kvm_main.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { "light_exits", STAT_OFFSET(light_exits) },
  68. { "efer_reload", STAT_OFFSET(efer_reload) },
  69. { NULL }
  70. };
  71. static struct dentry *debugfs_dir;
  72. #define MAX_IO_MSRS 256
  73. #define CR0_RESERVED_BITS \
  74. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  75. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  76. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  77. #define CR4_RESERVED_BITS \
  78. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  79. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  80. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  81. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  82. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  83. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  84. #ifdef CONFIG_X86_64
  85. // LDT or TSS descriptor in the GDT. 16 bytes.
  86. struct segment_descriptor_64 {
  87. struct segment_descriptor s;
  88. u32 base_higher;
  89. u32 pad_zero;
  90. };
  91. #endif
  92. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  93. unsigned long arg);
  94. unsigned long segment_base(u16 selector)
  95. {
  96. struct descriptor_table gdt;
  97. struct segment_descriptor *d;
  98. unsigned long table_base;
  99. typedef unsigned long ul;
  100. unsigned long v;
  101. if (selector == 0)
  102. return 0;
  103. asm ("sgdt %0" : "=m"(gdt));
  104. table_base = gdt.base;
  105. if (selector & 4) { /* from ldt */
  106. u16 ldt_selector;
  107. asm ("sldt %0" : "=g"(ldt_selector));
  108. table_base = segment_base(ldt_selector);
  109. }
  110. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  111. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  112. #ifdef CONFIG_X86_64
  113. if (d->system == 0
  114. && (d->type == 2 || d->type == 9 || d->type == 11))
  115. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  116. #endif
  117. return v;
  118. }
  119. EXPORT_SYMBOL_GPL(segment_base);
  120. static inline int valid_vcpu(int n)
  121. {
  122. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  123. }
  124. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  125. void *dest)
  126. {
  127. unsigned char *host_buf = dest;
  128. unsigned long req_size = size;
  129. while (size) {
  130. hpa_t paddr;
  131. unsigned now;
  132. unsigned offset;
  133. hva_t guest_buf;
  134. paddr = gva_to_hpa(vcpu, addr);
  135. if (is_error_hpa(paddr))
  136. break;
  137. guest_buf = (hva_t)kmap_atomic(
  138. pfn_to_page(paddr >> PAGE_SHIFT),
  139. KM_USER0);
  140. offset = addr & ~PAGE_MASK;
  141. guest_buf |= offset;
  142. now = min(size, PAGE_SIZE - offset);
  143. memcpy(host_buf, (void*)guest_buf, now);
  144. host_buf += now;
  145. addr += now;
  146. size -= now;
  147. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  148. }
  149. return req_size - size;
  150. }
  151. EXPORT_SYMBOL_GPL(kvm_read_guest);
  152. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  153. void *data)
  154. {
  155. unsigned char *host_buf = data;
  156. unsigned long req_size = size;
  157. while (size) {
  158. hpa_t paddr;
  159. unsigned now;
  160. unsigned offset;
  161. hva_t guest_buf;
  162. gfn_t gfn;
  163. paddr = gva_to_hpa(vcpu, addr);
  164. if (is_error_hpa(paddr))
  165. break;
  166. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  167. mark_page_dirty(vcpu->kvm, gfn);
  168. guest_buf = (hva_t)kmap_atomic(
  169. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  170. offset = addr & ~PAGE_MASK;
  171. guest_buf |= offset;
  172. now = min(size, PAGE_SIZE - offset);
  173. memcpy((void*)guest_buf, host_buf, now);
  174. host_buf += now;
  175. addr += now;
  176. size -= now;
  177. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  178. }
  179. return req_size - size;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_write_guest);
  182. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  183. {
  184. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  185. return;
  186. vcpu->guest_fpu_loaded = 1;
  187. fx_save(vcpu->host_fx_image);
  188. fx_restore(vcpu->guest_fx_image);
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  191. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  192. {
  193. if (!vcpu->guest_fpu_loaded)
  194. return;
  195. vcpu->guest_fpu_loaded = 0;
  196. fx_save(vcpu->guest_fx_image);
  197. fx_restore(vcpu->host_fx_image);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  200. /*
  201. * Switches to specified vcpu, until a matching vcpu_put()
  202. */
  203. static void vcpu_load(struct kvm_vcpu *vcpu)
  204. {
  205. mutex_lock(&vcpu->mutex);
  206. kvm_arch_ops->vcpu_load(vcpu);
  207. }
  208. static void vcpu_put(struct kvm_vcpu *vcpu)
  209. {
  210. kvm_arch_ops->vcpu_put(vcpu);
  211. mutex_unlock(&vcpu->mutex);
  212. }
  213. static void ack_flush(void *_completed)
  214. {
  215. atomic_t *completed = _completed;
  216. atomic_inc(completed);
  217. }
  218. void kvm_flush_remote_tlbs(struct kvm *kvm)
  219. {
  220. int i, cpu, needed;
  221. cpumask_t cpus;
  222. struct kvm_vcpu *vcpu;
  223. atomic_t completed;
  224. atomic_set(&completed, 0);
  225. cpus_clear(cpus);
  226. needed = 0;
  227. for (i = 0; i < kvm->nvcpus; ++i) {
  228. vcpu = &kvm->vcpus[i];
  229. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  230. continue;
  231. cpu = vcpu->cpu;
  232. if (cpu != -1 && cpu != raw_smp_processor_id())
  233. if (!cpu_isset(cpu, cpus)) {
  234. cpu_set(cpu, cpus);
  235. ++needed;
  236. }
  237. }
  238. /*
  239. * We really want smp_call_function_mask() here. But that's not
  240. * available, so ipi all cpus in parallel and wait for them
  241. * to complete.
  242. */
  243. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  244. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  245. while (atomic_read(&completed) != needed) {
  246. cpu_relax();
  247. barrier();
  248. }
  249. }
  250. static struct kvm *kvm_create_vm(void)
  251. {
  252. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  253. int i;
  254. if (!kvm)
  255. return ERR_PTR(-ENOMEM);
  256. kvm_io_bus_init(&kvm->pio_bus);
  257. spin_lock_init(&kvm->lock);
  258. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  259. kvm_io_bus_init(&kvm->mmio_bus);
  260. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  261. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  262. mutex_init(&vcpu->mutex);
  263. vcpu->cpu = -1;
  264. vcpu->kvm = kvm;
  265. vcpu->mmu.root_hpa = INVALID_PAGE;
  266. }
  267. spin_lock(&kvm_lock);
  268. list_add(&kvm->vm_list, &vm_list);
  269. spin_unlock(&kvm_lock);
  270. return kvm;
  271. }
  272. static int kvm_dev_open(struct inode *inode, struct file *filp)
  273. {
  274. return 0;
  275. }
  276. /*
  277. * Free any memory in @free but not in @dont.
  278. */
  279. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  280. struct kvm_memory_slot *dont)
  281. {
  282. int i;
  283. if (!dont || free->phys_mem != dont->phys_mem)
  284. if (free->phys_mem) {
  285. for (i = 0; i < free->npages; ++i)
  286. if (free->phys_mem[i])
  287. __free_page(free->phys_mem[i]);
  288. vfree(free->phys_mem);
  289. }
  290. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  291. vfree(free->dirty_bitmap);
  292. free->phys_mem = NULL;
  293. free->npages = 0;
  294. free->dirty_bitmap = NULL;
  295. }
  296. static void kvm_free_physmem(struct kvm *kvm)
  297. {
  298. int i;
  299. for (i = 0; i < kvm->nmemslots; ++i)
  300. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  301. }
  302. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  303. {
  304. int i;
  305. for (i = 0; i < 2; ++i)
  306. if (vcpu->pio.guest_pages[i]) {
  307. __free_page(vcpu->pio.guest_pages[i]);
  308. vcpu->pio.guest_pages[i] = NULL;
  309. }
  310. }
  311. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  312. {
  313. if (!vcpu->vmcs)
  314. return;
  315. vcpu_load(vcpu);
  316. kvm_mmu_unload(vcpu);
  317. vcpu_put(vcpu);
  318. }
  319. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  320. {
  321. if (!vcpu->vmcs)
  322. return;
  323. vcpu_load(vcpu);
  324. kvm_mmu_destroy(vcpu);
  325. vcpu_put(vcpu);
  326. kvm_arch_ops->vcpu_free(vcpu);
  327. free_page((unsigned long)vcpu->run);
  328. vcpu->run = NULL;
  329. free_page((unsigned long)vcpu->pio_data);
  330. vcpu->pio_data = NULL;
  331. free_pio_guest_pages(vcpu);
  332. }
  333. static void kvm_free_vcpus(struct kvm *kvm)
  334. {
  335. unsigned int i;
  336. /*
  337. * Unpin any mmu pages first.
  338. */
  339. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  340. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  341. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  342. kvm_free_vcpu(&kvm->vcpus[i]);
  343. }
  344. static int kvm_dev_release(struct inode *inode, struct file *filp)
  345. {
  346. return 0;
  347. }
  348. static void kvm_destroy_vm(struct kvm *kvm)
  349. {
  350. spin_lock(&kvm_lock);
  351. list_del(&kvm->vm_list);
  352. spin_unlock(&kvm_lock);
  353. kvm_io_bus_destroy(&kvm->pio_bus);
  354. kvm_io_bus_destroy(&kvm->mmio_bus);
  355. kvm_free_vcpus(kvm);
  356. kvm_free_physmem(kvm);
  357. kfree(kvm);
  358. }
  359. static int kvm_vm_release(struct inode *inode, struct file *filp)
  360. {
  361. struct kvm *kvm = filp->private_data;
  362. kvm_destroy_vm(kvm);
  363. return 0;
  364. }
  365. static void inject_gp(struct kvm_vcpu *vcpu)
  366. {
  367. kvm_arch_ops->inject_gp(vcpu, 0);
  368. }
  369. /*
  370. * Load the pae pdptrs. Return true is they are all valid.
