: the offset to subtract from hardirq_count()
  2696. * @cputime: the cpu time spent in kernel space since the last update
  2697. */
  2698. void account_system_time(struct task_struct *p, int hardirq_offset,
  2699. cputime_t cputime)
  2700. {
  2701. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2702. struct rq *rq = this_rq();
  2703. cputime64_t tmp;
  2704. p->stime = cputime_add(p->stime, cputime);
  2705. /* Add system time to cpustat. */
  2706. tmp = cputime_to_cputime64(cputime);
  2707. if (hardirq_count() - hardirq_offset)
  2708. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2709. else if (softirq_count())
  2710. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2711. else if (p != rq->idle)
  2712. cpustat->system = cputime64_add(cpustat->system, tmp);
  2713. else if (atomic_read(&rq->nr_iowait) > 0)
  2714. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2715. else
  2716. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2717. /* Account for system time used */
  2718. acct_update_integrals(p);
  2719. }
  2720. /*
  2721. * Account for involuntary wait time.
  2722. * @p: the process from which the cpu time has been stolen
  2723. * @steal: the cpu time spent in involuntary wait
  2724. */
  2725. void account_steal_time(struct task_struct *p, cputime_t steal)
  2726. {
  2727. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2728. cputime64_t tmp = cputime_to_cputime64(steal);
  2729. struct rq *rq = this_rq();
  2730. if (p == rq->idle) {
  2731. p->stime = cputime_add(p->stime, steal);
  2732. if (atomic_read(&rq->nr_iowait) > 0)
  2733. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2734. else
  2735. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2736. } else
  2737. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2738. }
  2739. static void task_running_tick(struct rq *rq, struct task_struct *p)
  2740. {
  2741. if (p->array != rq->active) {
  2742. /* Task has expired but was not scheduled yet */
  2743. set_tsk_need_resched(p);
  2744. return;
  2745. }
  2746. spin_lock(&rq->lock);
  2747. /*
  2748. * The task was running during this tick - update the
  2749. * time slice counter. Note: we do not update a thread's
  2750. * priority until it either goes to sleep or uses up its
  2751. * timeslice. This makes it possible for interactive tasks
  2752. * to use up their timeslices at their highest priority levels.
  2753. */
  2754. if (rt_task(p)) {
  2755. /*
  2756. * RR tasks need a special form of timeslice management.
  2757. * FIFO tasks have no timeslices.
  2758. */
  2759. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2760. p->time_slice = task_timeslice(p);
  2761. p->first_time_slice = 0;
  2762. set_tsk_need_resched(p);
  2763. /* put it at the end of the queue: */
  2764. requeue_task(p, rq->active);
  2765. }
  2766. goto out_unlock;
  2767. }
  2768. if (!--p->time_slice) {
  2769. dequeue_task(p, rq->active);
  2770. set_tsk_need_resched(p);
  2771. p->prio = effective_prio(p);
  2772. p->time_slice = task_timeslice(p);
  2773. p->first_time_slice = 0;
  2774. if (!rq->expired_timestamp)
  2775. rq->expired_timestamp = jiffies;
  2776. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2777. enqueue_task(p, rq->expired);
  2778. if (p->static_prio < rq->best_expired_prio)
  2779. rq->best_expired_prio = p->static_prio;
  2780. } else
  2781. enqueue_task(p, rq->active);
  2782. } else {
  2783. /*
  2784. * Prevent a too long timeslice allowing a task to monopolize
  2785. * the CPU. We do this by splitting up the timeslice into
  2786. * smaller pieces.
  2787. *
  2788. * Note: this does not mean the task's timeslices expire or
  2789. * get lost in any way, they just might be preempted by
  2790. * another task of equal priority. (one with higher
  2791. * priority would have preempted this task already.) We
  2792. * requeue this task to the end of the list on this priority
  2793. * level, which is in essence a round-robin of tasks with
  2794. * equal priority.
  2795. *
  2796. * This only applies to tasks in the interactive
  2797. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2798. */
  2799. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2800. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2801. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2802. (p->array == rq->active)) {
  2803. requeue_task(p, rq->active);
  2804. set_tsk_need_resched(p);
  2805. }
  2806. }
  2807. out_unlock:
  2808. spin_unlock(&rq->lock);
  2809. }
  2810. /*
  2811. * This function gets called by the timer code, with HZ frequency.
  2812. * We call it with interrupts disabled.
  2813. *
  2814. * It also gets called by the fork code, when changing the parent's
  2815. * timeslices.
  2816. */
  2817. void scheduler_tick(void)
  2818. {
  2819. unsigned long long now = sched_clock();
  2820. struct task_struct *p = current;
  2821. int cpu = smp_processor_id();
  2822. struct rq *rq = cpu_rq(cpu);
  2823. update_cpu_clock(p, rq, now);
  2824. if (p == rq->idle)
  2825. /* Task on the idle queue */
  2826. wake_priority_sleeper(rq);
  2827. else
  2828. task_running_tick(rq, p);
  2829. #ifdef CONFIG_SMP
  2830. update_load(rq);
  2831. if (time_after_eq(jiffies, rq->next_balance))
  2832. raise_softirq(SCHED_SOFTIRQ);
  2833. #endif
  2834. }
  2835. #ifdef CONFIG_SCHED_SMT
  2836. static inline void wakeup_busy_runqueue(struct rq *rq)
  2837. {
  2838. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2839. if (rq->curr == rq->idle && rq->nr_running)
  2840. resched_task(rq->idle);
  2841. }
  2842. /*
  2843. * Called with interrupt disabled and this_rq's runqueue locked.
  2844. */
  2845. static void wake_sleeping_dependent(int this_cpu)
  2846. {
  2847. struct sched_domain *tmp, *sd = NULL;
  2848. int i;
  2849. for_each_domain(this_cpu, tmp) {
  2850. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2851. sd = tmp;
  2852. break;
  2853. }
  2854. }
  2855. if (!sd)
  2856. return;
  2857. for_each_cpu_mask(i, sd->span) {
  2858. struct rq *smt_rq = cpu_rq(i);
  2859. if (i == this_cpu)
  2860. continue;
  2861. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2862. continue;
  2863. wakeup_busy_runqueue(smt_rq);
  2864. spin_unlock(&smt_rq->lock);
  2865. }
  2866. }
  2867. /*
  2868. * number of 'lost' timeslices this task wont be able to fully
  2869. * utilize, if another task runs on a sibling. This models the
  2870. * slowdown effect of other tasks running on siblings:
  2871. */
  2872. static inline unsigned long
  2873. smt_slice(struct task_struct *p, struct sched_domain *sd)
  2874. {
  2875. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2876. }
  2877. /*
  2878. * To minimise lock contention and not have to drop this_rq's runlock we only
  2879. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2880. * acquire their lock. As we only trylock the normal locking order does not
  2881. * need to be obeyed.
  2882. */
  2883. static int
  2884. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2885. {
  2886. struct sched_domain *tmp, *sd = NULL;
  2887. int ret = 0, i;
  2888. /* kernel/rt threads do not participate in dependent sleeping */
  2889. if (!p->mm || rt_task(p))
  2890. return 0;
  2891. for_each_domain(this_cpu, tmp) {
  2892. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2893. sd = tmp;
  2894. break;
  2895. }
  2896. }
  2897. if (!sd)
  2898. return 0;
  2899. for_each_cpu_mask(i, sd->span) {
  2900. struct task_struct *smt_curr;
  2901. struct rq *smt_rq;
  2902. if (i == this_cpu)
  2903. continue;
  2904. smt_rq = cpu_rq(i);
  2905. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2906. continue;
  2907. smt_curr = smt_rq->curr;
  2908. if (!smt_curr->mm)
  2909. goto unlock;
  2910. /*
  2911. * If a user task with lower static priority than the
  2912. * running task on the SMT sibling is trying to schedule,
  2913. * delay it till there is proportionately less timeslice
  2914. * left of the sibling task to prevent a lower priority
  2915. * task from using an unfair proportion of the
  2916. * physical cpu's resources. -ck
  2917. */
  2918. if (rt_task(smt_curr)) {
  2919. /*
  2920. * With real time tasks we run non-rt tasks only
  2921. * per_cpu_gain% of the time.
  2922. */
  2923. if ((jiffies % DEF_TIMESLICE) >
  2924. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2925. ret = 1;
  2926. } else {
  2927. if (smt_curr->static_prio < p->static_prio &&
  2928. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2929. smt_slice(smt_curr, sd) > task_timeslice(p))
  2930. ret = 1;
  2931. }
  2932. unlock:
  2933. spin_unlock(&smt_rq->lock);
  2934. }
  2935. return ret;
  2936. }
  2937. #else
  2938. static inline void wake_sleeping_dependent(int this_cpu)
  2939. {
  2940. }
  2941. static inline int
  2942. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2943. {
  2944. return 0;
  2945. }
  2946. #endif
  2947. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2948. void fastcall add_preempt_count(int val)
  2949. {
  2950. /*
  2951. * Underflow?
  2952. */
  2953. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2954. return;
  2955. preempt_count() += val;
  2956. /*
  2957. * Spinlock count overflowing soon?
  2958. */
  2959. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2960. PREEMPT_MASK - 10);
  2961. }
  2962. EXPORT_SYMBOL(add_preempt_count);
  2963. void fastcall sub_preempt_count(int val)
  2964. {
  2965. /*
  2966. * Underflow?
  2967. */
  2968. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2969. return;
  2970. /*
  2971. * Is the spinlock portion underflowing?
  2972. */
  2973. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2974. !(preempt_count() & PREEMPT_MASK)))
  2975. return;
  2976. preempt_count() -= val;
  2977. }
  2978. EXPORT_SYMBOL(sub_preempt_count);
  2979. #endif
  2980. static inline int interactive_sleep(enum sleep_type sleep_type)
  2981. {
  2982. return (sleep_type == SLEEP_INTERACTIVE ||
  2983. sleep_type == SLEEP_INTERRUPTED);
  2984. }
  2985. /*
  2986. * schedule() is the main scheduler function.
  2987. */
  2988. asmlinkage void __sched schedule(void)
  2989. {
  2990. struct task_struct *prev, *next;
  2991. struct prio_array *array;
  2992. struct list_head *queue;
  2993. unsigned long long now;
  2994. unsigned long run_time;
  2995. int cpu, idx, new_prio;
  2996. long *switch_count;
  2997. struct rq *rq;
  2998. /*
  2999. * Test if we are atomic. Since do_exit() needs to call into
  3000. * schedule() atomically, we ignore that path for now.
  3001. * Otherwise, whine if we are scheduling when we should not be.
  3002. */
  3003. if (unlikely(in_atomic() && !current->exit_state)) {
  3004. printk(KERN_ERR "BUG: scheduling while atomic: "
  3005. "%s/0x%08x/%d\n",
  3006. current->comm, preempt_count(), current->pid);
  3007. debug_show_held_locks(current);
  3008. if (irqs_disabled())
  3009. print_irqtrace_events(current);
  3010. dump_stack();
  3011. }
  3012. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3013. need_resched:
  3014. preempt_disable();
  3015. prev = current;
  3016. release_kernel_lock(prev);
  3017. need_resched_nonpreemptible:
  3018. rq = this_rq();
  3019. /*
  3020. * The idle thread is not allowed to schedule!
  3021. * Remove this check after it has been exercised a bit.
  3022. */
  3023. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  3024. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  3025. dump_stack();
  3026. }
  3027. schedstat_inc(rq, sched_cnt);
  3028. now = sched_clock();
  3029. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  3030. run_time = now - prev->timestamp;
  3031. if (unlikely((long long)(now - prev->timestamp) < 0))
  3032. run_time = 0;
  3033. } else
  3034. run_time = NS_MAX_SLEEP_AVG;
  3035. /*
  3036. * Tasks charged proportionately less run_time at high sleep_avg to
  3037. * delay them losing their interactive status
  3038. */
  3039. run_time /= (CURRENT_BONUS(prev) ? : 1);
  3040. spin_lock_irq(&rq->lock);
  3041. switch_count = &prev->nivcsw;
  3042. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3043. switch_count = &prev->nvcsw;
  3044. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3045. unlikely(signal_pending(prev))))
  3046. prev->state = TASK_RUNNING;
  3047. else {
  3048. if (prev->state == TASK_UNINTERRUPTIBLE)
  3049. rq->nr_uninterruptible++;
  3050. deactivate_task(prev, rq);
  3051. }
  3052. }
  3053. cpu = smp_processor_id();
  3054. if (unlikely(!rq->nr_running)) {
  3055. idle_balance(cpu, rq);
  3056. if (!rq->nr_running) {
  3057. next = rq->idle;
  3058. rq->expired_timestamp = 0;
  3059. wake_sleeping_dependent(cpu);
  3060. goto switch_tasks;
  3061. }
  3062. }
  3063. array = rq->active;
  3064. if (unlikely(!array->nr_active)) {
  3065. /*
  3066. * Switch the active and expired arrays.
  3067. */
  3068. schedstat_inc(rq, sched_switch);
  3069. rq->active = rq->expired;
  3070. rq->expired = array;
  3071. array = rq->active;
  3072. rq->expired_timestamp = 0;
  3073. rq->best_expired_prio = MAX_PRIO;
  3074. }
  3075. idx = sched_find_first_bit(array->bitmap);
  3076. queue = array->queue + idx;
  3077. next = list_entry(queue->next, struct task_struct, run_list);
  3078. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  3079. unsigned long long delta = now - next->timestamp;
  3080. if (unlikely((long long)(now - next->timestamp) < 0))
  3081. delta = 0;
  3082. if (next->sleep_type == SLEEP_INTERACTIVE)
  3083. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  3084. array = next->array;
  3085. new_prio = recalc_task_prio(next, next->timestamp + delta);
  3086. if (unlikely(next->prio != new_prio)) {
  3087. dequeue_task(next, array);
  3088. next->prio = new_prio;
  3089. enqueue_task(next, array);
  3090. }
  3091. }
  3092. next->sleep_type = SLEEP_NORMAL;
  3093. if (dependent_sleeper(cpu, rq, next))
  3094. next = rq->idle;
  3095. switch_tasks:
  3096. if (next == rq->idle)
  3097. schedstat_inc(rq, sched_goidle);
  3098. prefetch(next);
  3099. prefetch_stack(next);
  3100. clear_tsk_need_resched(prev);
  3101. rcu_qsctr_inc(task_cpu(prev));
  3102. update_cpu_clock(prev, rq, now);
  3103. prev->sleep_avg -= run_time;
  3104. if ((long)prev->sleep_avg <= 0)
  3105. prev->sleep_avg = 0;
  3106. prev->timestamp = prev->last_ran = now;
  3107. sched_info_switch(prev, next);
  3108. if (likely(prev != next)) {
  3109. next->timestamp = now;
  3110. rq->nr_switches++;
  3111. rq->curr = next;
  3112. ++*switch_count;
  3113. prepare_task_switch(rq, next);
  3114. prev = context_switch(rq, prev, next);
  3115. barrier();
  3116. /*
  3117. * this_rq must be evaluated again because prev may have moved
  3118. * CPUs since it called schedule(), thus the 'rq' on its stack
  3119. * frame will be invalid.
  3120. */
  3121. finish_task_switch(this_rq(), prev);
  3122. } else
  3123. spin_unlock_irq(&rq->lock);
  3124. prev = current;
  3125. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3126. goto need_resched_nonpreemptible;
  3127. preempt_enable_no_resched();
  3128. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3129. goto need_resched;
  3130. }
  3131. EXPORT_SYMBOL(schedule);
  3132. #ifdef CONFIG_PREEMPT
  3133. /*
  3134. * this is the entry point to schedule() from in-kernel preemption
  3135. * off of preempt_enable. Kernel preemptions off return from interrupt
  3136. * occur there and call schedule directly.
