rt2400pci.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2400pci_read_csr,
  174. .write = rt2400pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2400pci_bbp_read,
  186. .write = rt2400pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2400pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2400PCI_RFKILL
  199. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2400pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2400PCI_RFKILL */
  208. #ifdef CONFIG_RT2400PCI_LEDS
  209. static void rt2400pci_led_brightness(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. unsigned int activity =
  216. led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
  217. u32 reg;
  218. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  219. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
  220. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  221. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
  222. }
  223. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  224. }
  225. #else
  226. #define rt2400pci_led_brightness NULL
  227. #endif /* CONFIG_RT2400PCI_LEDS */
  228. /*
  229. * Configuration handlers.
  230. */
  231. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  232. struct rt2x00_intf *intf,
  233. struct rt2x00intf_conf *conf,
  234. const unsigned int flags)
  235. {
  236. unsigned int bcn_preload;
  237. u32 reg;
  238. if (flags & CONFIG_UPDATE_TYPE) {
  239. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  240. /*
  241. * Enable beacon config
  242. */
  243. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  244. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  245. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  246. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  247. /*
  248. * Enable synchronisation.
  249. */
  250. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  251. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  252. rt2x00_set_field32(&reg, CSR14_TBCN,
  253. (conf->sync == TSF_SYNC_BEACON));
  254. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  255. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  256. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  257. }
  258. if (flags & CONFIG_UPDATE_MAC)
  259. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  260. conf->mac, sizeof(conf->mac));
  261. if (flags & CONFIG_UPDATE_BSSID)
  262. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  263. conf->bssid, sizeof(conf->bssid));
  264. }
  265. static int rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  266. const int short_preamble,
  267. const int ack_timeout,
  268. const int ack_consume_time)
  269. {
  270. int preamble_mask;
  271. u32 reg;
  272. /*
  273. * When short preamble is enabled, we should set bit 0x08
  274. */
  275. preamble_mask = short_preamble << 3;
  276. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  277. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  278. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  279. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  280. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  281. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  282. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  283. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  284. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  285. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  286. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  287. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  288. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  289. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  290. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  291. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  292. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  293. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  294. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  295. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  296. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  297. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  298. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  299. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  300. return 0;
  301. }
  302. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  303. const int basic_rate_mask)
  304. {
  305. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  306. }
  307. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  308. struct rf_channel *rf)
  309. {
  310. /*
  311. * Switch on tuning bits.
  312. */
  313. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  314. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  315. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  316. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  317. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  318. /*
  319. * RF2420 chipset don't need any additional actions.
  320. */
  321. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  322. return;
  323. /*
  324. * For the RT2421 chipsets we need to write an invalid
  325. * reference clock rate to activate auto_tune.
  326. * After that we set the value back to the correct channel.
  327. */
  328. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  329. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  330. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  331. msleep(1);
  332. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  333. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  334. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  335. msleep(1);
  336. /*
  337. * Switch off tuning bits.
  338. */
  339. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  340. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  341. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  342. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  343. /*
  344. * Clear false CRC during channel switch.
  345. */
  346. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  347. }
  348. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  349. {
  350. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  351. }
  352. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  353. struct antenna_setup *ant)
  354. {
  355. u8 r1;
  356. u8 r4;
  357. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  358. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  359. /*
  360. * Configure the TX antenna.
  361. */
  362. switch (ant->tx) {
  363. case ANTENNA_HW_DIVERSITY:
  364. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  365. break;
  366. case ANTENNA_A:
  367. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  368. break;
  369. case ANTENNA_SW_DIVERSITY:
  370. /*
  371. * NOTE: We should never come here because rt2x00lib is
  372. * supposed to catch this and send us the correct antenna
  373. * explicitely. However we are nog going to bug about this.
  374. * Instead, just default to antenna B.
  375. */
  376. case ANTENNA_B:
  377. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  378. break;
  379. }
  380. /*
  381. * Configure the RX antenna.