  371. */
  372. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  373. {
  374. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  375. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  376. int i;
  377. u64 pdpte;
  378. u64 *pdpt;
  379. int ret;
  380. struct page *page;
  381. spin_lock(&vcpu->kvm->lock);
  382. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  383. /* FIXME: !page - emulate? 0xff? */
  384. pdpt = kmap_atomic(page, KM_USER0);
  385. ret = 1;
  386. for (i = 0; i < 4; ++i) {
  387. pdpte = pdpt[offset + i];
  388. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  389. ret = 0;
  390. goto out;
  391. }
  392. }
  393. for (i = 0; i < 4; ++i)
  394. vcpu->pdptrs[i] = pdpt[offset + i];
  395. out:
  396. kunmap_atomic(pdpt, KM_USER0);
  397. spin_unlock(&vcpu->kvm->lock);
  398. return ret;
  399. }
  400. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  401. {
  402. if (cr0 & CR0_RESERVED_BITS) {
  403. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  404. cr0, vcpu->cr0);
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  409. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  414. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  415. "and a clear PE flag\n");
  416. inject_gp(vcpu);
  417. return;
  418. }
  419. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  420. #ifdef CONFIG_X86_64
  421. if ((vcpu->shadow_efer & EFER_LME)) {
  422. int cs_db, cs_l;
  423. if (!is_pae(vcpu)) {
  424. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  425. "in long mode while PAE is disabled\n");
  426. inject_gp(vcpu);
  427. return;
  428. }
  429. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  430. if (cs_l) {
  431. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  432. "in long mode while CS.L == 1\n");
  433. inject_gp(vcpu);
  434. return;
  435. }
  436. } else
  437. #endif
  438. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  439. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  440. "reserved bits\n");
  441. inject_gp(vcpu);
  442. return;
  443. }
  444. }
  445. kvm_arch_ops->set_cr0(vcpu, cr0);
  446. vcpu->cr0 = cr0;
  447. spin_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. spin_unlock(&vcpu->kvm->lock);
  450. return;
  451. }
  452. EXPORT_SYMBOL_GPL(set_cr0);
  453. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  454. {
  455. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  456. }
  457. EXPORT_SYMBOL_GPL(lmsw);
  458. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  459. {
  460. if (cr4 & CR4_RESERVED_BITS) {
  461. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  462. inject_gp(vcpu);
  463. return;
  464. }
  465. if (is_long_mode(vcpu)) {
  466. if (!(cr4 & X86_CR4_PAE)) {
  467. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  468. "in long mode\n");
  469. inject_gp(vcpu);
  470. return;
  471. }
  472. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  473. && !load_pdptrs(vcpu, vcpu->cr3)) {
  474. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  475. inject_gp(vcpu);
  476. return;
  477. }
  478. if (cr4 & X86_CR4_VMXE) {
  479. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  480. inject_gp(vcpu);
  481. return;
  482. }
  483. kvm_arch_ops->set_cr4(vcpu, cr4);
  484. spin_lock(&vcpu->kvm->lock);
  485. kvm_mmu_reset_context(vcpu);
  486. spin_unlock(&vcpu->kvm->lock);
  487. }
  488. EXPORT_SYMBOL_GPL(set_cr4);
  489. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  490. {
  491. if (is_long_mode(vcpu)) {
  492. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  493. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  494. inject_gp(vcpu);
  495. return;
  496. }
  497. } else {
  498. if (is_pae(vcpu)) {
  499. if (cr3 & CR3_PAE_RESERVED_BITS) {
  500. printk(KERN_DEBUG
  501. "set_cr3: #GP, reserved bits\n");
  502. inject_gp(vcpu);
  503. return;
  504. }
  505. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  506. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  507. "reserved bits\n");
  508. inject_gp(vcpu);
  509. return;
  510. }
  511. } else {
  512. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  513. printk(KERN_DEBUG
  514. "set_cr3: #GP, reserved bits\n");
  515. inject_gp(vcpu);
  516. return;
  517. }
  518. }
  519. }
  520. vcpu->cr3 = cr3;
  521. spin_lock(&vcpu->kvm->lock);
  522. /*
  523. * Does the new cr3 value map to physical memory? (Note, we
  524. * catch an invalid cr3 even in real-mode, because it would
  525. * cause trouble later on when we turn on paging anyway.)
  526. *
  527. * A real CPU would silently accept an invalid cr3 and would
  528. * attempt to use it - with largely undefined (and often hard
  529. * to debug) behavior on the guest side.
  530. */
  531. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  532. inject_gp(vcpu);
  533. else
  534. vcpu->mmu.new_cr3(vcpu);
  535. spin_unlock(&vcpu->kvm->lock);
  536. }
  537. EXPORT_SYMBOL_GPL(set_cr3);
  538. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  539. {
  540. if (cr8 & CR8_RESERVED_BITS) {
  541. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  542. inject_gp(vcpu);
  543. return;
  544. }
  545. vcpu->cr8 = cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(set_cr8);
  548. void fx_init(struct kvm_vcpu *vcpu)
  549. {
  550. struct __attribute__ ((__packed__)) fx_image_s {
  551. u16 control; //fcw
  552. u16 status; //fsw
  553. u16 tag; // ftw
  554. u16 opcode; //fop
  555. u64 ip; // fpu ip
  556. u64 operand;// fpu dp
  557. u32 mxcsr;
  558. u32 mxcsr_mask;
  559. } *fx_image;
  560. fx_save(vcpu->host_fx_image);
  561. fpu_init();
  562. fx_save(vcpu->guest_fx_image);
  563. fx_restore(vcpu->host_fx_image);
  564. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  565. fx_image->mxcsr = 0x1f80;
  566. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  567. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  568. }
  569. EXPORT_SYMBOL_GPL(fx_init);
  570. /*
  571. * Allocate some memory and give it an address in the guest physical address
  572. * space.
  573. *
  574. * Discontiguous memory is allowed, mostly for framebuffers.
  575. */
  576. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  577. struct kvm_memory_region *mem)
  578. {
  579. int r;
  580. gfn_t base_gfn;
  581. unsigned long npages;
  582. unsigned long i;
  583. struct kvm_memory_slot *memslot;
  584. struct kvm_memory_slot old, new;
  585. int memory_config_version;
  586. r = -EINVAL;
  587. /* General sanity checks */
  588. if (mem->memory_size & (PAGE_SIZE - 1))
  589. goto out;
  590. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  591. goto out;
  592. if (mem->slot >= KVM_MEMORY_SLOTS)
  593. goto out;
  594. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  595. goto out;
  596. memslot = &kvm->memslots[mem->slot];
  597. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  598. npages = mem->memory_size >> PAGE_SHIFT;
  599. if (!npages)
  600. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  601. raced:
  602. spin_lock(&kvm->lock);
  603. memory_config_version = kvm->memory_config_version;
  604. new = old = *memslot;
  605. new.base_gfn = base_gfn;
  606. new.npages = npages;
  607. new.flags = mem->flags;
  608. /* Disallow changing a memory slot's size. */
  609. r = -EINVAL;
  610. if (npages && old.npages && npages != old.npages)
  611. goto out_unlock;
  612. /* Check for overlaps */
  613. r = -EEXIST;
  614. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  615. struct kvm_memory_slot *s = &kvm->memslots[i];
  616. if (s == memslot)
  617. continue;
  618. if (!((base_gfn + npages <= s->base_gfn) ||
  619. (base_gfn >= s->base_gfn + s->npages)))
  620. goto out_unlock;
  621. }
  622. /*
  623. * Do memory allocations outside lock. memory_config_version will
  624. * detect any races.
  625. */
  626. spin_unlock(&kvm->lock);
  627. /* Deallocate if slot is being removed */
  628. if (!npages)
  629. new.phys_mem = NULL;
  630. /* Free page dirty bitmap if unneeded */
  631. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  632. new.dirty_bitmap = NULL;
  633. r = -ENOMEM;
  634. /* Allocate if a slot is being created */
  635. if (npages && !new.phys_mem) {
  636. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  637. if (!new.phys_mem)
  638. goto out_free;
  639. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  640. for (i = 0; i < npages; ++i) {
  641. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  642. | __GFP_ZERO);
  643. if (!new.phys_mem[i])
  644. goto out_free;
  645. set_page_private(new.phys_mem[i],0);
  646. }
  647. }
  648. /* Allocate page dirty bitmap if needed */
  649. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  650. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  651. new.dirty_bitmap = vmalloc(dirty_bytes);
  652. if (!new.dirty_bitmap)
  653. goto out_free;
  654. memset(new.dirty_bitmap, 0, dirty_bytes);
  655. }
  656. spin_lock(&kvm->lock);
  657. if (memory_config_version != kvm->memory_config_version) {
  658. spin_unlock(&kvm->lock);
  659. kvm_free_physmem_slot(&new, &old);
  660. goto raced;
  661. }
  662. r = -EAGAIN;
  663. if (kvm->busy)
  664. goto out_unlock;
  665. if (mem->slot >= kvm->nmemslots)
  666. kvm->nmemslots = mem->slot + 1;
  667. *memslot = new;
  668. ++kvm->memory_config_version;
  669. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  670. kvm_flush_remote_tlbs(kvm);
  671. spin_unlock(&kvm->lock);
  672. kvm_free_physmem_slot(&old, &new);
  673. return 0;
  674. out_unlock:
  675. spin_unlock(&kvm->lock);
  676. out_free:
  677. kvm_free_physmem_slot(&new, &old);
  678. out:
  679. return r;
  680. }
  681. /*
  682. * Get (and clear) the dirty memory log for a memory slot.
  683. */
  684. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  685. struct kvm_dirty_log *log)
  686. {
  687. struct kvm_memory_slot *memslot;
  688. int r, i;
  689. int n;
  690. unsigned long any = 0;
  691. spin_lock(&kvm->lock);
  692. /*
  693. * Prevent changes to guest memory configuration even while the lock
  694. * is not taken.
  695. */
  696. ++kvm->busy;
  697. spin_unlock(&kvm->lock);
  698. r = -EINVAL;
  699. if (log->slot >= KVM_MEMORY_SLOTS)
  700. goto out;
  701. memslot = &kvm->memslots[log->slot];
  702. r = -ENOENT;
  703. if (!memslot->dirty_bitmap)
  704. goto out;
  705. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  706. for (i = 0; !any && i < n/sizeof(long); ++i)
  707. any = memslot->dirty_bitmap[i];
  708. r = -EFAULT;
  709. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  710. goto out;
  711. spin_lock(&kvm->lock);
  712. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  713. kvm_flush_remote_tlbs(kvm);
  714. memset(memslot->dirty_bitmap, 0, n);
  715. spin_unlock(&kvm->lock);
  716. r = 0;
  717. out:
  718. spin_lock(&kvm->lock);
  719. --kvm->busy;
  720. spin_unlock(&kvm->lock);
  721. return r;
  722. }
  723. /*
  724. * Set a new alias region. Aliases map a portion of physical memory into
  725. * another portion. This is useful for memory windows, for example the PC
  726. * VGA region.