  3137. */
  3138. asmlinkage void __sched preempt_schedule(void)
  3139. {
  3140. struct thread_info *ti = current_thread_info();
  3141. #ifdef CONFIG_PREEMPT_BKL
  3142. struct task_struct *task = current;
  3143. int saved_lock_depth;
  3144. #endif
  3145. /*
  3146. * If there is a non-zero preempt_count or interrupts are disabled,
  3147. * we do not want to preempt the current task. Just return..
  3148. */
  3149. if (likely(ti->preempt_count || irqs_disabled()))
  3150. return;
  3151. need_resched:
  3152. add_preempt_count(PREEMPT_ACTIVE);
  3153. /*
  3154. * We keep the big kernel semaphore locked, but we
  3155. * clear ->lock_depth so that schedule() doesnt
  3156. * auto-release the semaphore:
  3157. */
  3158. #ifdef CONFIG_PREEMPT_BKL
  3159. saved_lock_depth = task->lock_depth;
  3160. task->lock_depth = -1;
  3161. #endif
  3162. schedule();
  3163. #ifdef CONFIG_PREEMPT_BKL
  3164. task->lock_depth = saved_lock_depth;
  3165. #endif
  3166. sub_preempt_count(PREEMPT_ACTIVE);
  3167. /* we could miss a preemption opportunity between schedule and now */
  3168. barrier();
  3169. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3170. goto need_resched;
  3171. }
  3172. EXPORT_SYMBOL(preempt_schedule);
  3173. /*
  3174. * this is the entry point to schedule() from kernel preemption
  3175. * off of irq context.
  3176. * Note, that this is called and return with irqs disabled. This will
  3177. * protect us against recursive calling from irq.
  3178. */
  3179. asmlinkage void __sched preempt_schedule_irq(void)
  3180. {
  3181. struct thread_info *ti = current_thread_info();
  3182. #ifdef CONFIG_PREEMPT_BKL
  3183. struct task_struct *task = current;
  3184. int saved_lock_depth;
  3185. #endif
  3186. /* Catch callers which need to be fixed */
  3187. BUG_ON(ti->preempt_count || !irqs_disabled());
  3188. need_resched:
  3189. add_preempt_count(PREEMPT_ACTIVE);
  3190. /*
  3191. * We keep the big kernel semaphore locked, but we
  3192. * clear ->lock_depth so that schedule() doesnt
  3193. * auto-release the semaphore:
  3194. */
  3195. #ifdef CONFIG_PREEMPT_BKL
  3196. saved_lock_depth = task->lock_depth;
  3197. task->lock_depth = -1;
  3198. #endif
  3199. local_irq_enable();
  3200. schedule();
  3201. local_irq_disable();
  3202. #ifdef CONFIG_PREEMPT_BKL
  3203. task->lock_depth = saved_lock_depth;
  3204. #endif
  3205. sub_preempt_count(PREEMPT_ACTIVE);
  3206. /* we could miss a preemption opportunity between schedule and now */
  3207. barrier();
  3208. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3209. goto need_resched;
  3210. }
  3211. #endif /* CONFIG_PREEMPT */
  3212. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3213. void *key)
  3214. {
  3215. return try_to_wake_up(curr->private, mode, sync);
  3216. }
  3217. EXPORT_SYMBOL(default_wake_function);
  3218. /*
  3219. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3220. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3221. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3222. *
  3223. * There are circumstances in which we can try to wake a task which has already
  3224. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3225. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3226. */
  3227. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3228. int nr_exclusive, int sync, void *key)
  3229. {
  3230. struct list_head *tmp, *next;
  3231. list_for_each_safe(tmp, next, &q->task_list) {
  3232. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3233. unsigned flags = curr->flags;
  3234. if (curr->func(curr, mode, sync, key) &&
  3235. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3236. break;
  3237. }
  3238. }
  3239. /**
  3240. * __wake_up - wake up threads blocked on a waitqueue.
  3241. * @q: the waitqueue
  3242. * @mode: which threads
  3243. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3244. * @key: is directly passed to the wakeup function
  3245. */
  3246. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3247. int nr_exclusive, void *key)
  3248. {
  3249. unsigned long flags;
  3250. spin_lock_irqsave(&q->lock, flags);
  3251. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3252. spin_unlock_irqrestore(&q->lock, flags);
  3253. }
  3254. EXPORT_SYMBOL(__wake_up);
  3255. /*
  3256. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3257. */
  3258. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3259. {
  3260. __wake_up_common(q, mode, 1, 0, NULL);
  3261. }
  3262. /**
  3263. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3264. * @q: the waitqueue
  3265. * @mode: which threads
  3266. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3267. *
  3268. * The sync wakeup differs that the waker knows that it will schedule
  3269. * away soon, so while the target thread will be woken up, it will not
  3270. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3271. * with each other. This can prevent needless bouncing between CPUs.
  3272. *
  3273. * On UP it can prevent extra preemption.
  3274. */
  3275. void fastcall
  3276. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3277. {
  3278. unsigned long flags;
  3279. int sync = 1;
  3280. if (unlikely(!q))
  3281. return;
  3282. if (unlikely(!nr_exclusive))
  3283. sync = 0;
  3284. spin_lock_irqsave(&q->lock, flags);
  3285. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3286. spin_unlock_irqrestore(&q->lock, flags);
  3287. }
  3288. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3289. void fastcall complete(struct completion *x)
  3290. {
  3291. unsigned long flags;
  3292. spin_lock_irqsave(&x->wait.lock, flags);
  3293. x->done++;
  3294. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3295. 1, 0, NULL);
  3296. spin_unlock_irqrestore(&x->wait.lock, flags);
  3297. }
  3298. EXPORT_SYMBOL(complete);
  3299. void fastcall complete_all(struct completion *x)
  3300. {
  3301. unsigned long flags;
  3302. spin_lock_irqsave(&x->wait.lock, flags);
  3303. x->done += UINT_MAX/2;
  3304. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3305. 0, 0, NULL);
  3306. spin_unlock_irqrestore(&x->wait.lock, flags);
  3307. }
  3308. EXPORT_SYMBOL(complete_all);
  3309. void fastcall __sched wait_for_completion(struct completion *x)
  3310. {
  3311. might_sleep();
  3312. spin_lock_irq(&x->wait.lock);
  3313. if (!x->done) {
  3314. DECLARE_WAITQUEUE(wait, current);
  3315. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3316. __add_wait_queue_tail(&x->wait, &wait);
  3317. do {
  3318. __set_current_state(TASK_UNINTERRUPTIBLE);
  3319. spin_unlock_irq(&x->wait.lock);
  3320. schedule();
  3321. spin_lock_irq(&x->wait.lock);
  3322. } while (!x->done);
  3323. __remove_wait_queue(&x->wait, &wait);
  3324. }
  3325. x->done--;
  3326. spin_unlock_irq(&x->wait.lock);
  3327. }
  3328. EXPORT_SYMBOL(wait_for_completion);
  3329. unsigned long fastcall __sched
  3330. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3331. {
  3332. might_sleep();
  3333. spin_lock_irq(&x->wait.lock);
  3334. if (!x->done) {
  3335. DECLARE_WAITQUEUE(wait, current);
  3336. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3337. __add_wait_queue_tail(&x->wait, &wait);
  3338. do {
  3339. __set_current_state(TASK_UNINTERRUPTIBLE);
  3340. spin_unlock_irq(&x->wait.lock);
  3341. timeout = schedule_timeout(timeout);
  3342. spin_lock_irq(&x->wait.lock);
  3343. if (!timeout) {
  3344. __remove_wait_queue(&x->wait, &wait);
  3345. goto out;
  3346. }
  3347. } while (!x->done);
  3348. __remove_wait_queue(&x->wait, &wait);
  3349. }
  3350. x->done--;
  3351. out:
  3352. spin_unlock_irq(&x->wait.lock);
  3353. return timeout;
  3354. }
  3355. EXPORT_SYMBOL(wait_for_completion_timeout);
  3356. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3357. {
  3358. int ret = 0;
  3359. might_sleep();
  3360. spin_lock_irq(&x->wait.lock);
  3361. if (!x->done) {
  3362. DECLARE_WAITQUEUE(wait, current);
  3363. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3364. __add_wait_queue_tail(&x->wait, &wait);
  3365. do {
  3366. if (signal_pending(current)) {
  3367. ret = -ERESTARTSYS;
  3368. __remove_wait_queue(&x->wait, &wait);
  3369. goto out;
  3370. }
  3371. __set_current_state(TASK_INTERRUPTIBLE);
  3372. spin_unlock_irq(&x->wait.lock);
  3373. schedule();
  3374. spin_lock_irq(&x->wait.lock);
  3375. } while (!x->done);
  3376. __remove_wait_queue(&x->wait, &wait);
  3377. }
  3378. x->done--;
  3379. out:
  3380. spin_unlock_irq(&x->wait.lock);
  3381. return ret;
  3382. }
  3383. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3384. unsigned long fastcall __sched
  3385. wait_for_completion_interruptible_timeout(struct completion *x,
  3386. unsigned long timeout)
  3387. {
  3388. might_sleep();
  3389. spin_lock_irq(&x->wait.lock);
  3390. if (!x->done) {
  3391. DECLARE_WAITQUEUE(wait, current);
  3392. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3393. __add_wait_queue_tail(&x->wait, &wait);
  3394. do {
  3395. if (signal_pending(current)) {
  3396. timeout = -ERESTARTSYS;
  3397. __remove_wait_queue(&x->wait, &wait);
  3398. goto out;
  3399. }
  3400. __set_current_state(TASK_INTERRUPTIBLE);
  3401. spin_unlock_irq(&x->wait.lock);
  3402. timeout = schedule_timeout(timeout);
  3403. spin_lock_irq(&x->wait.lock);
  3404. if (!timeout) {
  3405. __remove_wait_queue(&x->wait, &wait);
  3406. goto out;
  3407. }
  3408. } while (!x->done);
  3409. __remove_wait_queue(&x->wait, &wait);
  3410. }
  3411. x->done--;
  3412. out:
  3413. spin_unlock_irq(&x->wait.lock);
  3414. return timeout;
  3415. }
  3416. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3417. #define SLEEP_ON_VAR \
  3418. unsigned long flags; \
  3419. wait_queue_t wait; \
  3420. init_waitqueue_entry(&wait, current);
  3421. #define SLEEP_ON_HEAD \
  3422. spin_lock_irqsave(&q->lock,flags); \
  3423. __add_wait_queue(q, &wait); \
  3424. spin_unlock(&q->lock);
  3425. #define SLEEP_ON_TAIL \
  3426. spin_lock_irq(&q->lock); \
  3427. __remove_wait_queue(q, &wait); \
  3428. spin_unlock_irqrestore(&q->lock, flags);
  3429. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3430. {
  3431. SLEEP_ON_VAR
  3432. current->state = TASK_INTERRUPTIBLE;
  3433. SLEEP_ON_HEAD
  3434. schedule();
  3435. SLEEP_ON_TAIL
  3436. }
  3437. EXPORT_SYMBOL(interruptible_sleep_on);
  3438. long fastcall __sched
  3439. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3440. {
  3441. SLEEP_ON_VAR
  3442. current->state = TASK_INTERRUPTIBLE;
  3443. SLEEP_ON_HEAD
  3444. timeout = schedule_timeout(timeout);
  3445. SLEEP_ON_TAIL
  3446. return timeout;
  3447. }
  3448. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3449. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3450. {
  3451. SLEEP_ON_VAR
  3452. current->state = TASK_UNINTERRUPTIBLE;
  3453. SLEEP_ON_HEAD
  3454. schedule();
  3455. SLEEP_ON_TAIL
  3456. }
  3457. EXPORT_SYMBOL(sleep_on);
  3458. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3459. {
  3460. SLEEP_ON_VAR
  3461. current->state = TASK_UNINTERRUPTIBLE;
  3462. SLEEP_ON_HEAD
  3463. timeout = schedule_timeout(timeout);
  3464. SLEEP_ON_TAIL
  3465. return timeout;
  3466. }
  3467. EXPORT_SYMBOL(sleep_on_timeout);
  3468. #ifdef CONFIG_RT_MUTEXES
  3469. /*
  3470. * rt_mutex_setprio - set the current priority of a task
  3471. * @p: task
  3472. * @prio: prio value (kernel-internal form)
  3473. *
  3474. * This function changes the 'effective' priority of a task. It does
  3475. * not touch ->normal_prio like __setscheduler().
  3476. *
  3477. * Used by the rt_mutex code to implement priority inheritance logic.
  3478. */
  3479. void rt_mutex_setprio(struct task_struct *p, int prio)
  3480. {
  3481. struct prio_array *array;
  3482. unsigned long flags;
  3483. struct rq *rq;
  3484. int oldprio;
  3485. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3486. rq = task_rq_lock(p, &flags);
  3487. oldprio = p->prio;
  3488. array = p->array;
  3489. if (array)
  3490. dequeue_task(p, array);
  3491. p->prio = prio;
  3492. if (array) {
  3493. /*
  3494. * If changing to an RT priority then queue it
  3495. * in the active array!
  3496. */
  3497. if (rt_task(p))
  3498. array = rq->active;
  3499. enqueue_task(p, array);
  3500. /*
  3501. * Reschedule if we are currently running on this runqueue and
  3502. * our priority decreased, or if we are not currently running on
  3503. * this runqueue and our priority is higher than the current's
  3504. */
  3505. if (task_running(rq, p)) {
  3506. if (p->prio > oldprio)
  3507. resched_task(rq->curr);
  3508. } else if (TASK_PREEMPTS_CURR(p, rq))
  3509. resched_task(rq->curr);
  3510. }
  3511. task_rq_unlock(rq, &flags);
  3512. }
  3513. #endif
  3514. void set_user_nice(struct task_struct *p, long nice)
  3515. {
  3516. struct prio_array *array;
  3517. int old_prio, delta;
  3518. unsigned long flags;
  3519. struct rq *rq;
  3520. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3521. return;
  3522. /*
  3523. * We have to be careful, if called from sys_setpriority(),
  3524. * the task might be in the middle of scheduling on another CPU.
  3525. */
  3526. rq = task_rq_lock(p, &flags);
  3527. /*
  3528. * The RT priorities are set via sched_setscheduler(), but we still
  3529. * allow the 'normal' nice value to be set - but as expected
  3530. * it wont have any effect on scheduling until the task is
  3531. * not SCHED_NORMAL/SCHED_BATCH:
  3532. */
  3533. if (has_rt_policy(p)) {
  3534. p->static_prio = NICE_TO_PRIO(nice);
  3535. goto out_unlock;
  3536. }
  3537. array = p->array;
  3538. if (array) {
  3539. dequeue_task(p, array);
  3540. dec_raw_weighted_load(rq, p);
  3541. }
  3542. p->static_prio = NICE_TO_PRIO(nice);
  3543. set_load_weight(p);
  3544. old_prio = p->prio;
  3545. p->prio = effective_prio(p);
  3546. delta = p->prio - old_prio;
  3547. if (array) {
  3548. enqueue_task(p, array);
  3549. inc_raw_weighted_load(rq, p);
  3550. /*
  3551. * If the task increased its priority or is running and
  3552. * lowered its priority, then reschedule its CPU:
  3553. */
  3554. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3555. resched_task(rq->curr);
  3556. }
  3557. out_unlock:
  3558. task_rq_unlock(rq, &flags);
  3559. }
  3560. EXPORT_SYMBOL(set_user_nice);
  3561. /*
  3562. * can_nice - check if a task can reduce its nice value
  3563. * @p: task
  3564. * @nice: nice value
  3565. */
  3566. int can_nice(const struct task_struct *p, const int nice)
  3567. {
  3568. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3569. int nice_rlim = 20 - nice;
  3570. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3571. capable(CAP_SYS_NICE));
  3572. }
  3573. #ifdef __ARCH_WANT_SYS_NICE
  3574. /*
  3575. * sys_nice - change the priority of the current process.
