rt61pci.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt61pci
  19. Abstract: rt61pci device specific routines.
  20. Supported chipsets: RT2561, RT2561s, RT2661.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt61pci.h"
  32. /*
  33. * Register access.
  34. * BBP and RF register require indirect register access,
  35. * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  36. * These indirect registers work with busy bits,
  37. * and we will try maximal REGISTER_BUSY_COUNT times to access
  38. * the register while taking a REGISTER_BUSY_DELAY us delay
  39. * between each attampt. When the busy bit is still set at that time,
  40. * the access attempt is considered to have failed,
  41. * and we will print an error.
  42. */
  43. static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  44. {
  45. u32 reg;
  46. unsigned int i;
  47. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  48. rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
  49. if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
  50. break;
  51. udelay(REGISTER_BUSY_DELAY);
  52. }
  53. return reg;
  54. }
  55. static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  56. const unsigned int word, const u8 value)
  57. {
  58. u32 reg;
  59. /*
  60. * Wait until the BBP becomes ready.
  61. */
  62. reg = rt61pci_bbp_check(rt2x00dev);
  63. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  64. ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
  65. return;
  66. }
  67. /*
  68. * Write the data into the BBP.
  69. */
  70. reg = 0;
  71. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  72. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  73. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  74. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  75. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  76. }
  77. static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  78. const unsigned int word, u8 *value)
  79. {
  80. u32 reg;
  81. /*
  82. * Wait until the BBP becomes ready.
  83. */
  84. reg = rt61pci_bbp_check(rt2x00dev);
  85. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  86. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  87. return;
  88. }
  89. /*
  90. * Write the request into the BBP.
  91. */
  92. reg = 0;
  93. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  94. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  95. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  96. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  97. /*
  98. * Wait until the BBP becomes ready.
  99. */
  100. reg = rt61pci_bbp_check(rt2x00dev);
  101. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  102. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  103. *value = 0xff;
  104. return;
  105. }
  106. *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  107. }
  108. static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
  109. const unsigned int word, const u32 value)
  110. {
  111. u32 reg;
  112. unsigned int i;
  113. if (!word)
  114. return;
  115. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  116. rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
  117. if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
  118. goto rf_write;
  119. udelay(REGISTER_BUSY_DELAY);
  120. }
  121. ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
  122. return;
  123. rf_write:
  124. reg = 0;
  125. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  126. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
  127. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  128. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  129. rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
  130. rt2x00_rf_write(rt2x00dev, word, value);
  131. }
  132. #ifdef CONFIG_RT61PCI_LEDS
  133. /*
  134. * This function is only called from rt61pci_led_brightness()
  135. * make gcc happy by placing this function inside the
  136. * same ifdef statement as the caller.
  137. */
  138. static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
  139. const u8 command, const u8 token,
  140. const u8 arg0, const u8 arg1)
  141. {
  142. u32 reg;
  143. rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
  144. if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
  145. ERROR(rt2x00dev, "mcu request error. "
  146. "Request 0x%02x failed for token 0x%02x.\n",
  147. command, token);
  148. return;
  149. }
  150. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  151. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  152. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  153. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  154. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
  155. rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
  156. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  157. rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
  158. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
  159. }
  160. #endif /* CONFIG_RT61PCI_LEDS */
  161. static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  162. {
  163. struct rt2x00_dev *rt2x00dev = eeprom->data;
  164. u32 reg;
  165. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  166. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  167. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  168. eeprom->reg_data_clock =
  169. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  170. eeprom->reg_chip_select =
  171. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  172. }
  173. static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  174. {
  175. struct rt2x00_dev *rt2x00dev = eeprom->data;
  176. u32 reg = 0;
  177. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  178. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  179. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  180. !!eeprom->reg_data_clock);
  181. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  182. !!eeprom->reg_chip_select);
  183. rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
  184. }
  185. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  186. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  187. static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
  188. const unsigned int word, u32 *data)
  189. {
  190. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  191. }
  192. static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
  193. const unsigned int word, u32 data)
  194. {
  195. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  196. }
  197. static const struct rt2x00debug rt61pci_rt2x00debug = {
  198. .owner = THIS_MODULE,
  199. .csr = {
  200. .read = rt61pci_read_csr,
  201. .write = rt61pci_write_csr,
  202. .word_size = sizeof(u32),
  203. .word_count = CSR_REG_SIZE / sizeof(u32),
  204. },
  205. .eeprom = {
  206. .read = rt2x00_eeprom_read,
  207. .write = rt2x00_eeprom_write,
  208. .word_size = sizeof(u16),
  209. .word_count = EEPROM_SIZE / sizeof(u16),
  210. },
  211. .bbp = {
  212. .read = rt61pci_bbp_read,
  213. .write = rt61pci_bbp_write,
  214. .word_size = sizeof(u8),
  215. .word_count = BBP_SIZE / sizeof(u8),
  216. },
  217. .rf = {
  218. .read = rt2x00_rf_read,
  219. .write = rt61pci_rf_write,
  220. .word_size = sizeof(u32),
  221. .word_count = RF_SIZE / sizeof(u32),
  222. },
  223. };
  224. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  225. #ifdef CONFIG_RT61PCI_RFKILL
  226. static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  227. {
  228. u32 reg;
  229. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  230. return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
  231. }
  232. #else
  233. #define rt61pci_rfkill_poll NULL
  234. #endif /* CONFIG_RT61PCI_RFKILL */
  235. #ifdef CONFIG_RT61PCI_LEDS
  236. static void rt61pci_led_brightness(struct led_classdev *led_cdev,
  237. enum led_brightness brightness)
  238. {
  239. struct rt2x00_led *led =
  240. container_of(led_cdev, struct rt2x00_led, led_dev);
  241. unsigned int enabled = brightness != LED_OFF;
  242. unsigned int a_mode =
  243. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  244. unsigned int bg_mode =
  245. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  246. if (led->type == LED_TYPE_RADIO) {
  247. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  248. MCU_LEDCS_RADIO_STATUS, enabled);
  249. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  250. (led->rt2x00dev->led_mcu_reg & 0xff),
  251. ((led->rt2x00dev->led_mcu_reg >> 8)));
  252. } else if (led->type == LED_TYPE_ASSOC) {
  253. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  254. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  255. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  256. MCU_LEDCS_LINK_A_STATUS, a_mode);
  257. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  258. (led->rt2x00dev->led_mcu_reg & 0xff),
  259. ((led->rt2x00dev->led_mcu_reg >> 8)));
  260. } else if (led->type == LED_TYPE_QUALITY) {
  261. /*
  262. * The brightness is divided into 6 levels (0 - 5),
  263. * this means we need to convert the brightness
  264. * argument into the matching level within that range.
  265. */
  266. rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  267. brightness / (LED_FULL / 6), 0);
  268. }
  269. }
  270. #else
  271. #define rt61pci_led_brightness NULL
  272. #endif /* CONFIG_RT61PCI_LEDS */
  273. /*
  274. * Configuration handlers.
  275. */
  276. static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
  277. struct rt2x00_intf *intf,
  278. struct rt2x00intf_conf *conf,
  279. const unsigned int flags)
  280. {
  281. unsigned int beacon_base;
  282. u32 reg;
  283. if (flags & CONFIG_UPDATE_TYPE) {
  284. /*
  285. * Clear current synchronisation setup.
  286. * For the Beacon base registers we only need to clear
  287. * the first byte since that byte contains the VALID and OWNER
  288. * bits which (when set to 0) will invalidate the entire beacon.
  289. */
  290. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  291. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
  292. rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
  293. /*
  294. * Enable synchronisation.