  382. */
  383. switch (ant->rx) {
  384. case ANTENNA_HW_DIVERSITY:
  385. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  386. break;
  387. case ANTENNA_A:
  388. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  389. break;
  390. case ANTENNA_SW_DIVERSITY:
  391. /*
  392. * NOTE: We should never come here because rt2x00lib is
  393. * supposed to catch this and send us the correct antenna
  394. * explicitely. However we are nog going to bug about this.
  395. * Instead, just default to antenna B.
  396. */
  397. case ANTENNA_B:
  398. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  399. break;
  400. }
  401. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  402. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  403. }
  404. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  405. struct rt2x00lib_conf *libconf)
  406. {
  407. u32 reg;
  408. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  409. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  410. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  411. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  412. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  413. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  414. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  415. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  416. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  417. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  418. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  419. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  420. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  421. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  422. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  423. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  424. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  425. libconf->conf->beacon_int * 16);
  426. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  427. libconf->conf->beacon_int * 16);
  428. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  429. }
  430. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  431. struct rt2x00lib_conf *libconf,
  432. const unsigned int flags)
  433. {
  434. if (flags & CONFIG_UPDATE_PHYMODE)
  435. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  436. if (flags & CONFIG_UPDATE_CHANNEL)
  437. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  438. if (flags & CONFIG_UPDATE_TXPOWER)
  439. rt2400pci_config_txpower(rt2x00dev,
  440. libconf->conf->power_level);
  441. if (flags & CONFIG_UPDATE_ANTENNA)
  442. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  443. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  444. rt2400pci_config_duration(rt2x00dev, libconf);
  445. }
  446. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  447. const int cw_min, const int cw_max)
  448. {
  449. u32 reg;
  450. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  451. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  452. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  453. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  454. }
  455. /*
  456. * Link tuning
  457. */
  458. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  459. struct link_qual *qual)
  460. {
  461. u32 reg;
  462. u8 bbp;
  463. /*
  464. * Update FCS error count from register.
  465. */
  466. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  467. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  468. /*
  469. * Update False CCA count from register.
  470. */
  471. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  472. qual->false_cca = bbp;
  473. }
  474. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  475. {
  476. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  477. rt2x00dev->link.vgc_level = 0x08;
  478. }
  479. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  480. {
  481. u8 reg;
  482. /*
  483. * The link tuner should not run longer then 60 seconds,
  484. * and should run once every 2 seconds.
  485. */
  486. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  487. return;
  488. /*
  489. * Base r13 link tuning on the false cca count.
  490. */
  491. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  492. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  493. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  494. rt2x00dev->link.vgc_level = reg;
  495. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  496. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  497. rt2x00dev->link.vgc_level = reg;
  498. }
  499. }
  500. /*
  501. * Initialization functions.
  502. */
  503. static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  504. struct queue_entry *entry)
  505. {
  506. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  507. u32 word;
  508. rt2x00_desc_read(priv_rx->desc, 2, &word);
  509. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
  510. entry->queue->data_size);
  511. rt2x00_desc_write(priv_rx->desc, 2, word);
  512. rt2x00_desc_read(priv_rx->desc, 1, &word);
  513. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
  514. rt2x00_desc_write(priv_rx->desc, 1, word);
  515. rt2x00_desc_read(priv_rx->desc, 0, &word);
  516. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  517. rt2x00_desc_write(priv_rx->desc, 0, word);
  518. }
  519. static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  520. struct queue_entry *entry)
  521. {
  522. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  523. u32 word;
  524. rt2x00_desc_read(priv_tx->desc, 1, &word);
  525. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
  526. rt2x00_desc_write(priv_tx->desc, 1, word);
  527. rt2x00_desc_read(priv_tx->desc, 2, &word);
  528. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
  529. entry->queue->data_size);
  530. rt2x00_desc_write(priv_tx->desc, 2, word);
  531. rt2x00_desc_read(priv_tx->desc, 0, &word);
  532. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  533. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  534. rt2x00_desc_write(priv_tx->desc, 0, word);
  535. }
  536. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  537. {
  538. struct queue_entry_priv_pci_rx *priv_rx;
  539. struct queue_entry_priv_pci_tx *priv_tx;
  540. u32 reg;
  541. /*
  542. * Initialize registers.