  727. */
  728. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  729. struct kvm_memory_alias *alias)
  730. {
  731. int r, n;
  732. struct kvm_mem_alias *p;
  733. r = -EINVAL;
  734. /* General sanity checks */
  735. if (alias->memory_size & (PAGE_SIZE - 1))
  736. goto out;
  737. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  738. goto out;
  739. if (alias->slot >= KVM_ALIAS_SLOTS)
  740. goto out;
  741. if (alias->guest_phys_addr + alias->memory_size
  742. < alias->guest_phys_addr)
  743. goto out;
  744. if (alias->target_phys_addr + alias->memory_size
  745. < alias->target_phys_addr)
  746. goto out;
  747. spin_lock(&kvm->lock);
  748. p = &kvm->aliases[alias->slot];
  749. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  750. p->npages = alias->memory_size >> PAGE_SHIFT;
  751. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  752. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  753. if (kvm->aliases[n - 1].npages)
  754. break;
  755. kvm->naliases = n;
  756. kvm_mmu_zap_all(kvm);
  757. spin_unlock(&kvm->lock);
  758. return 0;
  759. out:
  760. return r;
  761. }
  762. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  763. {
  764. int i;
  765. struct kvm_mem_alias *alias;
  766. for (i = 0; i < kvm->naliases; ++i) {
  767. alias = &kvm->aliases[i];
  768. if (gfn >= alias->base_gfn
  769. && gfn < alias->base_gfn + alias->npages)
  770. return alias->target_gfn + gfn - alias->base_gfn;
  771. }
  772. return gfn;
  773. }
  774. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  775. {
  776. int i;
  777. for (i = 0; i < kvm->nmemslots; ++i) {
  778. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  779. if (gfn >= memslot->base_gfn
  780. && gfn < memslot->base_gfn + memslot->npages)
  781. return memslot;
  782. }
  783. return NULL;
  784. }
  785. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  786. {
  787. gfn = unalias_gfn(kvm, gfn);
  788. return __gfn_to_memslot(kvm, gfn);
  789. }
  790. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  791. {
  792. struct kvm_memory_slot *slot;
  793. gfn = unalias_gfn(kvm, gfn);
  794. slot = __gfn_to_memslot(kvm, gfn);
  795. if (!slot)
  796. return NULL;
  797. return slot->phys_mem[gfn - slot->base_gfn];
  798. }
  799. EXPORT_SYMBOL_GPL(gfn_to_page);
  800. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  801. {
  802. int i;
  803. struct kvm_memory_slot *memslot;
  804. unsigned long rel_gfn;
  805. for (i = 0; i < kvm->nmemslots; ++i) {
  806. memslot = &kvm->memslots[i];
  807. if (gfn >= memslot->base_gfn
  808. && gfn < memslot->base_gfn + memslot->npages) {
  809. if (!memslot->dirty_bitmap)
  810. return;
  811. rel_gfn = gfn - memslot->base_gfn;
  812. /* avoid RMW */
  813. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  814. set_bit(rel_gfn, memslot->dirty_bitmap);
  815. return;
  816. }
  817. }
  818. }
  819. static int emulator_read_std(unsigned long addr,
  820. void *val,
  821. unsigned int bytes,
  822. struct x86_emulate_ctxt *ctxt)
  823. {
  824. struct kvm_vcpu *vcpu = ctxt->vcpu;
  825. void *data = val;
  826. while (bytes) {
  827. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  828. unsigned offset = addr & (PAGE_SIZE-1);
  829. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  830. unsigned long pfn;
  831. struct page *page;
  832. void *page_virt;
  833. if (gpa == UNMAPPED_GVA)
  834. return X86EMUL_PROPAGATE_FAULT;
  835. pfn = gpa >> PAGE_SHIFT;
  836. page = gfn_to_page(vcpu->kvm, pfn);
  837. if (!page)
  838. return X86EMUL_UNHANDLEABLE;
  839. page_virt = kmap_atomic(page, KM_USER0);
  840. memcpy(data, page_virt + offset, tocopy);
  841. kunmap_atomic(page_virt, KM_USER0);
  842. bytes -= tocopy;
  843. data += tocopy;
  844. addr += tocopy;
  845. }
  846. return X86EMUL_CONTINUE;
  847. }
  848. static int emulator_write_std(unsigned long addr,
  849. const void *val,
  850. unsigned int bytes,
  851. struct x86_emulate_ctxt *ctxt)
  852. {
  853. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  854. addr, bytes);
  855. return X86EMUL_UNHANDLEABLE;
  856. }
  857. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  858. gpa_t addr)
  859. {
  860. /*
  861. * Note that its important to have this wrapper function because
  862. * in the very near future we will be checking for MMIOs against
  863. * the LAPIC as well as the general MMIO bus
  864. */
  865. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  866. }
  867. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  868. gpa_t addr)
  869. {
  870. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  871. }
  872. static int emulator_read_emulated(unsigned long addr,
  873. void *val,
  874. unsigned int bytes,
  875. struct x86_emulate_ctxt *ctxt)
  876. {
  877. struct kvm_vcpu *vcpu = ctxt->vcpu;
  878. struct kvm_io_device *mmio_dev;
  879. gpa_t gpa;
  880. if (vcpu->mmio_read_completed) {
  881. memcpy(val, vcpu->mmio_data, bytes);
  882. vcpu->mmio_read_completed = 0;
  883. return X86EMUL_CONTINUE;
  884. } else if (emulator_read_std(addr, val, bytes, ctxt)
  885. == X86EMUL_CONTINUE)
  886. return X86EMUL_CONTINUE;
  887. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  888. if (gpa == UNMAPPED_GVA)
  889. return X86EMUL_PROPAGATE_FAULT;
  890. /*
  891. * Is this MMIO handled locally?
  892. */
  893. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  894. if (mmio_dev) {
  895. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  896. return X86EMUL_CONTINUE;
  897. }
  898. vcpu->mmio_needed = 1;
  899. vcpu->mmio_phys_addr = gpa;
  900. vcpu->mmio_size = bytes;
  901. vcpu->mmio_is_write = 0;
  902. return X86EMUL_UNHANDLEABLE;
  903. }
  904. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  905. const void *val, int bytes)
  906. {
  907. struct page *page;
  908. void *virt;
  909. unsigned offset = offset_in_page(gpa);
  910. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  911. return 0;
  912. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  913. if (!page)
  914. return 0;
  915. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  916. virt = kmap_atomic(page, KM_USER0);
  917. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  918. memcpy(virt + offset_in_page(gpa), val, bytes);
  919. kunmap_atomic(virt, KM_USER0);
  920. return 1;
  921. }
  922. static int emulator_write_emulated_onepage(unsigned long addr,
  923. const void *val,
  924. unsigned int bytes,
  925. struct x86_emulate_ctxt *ctxt)
  926. {
  927. struct kvm_vcpu *vcpu = ctxt->vcpu;
  928. struct kvm_io_device *mmio_dev;
  929. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  930. if (gpa == UNMAPPED_GVA) {
  931. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  932. return X86EMUL_PROPAGATE_FAULT;
  933. }
  934. if (emulator_write_phys(vcpu, gpa, val, bytes))
  935. return X86EMUL_CONTINUE;
  936. /*
  937. * Is this MMIO handled locally?
  938. */
  939. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  940. if (mmio_dev) {
  941. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  942. return X86EMUL_CONTINUE;
  943. }
  944. vcpu->mmio_needed = 1;
  945. vcpu->mmio_phys_addr = gpa;
  946. vcpu->mmio_size = bytes;
  947. vcpu->mmio_is_write = 1;
  948. memcpy(vcpu->mmio_data, val, bytes);
  949. return X86EMUL_CONTINUE;
  950. }
  951. static int emulator_write_emulated(unsigned long addr,
  952. const void *val,
  953. unsigned int bytes,
  954. struct x86_emulate_ctxt *ctxt)
  955. {
  956. /* Crossing a page boundary? */
  957. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  958. int rc, now;
  959. now = -addr & ~PAGE_MASK;
  960. rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
  961. if (rc != X86EMUL_CONTINUE)
  962. return rc;
  963. addr += now;
  964. val += now;
  965. bytes -= now;
  966. }
  967. return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
  968. }
  969. static int emulator_cmpxchg_emulated(unsigned long addr,
  970. const void *old,
  971. const void *new,
  972. unsigned int bytes,
  973. struct x86_emulate_ctxt *ctxt)
  974. {
  975. static int reported;
  976. if (!reported) {
  977. reported = 1;
  978. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  979. }
  980. return emulator_write_emulated(addr, new, bytes, ctxt);
  981. }
  982. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  983. {
  984. return kvm_arch_ops->get_segment_base(vcpu, seg);
  985. }
  986. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  987. {
  988. return X86EMUL_CONTINUE;
  989. }
  990. int emulate_clts(struct kvm_vcpu *vcpu)
  991. {
  992. unsigned long cr0;
  993. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  994. kvm_arch_ops->set_cr0(vcpu, cr0);
  995. return X86EMUL_CONTINUE;
  996. }
  997. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  998. {
  999. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1000. switch (dr) {
  1001. case 0 ... 3:
  1002. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1003. return X86EMUL_CONTINUE;
  1004. default:
  1005. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1006. __FUNCTION__, dr);
  1007. return X86EMUL_UNHANDLEABLE;
  1008. }
  1009. }
  1010. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1011. {
  1012. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1013. int exception;
  1014. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1015. if (exception) {
  1016. /* FIXME: better handling */
  1017. return X86EMUL_UNHANDLEABLE;
  1018. }
  1019. return X86EMUL_CONTINUE;
  1020. }
  1021. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1022. {
  1023. static int reported;
  1024. u8 opcodes[4];
  1025. unsigned long rip = ctxt->vcpu->rip;
  1026. unsigned long rip_linear;
  1027. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1028. if (reported)
  1029. return;
  1030. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1031. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1032. " rip %lx %02x %02x %02x %02x\n",
  1033. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1034. reported = 1;
  1035. }
  1036. struct x86_emulate_ops emulate_ops = {
  1037. .read_std = emulator_read_std,
  1038. .write_std = emulator_write_std,
  1039. .read_emulated = emulator_read_emulated,
  1040. .write_emulated = emulator_write_emulated,
  1041. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1042. };
  1043. int emulate_instruction(struct kvm_vcpu *vcpu,
  1044. struct kvm_run *run,
  1045. unsigned long cr2,
  1046. u16 error_code)
  1047. {
  1048. struct x86_emulate_ctxt emulate_ctxt;
  1049. int r;
  1050. int cs_db, cs_l;
  1051. vcpu->mmio_fault_cr2 = cr2;
  1052. kvm_arch_ops->cache_regs(vcpu);
  1053. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1054. emulate_ctxt.vcpu = vcpu;
  1055. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1056. emulate_ctxt.cr2 = cr2;
  1057. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1058. ? X86EMUL_MODE_REAL : cs_l
  1059. ? X86EMUL_MODE_PROT64 : cs_db
  1060. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1061. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1062. emulate_ctxt.cs_base = 0;
  1063. emulate_ctxt.ds_base = 0;
  1064. emulate_ctxt.es_base = 0;
  1065. emulate_ctxt.ss_base = 0;
  1066. } else {
  1067. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1068. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1069. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1070. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1071. }
  1072. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1073. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1074. vcpu->mmio_is_write = 0;