  295. */
  296. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  297. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  298. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE,
  299. (conf->sync == TSF_SYNC_BEACON));
  300. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  301. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  302. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  303. }
  304. if (flags & CONFIG_UPDATE_MAC) {
  305. reg = le32_to_cpu(conf->mac[1]);
  306. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  307. conf->mac[1] = cpu_to_le32(reg);
  308. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
  309. conf->mac, sizeof(conf->mac));
  310. }
  311. if (flags & CONFIG_UPDATE_BSSID) {
  312. reg = le32_to_cpu(conf->bssid[1]);
  313. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  314. conf->bssid[1] = cpu_to_le32(reg);
  315. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
  316. conf->bssid, sizeof(conf->bssid));
  317. }
  318. }
  319. static int rt61pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  320. const int short_preamble,
  321. const int ack_timeout,
  322. const int ack_consume_time)
  323. {
  324. u32 reg;
  325. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  326. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout);
  327. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  328. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  329. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  330. !!short_preamble);
  331. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  332. return 0;
  333. }
  334. static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  335. const int basic_rate_mask)
  336. {
  337. rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
  338. }
  339. static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
  340. struct rf_channel *rf, const int txpower)
  341. {
  342. u8 r3;
  343. u8 r94;
  344. u8 smart;
  345. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  346. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  347. smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  348. rt2x00_rf(&rt2x00dev->chip, RF2527));
  349. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  350. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  351. rt61pci_bbp_write(rt2x00dev, 3, r3);
  352. r94 = 6;
  353. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  354. r94 += txpower - MAX_TXPOWER;
  355. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  356. r94 += txpower;
  357. rt61pci_bbp_write(rt2x00dev, 94, r94);
  358. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  359. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  360. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  361. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  362. udelay(200);
  363. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  364. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  365. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  366. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  367. udelay(200);
  368. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  369. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  370. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  371. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  372. msleep(1);
  373. }
  374. static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  375. const int txpower)
  376. {
  377. struct rf_channel rf;
  378. rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
  379. rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
  380. rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
  381. rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
  382. rt61pci_config_channel(rt2x00dev, &rf, txpower);
  383. }
  384. static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  385. struct antenna_setup *ant)
  386. {
  387. u8 r3;
  388. u8 r4;
  389. u8 r77;
  390. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  391. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  392. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  393. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  394. rt2x00_rf(&rt2x00dev->chip, RF5325));
  395. /*
  396. * Configure the RX antenna.
  397. */
  398. switch (ant->rx) {
  399. case ANTENNA_HW_DIVERSITY:
  400. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  401. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  402. (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
  403. break;
  404. case ANTENNA_A:
  405. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  406. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  407. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  408. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  409. else
  410. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  411. break;
  412. case ANTENNA_SW_DIVERSITY:
  413. /*
  414. * NOTE: We should never come here because rt2x00lib is
  415. * supposed to catch this and send us the correct antenna
  416. * explicitely. However we are nog going to bug about this.
  417. * Instead, just default to antenna B.
  418. */
  419. case ANTENNA_B:
  420. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  421. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  422. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  423. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  424. else
  425. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  426. break;
  427. }
  428. rt61pci_bbp_write(rt2x00dev, 77, r77);
  429. rt61pci_bbp_write(rt2x00dev, 3, r3);
  430. rt61pci_bbp_write(rt2x00dev, 4, r4);
  431. }
  432. static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  433. struct antenna_setup *ant)
  434. {
  435. u8 r3;
  436. u8 r4;
  437. u8 r77;
  438. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  439. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  440. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  441. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  442. rt2x00_rf(&rt2x00dev->chip, RF2529));
  443. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  444. !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
  445. /*
  446. * Configure the RX antenna.
  447. */
  448. switch (ant->rx) {
  449. case ANTENNA_HW_DIVERSITY:
  450. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  451. break;
  452. case ANTENNA_A:
  453. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  454. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  455. break;
  456. case ANTENNA_SW_DIVERSITY:
  457. /*
  458. * NOTE: We should never come here because rt2x00lib is
  459. * supposed to catch this and send us the correct antenna
  460. * explicitely. However we are nog going to bug about this.
  461. * Instead, just default to antenna B.
  462. */
  463. case ANTENNA_B:
  464. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  465. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  466. break;
  467. }
  468. rt61pci_bbp_write(rt2x00dev, 77, r77);
  469. rt61pci_bbp_write(rt2x00dev, 3, r3);
  470. rt61pci_bbp_write(rt2x00dev, 4, r4);
  471. }
  472. static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
  473. const int p1, const int p2)
  474. {
  475. u32 reg;
  476. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  477. rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
  478. rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
  479. rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
  480. rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
  481. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
  482. }
  483. static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
  484. struct antenna_setup *ant)
  485. {
  486. u8 r3;
  487. u8 r4;
  488. u8 r77;
  489. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  490. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  491. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  492. /* FIXME: Antenna selection for the rf 2529 is very confusing in the
  493. * legacy driver. The code below should be ok for non-diversity setups.
  494. */
  495. /*
  496. * Configure the RX antenna.
  497. */
  498. switch (ant->rx) {
  499. case ANTENNA_A:
  500. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  501. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  502. rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
  503. break;
  504. case ANTENNA_SW_DIVERSITY:
  505. case ANTENNA_HW_DIVERSITY:
  506. /*
  507. * NOTE: We should never come here because rt2x00lib is
  508. * supposed to catch this and send us the correct antenna
  509. * explicitely. However we are nog going to bug about this.
  510. * Instead, just default to antenna B.
  511. */
  512. case ANTENNA_B:
  513. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  514. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  515. rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
  516. break;
  517. }
  518. rt61pci_bbp_write(rt2x00dev, 77, r77);
  519. rt61pci_bbp_write(rt2x00dev, 3, r3);
  520. rt61pci_bbp_write(rt2x00dev, 4, r4);
  521. }
  522. struct antenna_sel {
  523. u8 word;
  524. /*
  525. * value[0] -> non-LNA
  526. * value[1] -> LNA
  527. */
  528. u8 value[2];
  529. };
  530. static const struct antenna_sel antenna_sel_a[] = {
  531. { 96, { 0x58, 0x78 } },
  532. { 104, { 0x38, 0x48 } },
  533. { 75, { 0xfe, 0x80 } },
  534. { 86, { 0xfe, 0x80 } },
  535. { 88, { 0xfe, 0x80 } },
  536. { 35, { 0x60, 0x60 } },
  537. { 97, { 0x58, 0x58 } },
  538. { 98, { 0x58, 0x58 } },
  539. };
  540. static const struct antenna_sel antenna_sel_bg[] = {
  541. { 96, { 0x48, 0x68 } },
  542. { 104, { 0x2c, 0x3c } },
  543. { 75, { 0xfe, 0x80 } },
  544. { 86, { 0xfe, 0x80 } },
  545. { 88, { 0xfe, 0x80 } },
  546. { 35, { 0x50, 0x50 } },
  547. { 97, { 0x48, 0x48 } },
  548. { 98, { 0x48, 0x48 } },
  549. };
  550. static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  551. struct antenna_setup *ant)
  552. {
  553. const struct antenna_sel *sel;
  554. unsigned int lna;
  555. unsigned int i;
  556. u32 reg;
  557. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
  558. sel = antenna_sel_a;
  559. lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  560. } else {
  561. sel = antenna_sel_bg;
  562. lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  563. }
  564. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  565. rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  566. rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
  567. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  568. rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  569. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  570. rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  571. rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
  572. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  573. rt2x00_rf(&rt2x00dev->chip, RF5325))
  574. rt61pci_config_antenna_5x(rt2x00dev, ant);
  575. else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
  576. rt61pci_config_antenna_2x(rt2x00dev, ant);
  577. else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  578. if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
  579. rt61pci_config_antenna_2x(rt2x00dev, ant);
  580. else
  581. rt61pci_config_antenna_2529(rt2x00dev, ant);
  582. }
  583. }
  584. static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
  585. struct rt2x00lib_conf *libconf)
  586. {
  587. u32 reg;
  588. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  589. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
  590. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  591. rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
  592. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
  593. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  594. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
  595. rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
  596. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  597. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  598. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  599. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  600. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  601. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  602. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  603. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  604. libconf->conf->beacon_int * 16);
  605. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  606. }
  607. static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
  608. struct rt2x00lib_conf *libconf,
  609. const unsigned int flags)
  610. {
  611. if (flags & CONFIG_UPDATE_PHYMODE)
  612. rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
  613. if (flags & CONFIG_UPDATE_CHANNEL)
  614. rt61pci_config_channel(rt2x00dev, &libconf->rf,
  615. libconf->conf->power_level);
  616. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  617. rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
  618. if (flags & CONFIG_UPDATE_ANTENNA)
  619. rt61pci_config_antenna(rt2x00dev, &libconf->ant);
  620. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  621. rt61pci_config_duration(rt2x00dev, libconf);
  622. }
  623. /*
  624. * Link tuning
  625. */
  626. static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
  627. struct link_qual *qual)
  628. {
  629. u32 reg;
  630. /*
  631. * Update FCS error count from register.