  543. */
  544. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  545. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  546. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  547. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  548. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  549. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  550. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  551. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  552. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  553. priv_tx->desc_dma);
  554. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  555. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  556. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  557. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  558. priv_tx->desc_dma);
  559. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  560. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  561. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  562. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  563. priv_tx->desc_dma);
  564. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  565. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  566. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  567. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  568. priv_tx->desc_dma);
  569. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  570. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  571. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  572. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  573. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  574. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  575. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  576. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->desc_dma);
  577. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  578. return 0;
  579. }
  580. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  581. {
  582. u32 reg;
  583. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  584. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  585. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  586. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  587. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  588. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  589. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  590. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  591. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  592. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  593. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  594. (rt2x00dev->rx->data_size / 128));
  595. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  596. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  597. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  598. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  599. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  600. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  601. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  602. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  603. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  604. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  605. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  606. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  607. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  608. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  609. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  610. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  611. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  612. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  613. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  614. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  615. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  616. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  617. return -EBUSY;
  618. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  619. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  620. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  621. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  622. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  623. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  624. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  625. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  626. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  627. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  628. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  629. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  630. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  631. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  632. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  633. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  634. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  635. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  636. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  637. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  638. /*
  639. * We must clear the FCS and FIFO error count.
  640. * These registers are cleared on read,
  641. * so we may pass a useless variable to store the value.
  642. */
  643. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  644. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  645. return 0;
  646. }
  647. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  648. {
  649. unsigned int i;
  650. u16 eeprom;
  651. u8 reg_id;
  652. u8 value;
  653. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  654. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  655. if ((value != 0xff) && (value != 0x00))
  656. goto continue_csr_init;
  657. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  658. udelay(REGISTER_BUSY_DELAY);
  659. }
  660. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  661. return -EACCES;
  662. continue_csr_init:
  663. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  664. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  665. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  666. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  667. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  668. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  669. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  670. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  671. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  672. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  673. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  674. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  675. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  676. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  677. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  678. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  679. if (eeprom != 0xffff && eeprom != 0x0000) {
  680. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  681. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  682. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  683. }
  684. }
  685. return 0;
  686. }
  687. /*
  688. * Device state switch handlers.
  689. */
  690. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  691. enum dev_state state)
  692. {
  693. u32 reg;
  694. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  695. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  696. state == STATE_RADIO_RX_OFF);
  697. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  698. }
  699. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  700. enum dev_state state)
  701. {
  702. int mask = (state == STATE_RADIO_IRQ_OFF);
  703. u32 reg;
  704. /*
  705. * When interrupts are being enabled, the interrupt registers
  706. * should clear the register to assure a clean state.
  707. */
  708. if (state == STATE_RADIO_IRQ_ON) {
  709. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  710. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  711. }
  712. /*
  713. * Only toggle the interrupts bits we are going to use.
  714. * Non-checked interrupt bits are disabled by default.
  715. */
  716. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  717. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  718. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  719. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  720. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  721. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  722. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  723. }
  724. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  725. {
  726. /*
  727. * Initialize all registers.
  728. */
  729. if (rt2400pci_init_queues(rt2x00dev) ||
  730. rt2400pci_init_registers(rt2x00dev) ||
  731. rt2400pci_init_bbp(rt2x00dev)) {
  732. ERROR(rt2x00dev, "Register initialization failed.\n");
  733. return -EIO;
  734. }
  735. /*
  736. * Enable interrupts.