  1075. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1076. if ((r || vcpu->mmio_is_write) && run) {
  1077. run->exit_reason = KVM_EXIT_MMIO;
  1078. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1079. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1080. run->mmio.len = vcpu->mmio_size;
  1081. run->mmio.is_write = vcpu->mmio_is_write;
  1082. }
  1083. if (r) {
  1084. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1085. return EMULATE_DONE;
  1086. if (!vcpu->mmio_needed) {
  1087. report_emulation_failure(&emulate_ctxt);
  1088. return EMULATE_FAIL;
  1089. }
  1090. return EMULATE_DO_MMIO;
  1091. }
  1092. kvm_arch_ops->decache_regs(vcpu);
  1093. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1094. if (vcpu->mmio_is_write) {
  1095. vcpu->mmio_needed = 0;
  1096. return EMULATE_DO_MMIO;
  1097. }
  1098. return EMULATE_DONE;
  1099. }
  1100. EXPORT_SYMBOL_GPL(emulate_instruction);
  1101. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1102. {
  1103. if (vcpu->irq_summary)
  1104. return 1;
  1105. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1106. ++vcpu->stat.halt_exits;
  1107. return 0;
  1108. }
  1109. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1110. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1111. {
  1112. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1113. kvm_arch_ops->cache_regs(vcpu);
  1114. ret = -KVM_EINVAL;
  1115. #ifdef CONFIG_X86_64
  1116. if (is_long_mode(vcpu)) {
  1117. nr = vcpu->regs[VCPU_REGS_RAX];
  1118. a0 = vcpu->regs[VCPU_REGS_RDI];
  1119. a1 = vcpu->regs[VCPU_REGS_RSI];
  1120. a2 = vcpu->regs[VCPU_REGS_RDX];
  1121. a3 = vcpu->regs[VCPU_REGS_RCX];
  1122. a4 = vcpu->regs[VCPU_REGS_R8];
  1123. a5 = vcpu->regs[VCPU_REGS_R9];
  1124. } else
  1125. #endif
  1126. {
  1127. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1128. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1129. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1130. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1131. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1132. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1133. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1134. }
  1135. switch (nr) {
  1136. default:
  1137. run->hypercall.args[0] = a0;
  1138. run->hypercall.args[1] = a1;
  1139. run->hypercall.args[2] = a2;
  1140. run->hypercall.args[3] = a3;
  1141. run->hypercall.args[4] = a4;
  1142. run->hypercall.args[5] = a5;
  1143. run->hypercall.ret = ret;
  1144. run->hypercall.longmode = is_long_mode(vcpu);
  1145. kvm_arch_ops->decache_regs(vcpu);
  1146. return 0;
  1147. }
  1148. vcpu->regs[VCPU_REGS_RAX] = ret;
  1149. kvm_arch_ops->decache_regs(vcpu);
  1150. return 1;
  1151. }
  1152. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1153. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1154. {
  1155. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1156. }
  1157. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1158. {
  1159. struct descriptor_table dt = { limit, base };
  1160. kvm_arch_ops->set_gdt(vcpu, &dt);
  1161. }
  1162. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1163. {
  1164. struct descriptor_table dt = { limit, base };
  1165. kvm_arch_ops->set_idt(vcpu, &dt);
  1166. }
  1167. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1168. unsigned long *rflags)
  1169. {
  1170. lmsw(vcpu, msw);
  1171. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1172. }
  1173. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1174. {
  1175. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1176. switch (cr) {
  1177. case 0:
  1178. return vcpu->cr0;
  1179. case 2:
  1180. return vcpu->cr2;
  1181. case 3:
  1182. return vcpu->cr3;
  1183. case 4:
  1184. return vcpu->cr4;
  1185. default:
  1186. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1187. return 0;
  1188. }
  1189. }
  1190. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1191. unsigned long *rflags)
  1192. {
  1193. switch (cr) {
  1194. case 0:
  1195. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1196. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1197. break;
  1198. case 2:
  1199. vcpu->cr2 = val;
  1200. break;
  1201. case 3:
  1202. set_cr3(vcpu, val);
  1203. break;
  1204. case 4:
  1205. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1206. break;
  1207. default:
  1208. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1209. }
  1210. }
  1211. /*
  1212. * Register the para guest with the host:
  1213. */
  1214. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1215. {
  1216. struct kvm_vcpu_para_state *para_state;
  1217. hpa_t para_state_hpa, hypercall_hpa;
  1218. struct page *para_state_page;
  1219. unsigned char *hypercall;
  1220. gpa_t hypercall_gpa;
  1221. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1222. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1223. /*
  1224. * Needs to be page aligned:
  1225. */
  1226. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1227. goto err_gp;
  1228. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1229. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1230. if (is_error_hpa(para_state_hpa))
  1231. goto err_gp;
  1232. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1233. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1234. para_state = kmap_atomic(para_state_page, KM_USER0);
  1235. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1236. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1237. para_state->host_version = KVM_PARA_API_VERSION;
  1238. /*
  1239. * We cannot support guests that try to register themselves
  1240. * with a newer API version than the host supports:
  1241. */
  1242. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1243. para_state->ret = -KVM_EINVAL;
  1244. goto err_kunmap_skip;
  1245. }
  1246. hypercall_gpa = para_state->hypercall_gpa;
  1247. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1248. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1249. if (is_error_hpa(hypercall_hpa)) {
  1250. para_state->ret = -KVM_EINVAL;
  1251. goto err_kunmap_skip;
  1252. }
  1253. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1254. vcpu->para_state_page = para_state_page;
  1255. vcpu->para_state_gpa = para_state_gpa;
  1256. vcpu->hypercall_gpa = hypercall_gpa;
  1257. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1258. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1259. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1260. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1261. kunmap_atomic(hypercall, KM_USER1);
  1262. para_state->ret = 0;
  1263. err_kunmap_skip:
  1264. kunmap_atomic(para_state, KM_USER0);
  1265. return 0;
  1266. err_gp:
  1267. return 1;
  1268. }
  1269. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1270. {
  1271. u64 data;
  1272. switch (msr) {
  1273. case 0xc0010010: /* SYSCFG */
  1274. case 0xc0010015: /* HWCR */
  1275. case MSR_IA32_PLATFORM_ID:
  1276. case MSR_IA32_P5_MC_ADDR:
  1277. case MSR_IA32_P5_MC_TYPE:
  1278. case MSR_IA32_MC0_CTL:
  1279. case MSR_IA32_MCG_STATUS:
  1280. case MSR_IA32_MCG_CAP:
  1281. case MSR_IA32_MC0_MISC:
  1282. case MSR_IA32_MC0_MISC+4:
  1283. case MSR_IA32_MC0_MISC+8:
  1284. case MSR_IA32_MC0_MISC+12:
  1285. case MSR_IA32_MC0_MISC+16:
  1286. case MSR_IA32_UCODE_REV:
  1287. case MSR_IA32_PERF_STATUS:
  1288. case MSR_IA32_EBL_CR_POWERON:
  1289. /* MTRR registers */
  1290. case 0xfe:
  1291. case 0x200 ... 0x2ff:
  1292. data = 0;
  1293. break;
  1294. case 0xcd: /* fsb frequency */
  1295. data = 3;
  1296. break;
  1297. case MSR_IA32_APICBASE:
  1298. data = vcpu->apic_base;
  1299. break;
  1300. case MSR_IA32_MISC_ENABLE:
  1301. data = vcpu->ia32_misc_enable_msr;
  1302. break;
  1303. #ifdef CONFIG_X86_64
  1304. case MSR_EFER:
  1305. data = vcpu->shadow_efer;
  1306. break;
  1307. #endif
  1308. default:
  1309. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1310. return 1;
  1311. }
  1312. *pdata = data;
  1313. return 0;
  1314. }
  1315. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1316. /*
  1317. * Reads an msr value (of 'msr_index') into 'pdata'.
  1318. * Returns 0 on success, non-0 otherwise.
  1319. * Assumes vcpu_load() was already called.
  1320. */
  1321. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1322. {
  1323. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1324. }
  1325. #ifdef CONFIG_X86_64
  1326. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1327. {
  1328. if (efer & EFER_RESERVED_BITS) {
  1329. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1330. efer);
  1331. inject_gp(vcpu);
  1332. return;
  1333. }
  1334. if (is_paging(vcpu)
  1335. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1336. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1337. inject_gp(vcpu);
  1338. return;
  1339. }
  1340. kvm_arch_ops->set_efer(vcpu, efer);
  1341. efer &= ~EFER_LMA;
  1342. efer |= vcpu->shadow_efer & EFER_LMA;
  1343. vcpu->shadow_efer = efer;
  1344. }
  1345. #endif
  1346. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1347. {
  1348. switch (msr) {
  1349. #ifdef CONFIG_X86_64
  1350. case MSR_EFER:
  1351. set_efer(vcpu, data);
  1352. break;
  1353. #endif
  1354. case MSR_IA32_MC0_STATUS:
  1355. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1356. __FUNCTION__, data);
  1357. break;
  1358. case MSR_IA32_MCG_STATUS:
  1359. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1360. __FUNCTION__, data);
  1361. break;
  1362. case MSR_IA32_UCODE_REV:
  1363. case MSR_IA32_UCODE_WRITE:
  1364. case 0x200 ... 0x2ff: /* MTRRs */
  1365. break;
  1366. case MSR_IA32_APICBASE:
  1367. vcpu->apic_base = data;
  1368. break;
  1369. case MSR_IA32_MISC_ENABLE:
  1370. vcpu->ia32_misc_enable_msr = data;
  1371. break;
  1372. /*
  1373. * This is the 'probe whether the host is KVM' logic:
  1374. */
  1375. case MSR_KVM_API_MAGIC:
  1376. return vcpu_register_para(vcpu, data);
  1377. default:
  1378. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1379. return 1;
  1380. }
  1381. return 0;
  1382. }
  1383. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1384. /*
  1385. * Writes msr value into into the appropriate "register".
  1386. * Returns 0 on success, non-0 otherwise.
  1387. * Assumes vcpu_load() was already called.
  1388. */
  1389. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1390. {
  1391. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1392. }
  1393. void kvm_resched(struct kvm_vcpu *vcpu)
  1394. {
  1395. if (!need_resched())
  1396. return;
  1397. vcpu_put(vcpu);
  1398. cond_resched();
  1399. vcpu_load(vcpu);
  1400. }
  1401. EXPORT_SYMBOL_GPL(kvm_resched);
  1402. void load_msrs(struct vmx_msr_entry *e, int n)
  1403. {
  1404. int i;
  1405. for (i = 0; i < n; ++i)
  1406. wrmsrl(e[i].index, e[i].data);
  1407. }
  1408. EXPORT_SYMBOL_GPL(load_msrs);
  1409. void save_msrs(struct vmx_msr_entry *e, int n)
  1410. {
  1411. int i;
  1412. for (i = 0; i < n; ++i)
  1413. rdmsrl(e[i].index, e[i].data);
  1414. }
  1415. EXPORT_SYMBOL_GPL(save_msrs);
  1416. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1417. {
  1418. int i;
  1419. u32 function;
  1420. struct kvm_cpuid_entry *e, *best;
  1421. kvm_arch_ops->cache_regs(vcpu);
  1422. function = vcpu->regs[VCPU_REGS_RAX];
  1423. vcpu->regs[VCPU_REGS_RAX] = 0;
  1424. vcpu->regs[VCPU_REGS_RBX] = 0;
  1425. vcpu->regs[VCPU_REGS_RCX] = 0;
  1426. vcpu->regs[VCPU_REGS_RDX] = 0;
  1427. best = NULL;
  1428. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1429. e = &vcpu->cpuid_entries[i];
  1430. if (e->function == function) {
  1431. best = e;
  1432. break;
  1433. }
  1434. /*
  1435. * Both basic or both extended?