  632. */
  633. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  634. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  635. /*
  636. * Update False CCA count from register.
  637. */
  638. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  639. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  640. }
  641. static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  642. {
  643. rt61pci_bbp_write(rt2x00dev, 17, 0x20);
  644. rt2x00dev->link.vgc_level = 0x20;
  645. }
  646. static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  647. {
  648. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  649. u8 r17;
  650. u8 up_bound;
  651. u8 low_bound;
  652. rt61pci_bbp_read(rt2x00dev, 17, &r17);
  653. /*
  654. * Determine r17 bounds.
  655. */
  656. if (rt2x00dev->rx_status.band == IEEE80211_BAND_2GHZ) {
  657. low_bound = 0x28;
  658. up_bound = 0x48;
  659. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  660. low_bound += 0x10;
  661. up_bound += 0x10;
  662. }
  663. } else {
  664. low_bound = 0x20;
  665. up_bound = 0x40;
  666. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  667. low_bound += 0x10;
  668. up_bound += 0x10;
  669. }
  670. }
  671. /*
  672. * If we are not associated, we should go straight to the
  673. * dynamic CCA tuning.
  674. */
  675. if (!rt2x00dev->intf_associated)
  676. goto dynamic_cca_tune;
  677. /*
  678. * Special big-R17 for very short distance
  679. */
  680. if (rssi >= -35) {
  681. if (r17 != 0x60)
  682. rt61pci_bbp_write(rt2x00dev, 17, 0x60);
  683. return;
  684. }
  685. /*
  686. * Special big-R17 for short distance
  687. */
  688. if (rssi >= -58) {
  689. if (r17 != up_bound)
  690. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  691. return;
  692. }
  693. /*
  694. * Special big-R17 for middle-short distance
  695. */
  696. if (rssi >= -66) {
  697. low_bound += 0x10;
  698. if (r17 != low_bound)
  699. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  700. return;
  701. }
  702. /*
  703. * Special mid-R17 for middle distance
  704. */
  705. if (rssi >= -74) {
  706. low_bound += 0x08;
  707. if (r17 != low_bound)
  708. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  709. return;
  710. }
  711. /*
  712. * Special case: Change up_bound based on the rssi.
  713. * Lower up_bound when rssi is weaker then -74 dBm.
  714. */
  715. up_bound -= 2 * (-74 - rssi);
  716. if (low_bound > up_bound)
  717. up_bound = low_bound;
  718. if (r17 > up_bound) {
  719. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  720. return;
  721. }
  722. dynamic_cca_tune:
  723. /*
  724. * r17 does not yet exceed upper limit, continue and base
  725. * the r17 tuning on the false CCA count.
  726. */
  727. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  728. if (++r17 > up_bound)
  729. r17 = up_bound;
  730. rt61pci_bbp_write(rt2x00dev, 17, r17);
  731. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  732. if (--r17 < low_bound)
  733. r17 = low_bound;
  734. rt61pci_bbp_write(rt2x00dev, 17, r17);
  735. }
  736. }
  737. /*
  738. * Firmware name function.
  739. */
  740. static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  741. {
  742. char *fw_name;
  743. switch (rt2x00dev->chip.rt) {
  744. case RT2561:
  745. fw_name = FIRMWARE_RT2561;
  746. break;
  747. case RT2561s:
  748. fw_name = FIRMWARE_RT2561s;
  749. break;
  750. case RT2661:
  751. fw_name = FIRMWARE_RT2661;
  752. break;
  753. default:
  754. fw_name = NULL;
  755. break;
  756. }
  757. return fw_name;
  758. }
  759. /*
  760. * Initialization functions.
  761. */
  762. static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
  763. const size_t len)
  764. {
  765. int i;
  766. u32 reg;
  767. /*
  768. * Wait for stable hardware.
  769. */
  770. for (i = 0; i < 100; i++) {
  771. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  772. if (reg)
  773. break;
  774. msleep(1);
  775. }
  776. if (!reg) {
  777. ERROR(rt2x00dev, "Unstable hardware.\n");
  778. return -EBUSY;
  779. }
  780. /*
  781. * Prepare MCU and mailbox for firmware loading.
  782. */
  783. reg = 0;
  784. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  785. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  786. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  787. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  788. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
  789. /*
  790. * Write firmware to device.
  791. */
  792. reg = 0;
  793. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  794. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
  795. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  796. rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  797. data, len);
  798. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
  799. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  800. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
  801. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  802. for (i = 0; i < 100; i++) {
  803. rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
  804. if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
  805. break;
  806. msleep(1);
  807. }
  808. if (i == 100) {
  809. ERROR(rt2x00dev, "MCU Control register not ready.\n");
  810. return -EBUSY;
  811. }
  812. /*
  813. * Reset MAC and BBP registers.
  814. */
  815. reg = 0;
  816. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  817. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  818. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  819. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  820. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  821. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  822. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  823. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  824. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  825. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  826. return 0;
  827. }
  828. static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  829. struct queue_entry *entry)
  830. {
  831. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  832. u32 word;
  833. rt2x00_desc_read(priv_rx->desc, 5, &word);
  834. rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
  835. priv_rx->data_dma);
  836. rt2x00_desc_write(priv_rx->desc, 5, word);
  837. rt2x00_desc_read(priv_rx->desc, 0, &word);
  838. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  839. rt2x00_desc_write(priv_rx->desc, 0, word);
  840. }
  841. static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  842. struct queue_entry *entry)
  843. {
  844. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  845. u32 word;
  846. rt2x00_desc_read(priv_tx->desc, 1, &word);
  847. rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
  848. rt2x00_desc_write(priv_tx->desc, 1, word);
  849. rt2x00_desc_read(priv_tx->desc, 5, &word);
  850. rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
  851. rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
  852. rt2x00_desc_write(priv_tx->desc, 5, word);
  853. rt2x00_desc_read(priv_tx->desc, 6, &word);
  854. rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
  855. priv_tx->data_dma);
  856. rt2x00_desc_write(priv_tx->desc, 6, word);
  857. rt2x00_desc_read(priv_tx->desc, 0, &word);
  858. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  859. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  860. rt2x00_desc_write(priv_tx->desc, 0, word);
  861. }
  862. static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
  863. {
  864. struct queue_entry_priv_pci_rx *priv_rx;
  865. struct queue_entry_priv_pci_tx *priv_tx;
  866. u32 reg;
  867. /*
  868. * Initialize registers.