  3576. * @increment: priority increment
  3577. *
  3578. * sys_setpriority is a more generic, but much slower function that
  3579. * does similar things.
  3580. */
  3581. asmlinkage long sys_nice(int increment)
  3582. {
  3583. long nice, retval;
  3584. /*
  3585. * Setpriority might change our priority at the same moment.
  3586. * We don't have to worry. Conceptually one call occurs first
  3587. * and we have a single winner.
  3588. */
  3589. if (increment < -40)
  3590. increment = -40;
  3591. if (increment > 40)
  3592. increment = 40;
  3593. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3594. if (nice < -20)
  3595. nice = -20;
  3596. if (nice > 19)
  3597. nice = 19;
  3598. if (increment < 0 && !can_nice(current, nice))
  3599. return -EPERM;
  3600. retval = security_task_setnice(current, nice);
  3601. if (retval)
  3602. return retval;
  3603. set_user_nice(current, nice);
  3604. return 0;
  3605. }
  3606. #endif
  3607. /**
  3608. * task_prio - return the priority value of a given task.
  3609. * @p: the task in question.
  3610. *
  3611. * This is the priority value as seen by users in /proc.
  3612. * RT tasks are offset by -200. Normal tasks are centered
  3613. * around 0, value goes from -16 to +15.
  3614. */
  3615. int task_prio(const struct task_struct *p)
  3616. {
  3617. return p->prio - MAX_RT_PRIO;
  3618. }
  3619. /**
  3620. * task_nice - return the nice value of a given task.
  3621. * @p: the task in question.
  3622. */
  3623. int task_nice(const struct task_struct *p)
  3624. {
  3625. return TASK_NICE(p);
  3626. }
  3627. EXPORT_SYMBOL_GPL(task_nice);
  3628. /**
  3629. * idle_cpu - is a given cpu idle currently?
  3630. * @cpu: the processor in question.
  3631. */
  3632. int idle_cpu(int cpu)
  3633. {
  3634. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3635. }
  3636. /**
  3637. * idle_task - return the idle task for a given cpu.
  3638. * @cpu: the processor in question.
  3639. */
  3640. struct task_struct *idle_task(int cpu)
  3641. {
  3642. return cpu_rq(cpu)->idle;
  3643. }
  3644. /**
  3645. * find_process_by_pid - find a process with a matching PID value.
  3646. * @pid: the pid in question.
  3647. */
  3648. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3649. {
  3650. return pid ? find_task_by_pid(pid) : current;
  3651. }
  3652. /* Actually do priority change: must hold rq lock. */
  3653. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3654. {
  3655. BUG_ON(p->array);
  3656. p->policy = policy;
  3657. p->rt_priority = prio;
  3658. p->normal_prio = normal_prio(p);
  3659. /* we are holding p->pi_lock already */
  3660. p->prio = rt_mutex_getprio(p);
  3661. /*
  3662. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3663. */
  3664. if (policy == SCHED_BATCH)
  3665. p->sleep_avg = 0;
  3666. set_load_weight(p);
  3667. }
  3668. /**
  3669. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3670. * a thread.
  3671. * @p: the task in question.
  3672. * @policy: new policy.
  3673. * @param: structure containing the new RT priority.
  3674. *
  3675. * NOTE: the task may be already dead
  3676. */
  3677. int sched_setscheduler(struct task_struct *p, int policy,
  3678. struct sched_param *param)
  3679. {
  3680. int retval, oldprio, oldpolicy = -1;
  3681. struct prio_array *array;
  3682. unsigned long flags;
  3683. struct rq *rq;
  3684. /* may grab non-irq protected spin_locks */
  3685. BUG_ON(in_interrupt());
  3686. recheck:
  3687. /* double check policy once rq lock held */
  3688. if (policy < 0)
  3689. policy = oldpolicy = p->policy;
  3690. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3691. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3692. return -EINVAL;
  3693. /*
  3694. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3695. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3696. * SCHED_BATCH is 0.
  3697. */
  3698. if (param->sched_priority < 0 ||
  3699. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3700. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3701. return -EINVAL;
  3702. if (is_rt_policy(policy) != (param->sched_priority != 0))
  3703. return -EINVAL;
  3704. /*
  3705. * Allow unprivileged RT tasks to decrease priority:
  3706. */
  3707. if (!capable(CAP_SYS_NICE)) {
  3708. if (is_rt_policy(policy)) {
  3709. unsigned long rlim_rtprio;
  3710. unsigned long flags;
  3711. if (!lock_task_sighand(p, &flags))
  3712. return -ESRCH;
  3713. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3714. unlock_task_sighand(p, &flags);
  3715. /* can't set/change the rt policy */
  3716. if (policy != p->policy && !rlim_rtprio)
  3717. return -EPERM;
  3718. /* can't increase priority */
  3719. if (param->sched_priority > p->rt_priority &&
  3720. param->sched_priority > rlim_rtprio)
  3721. return -EPERM;
  3722. }
  3723. /* can't change other user's priorities */
  3724. if ((current->euid != p->euid) &&
  3725. (current->euid != p->uid))
  3726. return -EPERM;
  3727. }
  3728. retval = security_task_setscheduler(p, policy, param);
  3729. if (retval)
  3730. return retval;
  3731. /*
  3732. * make sure no PI-waiters arrive (or leave) while we are
  3733. * changing the priority of the task:
  3734. */
  3735. spin_lock_irqsave(&p->pi_lock, flags);
  3736. /*
  3737. * To be able to change p->policy safely, the apropriate
  3738. * runqueue lock must be held.
  3739. */
  3740. rq = __task_rq_lock(p);
  3741. /* recheck policy now with rq lock held */
  3742. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3743. policy = oldpolicy = -1;
  3744. __task_rq_unlock(rq);
  3745. spin_unlock_irqrestore(&p->pi_lock, flags);
  3746. goto recheck;
  3747. }
  3748. array = p->array;
  3749. if (array)
  3750. deactivate_task(p, rq);
  3751. oldprio = p->prio;
  3752. __setscheduler(p, policy, param->sched_priority);
  3753. if (array) {
  3754. __activate_task(p, rq);
  3755. /*
  3756. * Reschedule if we are currently running on this runqueue and
  3757. * our priority decreased, or if we are not currently running on
  3758. * this runqueue and our priority is higher than the current's
  3759. */
  3760. if (task_running(rq, p)) {
  3761. if (p->prio > oldprio)
  3762. resched_task(rq->curr);
  3763. } else if (TASK_PREEMPTS_CURR(p, rq))
  3764. resched_task(rq->curr);
  3765. }
  3766. __task_rq_unlock(rq);
  3767. spin_unlock_irqrestore(&p->pi_lock, flags);
  3768. rt_mutex_adjust_pi(p);
  3769. return 0;
  3770. }
  3771. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3772. static int
  3773. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3774. {
  3775. struct sched_param lparam;
  3776. struct task_struct *p;
  3777. int retval;
  3778. if (!param || pid < 0)
  3779. return -EINVAL;
  3780. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3781. return -EFAULT;
  3782. rcu_read_lock();
  3783. retval = -ESRCH;
  3784. p = find_process_by_pid(pid);
  3785. if (p != NULL)
  3786. retval = sched_setscheduler(p, policy, &lparam);
  3787. rcu_read_unlock();
  3788. return retval;
  3789. }
  3790. /**
  3791. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3792. * @pid: the pid in question.
  3793. * @policy: new policy.
  3794. * @param: structure containing the new RT priority.
  3795. */
  3796. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3797. struct sched_param __user *param)
  3798. {
  3799. /* negative values for policy are not valid */
  3800. if (policy < 0)
  3801. return -EINVAL;
  3802. return do_sched_setscheduler(pid, policy, param);
  3803. }
  3804. /**
  3805. * sys_sched_setparam - set/change the RT priority of a thread
  3806. * @pid: the pid in question.
  3807. * @param: structure containing the new RT priority.
  3808. */
  3809. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3810. {
  3811. return do_sched_setscheduler(pid, -1, param);
  3812. }
  3813. /**
  3814. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3815. * @pid: the pid in question.
  3816. */
  3817. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3818. {
  3819. struct task_struct *p;
  3820. int retval = -EINVAL;
  3821. if (pid < 0)
  3822. goto out_nounlock;
  3823. retval = -ESRCH;
  3824. read_lock(&tasklist_lock);
  3825. p = find_process_by_pid(pid);
  3826. if (p) {
  3827. retval = security_task_getscheduler(p);
  3828. if (!retval)
  3829. retval = p->policy;
  3830. }
  3831. read_unlock(&tasklist_lock);
  3832. out_nounlock:
  3833. return retval;
  3834. }
  3835. /**
  3836. * sys_sched_getscheduler - get the RT priority of a thread
  3837. * @pid: the pid in question.
  3838. * @param: structure containing the RT priority.
  3839. */
  3840. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3841. {
  3842. struct sched_param lp;
  3843. struct task_struct *p;
  3844. int retval = -EINVAL;
  3845. if (!param || pid < 0)
  3846. goto out_nounlock;
  3847. read_lock(&tasklist_lock);
  3848. p = find_process_by_pid(pid);
  3849. retval = -ESRCH;
  3850. if (!p)
  3851. goto out_unlock;
  3852. retval = security_task_getscheduler(p);
  3853. if (retval)
  3854. goto out_unlock;
  3855. lp.sched_priority = p->rt_priority;
  3856. read_unlock(&tasklist_lock);
  3857. /*
  3858. * This one might sleep, we cannot do it with a spinlock held ...
  3859. */
  3860. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3861. out_nounlock:
  3862. return retval;
  3863. out_unlock:
  3864. read_unlock(&tasklist_lock);
  3865. return retval;
  3866. }
  3867. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3868. {
  3869. cpumask_t cpus_allowed;
  3870. struct task_struct *p;
  3871. int retval;
  3872. lock_cpu_hotplug();
  3873. read_lock(&tasklist_lock);
  3874. p = find_process_by_pid(pid);
  3875. if (!p) {
  3876. read_unlock(&tasklist_lock);
  3877. unlock_cpu_hotplug();
  3878. return -ESRCH;
  3879. }
  3880. /*
  3881. * It is not safe to call set_cpus_allowed with the
  3882. * tasklist_lock held. We will bump the task_struct's
  3883. * usage count and then drop tasklist_lock.
  3884. */
  3885. get_task_struct(p);
  3886. read_unlock(&tasklist_lock);
  3887. retval = -EPERM;
  3888. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3889. !capable(CAP_SYS_NICE))
  3890. goto out_unlock;
  3891. retval = security_task_setscheduler(p, 0, NULL);
  3892. if (retval)
  3893. goto out_unlock;
  3894. cpus_allowed = cpuset_cpus_allowed(p);
  3895. cpus_and(new_mask, new_mask, cpus_allowed);
  3896. retval = set_cpus_allowed(p, new_mask);
  3897. out_unlock:
  3898. put_task_struct(p);
  3899. unlock_cpu_hotplug();
  3900. return retval;
  3901. }
  3902. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3903. cpumask_t *new_mask)
  3904. {
  3905. if (len < sizeof(cpumask_t)) {
  3906. memset(new_mask, 0, sizeof(cpumask_t));
  3907. } else if (len > sizeof(cpumask_t)) {
  3908. len = sizeof(cpumask_t);
  3909. }
  3910. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3911. }
  3912. /**
  3913. * sys_sched_setaffinity - set the cpu affinity of a process
  3914. * @pid: pid of the process
  3915. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3916. * @user_mask_ptr: user-space pointer to the new cpu mask
  3917. */
  3918. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3919. unsigned long __user *user_mask_ptr)
  3920. {
  3921. cpumask_t new_mask;
  3922. int retval;
  3923. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3924. if (retval)
  3925. return retval;
  3926. return sched_setaffinity(pid, new_mask);
  3927. }
  3928. /*
  3929. * Represents all cpu's present in the system
  3930. * In systems capable of hotplug, this map could dynamically grow
  3931. * as new cpu's are detected in the system via any platform specific
  3932. * method, such as ACPI for e.g.
  3933. */
  3934. cpumask_t cpu_present_map __read_mostly;
  3935. EXPORT_SYMBOL(cpu_present_map);
  3936. #ifndef CONFIG_SMP
  3937. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3938. EXPORT_SYMBOL(cpu_online_map);
  3939. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3940. EXPORT_SYMBOL(cpu_possible_map);
  3941. #endif
  3942. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3943. {
  3944. struct task_struct *p;
  3945. int retval;
  3946. lock_cpu_hotplug();
  3947. read_lock(&tasklist_lock);
  3948. retval = -ESRCH;
  3949. p = find_process_by_pid(pid);
  3950. if (!p)
  3951. goto out_unlock;
  3952. retval = security_task_getscheduler(p);
  3953. if (retval)
  3954. goto out_unlock;
  3955. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3956. out_unlock:
  3957. read_unlock(&tasklist_lock);
  3958. unlock_cpu_hotplug();
  3959. if (retval)
  3960. return retval;
  3961. return 0;
  3962. }
  3963. /**
  3964. * sys_sched_getaffinity - get the cpu affinity of a process
  3965. * @pid: pid of the process
  3966. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3967. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3968. */
  3969. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3970. unsigned long __user *user_mask_ptr)
  3971. {
  3972. int ret;
  3973. cpumask_t mask;
  3974. if (len < sizeof(cpumask_t))
  3975. return -EINVAL;
  3976. ret = sched_getaffinity(pid, &mask);
  3977. if (ret < 0)
  3978. return ret;
  3979. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3980. return -EFAULT;
  3981. return sizeof(cpumask_t);
  3982. }
  3983. /**
  3984. * sys_sched_yield - yield the current processor to other threads.
  3985. *
  3986. * this function yields the current CPU by moving the calling thread
  3987. * to the expired array. If there are no other threads running on this
  3988. * CPU then this function will return.
  3989. */
  3990. asmlinkage long sys_sched_yield(void)
  3991. {
  3992. struct rq *rq = this_rq_lock();
  3993. struct prio_array *array = current->array, *target = rq->expired;
  3994. schedstat_inc(rq, yld_cnt);
  3995. /*
  3996. * We implement yielding by moving the task into the expired
  3997. * queue.
  3998. *
  3999. * (special rule: RT tasks will just roundrobin in the active
  4000. * array.)
  4001. */
  4002. if (rt_task(current))
  4003. target = rq->active;
  4004. if (array->nr_active == 1) {
  4005. schedstat_inc(rq, yld_act_empty);
  4006. if (!rq->expired->nr_active)
  4007. schedstat_inc(rq, yld_both_empty);
  4008. } else if (!rq->expired->nr_active)
  4009. schedstat_inc(rq, yld_exp_empty);
  4010. if (array != target) {
  4011. dequeue_task(current, array);
  4012. enqueue_task(current, target);
  4013. } else
  4014. /*
  4015. * requeue_task is cheaper so perform that if possible.