  737. */
  738. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  739. return 0;
  740. }
  741. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  742. {
  743. u32 reg;
  744. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  745. /*
  746. * Disable synchronisation.
  747. */
  748. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  749. /*
  750. * Cancel RX and TX.
  751. */
  752. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  753. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  754. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  755. /*
  756. * Disable interrupts.
  757. */
  758. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  759. }
  760. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  761. enum dev_state state)
  762. {
  763. u32 reg;
  764. unsigned int i;
  765. char put_to_sleep;
  766. char bbp_state;
  767. char rf_state;
  768. put_to_sleep = (state != STATE_AWAKE);
  769. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  770. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  771. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  772. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  773. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  774. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  775. /*
  776. * Device is not guaranteed to be in the requested state yet.
  777. * We must wait until the register indicates that the
  778. * device has entered the correct state.
  779. */
  780. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  781. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  782. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  783. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  784. if (bbp_state == state && rf_state == state)
  785. return 0;
  786. msleep(10);
  787. }
  788. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  789. "current device state: bbp %d and rf %d.\n",
  790. state, bbp_state, rf_state);
  791. return -EBUSY;
  792. }
  793. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  794. enum dev_state state)
  795. {
  796. int retval = 0;
  797. switch (state) {
  798. case STATE_RADIO_ON:
  799. retval = rt2400pci_enable_radio(rt2x00dev);
  800. break;
  801. case STATE_RADIO_OFF:
  802. rt2400pci_disable_radio(rt2x00dev);
  803. break;
  804. case STATE_RADIO_RX_ON:
  805. case STATE_RADIO_RX_ON_LINK:
  806. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  807. break;
  808. case STATE_RADIO_RX_OFF:
  809. case STATE_RADIO_RX_OFF_LINK:
  810. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  811. break;
  812. case STATE_DEEP_SLEEP:
  813. case STATE_SLEEP:
  814. case STATE_STANDBY:
  815. case STATE_AWAKE:
  816. retval = rt2400pci_set_state(rt2x00dev, state);
  817. break;
  818. default:
  819. retval = -ENOTSUPP;
  820. break;
  821. }
  822. return retval;
  823. }
  824. /*
  825. * TX descriptor initialization
  826. */
  827. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  828. struct sk_buff *skb,
  829. struct txentry_desc *txdesc,
  830. struct ieee80211_tx_control *control)
  831. {
  832. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  833. __le32 *txd = skbdesc->desc;
  834. u32 word;
  835. /*
  836. * Start writing the descriptor words.
  837. */
  838. rt2x00_desc_read(txd, 2, &word);
  839. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
  840. rt2x00_desc_write(txd, 2, word);
  841. rt2x00_desc_read(txd, 3, &word);
  842. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  843. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  844. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  845. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  846. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  847. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  848. rt2x00_desc_write(txd, 3, word);
  849. rt2x00_desc_read(txd, 4, &word);
  850. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  851. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  852. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  853. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  854. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  855. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  856. rt2x00_desc_write(txd, 4, word);
  857. rt2x00_desc_read(txd, 0, &word);
  858. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  859. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  860. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  861. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  862. rt2x00_set_field32(&word, TXD_W0_ACK,
  863. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  864. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  865. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  866. rt2x00_set_field32(&word, TXD_W0_RTS,
  867. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  868. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  869. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  870. !!(control->flags &
  871. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  872. rt2x00_desc_write(txd, 0, word);
  873. }
  874. /*
  875. * TX data initialization
  876. */
  877. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  878. const unsigned int queue)
  879. {
  880. u32 reg;
  881. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  882. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  883. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  884. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  885. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  886. }
  887. return;
  888. }
  889. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  890. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  891. (queue == IEEE80211_TX_QUEUE_DATA0));
  892. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  893. (queue == IEEE80211_TX_QUEUE_DATA1));
  894. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  895. (queue == RT2X00_BCN_QUEUE_ATIM));
  896. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  897. }
  898. /*
  899. * RX control handlers
  900. */
  901. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  902. struct rxdone_entry_desc *rxdesc)
  903. {
  904. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  905. u32 word0;
  906. u32 word2;
  907. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  908. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  909. rxdesc->flags = 0;
  910. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  911. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  912. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  913. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  914. /*
  915. * Obtain the status about this packet.