  869. */
  870. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
  871. rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
  872. rt2x00dev->tx[0].limit);
  873. rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
  874. rt2x00dev->tx[1].limit);
  875. rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
  876. rt2x00dev->tx[2].limit);
  877. rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
  878. rt2x00dev->tx[3].limit);
  879. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
  880. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
  881. rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
  882. rt2x00dev->tx[0].desc_size / 4);
  883. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
  884. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  885. rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
  886. rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
  887. priv_tx->desc_dma);
  888. rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
  889. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  890. rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
  891. rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
  892. priv_tx->desc_dma);
  893. rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
  894. priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
  895. rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
  896. rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
  897. priv_tx->desc_dma);
  898. rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
  899. priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
  900. rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
  901. rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
  902. priv_tx->desc_dma);
  903. rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
  904. rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
  905. rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
  906. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
  907. rt2x00dev->rx->desc_size / 4);
  908. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
  909. rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
  910. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  911. rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
  912. rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
  913. priv_rx->desc_dma);
  914. rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
  915. rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
  916. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
  917. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
  918. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
  919. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
  920. rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
  921. rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
  922. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
  923. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
  924. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
  925. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
  926. rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
  927. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  928. rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
  929. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  930. return 0;
  931. }
  932. static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
  933. {
  934. u32 reg;
  935. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  936. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  937. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  938. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  939. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  940. rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
  941. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  942. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  943. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  944. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  945. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  946. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  947. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  948. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  949. rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
  950. /*
  951. * CCK TXD BBP registers
  952. */
  953. rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
  954. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  955. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  956. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  957. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  958. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  959. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  960. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  961. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  962. rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
  963. /*
  964. * OFDM TXD BBP registers
  965. */
  966. rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
  967. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  968. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  969. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  970. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  971. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  972. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  973. rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
  974. rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
  975. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  976. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  977. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  978. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  979. rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
  980. rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
  981. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  982. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  983. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  984. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  985. rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
  986. rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  987. rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
  988. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  989. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  990. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  991. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
  992. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  993. return -EBUSY;
  994. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
  995. rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
  996. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
  997. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
  998. rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
  999. /*
  1000. * Invalidate all Shared Keys (SEC_CSR0),
  1001. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1002. */
  1003. rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1004. rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1005. rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1006. rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
  1007. rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
  1008. rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1009. rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
  1010. rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
  1011. rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
  1012. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1013. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
  1014. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
  1015. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
  1016. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
  1017. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
  1018. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
  1019. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
  1020. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
  1021. /*
  1022. * Clear all beacons
  1023. * For the Beacon base registers we only need to clear
  1024. * the first byte since that byte contains the VALID and OWNER
  1025. * bits which (when set to 0) will invalidate the entire beacon.
  1026. */
  1027. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1028. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1029. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1030. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1031. /*
  1032. * We must clear the error counters.
  1033. * These registers are cleared on read,
  1034. * so we may pass a useless variable to store the value.
  1035. */
  1036. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  1037. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  1038. rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
  1039. /*
  1040. * Reset MAC and BBP registers.
  1041. */
  1042. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1043. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1044. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1045. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1046. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1047. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1048. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1049. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1050. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1051. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1052. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1053. return 0;
  1054. }
  1055. static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  1056. {
  1057. unsigned int i;
  1058. u16 eeprom;
  1059. u8 reg_id;
  1060. u8 value;
  1061. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1062. rt61pci_bbp_read(rt2x00dev, 0, &value);
  1063. if ((value != 0xff) && (value != 0x00))
  1064. goto continue_csr_init;
  1065. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  1066. udelay(REGISTER_BUSY_DELAY);
  1067. }
  1068. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  1069. return -EACCES;
  1070. continue_csr_init:
  1071. rt61pci_bbp_write(rt2x00dev, 3, 0x00);
  1072. rt61pci_bbp_write(rt2x00dev, 15, 0x30);
  1073. rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
  1074. rt61pci_bbp_write(rt2x00dev, 22, 0x38);
  1075. rt61pci_bbp_write(rt2x00dev, 23, 0x06);
  1076. rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
  1077. rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
  1078. rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
  1079. rt61pci_bbp_write(rt2x00dev, 34, 0x12);
  1080. rt61pci_bbp_write(rt2x00dev, 37, 0x07);
  1081. rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
  1082. rt61pci_bbp_write(rt2x00dev, 41, 0x60);
  1083. rt61pci_bbp_write(rt2x00dev, 53, 0x10);
  1084. rt61pci_bbp_write(rt2x00dev, 54, 0x18);
  1085. rt61pci_bbp_write(rt2x00dev, 60, 0x10);
  1086. rt61pci_bbp_write(rt2x00dev, 61, 0x04);
  1087. rt61pci_bbp_write(rt2x00dev, 62, 0x04);
  1088. rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
  1089. rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
  1090. rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
  1091. rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
  1092. rt61pci_bbp_write(rt2x00dev, 99, 0x00);
  1093. rt61pci_bbp_write(rt2x00dev, 102, 0x16);
  1094. rt61pci_bbp_write(rt2x00dev, 107, 0x04);
  1095. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1096. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  1097. if (eeprom != 0xffff && eeprom != 0x0000) {
  1098. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1099. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1100. rt61pci_bbp_write(rt2x00dev, reg_id, value);
  1101. }
  1102. }
  1103. return 0;
  1104. }
  1105. /*
  1106. * Device state switch handlers.
  1107. */
  1108. static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  1109. enum dev_state state)
  1110. {
  1111. u32 reg;
  1112. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1113. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
  1114. state == STATE_RADIO_RX_OFF);
  1115. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  1116. }
  1117. static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  1118. enum dev_state state)
  1119. {
  1120. int mask = (state == STATE_RADIO_IRQ_OFF);
  1121. u32 reg;
  1122. /*
  1123. * When interrupts are being enabled, the interrupt registers
  1124. * should clear the register to assure a clean state.
  1125. */
  1126. if (state == STATE_RADIO_IRQ_ON) {
  1127. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1128. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1129. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
  1130. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
  1131. }
  1132. /*
  1133. * Only toggle the interrupts bits we are going to use.
  1134. * Non-checked interrupt bits are disabled by default.
  1135. */
  1136. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  1137. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
  1138. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
  1139. rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
  1140. rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
  1141. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1142. rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
  1143. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
  1144. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
  1145. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
  1146. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
  1147. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
  1148. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
  1149. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
  1150. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
  1151. rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1152. }
  1153. static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  1154. {
  1155. u32 reg;
  1156. /*
  1157. * Initialize all registers.
  1158. */
  1159. if (rt61pci_init_queues(rt2x00dev) ||
  1160. rt61pci_init_registers(rt2x00dev) ||
  1161. rt61pci_init_bbp(rt2x00dev)) {
  1162. ERROR(rt2x00dev, "Register initialization failed.\n");
  1163. return -EIO;
  1164. }
  1165. /*
  1166. * Enable interrupts.
  1167. */
  1168. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  1169. /*
  1170. * Enable RX.
  1171. */
  1172. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  1173. rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
  1174. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1175. return 0;
  1176. }
  1177. static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1178. {
  1179. u32 reg;
  1180. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1181. /*
  1182. * Disable synchronisation.
  1183. */
  1184. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
  1185. /*
  1186. * Cancel RX and TX.
  1187. */
  1188. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1189. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
  1190. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
  1191. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
  1192. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
  1193. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1194. /*
  1195. * Disable interrupts.