  4016. */
  4017. requeue_task(current, array);
  4018. /*
  4019. * Since we are going to call schedule() anyway, there's
  4020. * no need to preempt or enable interrupts:
  4021. */
  4022. __release(rq->lock);
  4023. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4024. _raw_spin_unlock(&rq->lock);
  4025. preempt_enable_no_resched();
  4026. schedule();
  4027. return 0;
  4028. }
  4029. static inline int __resched_legal(int expected_preempt_count)
  4030. {
  4031. if (unlikely(preempt_count() != expected_preempt_count))
  4032. return 0;
  4033. if (unlikely(system_state != SYSTEM_RUNNING))
  4034. return 0;
  4035. return 1;
  4036. }
  4037. static void __cond_resched(void)
  4038. {
  4039. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4040. __might_sleep(__FILE__, __LINE__);
  4041. #endif
  4042. /*
  4043. * The BKS might be reacquired before we have dropped
  4044. * PREEMPT_ACTIVE, which could trigger a second
  4045. * cond_resched() call.
  4046. */
  4047. do {
  4048. add_preempt_count(PREEMPT_ACTIVE);
  4049. schedule();
  4050. sub_preempt_count(PREEMPT_ACTIVE);
  4051. } while (need_resched());
  4052. }
  4053. int __sched cond_resched(void)
  4054. {
  4055. if (need_resched() && __resched_legal(0)) {
  4056. __cond_resched();
  4057. return 1;
  4058. }
  4059. return 0;
  4060. }
  4061. EXPORT_SYMBOL(cond_resched);
  4062. /*
  4063. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4064. * call schedule, and on return reacquire the lock.
  4065. *
  4066. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4067. * operations here to prevent schedule() from being called twice (once via
  4068. * spin_unlock(), once by hand).
  4069. */
  4070. int cond_resched_lock(spinlock_t *lock)
  4071. {
  4072. int ret = 0;
  4073. if (need_lockbreak(lock)) {
  4074. spin_unlock(lock);
  4075. cpu_relax();
  4076. ret = 1;
  4077. spin_lock(lock);
  4078. }
  4079. if (need_resched() && __resched_legal(1)) {
  4080. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4081. _raw_spin_unlock(lock);
  4082. preempt_enable_no_resched();
  4083. __cond_resched();
  4084. ret = 1;
  4085. spin_lock(lock);
  4086. }
  4087. return ret;
  4088. }
  4089. EXPORT_SYMBOL(cond_resched_lock);
  4090. int __sched cond_resched_softirq(void)
  4091. {
  4092. BUG_ON(!in_softirq());
  4093. if (need_resched() && __resched_legal(0)) {
  4094. raw_local_irq_disable();
  4095. _local_bh_enable();
  4096. raw_local_irq_enable();
  4097. __cond_resched();
  4098. local_bh_disable();
  4099. return 1;
  4100. }
  4101. return 0;
  4102. }
  4103. EXPORT_SYMBOL(cond_resched_softirq);
  4104. /**
  4105. * yield - yield the current processor to other threads.
  4106. *
  4107. * this is a shortcut for kernel-space yielding - it marks the
  4108. * thread runnable and calls sys_sched_yield().
  4109. */
  4110. void __sched yield(void)
  4111. {
  4112. set_current_state(TASK_RUNNING);
  4113. sys_sched_yield();
  4114. }
  4115. EXPORT_SYMBOL(yield);
  4116. /*
  4117. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4118. * that process accounting knows that this is a task in IO wait state.
  4119. *
  4120. * But don't do that if it is a deliberate, throttling IO wait (this task
  4121. * has set its backing_dev_info: the queue against which it should throttle)
  4122. */
  4123. void __sched io_schedule(void)
  4124. {
  4125. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4126. delayacct_blkio_start();
  4127. atomic_inc(&rq->nr_iowait);
  4128. schedule();
  4129. atomic_dec(&rq->nr_iowait);
  4130. delayacct_blkio_end();
  4131. }
  4132. EXPORT_SYMBOL(io_schedule);
  4133. long __sched io_schedule_timeout(long timeout)
  4134. {
  4135. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4136. long ret;
  4137. delayacct_blkio_start();
  4138. atomic_inc(&rq->nr_iowait);
  4139. ret = schedule_timeout(timeout);
  4140. atomic_dec(&rq->nr_iowait);
  4141. delayacct_blkio_end();
  4142. return ret;
  4143. }
  4144. /**
  4145. * sys_sched_get_priority_max - return maximum RT priority.
  4146. * @policy: scheduling class.
  4147. *
  4148. * this syscall returns the maximum rt_priority that can be used
  4149. * by a given scheduling class.
  4150. */
  4151. asmlinkage long sys_sched_get_priority_max(int policy)
  4152. {
  4153. int ret = -EINVAL;
  4154. switch (policy) {
  4155. case SCHED_FIFO:
  4156. case SCHED_RR:
  4157. ret = MAX_USER_RT_PRIO-1;
  4158. break;
  4159. case SCHED_NORMAL:
  4160. case SCHED_BATCH:
  4161. ret = 0;
  4162. break;
  4163. }
  4164. return ret;
  4165. }
  4166. /**
  4167. * sys_sched_get_priority_min - return minimum RT priority.
  4168. * @policy: scheduling class.
  4169. *
  4170. * this syscall returns the minimum rt_priority that can be used
  4171. * by a given scheduling class.
  4172. */
  4173. asmlinkage long sys_sched_get_priority_min(int policy)
  4174. {
  4175. int ret = -EINVAL;
  4176. switch (policy) {
  4177. case SCHED_FIFO:
  4178. case SCHED_RR:
  4179. ret = 1;
  4180. break;
  4181. case SCHED_NORMAL:
  4182. case SCHED_BATCH:
  4183. ret = 0;
  4184. }
  4185. return ret;
  4186. }
  4187. /**
  4188. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4189. * @pid: pid of the process.
  4190. * @interval: userspace pointer to the timeslice value.
  4191. *
  4192. * this syscall writes the default timeslice value of a given process
  4193. * into the user-space timespec buffer. A value of '0' means infinity.
  4194. */
  4195. asmlinkage
  4196. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4197. {
  4198. struct task_struct *p;
  4199. int retval = -EINVAL;
  4200. struct timespec t;
  4201. if (pid < 0)
  4202. goto out_nounlock;
  4203. retval = -ESRCH;
  4204. read_lock(&tasklist_lock);
  4205. p = find_process_by_pid(pid);
  4206. if (!p)
  4207. goto out_unlock;
  4208. retval = security_task_getscheduler(p);
  4209. if (retval)
  4210. goto out_unlock;
  4211. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4212. 0 : task_timeslice(p), &t);
  4213. read_unlock(&tasklist_lock);
  4214. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4215. out_nounlock:
  4216. return retval;
  4217. out_unlock:
  4218. read_unlock(&tasklist_lock);
  4219. return retval;
  4220. }
  4221. static inline struct task_struct *eldest_child(struct task_struct *p)
  4222. {
  4223. if (list_empty(&p->children))
  4224. return NULL;
  4225. return list_entry(p->children.next,struct task_struct,sibling);
  4226. }
  4227. static inline struct task_struct *older_sibling(struct task_struct *p)
  4228. {
  4229. if (p->sibling.prev==&p->parent->children)
  4230. return NULL;
  4231. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4232. }
  4233. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4234. {
  4235. if (p->sibling.next==&p->parent->children)
  4236. return NULL;
  4237. return list_entry(p->sibling.next,struct task_struct,sibling);
  4238. }
  4239. static const char stat_nam[] = "RSDTtZX";
  4240. static void show_task(struct task_struct *p)
  4241. {
  4242. struct task_struct *relative;
  4243. unsigned long free = 0;
  4244. unsigned state;
  4245. state = p->state ? __ffs(p->state) + 1 : 0;
  4246. printk("%-13.13s %c", p->comm,
  4247. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4248. #if (BITS_PER_LONG == 32)
  4249. if (state == TASK_RUNNING)
  4250. printk(" running ");
  4251. else
  4252. printk(" %08lX ", thread_saved_pc(p));
  4253. #else
  4254. if (state == TASK_RUNNING)
  4255. printk(" running task ");
  4256. else
  4257. printk(" %016lx ", thread_saved_pc(p));
  4258. #endif
  4259. #ifdef CONFIG_DEBUG_STACK_USAGE
  4260. {
  4261. unsigned long *n = end_of_stack(p);
  4262. while (!*n)
  4263. n++;
  4264. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4265. }
  4266. #endif
  4267. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4268. if ((relative = eldest_child(p)))
  4269. printk("%5d ", relative->pid);
  4270. else
  4271. printk(" ");
  4272. if ((relative = younger_sibling(p)))
  4273. printk("%7d", relative->pid);
  4274. else
  4275. printk(" ");
  4276. if ((relative = older_sibling(p)))
  4277. printk(" %5d", relative->pid);
  4278. else
  4279. printk(" ");
  4280. if (!p->mm)
  4281. printk(" (L-TLB)\n");
  4282. else
  4283. printk(" (NOTLB)\n");
  4284. if (state != TASK_RUNNING)
  4285. show_stack(p, NULL);
  4286. }
  4287. void show_state_filter(unsigned long state_filter)
  4288. {
  4289. struct task_struct *g, *p;
  4290. #if (BITS_PER_LONG == 32)
  4291. printk("\n"
  4292. " free sibling\n");
  4293. printk(" task PC stack pid father child younger older\n");
  4294. #else
  4295. printk("\n"
  4296. " free sibling\n");
  4297. printk(" task PC stack pid father child younger older\n");
  4298. #endif
  4299. read_lock(&tasklist_lock);
  4300. do_each_thread(g, p) {
  4301. /*
  4302. * reset the NMI-timeout, listing all files on a slow
  4303. * console might take alot of time:
  4304. */
  4305. touch_nmi_watchdog();
  4306. if (p->state & state_filter)
  4307. show_task(p);
  4308. } while_each_thread(g, p);
  4309. read_unlock(&tasklist_lock);
  4310. /*
  4311. * Only show locks if all tasks are dumped:
  4312. */
  4313. if (state_filter == -1)
  4314. debug_show_all_locks();
  4315. }
  4316. /**
  4317. * init_idle - set up an idle thread for a given CPU
  4318. * @idle: task in question
  4319. * @cpu: cpu the idle task belongs to
  4320. *
  4321. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4322. * flag, to make booting more robust.
  4323. */
  4324. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4325. {
  4326. struct rq *rq = cpu_rq(cpu);
  4327. unsigned long flags;
  4328. idle->timestamp = sched_clock();
  4329. idle->sleep_avg = 0;
  4330. idle->array = NULL;
  4331. idle->prio = idle->normal_prio = MAX_PRIO;
  4332. idle->state = TASK_RUNNING;
  4333. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4334. set_task_cpu(idle, cpu);
  4335. spin_lock_irqsave(&rq->lock, flags);
  4336. rq->curr = rq->idle = idle;
  4337. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4338. idle->oncpu = 1;
  4339. #endif
  4340. spin_unlock_irqrestore(&rq->lock, flags);
  4341. /* Set the preempt count _outside_ the spinlocks! */
  4342. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4343. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4344. #else
  4345. task_thread_info(idle)->preempt_count = 0;
  4346. #endif
  4347. }
  4348. /*
  4349. * In a system that switches off the HZ timer nohz_cpu_mask
  4350. * indicates which cpus entered this state. This is used
  4351. * in the rcu update to wait only for active cpus. For system
  4352. * which do not switch off the HZ timer nohz_cpu_mask should
  4353. * always be CPU_MASK_NONE.
  4354. */
  4355. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4356. #ifdef CONFIG_SMP
  4357. /*
  4358. * This is how migration works:
  4359. *
  4360. * 1) we queue a struct migration_req structure in the source CPU's
  4361. * runqueue and wake up that CPU's migration thread.
  4362. * 2) we down() the locked semaphore => thread blocks.
  4363. * 3) migration thread wakes up (implicitly it forces the migrated
  4364. * thread off the CPU)
  4365. * 4) it gets the migration request and checks whether the migrated
  4366. * task is still in the wrong runqueue.
  4367. * 5) if it's in the wrong runqueue then the migration thread removes
  4368. * it and puts it into the right queue.
  4369. * 6) migration thread up()s the semaphore.
  4370. * 7) we wake up and the migration is done.
  4371. */
  4372. /*
  4373. * Change a given task's CPU affinity. Migrate the thread to a
  4374. * proper CPU and schedule it away if the CPU it's executing on
  4375. * is removed from the allowed bitmask.
  4376. *
  4377. * NOTE: the caller must have a valid reference to the task, the
  4378. * task must not exit() & deallocate itself prematurely. The
  4379. * call is not atomic; no spinlocks may be held.
  4380. */
  4381. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4382. {
  4383. struct migration_req req;
  4384. unsigned long flags;
  4385. struct rq *rq;
  4386. int ret = 0;
  4387. rq = task_rq_lock(p, &flags);
  4388. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4389. ret = -EINVAL;
  4390. goto out;
  4391. }
  4392. p->cpus_allowed = new_mask;
  4393. /* Can the task run on the task's current CPU? If so, we're done */
  4394. if (cpu_isset(task_cpu(p), new_mask))
  4395. goto out;
  4396. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4397. /* Need help from migration thread: drop lock and wait. */
  4398. task_rq_unlock(rq, &flags);
  4399. wake_up_process(rq->migration_thread);
  4400. wait_for_completion(&req.done);
  4401. tlb_migrate_finish(p->mm);
  4402. return 0;
  4403. }
  4404. out:
  4405. task_rq_unlock(rq, &flags);
  4406. return ret;
  4407. }
  4408. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4409. /*
  4410. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4411. * this because either it can't run here any more (set_cpus_allowed()
  4412. * away from this CPU, or CPU going down), or because we're
  4413. * attempting to rebalance this task on exec (sched_exec).
  4414. *
  4415. * So we race with normal scheduler movements, but that's OK, as long
  4416. * as the task is no longer on this CPU.
  4417. *
  4418. * Returns non-zero if task was successfully migrated.
  4419. */
  4420. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4421. {
  4422. struct rq *rq_dest, *rq_src;
  4423. int ret = 0;
  4424. if (unlikely(cpu_is_offline(dest_cpu)))
  4425. return ret;
  4426. rq_src = cpu_rq(src_cpu);
  4427. rq_dest = cpu_rq(dest_cpu);
  4428. double_rq_lock(rq_src, rq_dest);
  4429. /* Already moved. */
  4430. if (task_cpu(p) != src_cpu)
  4431. goto out;
  4432. /* Affinity changed (again). */
  4433. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4434. goto out;
  4435. set_task_cpu(p, dest_cpu);
  4436. if (p->array) {
  4437. /*
  4438. * Sync timestamp with rq_dest's before activating.
  4439. * The same thing could be achieved by doing this step
  4440. * afterwards, and pretending it was a local activate.
  4441. * This way is cleaner and logically correct.
  4442. */
  4443. p->timestamp = p->timestamp - rq_src->most_recent_timestamp
  4444. + rq_dest->most_recent_timestamp;
  4445. deactivate_task(p, rq_src);
  4446. __activate_task(p, rq_dest);
  4447. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4448. resched_task(rq_dest->curr);
  4449. }
  4450. ret = 1;
  4451. out:
  4452. double_rq_unlock(rq_src, rq_dest);
  4453. return ret;
  4454. }
  4455. /*
  4456. * migration_thread - this is a highprio system thread that performs
  4457. * thread migration by bumping thread off CPU then 'pushing' onto
  4458. * another runqueue.