  1436. */
  1437. if (((e->function ^ function) & 0x80000000) == 0)
  1438. if (!best || e->function > best->function)
  1439. best = e;
  1440. }
  1441. if (best) {
  1442. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1443. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1444. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1445. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1446. }
  1447. kvm_arch_ops->decache_regs(vcpu);
  1448. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1449. }
  1450. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1451. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1452. {
  1453. void *p = vcpu->pio_data;
  1454. void *q;
  1455. unsigned bytes;
  1456. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1457. kvm_arch_ops->vcpu_put(vcpu);
  1458. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1459. PAGE_KERNEL);
  1460. if (!q) {
  1461. kvm_arch_ops->vcpu_load(vcpu);
  1462. free_pio_guest_pages(vcpu);
  1463. return -ENOMEM;
  1464. }
  1465. q += vcpu->pio.guest_page_offset;
  1466. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1467. if (vcpu->pio.in)
  1468. memcpy(q, p, bytes);
  1469. else
  1470. memcpy(p, q, bytes);
  1471. q -= vcpu->pio.guest_page_offset;
  1472. vunmap(q);
  1473. kvm_arch_ops->vcpu_load(vcpu);
  1474. free_pio_guest_pages(vcpu);
  1475. return 0;
  1476. }
  1477. static int complete_pio(struct kvm_vcpu *vcpu)
  1478. {
  1479. struct kvm_pio_request *io = &vcpu->pio;
  1480. long delta;
  1481. int r;
  1482. kvm_arch_ops->cache_regs(vcpu);
  1483. if (!io->string) {
  1484. if (io->in)
  1485. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1486. io->size);
  1487. } else {
  1488. if (io->in) {
  1489. r = pio_copy_data(vcpu);
  1490. if (r) {
  1491. kvm_arch_ops->cache_regs(vcpu);
  1492. return r;
  1493. }
  1494. }
  1495. delta = 1;
  1496. if (io->rep) {
  1497. delta *= io->cur_count;
  1498. /*
  1499. * The size of the register should really depend on
  1500. * current address size.
  1501. */
  1502. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1503. }
  1504. if (io->down)
  1505. delta = -delta;
  1506. delta *= io->size;
  1507. if (io->in)
  1508. vcpu->regs[VCPU_REGS_RDI] += delta;
  1509. else
  1510. vcpu->regs[VCPU_REGS_RSI] += delta;
  1511. }
  1512. kvm_arch_ops->decache_regs(vcpu);
  1513. io->count -= io->cur_count;
  1514. io->cur_count = 0;
  1515. if (!io->count)
  1516. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1517. return 0;
  1518. }
  1519. static void kernel_pio(struct kvm_io_device *pio_dev,
  1520. struct kvm_vcpu *vcpu,
  1521. void *pd)
  1522. {
  1523. /* TODO: String I/O for in kernel device */
  1524. if (vcpu->pio.in)
  1525. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1526. vcpu->pio.size,
  1527. pd);
  1528. else
  1529. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1530. vcpu->pio.size,
  1531. pd);
  1532. }
  1533. static void pio_string_write(struct kvm_io_device *pio_dev,
  1534. struct kvm_vcpu *vcpu)
  1535. {
  1536. struct kvm_pio_request *io = &vcpu->pio;
  1537. void *pd = vcpu->pio_data;
  1538. int i;
  1539. for (i = 0; i < io->cur_count; i++) {
  1540. kvm_iodevice_write(pio_dev, io->port,
  1541. io->size,
  1542. pd);
  1543. pd += io->size;
  1544. }
  1545. }
  1546. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1547. int size, unsigned long count, int string, int down,
  1548. gva_t address, int rep, unsigned port)
  1549. {
  1550. unsigned now, in_page;
  1551. int i, ret = 0;
  1552. int nr_pages = 1;
  1553. struct page *page;
  1554. struct kvm_io_device *pio_dev;
  1555. vcpu->run->exit_reason = KVM_EXIT_IO;
  1556. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1557. vcpu->run->io.size = size;
  1558. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1559. vcpu->run->io.count = count;
  1560. vcpu->run->io.port = port;
  1561. vcpu->pio.count = count;
  1562. vcpu->pio.cur_count = count;
  1563. vcpu->pio.size = size;
  1564. vcpu->pio.in = in;
  1565. vcpu->pio.port = port;
  1566. vcpu->pio.string = string;
  1567. vcpu->pio.down = down;
  1568. vcpu->pio.guest_page_offset = offset_in_page(address);
  1569. vcpu->pio.rep = rep;
  1570. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1571. if (!string) {
  1572. kvm_arch_ops->cache_regs(vcpu);
  1573. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1574. kvm_arch_ops->decache_regs(vcpu);
  1575. if (pio_dev) {
  1576. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1577. complete_pio(vcpu);
  1578. return 1;
  1579. }
  1580. return 0;
  1581. }
  1582. if (!count) {
  1583. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1584. return 1;
  1585. }
  1586. now = min(count, PAGE_SIZE / size);
  1587. if (!down)
  1588. in_page = PAGE_SIZE - offset_in_page(address);
  1589. else
  1590. in_page = offset_in_page(address) + size;
  1591. now = min(count, (unsigned long)in_page / size);
  1592. if (!now) {
  1593. /*
  1594. * String I/O straddles page boundary. Pin two guest pages
  1595. * so that we satisfy atomicity constraints. Do just one
  1596. * transaction to avoid complexity.
  1597. */
  1598. nr_pages = 2;
  1599. now = 1;
  1600. }
  1601. if (down) {
  1602. /*
  1603. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1604. */
  1605. printk(KERN_ERR "kvm: guest string pio down\n");
  1606. inject_gp(vcpu);
  1607. return 1;
  1608. }
  1609. vcpu->run->io.count = now;
  1610. vcpu->pio.cur_count = now;
  1611. for (i = 0; i < nr_pages; ++i) {
  1612. spin_lock(&vcpu->kvm->lock);
  1613. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1614. if (page)
  1615. get_page(page);
  1616. vcpu->pio.guest_pages[i] = page;
  1617. spin_unlock(&vcpu->kvm->lock);
  1618. if (!page) {
  1619. inject_gp(vcpu);
  1620. free_pio_guest_pages(vcpu);
  1621. return 1;
  1622. }
  1623. }
  1624. if (!vcpu->pio.in) {
  1625. /* string PIO write */
  1626. ret = pio_copy_data(vcpu);
  1627. if (ret >= 0 && pio_dev) {
  1628. pio_string_write(pio_dev, vcpu);
  1629. complete_pio(vcpu);
  1630. if (vcpu->pio.count == 0)
  1631. ret = 1;
  1632. }
  1633. } else if (pio_dev)
  1634. printk(KERN_ERR "no string pio read support yet, "
  1635. "port %x size %d count %ld\n",
  1636. port, size, count);
  1637. return ret;
  1638. }
  1639. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1640. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1641. {
  1642. int r;
  1643. sigset_t sigsaved;
  1644. vcpu_load(vcpu);
  1645. if (vcpu->sigset_active)
  1646. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1647. /* re-sync apic's tpr */
  1648. vcpu->cr8 = kvm_run->cr8;
  1649. if (vcpu->pio.cur_count) {
  1650. r = complete_pio(vcpu);
  1651. if (r)
  1652. goto out;
  1653. }
  1654. if (vcpu->mmio_needed) {
  1655. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1656. vcpu->mmio_read_completed = 1;
  1657. vcpu->mmio_needed = 0;
  1658. r = emulate_instruction(vcpu, kvm_run,
  1659. vcpu->mmio_fault_cr2, 0);
  1660. if (r == EMULATE_DO_MMIO) {
  1661. /*
  1662. * Read-modify-write. Back to userspace.
  1663. */
  1664. r = 0;
  1665. goto out;
  1666. }
  1667. }
  1668. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1669. kvm_arch_ops->cache_regs(vcpu);
  1670. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1671. kvm_arch_ops->decache_regs(vcpu);
  1672. }
  1673. r = kvm_arch_ops->run(vcpu, kvm_run);
  1674. out:
  1675. if (vcpu->sigset_active)
  1676. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1677. vcpu_put(vcpu);
  1678. return r;
  1679. }
  1680. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1681. struct kvm_regs *regs)
  1682. {
  1683. vcpu_load(vcpu);
  1684. kvm_arch_ops->cache_regs(vcpu);
  1685. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1686. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1687. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1688. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1689. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1690. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1691. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1692. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1693. #ifdef CONFIG_X86_64
  1694. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1695. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1696. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1697. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1698. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1699. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1700. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1701. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1702. #endif
  1703. regs->rip = vcpu->rip;
  1704. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1705. /*
  1706. * Don't leak debug flags in case they were set for guest debugging
  1707. */
  1708. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1709. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1710. vcpu_put(vcpu);
  1711. return 0;
  1712. }
  1713. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1714. struct kvm_regs *regs)
  1715. {
  1716. vcpu_load(vcpu);
  1717. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1718. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1719. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1720. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1721. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1722. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1723. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1724. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1725. #ifdef CONFIG_X86_64
  1726. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1727. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1728. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1729. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1730. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1731. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1732. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1733. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1734. #endif
  1735. vcpu->rip = regs->rip;
  1736. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1737. kvm_arch_ops->decache_regs(vcpu);
  1738. vcpu_put(vcpu);
  1739. return 0;
  1740. }
  1741. static void get_segment(struct kvm_vcpu *vcpu,
  1742. struct kvm_segment *var, int seg)
  1743. {
  1744. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1745. }
  1746. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1747. struct kvm_sregs *sregs)
  1748. {
  1749. struct descriptor_table dt;
  1750. vcpu_load(vcpu);
  1751. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1752. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1753. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1754. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1755. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1756. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1757. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1758. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1759. kvm_arch_ops->get_idt(vcpu, &dt);
  1760. sregs->idt.limit = dt.limit;
  1761. sregs->idt.base = dt.base;
  1762. kvm_arch_ops->get_gdt(vcpu, &dt);
  1763. sregs->gdt.limit = dt.limit;
  1764. sregs->gdt.base = dt.base;
  1765. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1766. sregs->cr0 = vcpu->cr0;
  1767. sregs->cr2 = vcpu->cr2;
  1768. sregs->cr3 = vcpu->cr3;
  1769. sregs->cr4 = vcpu->cr4;
  1770. sregs->cr8 = vcpu->cr8;
  1771. sregs->efer = vcpu->shadow_efer;
  1772. sregs->apic_base = vcpu->apic_base;
  1773. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1774. sizeof sregs->interrupt_bitmap);
  1775. vcpu_put(vcpu);
  1776. return 0;
  1777. }
  1778. static void set_segment(struct kvm_vcpu *vcpu,
  1779. struct kvm_segment *var, int seg)
  1780. {
  1781. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1782. }
  1783. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1784. struct kvm_sregs *sregs)
  1785. {
  1786. int mmu_reset_needed = 0;
  1787. int i;
  1788. struct descriptor_table dt;
  1789. vcpu_load(vcpu);
  1790. dt.limit = sregs->idt.limit;
  1791. dt.base = sregs->idt.base;
  1792. kvm_arch_ops->set_idt(vcpu, &dt);
  1793. dt.limit = sregs->gdt.limit;
  1794. dt.base = sregs->gdt.base;
  1795. kvm_arch_ops->set_gdt(vcpu, &dt);
  1796. vcpu->cr2 = sregs->cr2;
  1797. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1798. vcpu->cr3 = sregs->cr3;
  1799. vcpu->cr8 = sregs->cr8;
  1800. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1801. #ifdef CONFIG_X86_64
  1802. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1803. #endif
  1804. vcpu->apic_base = sregs->apic_base;
  1805. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1806. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1807. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1808. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1809. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1810. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1811. load_pdptrs(vcpu, vcpu->cr3);
  1812. if (mmu_reset_needed)
  1813. kvm_mmu_reset_context(vcpu);
  1814. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1815. sizeof vcpu->irq_pending);
  1816. vcpu->irq_summary = 0;
  1817. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1818. if (vcpu->irq_pending[i])
  1819. __set_bit(i, &vcpu->irq_summary);
  1820. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1821. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1822. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1823. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1824. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1825. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1826. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1827. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1828. vcpu_put(vcpu);
  1829. return 0;
  1830. }
  1831. /*
  1832. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1833. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1834. *
  1835. * This list is modified at module load time to reflect the
  1836. * capabilities of the host cpu.