  1196. */
  1197. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  1198. }
  1199. static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1200. {
  1201. u32 reg;
  1202. unsigned int i;
  1203. char put_to_sleep;
  1204. char current_state;
  1205. put_to_sleep = (state != STATE_AWAKE);
  1206. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1207. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1208. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1209. rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
  1210. /*
  1211. * Device is not guaranteed to be in the requested state yet.
  1212. * We must wait until the register indicates that the
  1213. * device has entered the correct state.
  1214. */
  1215. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1216. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1217. current_state =
  1218. rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
  1219. if (current_state == !put_to_sleep)
  1220. return 0;
  1221. msleep(10);
  1222. }
  1223. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  1224. "current device state %d.\n", !put_to_sleep, current_state);
  1225. return -EBUSY;
  1226. }
  1227. static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1228. enum dev_state state)
  1229. {
  1230. int retval = 0;
  1231. switch (state) {
  1232. case STATE_RADIO_ON:
  1233. retval = rt61pci_enable_radio(rt2x00dev);
  1234. break;
  1235. case STATE_RADIO_OFF:
  1236. rt61pci_disable_radio(rt2x00dev);
  1237. break;
  1238. case STATE_RADIO_RX_ON:
  1239. case STATE_RADIO_RX_ON_LINK:
  1240. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  1241. break;
  1242. case STATE_RADIO_RX_OFF:
  1243. case STATE_RADIO_RX_OFF_LINK:
  1244. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  1245. break;
  1246. case STATE_DEEP_SLEEP:
  1247. case STATE_SLEEP:
  1248. case STATE_STANDBY:
  1249. case STATE_AWAKE:
  1250. retval = rt61pci_set_state(rt2x00dev, state);
  1251. break;
  1252. default:
  1253. retval = -ENOTSUPP;
  1254. break;
  1255. }
  1256. return retval;
  1257. }
  1258. /*
  1259. * TX descriptor initialization
  1260. */
  1261. static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1262. struct sk_buff *skb,
  1263. struct txentry_desc *txdesc,
  1264. struct ieee80211_tx_control *control)
  1265. {
  1266. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1267. __le32 *txd = skbdesc->desc;
  1268. u32 word;
  1269. /*
  1270. * Start writing the descriptor words.
  1271. */
  1272. rt2x00_desc_read(txd, 1, &word);
  1273. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
  1274. rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
  1275. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1276. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1277. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  1278. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
  1279. rt2x00_desc_write(txd, 1, word);
  1280. rt2x00_desc_read(txd, 2, &word);
  1281. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1282. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1283. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1284. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1285. rt2x00_desc_write(txd, 2, word);
  1286. rt2x00_desc_read(txd, 5, &word);
  1287. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1288. TXPOWER_TO_DEV(rt2x00dev->tx_power));
  1289. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1290. rt2x00_desc_write(txd, 5, word);
  1291. if (skbdesc->desc_len > TXINFO_SIZE) {
  1292. rt2x00_desc_read(txd, 11, &word);
  1293. rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
  1294. rt2x00_desc_write(txd, 11, word);
  1295. }
  1296. rt2x00_desc_read(txd, 0, &word);
  1297. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1298. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1299. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1300. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1301. rt2x00_set_field32(&word, TXD_W0_ACK,
  1302. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1303. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1304. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1305. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1306. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1307. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1308. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1309. !!(control->flags &
  1310. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1311. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
  1312. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1313. rt2x00_set_field32(&word, TXD_W0_BURST,
  1314. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1315. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1316. rt2x00_desc_write(txd, 0, word);
  1317. }
  1318. /*
  1319. * TX data initialization
  1320. */
  1321. static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1322. const unsigned int queue)
  1323. {
  1324. u32 reg;
  1325. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1326. /*
  1327. * For Wi-Fi faily generated beacons between participating
  1328. * stations. Set TBTT phase adaptive adjustment step to 8us.
  1329. */
  1330. rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1331. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1332. if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
  1333. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1334. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  1335. }
  1336. return;
  1337. }
  1338. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1339. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0,
  1340. (queue == IEEE80211_TX_QUEUE_DATA0));
  1341. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1,
  1342. (queue == IEEE80211_TX_QUEUE_DATA1));
  1343. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2,
  1344. (queue == IEEE80211_TX_QUEUE_DATA2));
  1345. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3,
  1346. (queue == IEEE80211_TX_QUEUE_DATA3));
  1347. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1348. }
  1349. /*
  1350. * RX control handlers
  1351. */
  1352. static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1353. {
  1354. u16 eeprom;
  1355. u8 offset;
  1356. u8 lna;
  1357. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1358. switch (lna) {
  1359. case 3:
  1360. offset = 90;
  1361. break;
  1362. case 2:
  1363. offset = 74;
  1364. break;
  1365. case 1:
  1366. offset = 64;
  1367. break;
  1368. default:
  1369. return 0;
  1370. }
  1371. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  1372. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1373. offset += 14;
  1374. if (lna == 3 || lna == 2)
  1375. offset += 10;
  1376. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
  1377. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  1378. } else {
  1379. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  1380. offset += 14;
  1381. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
  1382. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  1383. }
  1384. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1385. }
  1386. static void rt61pci_fill_rxdone(struct queue_entry *entry,
  1387. struct rxdone_entry_desc *rxdesc)
  1388. {
  1389. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1390. u32 word0;
  1391. u32 word1;
  1392. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1393. rt2x00_desc_read(priv_rx->desc, 1, &word1);
  1394. rxdesc->flags = 0;
  1395. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1396. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1397. /*
  1398. * Obtain the status about this packet.
  1399. */
  1400. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1401. rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
  1402. rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1403. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1404. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  1405. }
  1406. /*
  1407. * Interrupt functions.
  1408. */
  1409. static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
  1410. {
  1411. struct data_queue *queue;
  1412. struct queue_entry *entry;
  1413. struct queue_entry *entry_done;
  1414. struct queue_entry_priv_pci_tx *priv_tx;
  1415. struct txdone_entry_desc txdesc;
  1416. u32 word;
  1417. u32 reg;
  1418. u32 old_reg;
  1419. int type;
  1420. int index;
  1421. /*
  1422. * During each loop we will compare the freshly read
  1423. * STA_CSR4 register value with the value read from
  1424. * the previous loop. If the 2 values are equal then
  1425. * we should stop processing because the chance it
  1426. * quite big that the device has been unplugged and
  1427. * we risk going into an endless loop.
  1428. */
  1429. old_reg = 0;
  1430. while (1) {
  1431. rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
  1432. if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
  1433. break;
  1434. if (old_reg == reg)
  1435. break;
  1436. old_reg = reg;
  1437. /*
  1438. * Skip this entry when it contains an invalid
  1439. * queue identication number.
  1440. */
  1441. type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
  1442. queue = rt2x00queue_get_queue(rt2x00dev, type);
  1443. if (unlikely(!queue))
  1444. continue;
  1445. /*
  1446. * Skip this entry when it contains an invalid
  1447. * index number.
  1448. */
  1449. index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
  1450. if (unlikely(index >= queue->limit))
  1451. continue;
  1452. entry = &queue->entries[index];
  1453. priv_tx = entry->priv_data;
  1454. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1455. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1456. !rt2x00_get_field32(word, TXD_W0_VALID))
  1457. return;
  1458. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1459. while (entry != entry_done) {
  1460. /* Catch up.
  1461. * Just report any entries we missed as failed.
  1462. */
  1463. WARNING(rt2x00dev,
  1464. "TX status report missed for entry %d\n",
  1465. entry_done->entry_idx);
  1466. txdesc.status = TX_FAIL_OTHER;
  1467. txdesc.retry = 0;
  1468. rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
  1469. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1470. }
  1471. /*
  1472. * Obtain the status about this packet.