  4459. */
  4460. static int migration_thread(void *data)
  4461. {
  4462. int cpu = (long)data;
  4463. struct rq *rq;
  4464. rq = cpu_rq(cpu);
  4465. BUG_ON(rq->migration_thread != current);
  4466. set_current_state(TASK_INTERRUPTIBLE);
  4467. while (!kthread_should_stop()) {
  4468. struct migration_req *req;
  4469. struct list_head *head;
  4470. try_to_freeze();
  4471. spin_lock_irq(&rq->lock);
  4472. if (cpu_is_offline(cpu)) {
  4473. spin_unlock_irq(&rq->lock);
  4474. goto wait_to_die;
  4475. }
  4476. if (rq->active_balance) {
  4477. active_load_balance(rq, cpu);
  4478. rq->active_balance = 0;
  4479. }
  4480. head = &rq->migration_queue;
  4481. if (list_empty(head)) {
  4482. spin_unlock_irq(&rq->lock);
  4483. schedule();
  4484. set_current_state(TASK_INTERRUPTIBLE);
  4485. continue;
  4486. }
  4487. req = list_entry(head->next, struct migration_req, list);
  4488. list_del_init(head->next);
  4489. spin_unlock(&rq->lock);
  4490. __migrate_task(req->task, cpu, req->dest_cpu);
  4491. local_irq_enable();
  4492. complete(&req->done);
  4493. }
  4494. __set_current_state(TASK_RUNNING);
  4495. return 0;
  4496. wait_to_die:
  4497. /* Wait for kthread_stop */
  4498. set_current_state(TASK_INTERRUPTIBLE);
  4499. while (!kthread_should_stop()) {
  4500. schedule();
  4501. set_current_state(TASK_INTERRUPTIBLE);
  4502. }
  4503. __set_current_state(TASK_RUNNING);
  4504. return 0;
  4505. }
  4506. #ifdef CONFIG_HOTPLUG_CPU
  4507. /*
  4508. * Figure out where task on dead CPU should go, use force if neccessary.
  4509. * NOTE: interrupts should be disabled by the caller
  4510. */
  4511. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4512. {
  4513. unsigned long flags;
  4514. cpumask_t mask;
  4515. struct rq *rq;
  4516. int dest_cpu;
  4517. restart:
  4518. /* On same node? */
  4519. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4520. cpus_and(mask, mask, p->cpus_allowed);
  4521. dest_cpu = any_online_cpu(mask);
  4522. /* On any allowed CPU? */
  4523. if (dest_cpu == NR_CPUS)
  4524. dest_cpu = any_online_cpu(p->cpus_allowed);
  4525. /* No more Mr. Nice Guy. */
  4526. if (dest_cpu == NR_CPUS) {
  4527. rq = task_rq_lock(p, &flags);
  4528. cpus_setall(p->cpus_allowed);
  4529. dest_cpu = any_online_cpu(p->cpus_allowed);
  4530. task_rq_unlock(rq, &flags);
  4531. /*
  4532. * Don't tell them about moving exiting tasks or
  4533. * kernel threads (both mm NULL), since they never
  4534. * leave kernel.
  4535. */
  4536. if (p->mm && printk_ratelimit())
  4537. printk(KERN_INFO "process %d (%s) no "
  4538. "longer affine to cpu%d\n",
  4539. p->pid, p->comm, dead_cpu);
  4540. }
  4541. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4542. goto restart;
  4543. }
  4544. /*
  4545. * While a dead CPU has no uninterruptible tasks queued at this point,
  4546. * it might still have a nonzero ->nr_uninterruptible counter, because
  4547. * for performance reasons the counter is not stricly tracking tasks to
  4548. * their home CPUs. So we just add the counter to another CPU's counter,
  4549. * to keep the global sum constant after CPU-down:
  4550. */
  4551. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4552. {
  4553. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4554. unsigned long flags;
  4555. local_irq_save(flags);
  4556. double_rq_lock(rq_src, rq_dest);
  4557. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4558. rq_src->nr_uninterruptible = 0;
  4559. double_rq_unlock(rq_src, rq_dest);
  4560. local_irq_restore(flags);
  4561. }
  4562. /* Run through task list and migrate tasks from the dead cpu. */
  4563. static void migrate_live_tasks(int src_cpu)
  4564. {
  4565. struct task_struct *p, *t;
  4566. write_lock_irq(&tasklist_lock);
  4567. do_each_thread(t, p) {
  4568. if (p == current)
  4569. continue;
  4570. if (task_cpu(p) == src_cpu)
  4571. move_task_off_dead_cpu(src_cpu, p);
  4572. } while_each_thread(t, p);
  4573. write_unlock_irq(&tasklist_lock);
  4574. }
  4575. /* Schedules idle task to be the next runnable task on current CPU.
  4576. * It does so by boosting its priority to highest possible and adding it to
  4577. * the _front_ of the runqueue. Used by CPU offline code.
  4578. */
  4579. void sched_idle_next(void)
  4580. {
  4581. int this_cpu = smp_processor_id();
  4582. struct rq *rq = cpu_rq(this_cpu);
  4583. struct task_struct *p = rq->idle;
  4584. unsigned long flags;
  4585. /* cpu has to be offline */
  4586. BUG_ON(cpu_online(this_cpu));
  4587. /*
  4588. * Strictly not necessary since rest of the CPUs are stopped by now
  4589. * and interrupts disabled on the current cpu.
  4590. */
  4591. spin_lock_irqsave(&rq->lock, flags);
  4592. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4593. /* Add idle task to the _front_ of its priority queue: */
  4594. __activate_idle_task(p, rq);
  4595. spin_unlock_irqrestore(&rq->lock, flags);
  4596. }
  4597. /*
  4598. * Ensures that the idle task is using init_mm right before its cpu goes
  4599. * offline.
  4600. */
  4601. void idle_task_exit(void)
  4602. {
  4603. struct mm_struct *mm = current->active_mm;
  4604. BUG_ON(cpu_online(smp_processor_id()));
  4605. if (mm != &init_mm)
  4606. switch_mm(mm, &init_mm, current);
  4607. mmdrop(mm);
  4608. }
  4609. /* called under rq->lock with disabled interrupts */
  4610. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4611. {
  4612. struct rq *rq = cpu_rq(dead_cpu);
  4613. /* Must be exiting, otherwise would be on tasklist. */
  4614. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4615. /* Cannot have done final schedule yet: would have vanished. */
  4616. BUG_ON(p->state == TASK_DEAD);
  4617. get_task_struct(p);
  4618. /*
  4619. * Drop lock around migration; if someone else moves it,
  4620. * that's OK. No task can be added to this CPU, so iteration is
  4621. * fine.
  4622. * NOTE: interrupts should be left disabled --dev@
  4623. */
  4624. spin_unlock(&rq->lock);
  4625. move_task_off_dead_cpu(dead_cpu, p);
  4626. spin_lock(&rq->lock);
  4627. put_task_struct(p);
  4628. }
  4629. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4630. static void migrate_dead_tasks(unsigned int dead_cpu)
  4631. {
  4632. struct rq *rq = cpu_rq(dead_cpu);
  4633. unsigned int arr, i;
  4634. for (arr = 0; arr < 2; arr++) {
  4635. for (i = 0; i < MAX_PRIO; i++) {
  4636. struct list_head *list = &rq->arrays[arr].queue[i];
  4637. while (!list_empty(list))
  4638. migrate_dead(dead_cpu, list_entry(list->next,
  4639. struct task_struct, run_list));
  4640. }
  4641. }
  4642. }
  4643. #endif /* CONFIG_HOTPLUG_CPU */
  4644. /*
  4645. * migration_call - callback that gets triggered when a CPU is added.
  4646. * Here we can start up the necessary migration thread for the new CPU.
  4647. */
  4648. static int __cpuinit
  4649. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4650. {
  4651. struct task_struct *p;
  4652. int cpu = (long)hcpu;
  4653. unsigned long flags;
  4654. struct rq *rq;
  4655. switch (action) {
  4656. case CPU_UP_PREPARE:
  4657. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4658. if (IS_ERR(p))
  4659. return NOTIFY_BAD;
  4660. p->flags |= PF_NOFREEZE;
  4661. kthread_bind(p, cpu);
  4662. /* Must be high prio: stop_machine expects to yield to it. */
  4663. rq = task_rq_lock(p, &flags);
  4664. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4665. task_rq_unlock(rq, &flags);
  4666. cpu_rq(cpu)->migration_thread = p;
  4667. break;
  4668. case CPU_ONLINE:
  4669. /* Strictly unneccessary, as first user will wake it. */
  4670. wake_up_process(cpu_rq(cpu)->migration_thread);
  4671. break;
  4672. #ifdef CONFIG_HOTPLUG_CPU
  4673. case CPU_UP_CANCELED:
  4674. if (!cpu_rq(cpu)->migration_thread)
  4675. break;
  4676. /* Unbind it from offline cpu so it can run. Fall thru. */
  4677. kthread_bind(cpu_rq(cpu)->migration_thread,
  4678. any_online_cpu(cpu_online_map));
  4679. kthread_stop(cpu_rq(cpu)->migration_thread);
  4680. cpu_rq(cpu)->migration_thread = NULL;
  4681. break;
  4682. case CPU_DEAD:
  4683. migrate_live_tasks(cpu);
  4684. rq = cpu_rq(cpu);
  4685. kthread_stop(rq->migration_thread);
  4686. rq->migration_thread = NULL;
  4687. /* Idle task back to normal (off runqueue, low prio) */
  4688. rq = task_rq_lock(rq->idle, &flags);
  4689. deactivate_task(rq->idle, rq);
  4690. rq->idle->static_prio = MAX_PRIO;
  4691. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4692. migrate_dead_tasks(cpu);
  4693. task_rq_unlock(rq, &flags);
  4694. migrate_nr_uninterruptible(rq);
  4695. BUG_ON(rq->nr_running != 0);
  4696. /* No need to migrate the tasks: it was best-effort if
  4697. * they didn't do lock_cpu_hotplug(). Just wake up
  4698. * the requestors. */
  4699. spin_lock_irq(&rq->lock);
  4700. while (!list_empty(&rq->migration_queue)) {
  4701. struct migration_req *req;
  4702. req = list_entry(rq->migration_queue.next,
  4703. struct migration_req, list);
  4704. list_del_init(&req->list);
  4705. complete(&req->done);
  4706. }
  4707. spin_unlock_irq(&rq->lock);
  4708. break;
  4709. #endif
  4710. }
  4711. return NOTIFY_OK;
  4712. }
  4713. /* Register at highest priority so that task migration (migrate_all_tasks)
  4714. * happens before everything else.
  4715. */
  4716. static struct notifier_block __cpuinitdata migration_notifier = {
  4717. .notifier_call = migration_call,
  4718. .priority = 10
  4719. };
  4720. int __init migration_init(void)
  4721. {
  4722. void *cpu = (void *)(long)smp_processor_id();
  4723. int err;
  4724. /* Start one for the boot CPU: */
  4725. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4726. BUG_ON(err == NOTIFY_BAD);
  4727. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4728. register_cpu_notifier(&migration_notifier);
  4729. return 0;
  4730. }
  4731. #endif
  4732. #ifdef CONFIG_SMP
  4733. #undef SCHED_DOMAIN_DEBUG
  4734. #ifdef SCHED_DOMAIN_DEBUG
  4735. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4736. {
  4737. int level = 0;
  4738. if (!sd) {
  4739. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4740. return;
  4741. }
  4742. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4743. do {
  4744. int i;
  4745. char str[NR_CPUS];
  4746. struct sched_group *group = sd->groups;
  4747. cpumask_t groupmask;
  4748. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4749. cpus_clear(groupmask);
  4750. printk(KERN_DEBUG);
  4751. for (i = 0; i < level + 1; i++)
  4752. printk(" ");
  4753. printk("domain %d: ", level);
  4754. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4755. printk("does not load-balance\n");
  4756. if (sd->parent)
  4757. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4758. " has parent");
  4759. break;
  4760. }
  4761. printk("span %s\n", str);
  4762. if (!cpu_isset(cpu, sd->span))
  4763. printk(KERN_ERR "ERROR: domain->span does not contain "
  4764. "CPU%d\n", cpu);
  4765. if (!cpu_isset(cpu, group->cpumask))
  4766. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4767. " CPU%d\n", cpu);
  4768. printk(KERN_DEBUG);
  4769. for (i = 0; i < level + 2; i++)
  4770. printk(" ");
  4771. printk("groups:");
  4772. do {
  4773. if (!group) {
  4774. printk("\n");
  4775. printk(KERN_ERR "ERROR: group is NULL\n");
  4776. break;
  4777. }
  4778. if (!group->cpu_power) {
  4779. printk("\n");
  4780. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4781. "set\n");
  4782. }
  4783. if (!cpus_weight(group->cpumask)) {
  4784. printk("\n");
  4785. printk(KERN_ERR "ERROR: empty group\n");
  4786. }
  4787. if (cpus_intersects(groupmask, group->cpumask)) {
  4788. printk("\n");
  4789. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4790. }
  4791. cpus_or(groupmask, groupmask, group->cpumask);
  4792. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4793. printk(" %s", str);
  4794. group = group->next;
  4795. } while (group != sd->groups);
  4796. printk("\n");
  4797. if (!cpus_equal(sd->span, groupmask))
  4798. printk(KERN_ERR "ERROR: groups don't span "
  4799. "domain->span\n");
  4800. level++;
  4801. sd = sd->parent;
  4802. if (!sd)
  4803. continue;
  4804. if (!cpus_subset(groupmask, sd->span))
  4805. printk(KERN_ERR "ERROR: parent span is not a superset "
  4806. "of domain->span\n");
  4807. } while (sd);
  4808. }
  4809. #else
  4810. # define sched_domain_debug(sd, cpu) do { } while (0)
  4811. #endif
  4812. static int sd_degenerate(struct sched_domain *sd)
  4813. {
  4814. if (cpus_weight(sd->span) == 1)
  4815. return 1;
  4816. /* Following flags need at least 2 groups */
  4817. if (sd->flags & (SD_LOAD_BALANCE |
  4818. SD_BALANCE_NEWIDLE |
  4819. SD_BALANCE_FORK |
  4820. SD_BALANCE_EXEC |
  4821. SD_SHARE_CPUPOWER |
  4822. SD_SHARE_PKG_RESOURCES)) {
  4823. if (sd->groups != sd->groups->next)
  4824. return 0;
  4825. }
  4826. /* Following flags don't use groups */
  4827. if (sd->flags & (SD_WAKE_IDLE |
  4828. SD_WAKE_AFFINE |
  4829. SD_WAKE_BALANCE))
  4830. return 0;
  4831. return 1;
  4832. }
  4833. static int
  4834. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4835. {
  4836. unsigned long cflags = sd->flags, pflags = parent->flags;
  4837. if (sd_degenerate(parent))
  4838. return 1;
  4839. if (!cpus_equal(sd->span, parent->span))
  4840. return 0;
  4841. /* Does parent contain flags not in child? */
  4842. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4843. if (cflags & SD_WAKE_AFFINE)
  4844. pflags &= ~SD_WAKE_BALANCE;
  4845. /* Flags needing groups don't count if only 1 group in parent */
  4846. if (parent->groups == parent->groups->next) {
  4847. pflags &= ~(SD_LOAD_BALANCE |
  4848. SD_BALANCE_NEWIDLE |
  4849. SD_BALANCE_FORK |
  4850. SD_BALANCE_EXEC |
  4851. SD_SHARE_CPUPOWER |
  4852. SD_SHARE_PKG_RESOURCES);
  4853. }
  4854. if (~cflags & pflags)
  4855. return 0;
  4856. return 1;
  4857. }
  4858. /*
  4859. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4860. * hold the hotplug lock.