  1837. */
  1838. static u32 msrs_to_save[] = {
  1839. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1840. MSR_K6_STAR,
  1841. #ifdef CONFIG_X86_64
  1842. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1843. #endif
  1844. MSR_IA32_TIME_STAMP_COUNTER,
  1845. };
  1846. static unsigned num_msrs_to_save;
  1847. static u32 emulated_msrs[] = {
  1848. MSR_IA32_MISC_ENABLE,
  1849. };
  1850. static __init void kvm_init_msr_list(void)
  1851. {
  1852. u32 dummy[2];
  1853. unsigned i, j;
  1854. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1855. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1856. continue;
  1857. if (j < i)
  1858. msrs_to_save[j] = msrs_to_save[i];
  1859. j++;
  1860. }
  1861. num_msrs_to_save = j;
  1862. }
  1863. /*
  1864. * Adapt set_msr() to msr_io()'s calling convention
  1865. */
  1866. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1867. {
  1868. return kvm_set_msr(vcpu, index, *data);
  1869. }
  1870. /*
  1871. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1872. *
  1873. * @return number of msrs set successfully.
  1874. */
  1875. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1876. struct kvm_msr_entry *entries,
  1877. int (*do_msr)(struct kvm_vcpu *vcpu,
  1878. unsigned index, u64 *data))
  1879. {
  1880. int i;
  1881. vcpu_load(vcpu);
  1882. for (i = 0; i < msrs->nmsrs; ++i)
  1883. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1884. break;
  1885. vcpu_put(vcpu);
  1886. return i;
  1887. }
  1888. /*
  1889. * Read or write a bunch of msrs. Parameters are user addresses.
  1890. *
  1891. * @return number of msrs set successfully.
  1892. */
  1893. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1894. int (*do_msr)(struct kvm_vcpu *vcpu,
  1895. unsigned index, u64 *data),
  1896. int writeback)
  1897. {
  1898. struct kvm_msrs msrs;
  1899. struct kvm_msr_entry *entries;
  1900. int r, n;
  1901. unsigned size;
  1902. r = -EFAULT;
  1903. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1904. goto out;
  1905. r = -E2BIG;
  1906. if (msrs.nmsrs >= MAX_IO_MSRS)
  1907. goto out;
  1908. r = -ENOMEM;
  1909. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1910. entries = vmalloc(size);
  1911. if (!entries)
  1912. goto out;
  1913. r = -EFAULT;
  1914. if (copy_from_user(entries, user_msrs->entries, size))
  1915. goto out_free;
  1916. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1917. if (r < 0)
  1918. goto out_free;
  1919. r = -EFAULT;
  1920. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1921. goto out_free;
  1922. r = n;
  1923. out_free:
  1924. vfree(entries);
  1925. out:
  1926. return r;
  1927. }
  1928. /*
  1929. * Translate a guest virtual address to a guest physical address.
  1930. */
  1931. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1932. struct kvm_translation *tr)
  1933. {
  1934. unsigned long vaddr = tr->linear_address;
  1935. gpa_t gpa;
  1936. vcpu_load(vcpu);
  1937. spin_lock(&vcpu->kvm->lock);
  1938. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1939. tr->physical_address = gpa;
  1940. tr->valid = gpa != UNMAPPED_GVA;
  1941. tr->writeable = 1;
  1942. tr->usermode = 0;
  1943. spin_unlock(&vcpu->kvm->lock);
  1944. vcpu_put(vcpu);
  1945. return 0;
  1946. }
  1947. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1948. struct kvm_interrupt *irq)
  1949. {
  1950. if (irq->irq < 0 || irq->irq >= 256)
  1951. return -EINVAL;
  1952. vcpu_load(vcpu);
  1953. set_bit(irq->irq, vcpu->irq_pending);
  1954. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1955. vcpu_put(vcpu);
  1956. return 0;
  1957. }
  1958. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1959. struct kvm_debug_guest *dbg)
  1960. {
  1961. int r;
  1962. vcpu_load(vcpu);
  1963. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1964. vcpu_put(vcpu);
  1965. return r;
  1966. }
  1967. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1968. unsigned long address,
  1969. int *type)
  1970. {
  1971. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1972. unsigned long pgoff;
  1973. struct page *page;
  1974. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1975. if (pgoff == 0)
  1976. page = virt_to_page(vcpu->run);
  1977. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1978. page = virt_to_page(vcpu->pio_data);
  1979. else
  1980. return NOPAGE_SIGBUS;
  1981. get_page(page);
  1982. if (type != NULL)
  1983. *type = VM_FAULT_MINOR;
  1984. return page;
  1985. }
  1986. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1987. .nopage = kvm_vcpu_nopage,
  1988. };
  1989. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1990. {
  1991. vma->vm_ops = &kvm_vcpu_vm_ops;
  1992. return 0;
  1993. }
  1994. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1995. {
  1996. struct kvm_vcpu *vcpu = filp->private_data;
  1997. fput(vcpu->kvm->filp);
  1998. return 0;
  1999. }
  2000. static struct file_operations kvm_vcpu_fops = {
  2001. .release = kvm_vcpu_release,
  2002. .unlocked_ioctl = kvm_vcpu_ioctl,
  2003. .compat_ioctl = kvm_vcpu_ioctl,
  2004. .mmap = kvm_vcpu_mmap,
  2005. };
  2006. /*
  2007. * Allocates an inode for the vcpu.
  2008. */
  2009. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2010. {
  2011. int fd, r;
  2012. struct inode *inode;
  2013. struct file *file;
  2014. r = anon_inode_getfd(&fd, &inode, &file,
  2015. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2016. if (r)
  2017. return r;
  2018. atomic_inc(&vcpu->kvm->filp->f_count);
  2019. return fd;
  2020. }
  2021. /*
  2022. * Creates some virtual cpus. Good luck creating more than one.