  1473. */
  1474. txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
  1475. txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
  1476. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1477. }
  1478. }
  1479. static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
  1480. {
  1481. struct rt2x00_dev *rt2x00dev = dev_instance;
  1482. u32 reg_mcu;
  1483. u32 reg;
  1484. /*
  1485. * Get the interrupt sources & saved to local variable.
  1486. * Write register value back to clear pending interrupts.
  1487. */
  1488. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
  1489. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
  1490. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1491. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1492. if (!reg && !reg_mcu)
  1493. return IRQ_NONE;
  1494. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1495. return IRQ_HANDLED;
  1496. /*
  1497. * Handle interrupts, walk through all bits
  1498. * and run the tasks, the bits are checked in order of
  1499. * priority.
  1500. */
  1501. /*
  1502. * 1 - Rx ring done interrupt.
  1503. */
  1504. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
  1505. rt2x00pci_rxdone(rt2x00dev);
  1506. /*
  1507. * 2 - Tx ring done interrupt.
  1508. */
  1509. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
  1510. rt61pci_txdone(rt2x00dev);
  1511. /*
  1512. * 3 - Handle MCU command done.
  1513. */
  1514. if (reg_mcu)
  1515. rt2x00pci_register_write(rt2x00dev,
  1516. M2H_CMD_DONE_CSR, 0xffffffff);
  1517. return IRQ_HANDLED;
  1518. }
  1519. /*
  1520. * Device probe functions.
  1521. */
  1522. static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1523. {
  1524. struct eeprom_93cx6 eeprom;
  1525. u32 reg;
  1526. u16 word;
  1527. u8 *mac;
  1528. s8 value;
  1529. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  1530. eeprom.data = rt2x00dev;
  1531. eeprom.register_read = rt61pci_eepromregister_read;
  1532. eeprom.register_write = rt61pci_eepromregister_write;
  1533. eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
  1534. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1535. eeprom.reg_data_in = 0;
  1536. eeprom.reg_data_out = 0;
  1537. eeprom.reg_data_clock = 0;
  1538. eeprom.reg_chip_select = 0;
  1539. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1540. EEPROM_SIZE / sizeof(u16));
  1541. /*
  1542. * Start validation of the data that has been read.
  1543. */
  1544. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1545. if (!is_valid_ether_addr(mac)) {
  1546. DECLARE_MAC_BUF(macbuf);
  1547. random_ether_addr(mac);
  1548. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1549. }
  1550. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1551. if (word == 0xffff) {
  1552. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1553. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1554. ANTENNA_B);
  1555. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1556. ANTENNA_B);
  1557. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1558. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1559. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1560. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
  1561. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1562. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1563. }
  1564. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1565. if (word == 0xffff) {
  1566. rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
  1567. rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
  1568. rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
  1569. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  1570. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1571. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  1572. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1573. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1574. }
  1575. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
  1576. if (word == 0xffff) {
  1577. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  1578. LED_MODE_DEFAULT);
  1579. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  1580. EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
  1581. }
  1582. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1583. if (word == 0xffff) {
  1584. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1585. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  1586. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1587. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1588. }
  1589. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
  1590. if (word == 0xffff) {
  1591. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1592. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1593. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1594. EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  1595. } else {
  1596. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  1597. if (value < -10 || value > 10)
  1598. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1599. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  1600. if (value < -10 || value > 10)
  1601. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1602. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1603. }
  1604. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
  1605. if (word == 0xffff) {
  1606. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1607. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1608. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1609. EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  1610. } else {
  1611. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  1612. if (value < -10 || value > 10)
  1613. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1614. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  1615. if (value < -10 || value > 10)
  1616. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1617. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1618. }
  1619. return 0;
  1620. }
  1621. static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1622. {
  1623. u32 reg;
  1624. u16 value;
  1625. u16 eeprom;
  1626. u16 device;
  1627. /*
  1628. * Read EEPROM word for configuration.
  1629. */
  1630. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1631. /*
  1632. * Identify RF chipset.
  1633. * To determine the RT chip we have to read the
  1634. * PCI header of the device.
  1635. */
  1636. pci_read_config_word(rt2x00dev_pci(rt2x00dev),
  1637. PCI_CONFIG_HEADER_DEVICE, &device);
  1638. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1639. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  1640. rt2x00_set_chip(rt2x00dev, device, value, reg);
  1641. if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
  1642. !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
  1643. !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
  1644. !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  1645. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1646. return -ENODEV;
  1647. }
  1648. /*
  1649. * Determine number of antenna's.
  1650. */
  1651. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
  1652. __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
  1653. /*
  1654. * Identify default antenna configuration.
  1655. */
  1656. rt2x00dev->default_ant.tx =
  1657. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1658. rt2x00dev->default_ant.rx =
  1659. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1660. /*
  1661. * Read the Frame type.
  1662. */
  1663. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  1664. __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
  1665. /*
  1666. * Detect if this device has an hardware controlled radio.
  1667. */
  1668. #ifdef CONFIG_RT61PCI_RFKILL
  1669. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1670. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1671. #endif /* CONFIG_RT61PCI_RFKILL */
  1672. /*
  1673. * Read frequency offset and RF programming sequence.
  1674. */
  1675. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1676. if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
  1677. __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
  1678. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1679. /*
  1680. * Read external LNA informations.
  1681. */
  1682. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1683. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1684. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1685. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1686. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1687. /*
  1688. * When working with a RF2529 chip without double antenna
  1689. * the antenna settings should be gathered from the NIC
  1690. * eeprom word.
  1691. */
  1692. if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
  1693. !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
  1694. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
  1695. case 0:
  1696. rt2x00dev->default_ant.tx = ANTENNA_B;
  1697. rt2x00dev->default_ant.rx = ANTENNA_A;
  1698. break;
  1699. case 1:
  1700. rt2x00dev->default_ant.tx = ANTENNA_B;
  1701. rt2x00dev->default_ant.rx = ANTENNA_B;
  1702. break;
  1703. case 2:
  1704. rt2x00dev->default_ant.tx = ANTENNA_A;
  1705. rt2x00dev->default_ant.rx = ANTENNA_A;
  1706. break;
  1707. case 3:
  1708. rt2x00dev->default_ant.tx = ANTENNA_A;
  1709. rt2x00dev->default_ant.rx = ANTENNA_B;
  1710. break;
  1711. }
  1712. if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
  1713. rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
  1714. if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
  1715. rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
  1716. }
  1717. /*
  1718. * Store led settings, for correct led behaviour.
  1719. * If the eeprom value is invalid,
  1720. * switch to default led mode.