  4861. */
  4862. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4863. {
  4864. struct rq *rq = cpu_rq(cpu);
  4865. struct sched_domain *tmp;
  4866. /* Remove the sched domains which do not contribute to scheduling. */
  4867. for (tmp = sd; tmp; tmp = tmp->parent) {
  4868. struct sched_domain *parent = tmp->parent;
  4869. if (!parent)
  4870. break;
  4871. if (sd_parent_degenerate(tmp, parent)) {
  4872. tmp->parent = parent->parent;
  4873. if (parent->parent)
  4874. parent->parent->child = tmp;
  4875. }
  4876. }
  4877. if (sd && sd_degenerate(sd)) {
  4878. sd = sd->parent;
  4879. if (sd)
  4880. sd->child = NULL;
  4881. }
  4882. sched_domain_debug(sd, cpu);
  4883. rcu_assign_pointer(rq->sd, sd);
  4884. }
  4885. /* cpus with isolated domains */
  4886. static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
  4887. /* Setup the mask of cpus configured for isolated domains */
  4888. static int __init isolated_cpu_setup(char *str)
  4889. {
  4890. int ints[NR_CPUS], i;
  4891. str = get_options(str, ARRAY_SIZE(ints), ints);
  4892. cpus_clear(cpu_isolated_map);
  4893. for (i = 1; i <= ints[0]; i++)
  4894. if (ints[i] < NR_CPUS)
  4895. cpu_set(ints[i], cpu_isolated_map);
  4896. return 1;
  4897. }
  4898. __setup ("isolcpus=", isolated_cpu_setup);
  4899. /*
  4900. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4901. * to a function which identifies what group(along with sched group) a CPU
  4902. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4903. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4904. *
  4905. * init_sched_build_groups will build a circular linked list of the groups
  4906. * covered by the given span, and will set each group's ->cpumask correctly,
  4907. * and ->cpu_power to 0.
  4908. */
  4909. static void
  4910. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4911. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4912. struct sched_group **sg))
  4913. {
  4914. struct sched_group *first = NULL, *last = NULL;
  4915. cpumask_t covered = CPU_MASK_NONE;
  4916. int i;
  4917. for_each_cpu_mask(i, span) {
  4918. struct sched_group *sg;
  4919. int group = group_fn(i, cpu_map, &sg);
  4920. int j;
  4921. if (cpu_isset(i, covered))
  4922. continue;
  4923. sg->cpumask = CPU_MASK_NONE;
  4924. sg->cpu_power = 0;
  4925. for_each_cpu_mask(j, span) {
  4926. if (group_fn(j, cpu_map, NULL) != group)
  4927. continue;
  4928. cpu_set(j, covered);
  4929. cpu_set(j, sg->cpumask);
  4930. }
  4931. if (!first)
  4932. first = sg;
  4933. if (last)
  4934. last->next = sg;
  4935. last = sg;
  4936. }
  4937. last->next = first;
  4938. }
  4939. #define SD_NODES_PER_DOMAIN 16
  4940. /*
  4941. * Self-tuning task migration cost measurement between source and target CPUs.
  4942. *
  4943. * This is done by measuring the cost of manipulating buffers of varying
  4944. * sizes. For a given buffer-size here are the steps that are taken:
  4945. *
  4946. * 1) the source CPU reads+dirties a shared buffer
  4947. * 2) the target CPU reads+dirties the same shared buffer
  4948. *
  4949. * We measure how long they take, in the following 4 scenarios:
  4950. *
  4951. * - source: CPU1, target: CPU2 | cost1
  4952. * - source: CPU2, target: CPU1 | cost2
  4953. * - source: CPU1, target: CPU1 | cost3
  4954. * - source: CPU2, target: CPU2 | cost4
  4955. *
  4956. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4957. * the cost of migration.
  4958. *
  4959. * We then start off from a small buffer-size and iterate up to larger
  4960. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4961. * doing a maximum search for the cost. (The maximum cost for a migration
  4962. * normally occurs when the working set size is around the effective cache
  4963. * size.)
  4964. */
  4965. #define SEARCH_SCOPE 2
  4966. #define MIN_CACHE_SIZE (64*1024U)
  4967. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4968. #define ITERATIONS 1
  4969. #define SIZE_THRESH 130
  4970. #define COST_THRESH 130
  4971. /*
  4972. * The migration cost is a function of 'domain distance'. Domain
  4973. * distance is the number of steps a CPU has to iterate down its
  4974. * domain tree to share a domain with the other CPU. The farther
  4975. * two CPUs are from each other, the larger the distance gets.
  4976. *
  4977. * Note that we use the distance only to cache measurement results,
  4978. * the distance value is not used numerically otherwise. When two
  4979. * CPUs have the same distance it is assumed that the migration
  4980. * cost is the same. (this is a simplification but quite practical)
  4981. */
  4982. #define MAX_DOMAIN_DISTANCE 32
  4983. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4984. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4985. /*
  4986. * Architectures may override the migration cost and thus avoid
  4987. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4988. * virtualized hardware:
  4989. */
  4990. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4991. CONFIG_DEFAULT_MIGRATION_COST
  4992. #else
  4993. -1LL
  4994. #endif
  4995. };
  4996. /*
  4997. * Allow override of migration cost - in units of microseconds.
  4998. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4999. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  5000. */
  5001. static int __init migration_cost_setup(char *str)
  5002. {
  5003. int ints[MAX_DOMAIN_DISTANCE+1], i;
  5004. str = get_options(str, ARRAY_SIZE(ints), ints);
  5005. printk("#ints: %d\n", ints[0]);
  5006. for (i = 1; i <= ints[0]; i++) {
  5007. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  5008. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  5009. }
  5010. return 1;
  5011. }
  5012. __setup ("migration_cost=", migration_cost_setup);
  5013. /*
  5014. * Global multiplier (divisor) for migration-cutoff values,
  5015. * in percentiles. E.g. use a value of 150 to get 1.5 times
  5016. * longer cache-hot cutoff times.
  5017. *
  5018. * (We scale it from 100 to 128 to long long handling easier.)
  5019. */
  5020. #define MIGRATION_FACTOR_SCALE 128
  5021. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  5022. static int __init setup_migration_factor(char *str)
  5023. {
  5024. get_option(&str, &migration_factor);
  5025. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  5026. return 1;
  5027. }
  5028. __setup("migration_factor=", setup_migration_factor);
  5029. /*
  5030. * Estimated distance of two CPUs, measured via the number of domains
  5031. * we have to pass for the two CPUs to be in the same span:
  5032. */
  5033. static unsigned long domain_distance(int cpu1, int cpu2)
  5034. {
  5035. unsigned long distance = 0;
  5036. struct sched_domain *sd;
  5037. for_each_domain(cpu1, sd) {
  5038. WARN_ON(!cpu_isset(cpu1, sd->span));
  5039. if (cpu_isset(cpu2, sd->span))
  5040. return distance;
  5041. distance++;
  5042. }
  5043. if (distance >= MAX_DOMAIN_DISTANCE) {
  5044. WARN_ON(1);
  5045. distance = MAX_DOMAIN_DISTANCE-1;
  5046. }
  5047. return distance;
  5048. }
  5049. static unsigned int migration_debug;
  5050. static int __init setup_migration_debug(char *str)
  5051. {
  5052. get_option(&str, &migration_debug);
  5053. return 1;
  5054. }
  5055. __setup("migration_debug=", setup_migration_debug);
  5056. /*
  5057. * Maximum cache-size that the scheduler should try to measure.
  5058. * Architectures with larger caches should tune this up during
  5059. * bootup. Gets used in the domain-setup code (i.e. during SMP
  5060. * bootup).
  5061. */
  5062. unsigned int max_cache_size;
  5063. static int __init setup_max_cache_size(char *str)
  5064. {
  5065. get_option(&str, &max_cache_size);
  5066. return 1;
  5067. }
  5068. __setup("max_cache_size=", setup_max_cache_size);
  5069. /*
  5070. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  5071. * is the operation that is timed, so we try to generate unpredictable
  5072. * cachemisses that still end up filling the L2 cache:
  5073. */
  5074. static void touch_cache(void *__cache, unsigned long __size)
  5075. {
  5076. unsigned long size = __size / sizeof(long);
  5077. unsigned long chunk1 = size / 3;
  5078. unsigned long chunk2 = 2 * size / 3;
  5079. unsigned long *cache = __cache;
  5080. int i;
  5081. for (i = 0; i < size/6; i += 8) {
  5082. switch (i % 6) {
  5083. case 0: cache[i]++;
  5084. case 1: cache[size-1-i]++;
  5085. case 2: cache[chunk1-i]++;
  5086. case 3: cache[chunk1+i]++;
  5087. case 4: cache[chunk2-i]++;
  5088. case 5: cache[chunk2+i]++;
  5089. }
  5090. }
  5091. }
  5092. /*
  5093. * Measure the cache-cost of one task migration. Returns in units of nsec.
  5094. */
  5095. static unsigned long long
  5096. measure_one(void *cache, unsigned long size, int source, int target)
  5097. {
  5098. cpumask_t mask, saved_mask;
  5099. unsigned long long t0, t1, t2, t3, cost;
  5100. saved_mask = current->cpus_allowed;
  5101. /*
  5102. * Flush source caches to RAM and invalidate them:
  5103. */
  5104. sched_cacheflush();
  5105. /*
  5106. * Migrate to the source CPU:
  5107. */
  5108. mask = cpumask_of_cpu(source);
  5109. set_cpus_allowed(current, mask);
  5110. WARN_ON(smp_processor_id() != source);
  5111. /*
  5112. * Dirty the working set:
  5113. */
  5114. t0 = sched_clock();
  5115. touch_cache(cache, size);
  5116. t1 = sched_clock();
  5117. /*
  5118. * Migrate to the target CPU, dirty the L2 cache and access
  5119. * the shared buffer. (which represents the working set
  5120. * of a migrated task.)
  5121. */
  5122. mask = cpumask_of_cpu(target);
  5123. set_cpus_allowed(current, mask);
  5124. WARN_ON(smp_processor_id() != target);
  5125. t2 = sched_clock();
  5126. touch_cache(cache, size);
  5127. t3 = sched_clock();
  5128. cost = t1-t0 + t3-t2;
  5129. if (migration_debug >= 2)
  5130. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  5131. source, target, t1-t0, t1-t0, t3-t2, cost);
  5132. /*
  5133. * Flush target caches to RAM and invalidate them:
  5134. */
  5135. sched_cacheflush();
  5136. set_cpus_allowed(current, saved_mask);
  5137. return cost;
  5138. }
  5139. /*
  5140. * Measure a series of task migrations and return the average
  5141. * result. Since this code runs early during bootup the system
  5142. * is 'undisturbed' and the average latency makes sense.
  5143. *
  5144. * The algorithm in essence auto-detects the relevant cache-size,
  5145. * so it will properly detect different cachesizes for different
  5146. * cache-hierarchies, depending on how the CPUs are connected.
  5147. *
  5148. * Architectures can prime the upper limit of the search range via
  5149. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  5150. */
  5151. static unsigned long long
  5152. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5153. {
  5154. unsigned long long cost1, cost2;
  5155. int i;
  5156. /*
  5157. * Measure the migration cost of 'size' bytes, over an
  5158. * average of 10 runs:
  5159. *
  5160. * (We perturb the cache size by a small (0..4k)
  5161. * value to compensate size/alignment related artifacts.
  5162. * We also subtract the cost of the operation done on
  5163. * the same CPU.)
  5164. */
  5165. cost1 = 0;
  5166. /*
  5167. * dry run, to make sure we start off cache-cold on cpu1,
  5168. * and to get any vmalloc pagefaults in advance:
  5169. */
  5170. measure_one(cache, size, cpu1, cpu2);
  5171. for (i = 0; i < ITERATIONS; i++)
  5172. cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
  5173. measure_one(cache, size, cpu2, cpu1);
  5174. for (i = 0; i < ITERATIONS; i++)
  5175. cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
  5176. /*
  5177. * (We measure the non-migrating [cached] cost on both
  5178. * cpu1 and cpu2, to handle CPUs with different speeds)
  5179. */
  5180. cost2 = 0;
  5181. measure_one(cache, size, cpu1, cpu1);
  5182. for (i = 0; i < ITERATIONS; i++)
  5183. cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
  5184. measure_one(cache, size, cpu2, cpu2);
  5185. for (i = 0; i < ITERATIONS; i++)
  5186. cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
  5187. /*
  5188. * Get the per-iteration migration cost:
  5189. */
  5190. do_div(cost1, 2 * ITERATIONS);
  5191. do_div(cost2, 2 * ITERATIONS);
  5192. return cost1 - cost2;
  5193. }
  5194. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5195. {
  5196. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5197. unsigned int max_size, size, size_found = 0;
  5198. long long cost = 0, prev_cost;
  5199. void *cache;
  5200. /*
  5201. * Search from max_cache_size*5 down to 64K - the real relevant
  5202. * cachesize has to lie somewhere inbetween.
  5203. */
  5204. if (max_cache_size) {
  5205. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5206. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5207. } else {
  5208. /*
  5209. * Since we have no estimation about the relevant
  5210. * search range
  5211. */
  5212. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5213. size = MIN_CACHE_SIZE;
  5214. }
  5215. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5216. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5217. return 0;
  5218. }
  5219. /*
  5220. * Allocate the working set:
  5221. */
  5222. cache = vmalloc(max_size);
  5223. if (!cache) {
  5224. printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
  5225. return 1000000; /* return 1 msec on very small boxen */
  5226. }
  5227. while (size <= max_size) {
  5228. prev_cost = cost;
  5229. cost = measure_cost(cpu1, cpu2, cache, size);
  5230. /*
  5231. * Update the max:
  5232. */
  5233. if (cost > 0) {
  5234. if (max_cost < cost) {
  5235. max_cost = cost;
  5236. size_found = size;
  5237. }
  5238. }
  5239. /*
  5240. * Calculate average fluctuation, we use this to prevent
  5241. * noise from triggering an early break out of the loop:
  5242. */
  5243. fluct = abs(cost - prev_cost);
  5244. avg_fluct = (avg_fluct + fluct)/2;
  5245. if (migration_debug)
  5246. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
  5247. "(%8Ld %8Ld)\n",
  5248. cpu1, cpu2, size,
  5249. (long)cost / 1000000,
  5250. ((long)cost / 100000) % 10,
  5251. (long)max_cost / 1000000,
  5252. ((long)max_cost / 100000) % 10,
  5253. domain_distance(cpu1, cpu2),
  5254. cost, avg_fluct);
  5255. /*
  5256. * If we iterated at least 20% past the previous maximum,
  5257. * and the cost has dropped by more than 20% already,
  5258. * (taking fluctuations into account) then we assume to
  5259. * have found the maximum and break out of the loop early:
  5260. */
  5261. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5262. if (cost+avg_fluct <= 0 ||
  5263. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5264. if (migration_debug)
  5265. printk("-> found max.\n");
  5266. break;
  5267. }
  5268. /*
  5269. * Increase the cachesize in 10% steps:
  5270. */
  5271. size = size * 10 / 9;
  5272. }
  5273. if (migration_debug)
  5274. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5275. cpu1, cpu2, size_found, max_cost);
  5276. vfree(cache);
  5277. /*
  5278. * A task is considered 'cache cold' if at least 2 times
  5279. * the worst-case cost of migration has passed.
  5280. *
  5281. * (this limit is only listened to if the load-balancing
  5282. * situation is 'nice' - if there is a large imbalance we
  5283. * ignore it for the sake of CPU utilization and
  5284. * processing fairness.)