  2023. */
  2024. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2025. {
  2026. int r;
  2027. struct kvm_vcpu *vcpu;
  2028. struct page *page;
  2029. r = -EINVAL;
  2030. if (!valid_vcpu(n))
  2031. goto out;
  2032. vcpu = &kvm->vcpus[n];
  2033. vcpu->vcpu_id = n;
  2034. mutex_lock(&vcpu->mutex);
  2035. if (vcpu->vmcs) {
  2036. mutex_unlock(&vcpu->mutex);
  2037. return -EEXIST;
  2038. }
  2039. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2040. r = -ENOMEM;
  2041. if (!page)
  2042. goto out_unlock;
  2043. vcpu->run = page_address(page);
  2044. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2045. r = -ENOMEM;
  2046. if (!page)
  2047. goto out_free_run;
  2048. vcpu->pio_data = page_address(page);
  2049. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2050. FX_IMAGE_ALIGN);
  2051. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2052. vcpu->cr0 = 0x10;
  2053. r = kvm_arch_ops->vcpu_create(vcpu);
  2054. if (r < 0)
  2055. goto out_free_vcpus;
  2056. r = kvm_mmu_create(vcpu);
  2057. if (r < 0)
  2058. goto out_free_vcpus;
  2059. kvm_arch_ops->vcpu_load(vcpu);
  2060. r = kvm_mmu_setup(vcpu);
  2061. if (r >= 0)
  2062. r = kvm_arch_ops->vcpu_setup(vcpu);
  2063. vcpu_put(vcpu);
  2064. if (r < 0)
  2065. goto out_free_vcpus;
  2066. r = create_vcpu_fd(vcpu);
  2067. if (r < 0)
  2068. goto out_free_vcpus;
  2069. spin_lock(&kvm_lock);
  2070. if (n >= kvm->nvcpus)
  2071. kvm->nvcpus = n + 1;
  2072. spin_unlock(&kvm_lock);
  2073. return r;
  2074. out_free_vcpus:
  2075. kvm_free_vcpu(vcpu);
  2076. out_free_run:
  2077. free_page((unsigned long)vcpu->run);
  2078. vcpu->run = NULL;
  2079. out_unlock:
  2080. mutex_unlock(&vcpu->mutex);
  2081. out:
  2082. return r;
  2083. }
  2084. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2085. {
  2086. u64 efer;
  2087. int i;
  2088. struct kvm_cpuid_entry *e, *entry;
  2089. rdmsrl(MSR_EFER, efer);
  2090. entry = NULL;
  2091. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2092. e = &vcpu->cpuid_entries[i];
  2093. if (e->function == 0x80000001) {
  2094. entry = e;
  2095. break;
  2096. }
  2097. }
  2098. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2099. entry->edx &= ~(1 << 20);
  2100. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2101. }
  2102. }
  2103. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2104. struct kvm_cpuid *cpuid,
  2105. struct kvm_cpuid_entry __user *entries)
  2106. {
  2107. int r;
  2108. r = -E2BIG;
  2109. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2110. goto out;
  2111. r = -EFAULT;
  2112. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2113. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2114. goto out;
  2115. vcpu->cpuid_nent = cpuid->nent;
  2116. cpuid_fix_nx_cap(vcpu);
  2117. return 0;
  2118. out:
  2119. return r;
  2120. }
  2121. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2122. {
  2123. if (sigset) {
  2124. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2125. vcpu->sigset_active = 1;
  2126. vcpu->sigset = *sigset;
  2127. } else
  2128. vcpu->sigset_active = 0;
  2129. return 0;
  2130. }
  2131. /*
  2132. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2133. * we have asm/x86/processor.h
  2134. */
  2135. struct fxsave {
  2136. u16 cwd;
  2137. u16 swd;
  2138. u16 twd;
  2139. u16 fop;
  2140. u64 rip;
  2141. u64 rdp;
  2142. u32 mxcsr;
  2143. u32 mxcsr_mask;
  2144. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2145. #ifdef CONFIG_X86_64
  2146. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2147. #else
  2148. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2149. #endif
  2150. };
  2151. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2152. {
  2153. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2154. vcpu_load(vcpu);
  2155. memcpy(fpu->fpr, fxsave->st_space, 128);
  2156. fpu->fcw = fxsave->cwd;
  2157. fpu->fsw = fxsave->swd;
  2158. fpu->ftwx = fxsave->twd;
  2159. fpu->last_opcode = fxsave->fop;
  2160. fpu->last_ip = fxsave->rip;
  2161. fpu->last_dp = fxsave->rdp;
  2162. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2163. vcpu_put(vcpu);
  2164. return 0;
  2165. }
  2166. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2167. {
  2168. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2169. vcpu_load(vcpu);
  2170. memcpy(fxsave->st_space, fpu->fpr, 128);
  2171. fxsave->cwd = fpu->fcw;
  2172. fxsave->swd = fpu->fsw;
  2173. fxsave->twd = fpu->ftwx;
  2174. fxsave->fop = fpu->last_opcode;
  2175. fxsave->rip = fpu->last_ip;
  2176. fxsave->rdp = fpu->last_dp;
  2177. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2178. vcpu_put(vcpu);
  2179. return 0;
  2180. }
  2181. static long kvm_vcpu_ioctl(struct file *filp,
  2182. unsigned int ioctl, unsigned long arg)
  2183. {
  2184. struct kvm_vcpu *vcpu = filp->private_data;
  2185. void __user *argp = (void __user *)arg;
  2186. int r = -EINVAL;
  2187. switch (ioctl) {
  2188. case KVM_RUN:
  2189. r = -EINVAL;
  2190. if (arg)
  2191. goto out;
  2192. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2193. break;
  2194. case KVM_GET_REGS: {
  2195. struct kvm_regs kvm_regs;
  2196. memset(&kvm_regs, 0, sizeof kvm_regs);
  2197. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2198. if (r)
  2199. goto out;
  2200. r = -EFAULT;
  2201. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2202. goto out;
  2203. r = 0;
  2204. break;
  2205. }
  2206. case KVM_SET_REGS: {
  2207. struct kvm_regs kvm_regs;
  2208. r = -EFAULT;
  2209. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2210. goto out;
  2211. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2212. if (r)
  2213. goto out;
  2214. r = 0;
  2215. break;
  2216. }
  2217. case KVM_GET_SREGS: {
  2218. struct kvm_sregs kvm_sregs;
  2219. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2220. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2221. if (r)
  2222. goto out;
  2223. r = -EFAULT;
  2224. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2225. goto out;
  2226. r = 0;
  2227. break;
  2228. }
  2229. case KVM_SET_SREGS: {
  2230. struct kvm_sregs kvm_sregs;
  2231. r = -EFAULT;
  2232. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2233. goto out;
  2234. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2235. if (r)
  2236. goto out;
  2237. r = 0;
  2238. break;
  2239. }
  2240. case KVM_TRANSLATE: {
  2241. struct kvm_translation tr;
  2242. r = -EFAULT;
  2243. if (copy_from_user(&tr, argp, sizeof tr))
  2244. goto out;
  2245. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2246. if (r)
  2247. goto out;
  2248. r = -EFAULT;
  2249. if (copy_to_user(argp, &tr, sizeof tr))
  2250. goto out;
  2251. r = 0;
  2252. break;
  2253. }
  2254. case KVM_INTERRUPT: {
  2255. struct kvm_interrupt irq;
  2256. r = -EFAULT;
  2257. if (copy_from_user(&irq, argp, sizeof irq))
  2258. goto out;
  2259. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2260. if (r)
  2261. goto out;
  2262. r = 0;
  2263. break;
  2264. }
  2265. case KVM_DEBUG_GUEST: {
  2266. struct kvm_debug_guest dbg;
  2267. r = -EFAULT;
  2268. if (copy_from_user(&dbg, argp, sizeof dbg))
  2269. goto out;
  2270. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2271. if (r)
  2272. goto out;
  2273. r = 0;
  2274. break;
  2275. }
  2276. case KVM_GET_MSRS:
  2277. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2278. break;
  2279. case KVM_SET_MSRS:
  2280. r = msr_io(vcpu, argp, do_set_msr, 0);
  2281. break;
  2282. case KVM_SET_CPUID: {
  2283. struct kvm_cpuid __user *cpuid_arg = argp;
  2284. struct kvm_cpuid cpuid;
  2285. r = -EFAULT;
  2286. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2287. goto out;
  2288. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2289. if (r)
  2290. goto out;
  2291. break;
  2292. }
  2293. case KVM_SET_SIGNAL_MASK: {
  2294. struct kvm_signal_mask __user *sigmask_arg = argp;
  2295. struct kvm_signal_mask kvm_sigmask;
  2296. sigset_t sigset, *p;
  2297. p = NULL;
  2298. if (argp) {
  2299. r = -EFAULT;
  2300. if (copy_from_user(&kvm_sigmask, argp,
  2301. sizeof kvm_sigmask))
  2302. goto out;
  2303. r = -EINVAL;
  2304. if (kvm_sigmask.len != sizeof sigset)
  2305. goto out;
  2306. r = -EFAULT;
  2307. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2308. sizeof sigset))
  2309. goto out;
  2310. p = &sigset;
  2311. }
  2312. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2313. break;
  2314. }
  2315. case KVM_GET_FPU: {
  2316. struct kvm_fpu fpu;
  2317. memset(&fpu, 0, sizeof fpu);
  2318. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2319. if (r)
  2320. goto out;
  2321. r = -EFAULT;
  2322. if (copy_to_user(argp, &fpu, sizeof fpu))
  2323. goto out;
  2324. r = 0;
  2325. break;
  2326. }
  2327. case KVM_SET_FPU: {
  2328. struct kvm_fpu fpu;
  2329. r = -EFAULT;
  2330. if (copy_from_user(&fpu, argp, sizeof fpu))
  2331. goto out;
  2332. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2333. if (r)
  2334. goto out;
  2335. r = 0;
  2336. break;
  2337. }
  2338. default:
  2339. ;
  2340. }
  2341. out:
  2342. return r;
  2343. }
  2344. static long kvm_vm_ioctl(struct file *filp,
  2345. unsigned int ioctl, unsigned long arg)
  2346. {
  2347. struct kvm *kvm = filp->private_data;
  2348. void __user *argp = (void __user *)arg;
  2349. int r = -EINVAL;
  2350. switch (ioctl) {
  2351. case KVM_CREATE_VCPU:
  2352. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2353. if (r < 0)
  2354. goto out;
  2355. break;
  2356. case KVM_SET_MEMORY_REGION: {
  2357. struct kvm_memory_region kvm_mem;
  2358. r = -EFAULT;
  2359. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2360. goto out;
  2361. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2362. if (r)
  2363. goto out;
  2364. break;
  2365. }
  2366. case KVM_GET_DIRTY_LOG: {
  2367. struct kvm_dirty_log log;
  2368. r = -EFAULT;
  2369. if (copy_from_user(&log, argp, sizeof log))
  2370. goto out;
  2371. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2372. if (r)
  2373. goto out;
  2374. break;
  2375. }
  2376. case KVM_SET_MEMORY_ALIAS: {
  2377. struct kvm_memory_alias alias;
  2378. r = -EFAULT;
  2379. if (copy_from_user(&alias, argp, sizeof alias))
  2380. goto out;
  2381. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2382. if (r)
  2383. goto out;
  2384. break;
  2385. }
  2386. default:
  2387. ;
  2388. }
  2389. out:
  2390. return r;
  2391. }
  2392. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2393. unsigned long address,
  2394. int *type)
  2395. {
  2396. struct kvm *kvm = vma->vm_file->private_data;
  2397. unsigned long pgoff;
  2398. struct page *page;
  2399. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2400. page = gfn_to_page(kvm, pgoff);
  2401. if (!page)
  2402. return NOPAGE_SIGBUS;
  2403. get_page(page);
  2404. if (type != NULL)
  2405. *type = VM_FAULT_MINOR;
  2406. return page;
  2407. }
  2408. static struct vm_operations_struct kvm_vm_vm_ops = {
  2409. .nopage = kvm_vm_nopage,
  2410. };
  2411. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2412. {
  2413. vma->vm_ops = &kvm_vm_vm_ops;
  2414. return 0;
  2415. }
  2416. static struct file_operations kvm_vm_fops = {
  2417. .release = kvm_vm_release,
  2418. .unlocked_ioctl = kvm_vm_ioctl,
  2419. .compat_ioctl = kvm_vm_ioctl,
  2420. .mmap = kvm_vm_mmap,
  2421. };
  2422. static int kvm_dev_ioctl_create_vm(void)
  2423. {
  2424. int fd, r;
  2425. struct inode *inode;
  2426. struct file *file;
  2427. struct kvm *kvm;
  2428. kvm = kvm_create_vm();
  2429. if (IS_ERR(kvm))
  2430. return PTR_ERR(kvm);
  2431. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2432. if (r) {
  2433. kvm_destroy_vm(kvm);
  2434. return r;
  2435. }
  2436. kvm->filp = file;
  2437. return fd;
  2438. }
  2439. static long kvm_dev_ioctl(struct file *filp,
  2440. unsigned int ioctl, unsigned long arg)
  2441. {
  2442. void __user *argp = (void __user *)arg;
  2443. long r = -EINVAL;
  2444. switch (ioctl) {
  2445. case KVM_GET_API_VERSION:
  2446. r = -EINVAL;
  2447. if (arg)
  2448. goto out;
  2449. r = KVM_API_VERSION;
  2450. break;
  2451. case KVM_CREATE_VM:
  2452. r = -EINVAL;
  2453. if (arg)
  2454. goto out;
  2455. r = kvm_dev_ioctl_create_vm();
  2456. break;
  2457. case KVM_GET_MSR_INDEX_LIST: {
  2458. struct kvm_msr_list __user *user_msr_list = argp;
  2459. struct kvm_msr_list msr_list;
  2460. unsigned n;
  2461. r = -EFAULT;
  2462. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2463. goto out;
  2464. n = msr_list.nmsrs;
  2465. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2466. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2467. goto out;
  2468. r = -E2BIG;
  2469. if (n < num_msrs_to_save)
  2470. goto out;
  2471. r = -EFAULT;
  2472. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2473. num_msrs_to_save * sizeof(u32)))
  2474. goto out;
  2475. if (copy_to_user(user_msr_list->indices
  2476. + num_msrs_to_save * sizeof(u32),
  2477. &emulated_msrs,
  2478. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2479. goto out;
  2480. r = 0;
  2481. break;
  2482. }
  2483. case KVM_CHECK_EXTENSION:
  2484. /*
  2485. * No extensions defined at present.