  1721. */
  1722. #ifdef CONFIG_RT61PCI_LEDS
  1723. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
  1724. value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
  1725. switch (value) {
  1726. case LED_MODE_TXRX_ACTIVITY:
  1727. case LED_MODE_ASUS:
  1728. case LED_MODE_ALPHA:
  1729. case LED_MODE_DEFAULT:
  1730. rt2x00dev->led_flags =
  1731. LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC;
  1732. break;
  1733. case LED_MODE_SIGNAL_STRENGTH:
  1734. rt2x00dev->led_flags =
  1735. LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC |
  1736. LED_SUPPORT_QUALITY;
  1737. break;
  1738. }
  1739. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  1740. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  1741. rt2x00_get_field16(eeprom,
  1742. EEPROM_LED_POLARITY_GPIO_0));
  1743. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  1744. rt2x00_get_field16(eeprom,
  1745. EEPROM_LED_POLARITY_GPIO_1));
  1746. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  1747. rt2x00_get_field16(eeprom,
  1748. EEPROM_LED_POLARITY_GPIO_2));
  1749. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  1750. rt2x00_get_field16(eeprom,
  1751. EEPROM_LED_POLARITY_GPIO_3));
  1752. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  1753. rt2x00_get_field16(eeprom,
  1754. EEPROM_LED_POLARITY_GPIO_4));
  1755. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  1756. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  1757. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  1758. rt2x00_get_field16(eeprom,
  1759. EEPROM_LED_POLARITY_RDY_G));
  1760. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  1761. rt2x00_get_field16(eeprom,
  1762. EEPROM_LED_POLARITY_RDY_A));
  1763. #endif /* CONFIG_RT61PCI_LEDS */
  1764. return 0;
  1765. }
  1766. /*
  1767. * RF value list for RF5225 & RF5325
  1768. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
  1769. */
  1770. static const struct rf_channel rf_vals_noseq[] = {
  1771. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1772. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1773. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1774. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1775. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1776. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1777. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1778. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1779. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1780. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1781. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1782. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1783. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1784. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1785. /* 802.11 UNI / HyperLan 2 */
  1786. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  1787. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  1788. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  1789. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  1790. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  1791. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  1792. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  1793. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  1794. /* 802.11 HyperLan 2 */
  1795. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  1796. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  1797. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  1798. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  1799. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  1800. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  1801. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  1802. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  1803. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  1804. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  1805. /* 802.11 UNII */
  1806. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  1807. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  1808. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  1809. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  1810. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  1811. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  1812. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1813. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  1814. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  1815. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  1816. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  1817. };
  1818. /*
  1819. * RF value list for RF5225 & RF5325
  1820. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
  1821. */
  1822. static const struct rf_channel rf_vals_seq[] = {
  1823. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1824. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1825. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1826. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1827. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1828. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1829. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1830. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1831. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1832. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1833. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1834. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1835. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1836. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1837. /* 802.11 UNI / HyperLan 2 */
  1838. { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
  1839. { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
  1840. { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
  1841. { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
  1842. { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
  1843. { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
  1844. { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
  1845. { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
  1846. /* 802.11 HyperLan 2 */
  1847. { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
  1848. { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
  1849. { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
  1850. { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
  1851. { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
  1852. { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
  1853. { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
  1854. { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
  1855. { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
  1856. { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
  1857. /* 802.11 UNII */
  1858. { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
  1859. { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
  1860. { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
  1861. { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
  1862. { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
  1863. { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
  1864. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1865. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
  1866. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
  1867. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
  1868. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
  1869. };
  1870. static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1871. {
  1872. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1873. u8 *txpower;
  1874. unsigned int i;
  1875. /*
  1876. * Initialize all hw fields.
  1877. */
  1878. rt2x00dev->hw->flags =
  1879. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1880. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1881. rt2x00dev->hw->extra_tx_headroom = 0;
  1882. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1883. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1884. rt2x00dev->hw->queues = 4;
  1885. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1886. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1887. rt2x00_eeprom_addr(rt2x00dev,
  1888. EEPROM_MAC_ADDR_0));
  1889. /*
  1890. * Convert tx_power array in eeprom.
  1891. */
  1892. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  1893. for (i = 0; i < 14; i++)
  1894. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1895. /*
  1896. * Initialize hw_mode information.
  1897. */
  1898. spec->num_modes = 2;
  1899. spec->num_rates = 12;
  1900. spec->tx_power_a = NULL;
  1901. spec->tx_power_bg = txpower;
  1902. spec->tx_power_default = DEFAULT_TXPOWER;
  1903. if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
  1904. spec->num_channels = 14;
  1905. spec->channels = rf_vals_noseq;
  1906. } else {
  1907. spec->num_channels = 14;
  1908. spec->channels = rf_vals_seq;
  1909. }
  1910. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  1911. rt2x00_rf(&rt2x00dev->chip, RF5325)) {
  1912. spec->num_modes = 3;
  1913. spec->num_channels = ARRAY_SIZE(rf_vals_seq);
  1914. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  1915. for (i = 0; i < 14; i++)
  1916. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1917. spec->tx_power_a = txpower;
  1918. }
  1919. }
  1920. static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1921. {
  1922. int retval;
  1923. /*
  1924. * Allocate eeprom data.
  1925. */
  1926. retval = rt61pci_validate_eeprom(rt2x00dev);
  1927. if (retval)
  1928. return retval;
  1929. retval = rt61pci_init_eeprom(rt2x00dev);
  1930. if (retval)
  1931. return retval;
  1932. /*
  1933. * Initialize hw specifications.
  1934. */
  1935. rt61pci_probe_hw_mode(rt2x00dev);
  1936. /*
  1937. * This device requires firmware.
  1938. */
  1939. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1940. __set_bit(DRIVER_REQUIRE_FIRMWARE_CRC_ITU_T, &rt2x00dev->flags);
  1941. /*
  1942. * Set the rssi offset.
  1943. */
  1944. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1945. return 0;
  1946. }
  1947. /*
  1948. * IEEE80211 stack callback functions.
  1949. */
  1950. static void rt61pci_configure_filter(struct ieee80211_hw *hw,
  1951. unsigned int changed_flags,
  1952. unsigned int *total_flags,
  1953. int mc_count,
  1954. struct dev_addr_list *mc_list)
  1955. {
  1956. struct rt2x00_dev *rt2x00dev = hw->priv;
  1957. u32 reg;
  1958. /*
  1959. * Mask off any flags we are going to ignore from
  1960. * the total_flags field.
  1961. */
  1962. *total_flags &=
  1963. FIF_ALLMULTI |
  1964. FIF_FCSFAIL |
  1965. FIF_PLCPFAIL |
  1966. FIF_CONTROL |
  1967. FIF_OTHER_BSS |
  1968. FIF_PROMISC_IN_BSS;
  1969. /*
  1970. * Apply some rules to the filters:
  1971. * - Some filters imply different filters to be set.
  1972. * - Some things we can't filter out at all.
  1973. */
  1974. if (mc_count)
  1975. *total_flags |= FIF_ALLMULTI;
  1976. if (*total_flags & FIF_OTHER_BSS ||
  1977. *total_flags & FIF_PROMISC_IN_BSS)
  1978. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1979. /*
  1980. * Check if there is any work left for us.
  1981. */
  1982. if (rt2x00dev->packet_filter == *total_flags)
  1983. return;
  1984. rt2x00dev->packet_filter = *total_flags;
  1985. /*
  1986. * Start configuration steps.
  1987. * Note that the version error will always be dropped
  1988. * and broadcast frames will always be accepted since
  1989. * there is no filter for it at this time.
  1990. */
  1991. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1992. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  1993. !(*total_flags & FIF_FCSFAIL));
  1994. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  1995. !(*total_flags & FIF_PLCPFAIL));
  1996. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  1997. !(*total_flags & FIF_CONTROL));
  1998. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  1999. !(*total_flags & FIF_PROMISC_IN_BSS));
  2000. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  2001. !(*total_flags & FIF_PROMISC_IN_BSS));
  2002. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  2003. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  2004. !(*total_flags & FIF_ALLMULTI));
  2005. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  2006. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  2007. !(*total_flags & FIF_CONTROL));
  2008. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  2009. }
  2010. static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
  2011. u32 short_retry, u32 long_retry)
  2012. {
  2013. struct rt2x00_dev *rt2x00dev = hw->priv;
  2014. u32 reg;
  2015. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  2016. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
  2017. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
  2018. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  2019. return 0;
  2020. }
  2021. static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
  2022. {
  2023. struct rt2x00_dev *rt2x00dev = hw->priv;
  2024. u64 tsf;
  2025. u32 reg;
  2026. rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
  2027. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  2028. rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
  2029. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  2030. return tsf;
  2031. }
  2032. static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
  2033. {
  2034. struct rt2x00_dev *rt2x00dev = hw->priv;
  2035. rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
  2036. rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
  2037. }
  2038. static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  2039. struct ieee80211_tx_control *control)
  2040. {
  2041. struct rt2x00_dev *rt2x00dev = hw->priv;
  2042. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  2043. struct skb_frame_desc *skbdesc;
  2044. unsigned int beacon_base;
  2045. if (unlikely(!intf->beacon))
  2046. return -ENOBUFS;
  2047. /*
  2048. * We need to append the descriptor in front of the
  2049. * beacon frame.