  5285. */
  5286. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5287. }
  5288. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5289. {
  5290. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5291. unsigned long j0, j1, distance, max_distance = 0;
  5292. struct sched_domain *sd;
  5293. j0 = jiffies;
  5294. /*
  5295. * First pass - calculate the cacheflush times:
  5296. */
  5297. for_each_cpu_mask(cpu1, *cpu_map) {
  5298. for_each_cpu_mask(cpu2, *cpu_map) {
  5299. if (cpu1 == cpu2)
  5300. continue;
  5301. distance = domain_distance(cpu1, cpu2);
  5302. max_distance = max(max_distance, distance);
  5303. /*
  5304. * No result cached yet?
  5305. */
  5306. if (migration_cost[distance] == -1LL)
  5307. migration_cost[distance] =
  5308. measure_migration_cost(cpu1, cpu2);
  5309. }
  5310. }
  5311. /*
  5312. * Second pass - update the sched domain hierarchy with
  5313. * the new cache-hot-time estimations:
  5314. */
  5315. for_each_cpu_mask(cpu, *cpu_map) {
  5316. distance = 0;
  5317. for_each_domain(cpu, sd) {
  5318. sd->cache_hot_time = migration_cost[distance];
  5319. distance++;
  5320. }
  5321. }
  5322. /*
  5323. * Print the matrix:
  5324. */
  5325. if (migration_debug)
  5326. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5327. max_cache_size,
  5328. #ifdef CONFIG_X86
  5329. cpu_khz/1000
  5330. #else
  5331. -1
  5332. #endif
  5333. );
  5334. if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
  5335. printk("migration_cost=");
  5336. for (distance = 0; distance <= max_distance; distance++) {
  5337. if (distance)
  5338. printk(",");
  5339. printk("%ld", (long)migration_cost[distance] / 1000);
  5340. }
  5341. printk("\n");
  5342. }
  5343. j1 = jiffies;
  5344. if (migration_debug)
  5345. printk("migration: %ld seconds\n", (j1-j0) / HZ);
  5346. /*
  5347. * Move back to the original CPU. NUMA-Q gets confused
  5348. * if we migrate to another quad during bootup.
  5349. */
  5350. if (raw_smp_processor_id() != orig_cpu) {
  5351. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5352. saved_mask = current->cpus_allowed;
  5353. set_cpus_allowed(current, mask);
  5354. set_cpus_allowed(current, saved_mask);
  5355. }
  5356. }
  5357. #ifdef CONFIG_NUMA
  5358. /**
  5359. * find_next_best_node - find the next node to include in a sched_domain
  5360. * @node: node whose sched_domain we're building
  5361. * @used_nodes: nodes already in the sched_domain
  5362. *
  5363. * Find the next node to include in a given scheduling domain. Simply
  5364. * finds the closest node not already in the @used_nodes map.
  5365. *
  5366. * Should use nodemask_t.
  5367. */
  5368. static int find_next_best_node(int node, unsigned long *used_nodes)
  5369. {
  5370. int i, n, val, min_val, best_node = 0;
  5371. min_val = INT_MAX;
  5372. for (i = 0; i < MAX_NUMNODES; i++) {
  5373. /* Start at @node */
  5374. n = (node + i) % MAX_NUMNODES;
  5375. if (!nr_cpus_node(n))
  5376. continue;
  5377. /* Skip already used nodes */
  5378. if (test_bit(n, used_nodes))
  5379. continue;
  5380. /* Simple min distance search */
  5381. val = node_distance(node, n);
  5382. if (val < min_val) {
  5383. min_val = val;
  5384. best_node = n;
  5385. }
  5386. }
  5387. set_bit(best_node, used_nodes);
  5388. return best_node;
  5389. }
  5390. /**
  5391. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5392. * @node: node whose cpumask we're constructing
  5393. * @size: number of nodes to include in this span
  5394. *
  5395. * Given a node, construct a good cpumask for its sched_domain to span. It
  5396. * should be one that prevents unnecessary balancing, but also spreads tasks
  5397. * out optimally.
  5398. */
  5399. static cpumask_t sched_domain_node_span(int node)
  5400. {
  5401. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5402. cpumask_t span, nodemask;
  5403. int i;
  5404. cpus_clear(span);
  5405. bitmap_zero(used_nodes, MAX_NUMNODES);
  5406. nodemask = node_to_cpumask(node);
  5407. cpus_or(span, span, nodemask);
  5408. set_bit(node, used_nodes);
  5409. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5410. int next_node = find_next_best_node(node, used_nodes);
  5411. nodemask = node_to_cpumask(next_node);
  5412. cpus_or(span, span, nodemask);
  5413. }
  5414. return span;
  5415. }
  5416. #endif
  5417. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5418. /*
  5419. * SMT sched-domains:
  5420. */
  5421. #ifdef CONFIG_SCHED_SMT
  5422. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5423. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5424. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5425. struct sched_group **sg)
  5426. {
  5427. if (sg)
  5428. *sg = &per_cpu(sched_group_cpus, cpu);
  5429. return cpu;
  5430. }
  5431. #endif
  5432. /*
  5433. * multi-core sched-domains:
  5434. */
  5435. #ifdef CONFIG_SCHED_MC
  5436. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5437. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5438. #endif
  5439. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5440. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5441. struct sched_group **sg)
  5442. {
  5443. int group;
  5444. cpumask_t mask = cpu_sibling_map[cpu];
  5445. cpus_and(mask, mask, *cpu_map);
  5446. group = first_cpu(mask);
  5447. if (sg)
  5448. *sg = &per_cpu(sched_group_core, group);
  5449. return group;
  5450. }
  5451. #elif defined(CONFIG_SCHED_MC)
  5452. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5453. struct sched_group **sg)
  5454. {
  5455. if (sg)
  5456. *sg = &per_cpu(sched_group_core, cpu);
  5457. return cpu;
  5458. }
  5459. #endif
  5460. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5461. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5462. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5463. struct sched_group **sg)
  5464. {
  5465. int group;
  5466. #ifdef CONFIG_SCHED_MC
  5467. cpumask_t mask = cpu_coregroup_map(cpu);
  5468. cpus_and(mask, mask, *cpu_map);
  5469. group = first_cpu(mask);
  5470. #elif defined(CONFIG_SCHED_SMT)
  5471. cpumask_t mask = cpu_sibling_map[cpu];
  5472. cpus_and(mask, mask, *cpu_map);
  5473. group = first_cpu(mask);
  5474. #else
  5475. group = cpu;
  5476. #endif
  5477. if (sg)
  5478. *sg = &per_cpu(sched_group_phys, group);
  5479. return group;
  5480. }
  5481. #ifdef CONFIG_NUMA
  5482. /*
  5483. * The init_sched_build_groups can't handle what we want to do with node
  5484. * groups, so roll our own. Now each node has its own list of groups which
  5485. * gets dynamically allocated.
  5486. */
  5487. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5488. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5489. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5490. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5491. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5492. struct sched_group **sg)
  5493. {
  5494. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5495. int group;
  5496. cpus_and(nodemask, nodemask, *cpu_map);
  5497. group = first_cpu(nodemask);
  5498. if (sg)
  5499. *sg = &per_cpu(sched_group_allnodes, group);
  5500. return group;
  5501. }
  5502. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5503. {
  5504. struct sched_group *sg = group_head;
  5505. int j;
  5506. if (!sg)
  5507. return;
  5508. next_sg:
  5509. for_each_cpu_mask(j, sg->cpumask) {
  5510. struct sched_domain *sd;
  5511. sd = &per_cpu(phys_domains, j);
  5512. if (j != first_cpu(sd->groups->cpumask)) {
  5513. /*
  5514. * Only add "power" once for each
  5515. * physical package.
  5516. */
  5517. continue;
  5518. }
  5519. sg->cpu_power += sd->groups->cpu_power;
  5520. }
  5521. sg = sg->next;
  5522. if (sg != group_head)
  5523. goto next_sg;
  5524. }
  5525. #endif
  5526. #ifdef CONFIG_NUMA
  5527. /* Free memory allocated for various sched_group structures */
  5528. static void free_sched_groups(const cpumask_t *cpu_map)
  5529. {
  5530. int cpu, i;
  5531. for_each_cpu_mask(cpu, *cpu_map) {
  5532. struct sched_group **sched_group_nodes
  5533. = sched_group_nodes_bycpu[cpu];
  5534. if (!sched_group_nodes)
  5535. continue;
  5536. for (i = 0; i < MAX_NUMNODES; i++) {
  5537. cpumask_t nodemask = node_to_cpumask(i);
  5538. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5539. cpus_and(nodemask, nodemask, *cpu_map);
  5540. if (cpus_empty(nodemask))
  5541. continue;
  5542. if (sg == NULL)
  5543. continue;
  5544. sg = sg->next;
  5545. next_sg:
  5546. oldsg = sg;
  5547. sg = sg->next;
  5548. kfree(oldsg);
  5549. if (oldsg != sched_group_nodes[i])
  5550. goto next_sg;
  5551. }
  5552. kfree(sched_group_nodes);
  5553. sched_group_nodes_bycpu[cpu] = NULL;
  5554. }
  5555. }
  5556. #else
  5557. static void free_sched_groups(const cpumask_t *cpu_map)
  5558. {
  5559. }
  5560. #endif
  5561. /*
  5562. * Initialize sched groups cpu_power.
  5563. *
  5564. * cpu_power indicates the capacity of sched group, which is used while
  5565. * distributing the load between different sched groups in a sched domain.
  5566. * Typically cpu_power for all the groups in a sched domain will be same unless
  5567. * there are asymmetries in the topology. If there are asymmetries, group
  5568. * having more cpu_power will pickup more load compared to the group having
  5569. * less cpu_power.
  5570. *
  5571. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5572. * the maximum number of tasks a group can handle in the presence of other idle
  5573. * or lightly loaded groups in the same sched domain.
  5574. */
  5575. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5576. {
  5577. struct sched_domain *child;
  5578. struct sched_group *group;
  5579. WARN_ON(!sd || !sd->groups);
  5580. if (cpu != first_cpu(sd->groups->cpumask))
  5581. return;
  5582. child = sd->child;
  5583. /*
  5584. * For perf policy, if the groups in child domain share resources
  5585. * (for example cores sharing some portions of the cache hierarchy
  5586. * or SMT), then set this domain groups cpu_power such that each group
  5587. * can handle only one task, when there are other idle groups in the
  5588. * same sched domain.
  5589. */
  5590. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5591. (child->flags &
  5592. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5593. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5594. return;
  5595. }
  5596. sd->groups->cpu_power = 0;
  5597. /*
  5598. * add cpu_power of each child group to this groups cpu_power
  5599. */
  5600. group = child->groups;
  5601. do {
  5602. sd->groups->cpu_power += group->cpu_power;
  5603. group = group->next;
  5604. } while (group != child->groups);
  5605. }
  5606. /*
  5607. * Build sched domains for a given set of cpus and attach the sched domains
  5608. * to the individual cpus
  5609. */
  5610. static int build_sched_domains(const cpumask_t *cpu_map)
  5611. {
  5612. int i;
  5613. struct sched_domain *sd;
  5614. #ifdef CONFIG_NUMA
  5615. struct sched_group **sched_group_nodes = NULL;
  5616. int sd_allnodes = 0;
  5617. /*
  5618. * Allocate the per-node list of sched groups
  5619. */
  5620. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5621. GFP_KERNEL);
  5622. if (!sched_group_nodes) {
  5623. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5624. return -ENOMEM;
  5625. }
  5626. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5627. #endif
  5628. /*
  5629. * Set up domains for cpus specified by the cpu_map.