  2486. */
  2487. r = 0;
  2488. break;
  2489. case KVM_GET_VCPU_MMAP_SIZE:
  2490. r = -EINVAL;
  2491. if (arg)
  2492. goto out;
  2493. r = 2 * PAGE_SIZE;
  2494. break;
  2495. default:
  2496. ;
  2497. }
  2498. out:
  2499. return r;
  2500. }
  2501. static struct file_operations kvm_chardev_ops = {
  2502. .open = kvm_dev_open,
  2503. .release = kvm_dev_release,
  2504. .unlocked_ioctl = kvm_dev_ioctl,
  2505. .compat_ioctl = kvm_dev_ioctl,
  2506. };
  2507. static struct miscdevice kvm_dev = {
  2508. KVM_MINOR,
  2509. "kvm",
  2510. &kvm_chardev_ops,
  2511. };
  2512. /*
  2513. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2514. * cached on it.
  2515. */
  2516. static void decache_vcpus_on_cpu(int cpu)
  2517. {
  2518. struct kvm *vm;
  2519. struct kvm_vcpu *vcpu;
  2520. int i;
  2521. spin_lock(&kvm_lock);
  2522. list_for_each_entry(vm, &vm_list, vm_list)
  2523. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2524. vcpu = &vm->vcpus[i];
  2525. /*
  2526. * If the vcpu is locked, then it is running on some
  2527. * other cpu and therefore it is not cached on the
  2528. * cpu in question.
  2529. *
  2530. * If it's not locked, check the last cpu it executed
  2531. * on.
  2532. */
  2533. if (mutex_trylock(&vcpu->mutex)) {
  2534. if (vcpu->cpu == cpu) {
  2535. kvm_arch_ops->vcpu_decache(vcpu);
  2536. vcpu->cpu = -1;
  2537. }
  2538. mutex_unlock(&vcpu->mutex);
  2539. }
  2540. }
  2541. spin_unlock(&kvm_lock);
  2542. }
  2543. static void hardware_enable(void *junk)
  2544. {
  2545. int cpu = raw_smp_processor_id();
  2546. if (cpu_isset(cpu, cpus_hardware_enabled))
  2547. return;
  2548. cpu_set(cpu, cpus_hardware_enabled);
  2549. kvm_arch_ops->hardware_enable(NULL);
  2550. }
  2551. static void hardware_disable(void *junk)
  2552. {
  2553. int cpu = raw_smp_processor_id();
  2554. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2555. return;
  2556. cpu_clear(cpu, cpus_hardware_enabled);
  2557. decache_vcpus_on_cpu(cpu);
  2558. kvm_arch_ops->hardware_disable(NULL);
  2559. }
  2560. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2561. void *v)
  2562. {
  2563. int cpu = (long)v;
  2564. switch (val) {
  2565. case CPU_DYING:
  2566. case CPU_DYING_FROZEN:
  2567. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2568. cpu);
  2569. hardware_disable(NULL);
  2570. break;
  2571. case CPU_UP_CANCELED:
  2572. case CPU_UP_CANCELED_FROZEN:
  2573. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2574. cpu);
  2575. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2576. break;
  2577. case CPU_ONLINE:
  2578. case CPU_ONLINE_FROZEN:
  2579. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2580. cpu);
  2581. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2582. break;
  2583. }
  2584. return NOTIFY_OK;
  2585. }
  2586. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2587. void *v)
  2588. {
  2589. if (val == SYS_RESTART) {
  2590. /*
  2591. * Some (well, at least mine) BIOSes hang on reboot if
  2592. * in vmx root mode.
  2593. */
  2594. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2595. on_each_cpu(hardware_disable, NULL, 0, 1);
  2596. }
  2597. return NOTIFY_OK;
  2598. }
  2599. static struct notifier_block kvm_reboot_notifier = {
  2600. .notifier_call = kvm_reboot,
  2601. .priority = 0,
  2602. };
  2603. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2604. {
  2605. memset(bus, 0, sizeof(*bus));
  2606. }
  2607. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2608. {
  2609. int i;
  2610. for (i = 0; i < bus->dev_count; i++) {
  2611. struct kvm_io_device *pos = bus->devs[i];
  2612. kvm_iodevice_destructor(pos);
  2613. }
  2614. }
  2615. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2616. {
  2617. int i;
  2618. for (i = 0; i < bus->dev_count; i++) {
  2619. struct kvm_io_device *pos = bus->devs[i];
  2620. if (pos->in_range(pos, addr))
  2621. return pos;
  2622. }
  2623. return NULL;
  2624. }
  2625. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2626. {
  2627. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2628. bus->devs[bus->dev_count++] = dev;
  2629. }
  2630. static struct notifier_block kvm_cpu_notifier = {
  2631. .notifier_call = kvm_cpu_hotplug,
  2632. .priority = 20, /* must be > scheduler priority */
  2633. };
  2634. static u64 stat_get(void *_offset)
  2635. {
  2636. unsigned offset = (long)_offset;
  2637. u64 total = 0;
  2638. struct kvm *kvm;
  2639. struct kvm_vcpu *vcpu;
  2640. int i;
  2641. spin_lock(&kvm_lock);
  2642. list_for_each_entry(kvm, &vm_list, vm_list)
  2643. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2644. vcpu = &kvm->vcpus[i];
  2645. total += *(u32 *)((void *)vcpu + offset);
  2646. }
  2647. spin_unlock(&kvm_lock);
  2648. return total;
  2649. }
  2650. static void stat_set(void *offset, u64 val)
  2651. {
  2652. }
  2653. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2654. static __init void kvm_init_debug(void)
  2655. {
  2656. struct kvm_stats_debugfs_item *p;
  2657. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2658. for (p = debugfs_entries; p->name; ++p)
  2659. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2660. (void *)(long)p->offset,
  2661. &stat_fops);
  2662. }
  2663. static void kvm_exit_debug(void)
  2664. {
  2665. struct kvm_stats_debugfs_item *p;
  2666. for (p = debugfs_entries; p->name; ++p)
  2667. debugfs_remove(p->dentry);
  2668. debugfs_remove(debugfs_dir);
  2669. }
  2670. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2671. {
  2672. hardware_disable(NULL);
  2673. return 0;
  2674. }
  2675. static int kvm_resume(struct sys_device *dev)
  2676. {
  2677. hardware_enable(NULL);
  2678. return 0;
  2679. }
  2680. static struct sysdev_class kvm_sysdev_class = {
  2681. set_kset_name("kvm"),
  2682. .suspend = kvm_suspend,
  2683. .resume = kvm_resume,
  2684. };
  2685. static struct sys_device kvm_sysdev = {
  2686. .id = 0,
  2687. .cls = &kvm_sysdev_class,
  2688. };
  2689. hpa_t bad_page_address;
  2690. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2691. {
  2692. int r;
  2693. if (kvm_arch_ops) {
  2694. printk(KERN_ERR "kvm: already loaded the other module\n");
  2695. return -EEXIST;
  2696. }
  2697. if (!ops->cpu_has_kvm_support()) {
  2698. printk(KERN_ERR "kvm: no hardware support\n");
  2699. return -EOPNOTSUPP;
  2700. }
  2701. if (ops->disabled_by_bios()) {
  2702. printk(KERN_ERR "kvm: disabled by bios\n");
  2703. return -EOPNOTSUPP;
  2704. }
  2705. kvm_arch_ops = ops;
  2706. r = kvm_arch_ops->hardware_setup();
  2707. if (r < 0)
  2708. goto out;
  2709. on_each_cpu(hardware_enable, NULL, 0, 1);
  2710. r = register_cpu_notifier(&kvm_cpu_notifier);
  2711. if (r)
  2712. goto out_free_1;
  2713. register_reboot_notifier(&kvm_reboot_notifier);
  2714. r = sysdev_class_register(&kvm_sysdev_class);
  2715. if (r)
  2716. goto out_free_2;
  2717. r = sysdev_register(&kvm_sysdev);
  2718. if (r)
  2719. goto out_free_3;
  2720. kvm_chardev_ops.owner = module;
  2721. r = misc_register(&kvm_dev);
  2722. if (r) {
  2723. printk (KERN_ERR "kvm: misc device register failed\n");
  2724. goto out_free;
  2725. }
  2726. return r;
  2727. out_free:
  2728. sysdev_unregister(&kvm_sysdev);
  2729. out_free_3:
  2730. sysdev_class_unregister(&kvm_sysdev_class);
  2731. out_free_2:
  2732. unregister_reboot_notifier(&kvm_reboot_notifier);
  2733. unregister_cpu_notifier(&kvm_cpu_notifier);
  2734. out_free_1:
  2735. on_each_cpu(hardware_disable, NULL, 0, 1);
  2736. kvm_arch_ops->hardware_unsetup();
  2737. out:
  2738. kvm_arch_ops = NULL;
  2739. return r;
  2740. }
  2741. void kvm_exit_arch(void)
  2742. {
  2743. misc_deregister(&kvm_dev);
  2744. sysdev_unregister(&kvm_sysdev);
  2745. sysdev_class_unregister(&kvm_sysdev_class);
  2746. unregister_reboot_notifier(&kvm_reboot_notifier);
  2747. unregister_cpu_notifier(&kvm_cpu_notifier);
  2748. on_each_cpu(hardware_disable, NULL, 0, 1);
  2749. kvm_arch_ops->hardware_unsetup();
  2750. kvm_arch_ops = NULL;
  2751. }
  2752. static __init int kvm_init(void)
  2753. {
  2754. static struct page *bad_page;
  2755. int r;
  2756. r = kvm_mmu_module_init();
  2757. if (r)
  2758. goto out4;
  2759. kvm_init_debug();
  2760. kvm_init_msr_list();
  2761. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2762. r = -ENOMEM;
  2763. goto out;
  2764. }
  2765. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2766. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2767. return 0;
  2768. out:
  2769. kvm_exit_debug();
  2770. kvm_mmu_module_exit();
  2771. out4:
  2772. return r;
  2773. }
  2774. static __exit void kvm_exit(void)
  2775. {
  2776. kvm_exit_debug();
  2777. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2778. kvm_mmu_module_exit();
  2779. }
  2780. module_init(kvm_init)
  2781. module_exit(kvm_exit)
  2782. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2783. EXPORT_SYMBOL_GPL(kvm_exit_arch);