  2050. */
  2051. if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
  2052. if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
  2053. 0, GFP_ATOMIC)) {
  2054. dev_kfree_skb(skb);
  2055. return -ENOMEM;
  2056. }
  2057. }
  2058. /*
  2059. * Add the descriptor in front of the skb.
  2060. */
  2061. skb_push(skb, intf->beacon->queue->desc_size);
  2062. memset(skb->data, 0, intf->beacon->queue->desc_size);
  2063. /*
  2064. * Fill in skb descriptor
  2065. */
  2066. skbdesc = get_skb_frame_desc(skb);
  2067. memset(skbdesc, 0, sizeof(*skbdesc));
  2068. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  2069. skbdesc->data = skb->data + intf->beacon->queue->desc_size;
  2070. skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
  2071. skbdesc->desc = skb->data;
  2072. skbdesc->desc_len = intf->beacon->queue->desc_size;
  2073. skbdesc->entry = intf->beacon;
  2074. /*
  2075. * mac80211 doesn't provide the control->queue variable
  2076. * for beacons. Set our own queue identification so
  2077. * it can be used during descriptor initialization.
  2078. */
  2079. control->queue = RT2X00_BCN_QUEUE_BEACON;
  2080. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  2081. /*
  2082. * Write entire beacon with descriptor to register,
  2083. * and kick the beacon generator.
  2084. */
  2085. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  2086. rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
  2087. skb->data, skb->len);
  2088. rt61pci_kick_tx_queue(rt2x00dev, control->queue);
  2089. return 0;
  2090. }
  2091. static const struct ieee80211_ops rt61pci_mac80211_ops = {
  2092. .tx = rt2x00mac_tx,
  2093. .start = rt2x00mac_start,
  2094. .stop = rt2x00mac_stop,
  2095. .add_interface = rt2x00mac_add_interface,
  2096. .remove_interface = rt2x00mac_remove_interface,
  2097. .config = rt2x00mac_config,
  2098. .config_interface = rt2x00mac_config_interface,
  2099. .configure_filter = rt61pci_configure_filter,
  2100. .get_stats = rt2x00mac_get_stats,
  2101. .set_retry_limit = rt61pci_set_retry_limit,
  2102. .bss_info_changed = rt2x00mac_bss_info_changed,
  2103. .conf_tx = rt2x00mac_conf_tx,
  2104. .get_tx_stats = rt2x00mac_get_tx_stats,
  2105. .get_tsf = rt61pci_get_tsf,
  2106. .reset_tsf = rt61pci_reset_tsf,
  2107. .beacon_update = rt61pci_beacon_update,
  2108. };
  2109. static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
  2110. .irq_handler = rt61pci_interrupt,
  2111. .probe_hw = rt61pci_probe_hw,
  2112. .get_firmware_name = rt61pci_get_firmware_name,
  2113. .load_firmware = rt61pci_load_firmware,
  2114. .initialize = rt2x00pci_initialize,
  2115. .uninitialize = rt2x00pci_uninitialize,
  2116. .init_rxentry = rt61pci_init_rxentry,
  2117. .init_txentry = rt61pci_init_txentry,
  2118. .set_device_state = rt61pci_set_device_state,
  2119. .rfkill_poll = rt61pci_rfkill_poll,
  2120. .link_stats = rt61pci_link_stats,
  2121. .reset_tuner = rt61pci_reset_tuner,
  2122. .link_tuner = rt61pci_link_tuner,
  2123. .led_brightness = rt61pci_led_brightness,
  2124. .write_tx_desc = rt61pci_write_tx_desc,
  2125. .write_tx_data = rt2x00pci_write_tx_data,
  2126. .kick_tx_queue = rt61pci_kick_tx_queue,
  2127. .fill_rxdone = rt61pci_fill_rxdone,
  2128. .config_intf = rt61pci_config_intf,
  2129. .config_preamble = rt61pci_config_preamble,
  2130. .config = rt61pci_config,
  2131. };
  2132. static const struct data_queue_desc rt61pci_queue_rx = {
  2133. .entry_num = RX_ENTRIES,
  2134. .data_size = DATA_FRAME_SIZE,
  2135. .desc_size = RXD_DESC_SIZE,
  2136. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  2137. };
  2138. static const struct data_queue_desc rt61pci_queue_tx = {
  2139. .entry_num = TX_ENTRIES,
  2140. .data_size = DATA_FRAME_SIZE,
  2141. .desc_size = TXD_DESC_SIZE,
  2142. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2143. };
  2144. static const struct data_queue_desc rt61pci_queue_bcn = {
  2145. .entry_num = 4 * BEACON_ENTRIES,
  2146. .data_size = MGMT_FRAME_SIZE,
  2147. .desc_size = TXINFO_SIZE,
  2148. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2149. };
  2150. static const struct rt2x00_ops rt61pci_ops = {
  2151. .name = KBUILD_MODNAME,
  2152. .max_sta_intf = 1,
  2153. .max_ap_intf = 4,
  2154. .eeprom_size = EEPROM_SIZE,
  2155. .rf_size = RF_SIZE,
  2156. .rx = &rt61pci_queue_rx,
  2157. .tx = &rt61pci_queue_tx,
  2158. .bcn = &rt61pci_queue_bcn,
  2159. .lib = &rt61pci_rt2x00_ops,
  2160. .hw = &rt61pci_mac80211_ops,
  2161. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  2162. .debugfs = &rt61pci_rt2x00debug,
  2163. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  2164. };
  2165. /*
  2166. * RT61pci module information.
  2167. */
  2168. static struct pci_device_id rt61pci_device_table[] = {
  2169. /* RT2561s */
  2170. { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
  2171. /* RT2561 v2 */
  2172. { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
  2173. /* RT2661 */
  2174. { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
  2175. { 0, }
  2176. };
  2177. MODULE_AUTHOR(DRV_PROJECT);
  2178. MODULE_VERSION(DRV_VERSION);
  2179. MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
  2180. MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
  2181. "PCI & PCMCIA chipset based cards");
  2182. MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
  2183. MODULE_FIRMWARE(FIRMWARE_RT2561);
  2184. MODULE_FIRMWARE(FIRMWARE_RT2561s);
  2185. MODULE_FIRMWARE(FIRMWARE_RT2661);
  2186. MODULE_LICENSE("GPL");
  2187. static struct pci_driver rt61pci_driver = {
  2188. .name = KBUILD_MODNAME,
  2189. .id_table = rt61pci_device_table,
  2190. .probe = rt2x00pci_probe,
  2191. .remove = __devexit_p(rt2x00pci_remove),
  2192. .suspend = rt2x00pci_suspend,
  2193. .resume = rt2x00pci_resume,
  2194. };
  2195. static int __init rt61pci_init(void)
  2196. {
  2197. return pci_register_driver(&rt61pci_driver);
  2198. }
  2199. static void __exit rt61pci_exit(void)
  2200. {
  2201. pci_unregister_driver(&rt61pci_driver);
  2202. }
  2203. module_init(rt61pci_init);
  2204. module_exit(rt61pci_exit);