  5630. */
  5631. for_each_cpu_mask(i, *cpu_map) {
  5632. struct sched_domain *sd = NULL, *p;
  5633. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5634. cpus_and(nodemask, nodemask, *cpu_map);
  5635. #ifdef CONFIG_NUMA
  5636. if (cpus_weight(*cpu_map)
  5637. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5638. sd = &per_cpu(allnodes_domains, i);
  5639. *sd = SD_ALLNODES_INIT;
  5640. sd->span = *cpu_map;
  5641. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5642. p = sd;
  5643. sd_allnodes = 1;
  5644. } else
  5645. p = NULL;
  5646. sd = &per_cpu(node_domains, i);
  5647. *sd = SD_NODE_INIT;
  5648. sd->span = sched_domain_node_span(cpu_to_node(i));
  5649. sd->parent = p;
  5650. if (p)
  5651. p->child = sd;
  5652. cpus_and(sd->span, sd->span, *cpu_map);
  5653. #endif
  5654. p = sd;
  5655. sd = &per_cpu(phys_domains, i);
  5656. *sd = SD_CPU_INIT;
  5657. sd->span = nodemask;
  5658. sd->parent = p;
  5659. if (p)
  5660. p->child = sd;
  5661. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5662. #ifdef CONFIG_SCHED_MC
  5663. p = sd;
  5664. sd = &per_cpu(core_domains, i);
  5665. *sd = SD_MC_INIT;
  5666. sd->span = cpu_coregroup_map(i);
  5667. cpus_and(sd->span, sd->span, *cpu_map);
  5668. sd->parent = p;
  5669. p->child = sd;
  5670. cpu_to_core_group(i, cpu_map, &sd->groups);
  5671. #endif
  5672. #ifdef CONFIG_SCHED_SMT
  5673. p = sd;
  5674. sd = &per_cpu(cpu_domains, i);
  5675. *sd = SD_SIBLING_INIT;
  5676. sd->span = cpu_sibling_map[i];
  5677. cpus_and(sd->span, sd->span, *cpu_map);
  5678. sd->parent = p;
  5679. p->child = sd;
  5680. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5681. #endif
  5682. }
  5683. #ifdef CONFIG_SCHED_SMT
  5684. /* Set up CPU (sibling) groups */
  5685. for_each_cpu_mask(i, *cpu_map) {
  5686. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5687. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5688. if (i != first_cpu(this_sibling_map))
  5689. continue;
  5690. init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
  5691. }
  5692. #endif
  5693. #ifdef CONFIG_SCHED_MC
  5694. /* Set up multi-core groups */
  5695. for_each_cpu_mask(i, *cpu_map) {
  5696. cpumask_t this_core_map = cpu_coregroup_map(i);
  5697. cpus_and(this_core_map, this_core_map, *cpu_map);
  5698. if (i != first_cpu(this_core_map))
  5699. continue;
  5700. init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
  5701. }
  5702. #endif
  5703. /* Set up physical groups */
  5704. for (i = 0; i < MAX_NUMNODES; i++) {
  5705. cpumask_t nodemask = node_to_cpumask(i);
  5706. cpus_and(nodemask, nodemask, *cpu_map);
  5707. if (cpus_empty(nodemask))
  5708. continue;
  5709. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5710. }
  5711. #ifdef CONFIG_NUMA
  5712. /* Set up node groups */
  5713. if (sd_allnodes)
  5714. init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
  5715. for (i = 0; i < MAX_NUMNODES; i++) {
  5716. /* Set up node groups */
  5717. struct sched_group *sg, *prev;
  5718. cpumask_t nodemask = node_to_cpumask(i);
  5719. cpumask_t domainspan;
  5720. cpumask_t covered = CPU_MASK_NONE;
  5721. int j;
  5722. cpus_and(nodemask, nodemask, *cpu_map);
  5723. if (cpus_empty(nodemask)) {
  5724. sched_group_nodes[i] = NULL;
  5725. continue;
  5726. }
  5727. domainspan = sched_domain_node_span(i);
  5728. cpus_and(domainspan, domainspan, *cpu_map);
  5729. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5730. if (!sg) {
  5731. printk(KERN_WARNING "Can not alloc domain group for "
  5732. "node %d\n", i);
  5733. goto error;
  5734. }
  5735. sched_group_nodes[i] = sg;
  5736. for_each_cpu_mask(j, nodemask) {
  5737. struct sched_domain *sd;
  5738. sd = &per_cpu(node_domains, j);
  5739. sd->groups = sg;
  5740. }
  5741. sg->cpu_power = 0;
  5742. sg->cpumask = nodemask;
  5743. sg->next = sg;
  5744. cpus_or(covered, covered, nodemask);
  5745. prev = sg;
  5746. for (j = 0; j < MAX_NUMNODES; j++) {
  5747. cpumask_t tmp, notcovered;
  5748. int n = (i + j) % MAX_NUMNODES;
  5749. cpus_complement(notcovered, covered);
  5750. cpus_and(tmp, notcovered, *cpu_map);
  5751. cpus_and(tmp, tmp, domainspan);
  5752. if (cpus_empty(tmp))
  5753. break;
  5754. nodemask = node_to_cpumask(n);
  5755. cpus_and(tmp, tmp, nodemask);
  5756. if (cpus_empty(tmp))
  5757. continue;
  5758. sg = kmalloc_node(sizeof(struct sched_group),
  5759. GFP_KERNEL, i);
  5760. if (!sg) {
  5761. printk(KERN_WARNING
  5762. "Can not alloc domain group for node %d\n", j);
  5763. goto error;
  5764. }
  5765. sg->cpu_power = 0;
  5766. sg->cpumask = tmp;
  5767. sg->next = prev->next;
  5768. cpus_or(covered, covered, tmp);
  5769. prev->next = sg;
  5770. prev = sg;
  5771. }
  5772. }
  5773. #endif
  5774. /* Calculate CPU power for physical packages and nodes */
  5775. #ifdef CONFIG_SCHED_SMT
  5776. for_each_cpu_mask(i, *cpu_map) {
  5777. sd = &per_cpu(cpu_domains, i);
  5778. init_sched_groups_power(i, sd);
  5779. }
  5780. #endif
  5781. #ifdef CONFIG_SCHED_MC
  5782. for_each_cpu_mask(i, *cpu_map) {
  5783. sd = &per_cpu(core_domains, i);
  5784. init_sched_groups_power(i, sd);
  5785. }
  5786. #endif
  5787. for_each_cpu_mask(i, *cpu_map) {
  5788. sd = &per_cpu(phys_domains, i);
  5789. init_sched_groups_power(i, sd);
  5790. }
  5791. #ifdef CONFIG_NUMA
  5792. for (i = 0; i < MAX_NUMNODES; i++)
  5793. init_numa_sched_groups_power(sched_group_nodes[i]);
  5794. if (sd_allnodes) {
  5795. struct sched_group *sg;
  5796. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5797. init_numa_sched_groups_power(sg);
  5798. }
  5799. #endif
  5800. /* Attach the domains */
  5801. for_each_cpu_mask(i, *cpu_map) {
  5802. struct sched_domain *sd;
  5803. #ifdef CONFIG_SCHED_SMT
  5804. sd = &per_cpu(cpu_domains, i);
  5805. #elif defined(CONFIG_SCHED_MC)
  5806. sd = &per_cpu(core_domains, i);
  5807. #else
  5808. sd = &per_cpu(phys_domains, i);
  5809. #endif
  5810. cpu_attach_domain(sd, i);
  5811. }
  5812. /*
  5813. * Tune cache-hot values:
  5814. */
  5815. calibrate_migration_costs(cpu_map);
  5816. return 0;
  5817. #ifdef CONFIG_NUMA
  5818. error:
  5819. free_sched_groups(cpu_map);
  5820. return -ENOMEM;
  5821. #endif
  5822. }
  5823. /*
  5824. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5825. */
  5826. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5827. {
  5828. cpumask_t cpu_default_map;
  5829. int err;
  5830. /*
  5831. * Setup mask for cpus without special case scheduling requirements.
  5832. * For now this just excludes isolated cpus, but could be used to
  5833. * exclude other special cases in the future.
  5834. */
  5835. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5836. err = build_sched_domains(&cpu_default_map);
  5837. return err;
  5838. }
  5839. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5840. {
  5841. free_sched_groups(cpu_map);
  5842. }
  5843. /*
  5844. * Detach sched domains from a group of cpus specified in cpu_map
  5845. * These cpus will now be attached to the NULL domain
  5846. */
  5847. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5848. {
  5849. int i;
  5850. for_each_cpu_mask(i, *cpu_map)
  5851. cpu_attach_domain(NULL, i);
  5852. synchronize_sched();
  5853. arch_destroy_sched_domains(cpu_map);
  5854. }
  5855. /*
  5856. * Partition sched domains as specified by the cpumasks below.
  5857. * This attaches all cpus from the cpumasks to the NULL domain,
  5858. * waits for a RCU quiescent period, recalculates sched
  5859. * domain information and then attaches them back to the
  5860. * correct sched domains
  5861. * Call with hotplug lock held
  5862. */
  5863. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5864. {
  5865. cpumask_t change_map;
  5866. int err = 0;
  5867. cpus_and(*partition1, *partition1, cpu_online_map);
  5868. cpus_and(*partition2, *partition2, cpu_online_map);
  5869. cpus_or(change_map, *partition1, *partition2);
  5870. /* Detach sched domains from all of the affected cpus */
  5871. detach_destroy_domains(&change_map);
  5872. if (!cpus_empty(*partition1))
  5873. err = build_sched_domains(partition1);
  5874. if (!err && !cpus_empty(*partition2))
  5875. err = build_sched_domains(partition2);
  5876. return err;
  5877. }
  5878. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5879. int arch_reinit_sched_domains(void)
  5880. {
  5881. int err;
  5882. lock_cpu_hotplug();
  5883. detach_destroy_domains(&cpu_online_map);
  5884. err = arch_init_sched_domains(&cpu_online_map);
  5885. unlock_cpu_hotplug();
  5886. return err;
  5887. }
  5888. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5889. {
  5890. int ret;
  5891. if (buf[0] != '0' && buf[0] != '1')
  5892. return -EINVAL;
  5893. if (smt)
  5894. sched_smt_power_savings = (buf[0] == '1');
  5895. else
  5896. sched_mc_power_savings = (buf[0] == '1');
  5897. ret = arch_reinit_sched_domains();
  5898. return ret ? ret : count;
  5899. }
  5900. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5901. {
  5902. int err = 0;
  5903. #ifdef CONFIG_SCHED_SMT
  5904. if (smt_capable())
  5905. err = sysfs_create_file(&cls->kset.kobj,
  5906. &attr_sched_smt_power_savings.attr);
  5907. #endif
  5908. #ifdef CONFIG_SCHED_MC
  5909. if (!err && mc_capable())
  5910. err = sysfs_create_file(&cls->kset.kobj,
  5911. &attr_sched_mc_power_savings.attr);
  5912. #endif
  5913. return err;
  5914. }
  5915. #endif
  5916. #ifdef CONFIG_SCHED_MC
  5917. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5918. {
  5919. return sprintf(page, "%u\n", sched_mc_power_savings);
  5920. }
  5921. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5922. const char *buf, size_t count)
  5923. {
  5924. return sched_power_savings_store(buf, count, 0);
  5925. }
  5926. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5927. sched_mc_power_savings_store);
  5928. #endif
  5929. #ifdef CONFIG_SCHED_SMT
  5930. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5931. {
  5932. return sprintf(page, "%u\n", sched_smt_power_savings);
  5933. }
  5934. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5935. const char *buf, size_t count)
  5936. {
  5937. return sched_power_savings_store(buf, count, 1);
  5938. }
  5939. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5940. sched_smt_power_savings_store);
  5941. #endif
  5942. /*
  5943. * Force a reinitialization of the sched domains hierarchy. The domains
  5944. * and groups cannot be updated in place without racing with the balancing
  5945. * code, so we temporarily attach all running cpus to the NULL domain
  5946. * which will prevent rebalancing while the sched domains are recalculated.
  5947. */
  5948. static int update_sched_domains(struct notifier_block *nfb,
  5949. unsigned long action, void *hcpu)
  5950. {
  5951. switch (action) {
  5952. case CPU_UP_PREPARE:
  5953. case CPU_DOWN_PREPARE:
  5954. detach_destroy_domains(&cpu_online_map);
  5955. return NOTIFY_OK;
  5956. case CPU_UP_CANCELED:
  5957. case CPU_DOWN_FAILED:
  5958. case CPU_ONLINE:
  5959. case CPU_DEAD:
  5960. /*
  5961. * Fall through and re-initialise the domains.
  5962. */
  5963. break;
  5964. default:
  5965. return NOTIFY_DONE;
  5966. }
  5967. /* The hotplug lock is already held by cpu_up/cpu_down */
  5968. arch_init_sched_domains(&cpu_online_map);
  5969. return NOTIFY_OK;
  5970. }
  5971. void __init sched_init_smp(void)
  5972. {
  5973. cpumask_t non_isolated_cpus;
  5974. lock_cpu_hotplug();
  5975. arch_init_sched_domains(&cpu_online_map);
  5976. cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
  5977. if (cpus_empty(non_isolated_cpus))
  5978. cpu_set(smp_processor_id(), non_isolated_cpus);
  5979. unlock_cpu_hotplug();
  5980. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5981. hotcpu_notifier(update_sched_domains, 0);
  5982. /* Move init over to a non-isolated CPU */
  5983. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5984. BUG();
  5985. }
  5986. #else
  5987. void __init sched_init_smp(void)
  5988. {
  5989. }
  5990. #endif /* CONFIG_SMP */
  5991. int in_sched_functions(unsigned long addr)
  5992. {
  5993. /* Linker adds these: start and end of __sched functions */
  5994. extern char __sched_text_start[], __sched_text_end[];
  5995. return in_lock_functions(addr) ||
  5996. (addr >= (unsigned long)__sched_text_start
  5997. && addr < (unsigned long)__sched_text_end);
  5998. }
  5999. void __init sched_init(void)
  6000. {
  6001. int i, j, k;
  6002. for_each_possible_cpu(i) {
  6003. struct prio_array *array;
  6004. struct rq *rq;
  6005. rq = cpu_rq(i);
  6006. spin_lock_init(&rq->lock);
  6007. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6008. rq->nr_running = 0;
  6009. rq->active = rq->arrays;
  6010. rq->expired = rq->arrays + 1;
  6011. rq->best_expired_prio = MAX_PRIO;
  6012. #ifdef CONFIG_SMP
  6013. rq->sd = NULL;
  6014. for (j = 1; j < 3; j++)
  6015. rq->cpu_load[j] = 0;
  6016. rq->active_balance = 0;
  6017. rq->push_cpu = 0;
  6018. rq->cpu = i;
  6019. rq->migration_thread = NULL;
  6020. INIT_LIST_HEAD(&rq->migration_queue);
  6021. #endif
  6022. atomic_set(&rq->nr_iowait, 0);
  6023. for (j = 0; j < 2; j++) {
  6024. array = rq->arrays + j;
  6025. for (k = 0; k < MAX_PRIO; k++) {
  6026. INIT_LIST_HEAD(array->queue + k);
  6027. __clear_bit(k, array->bitmap);
  6028. }
  6029. // delimiter for bitsearch
  6030. __set_bit(MAX_PRIO, array->bitmap);
  6031. }
  6032. }
  6033. set_load_weight(&init_task);
  6034. #ifdef CONFIG_SMP
  6035. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6036. #endif
  6037. #ifdef CONFIG_RT_MUTEXES
  6038. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6039. #endif
  6040. /*
  6041. * The boot idle thread does lazy MMU switching as well:
  6042. */
  6043. atomic_inc(&init_mm.mm_count);
  6044. enter_lazy_tlb(&init_mm, current);
  6045. /*
  6046. * Make us the idle thread. Technically, schedule() should not be
  6047. * called from this thread, however somewhere below it might be,
  6048. * but because we are the idle thread, we just pick up running again
  6049. * when this runqueue becomes "idle".
  6050. */
  6051. init_idle(current, smp_processor_id());
  6052. }
  6053. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6054. void __might_sleep(char *file, int line)
  6055. {
  6056. #ifdef in_atomic
  6057. static unsigned long prev_jiffy; /* ratelimiting */
  6058. if ((in_atomic() || irqs_disabled()) &&
  6059. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6060. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6061. return;
  6062. prev_jiffy = jiffies;
  6063. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6064. " context at %s:%d\n", file, line);
  6065. printk("in_atomic():%d, irqs_disabled():%d\n",
  6066. in_atomic(), irqs_disabled());
  6067. debug_show_held_locks(current);
  6068. if (irqs_disabled())
  6069. print_irqtrace_events(current);
  6070. dump_stack();
  6071. }
  6072. #endif
  6073. }
  6074. EXPORT_SYMBOL(__might_sleep);
  6075. #endif
  6076. #ifdef CONFIG_MAGIC_SYSRQ
  6077. void normalize_rt_tasks(void)
  6078. {
  6079. struct prio_array *array;
  6080. struct task_struct *p;
  6081. unsigned long flags;
  6082. struct rq *rq;
  6083. read_lock_irq(&tasklist_lock);
  6084. for_each_process(p) {
  6085. if (!rt_task(p))
  6086. continue;
  6087. spin_lock_irqsave(&p->pi_lock, flags);
  6088. rq = __task_rq_lock(p);
  6089. array = p->array;
  6090. if (array)
  6091. deactivate_task(p, task_rq(p));
  6092. __setscheduler(p, SCHED_NORMAL, 0);
  6093. if (array) {
  6094. __activate_task(p, task_rq(p));
  6095. resched_task(rq->curr);
  6096. }
  6097. __task_rq_unlock(rq);
  6098. spin_unlock_irqrestore(&p->pi_lock, flags);
  6099. }
  6100. read_unlock_irq(&tasklist_lock);
  6101. }
  6102. #endif /* CONFIG_MAGIC_SYSRQ */
  6103. #ifdef CONFIG_IA64
  6104. /*
  6105. * These functions are only useful for the IA64 MCA handling.
  6106. *
  6107. * They can only be called when the whole system has been
  6108. * stopped - every CPU needs to be quiescent, and no scheduling
  6109. * activity can take place. Using them for anything else would
  6110. * be a serious bug, and as a result, they aren't even visible
  6111. * under any other configuration.
  6112. */
  6113. /**
  6114. * curr_task - return the current task for a given cpu.
  6115. * @cpu: the processor in question.
  6116. *
  6117. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6118. */
  6119. struct task_struct *curr_task(int cpu)
  6120. {
  6121. return cpu_curr(cpu);
  6122. }
  6123. /**
  6124. * set_curr_task - set the current task for a given cpu.
  6125. * @cpu: the processor in question.
  6126. * @p: the task pointer to set.
  6127. *
  6128. * Description: This function must only be used when non-maskable interrupts
  6129. * are serviced on a separate stack. It allows the architecture to switch the
  6130. * notion of the current task on a cpu in a non-blocking manner. This function
  6131. * must be called with all CPU's synchronized, and interrupts disabled, the
  6132. * and caller must save the original value of the current task (see
  6133. * curr_task() above) and restore that value before reenabling interrupts and
  6134. * re-starting the system.
  6135. *
  6136. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6137. */
  6138. void set_curr_task(int cpu, struct task_struct *p)
  6139. {
  6140. cpu_curr(cpu) = p;
  6141. }
  6142. #endif