  916. */
  917. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  918. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  919. entry->queue->rt2x00dev->rssi_offset;
  920. rxdesc->ofdm = 0;
  921. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  922. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  923. }
  924. /*
  925. * Interrupt functions.
  926. */
  927. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  928. const enum ieee80211_tx_queue queue_idx)
  929. {
  930. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  931. struct queue_entry_priv_pci_tx *priv_tx;
  932. struct queue_entry *entry;
  933. struct txdone_entry_desc txdesc;
  934. u32 word;
  935. while (!rt2x00queue_empty(queue)) {
  936. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  937. priv_tx = entry->priv_data;
  938. rt2x00_desc_read(priv_tx->desc, 0, &word);
  939. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  940. !rt2x00_get_field32(word, TXD_W0_VALID))
  941. break;
  942. /*
  943. * Obtain the status about this packet.
  944. */
  945. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  946. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  947. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  948. }
  949. }
  950. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  951. {
  952. struct rt2x00_dev *rt2x00dev = dev_instance;
  953. u32 reg;
  954. /*
  955. * Get the interrupt sources & saved to local variable.
  956. * Write register value back to clear pending interrupts.
  957. */
  958. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  959. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  960. if (!reg)
  961. return IRQ_NONE;
  962. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  963. return IRQ_HANDLED;
  964. /*
  965. * Handle interrupts, walk through all bits
  966. * and run the tasks, the bits are checked in order of
  967. * priority.
  968. */
  969. /*
  970. * 1 - Beacon timer expired interrupt.
  971. */
  972. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  973. rt2x00lib_beacondone(rt2x00dev);
  974. /*
  975. * 2 - Rx ring done interrupt.
  976. */
  977. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  978. rt2x00pci_rxdone(rt2x00dev);
  979. /*
  980. * 3 - Atim ring transmit done interrupt.
  981. */
  982. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  983. rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  984. /*
  985. * 4 - Priority ring transmit done interrupt.
  986. */
  987. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  988. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  989. /*
  990. * 5 - Tx ring transmit done interrupt.
  991. */
  992. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  993. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  994. return IRQ_HANDLED;
  995. }
  996. /*
  997. * Device probe functions.
  998. */
  999. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1000. {
  1001. struct eeprom_93cx6 eeprom;
  1002. u32 reg;
  1003. u16 word;
  1004. u8 *mac;
  1005. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1006. eeprom.data = rt2x00dev;
  1007. eeprom.register_read = rt2400pci_eepromregister_read;
  1008. eeprom.register_write = rt2400pci_eepromregister_write;
  1009. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1010. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1011. eeprom.reg_data_in = 0;
  1012. eeprom.reg_data_out = 0;
  1013. eeprom.reg_data_clock = 0;
  1014. eeprom.reg_chip_select = 0;
  1015. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1016. EEPROM_SIZE / sizeof(u16));
  1017. /*
  1018. * Start validation of the data that has been read.
  1019. */
  1020. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1021. if (!is_valid_ether_addr(mac)) {
  1022. DECLARE_MAC_BUF(macbuf);
  1023. random_ether_addr(mac);
  1024. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1025. }
  1026. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1027. if (word == 0xffff) {
  1028. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1029. return -EINVAL;
  1030. }
  1031. return 0;
  1032. }
  1033. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1034. {
  1035. u32 reg;
  1036. u16 value;
  1037. u16 eeprom;
  1038. /*
  1039. * Read EEPROM word for configuration.
  1040. */
  1041. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1042. /*
  1043. * Identify RF chipset.
  1044. */
  1045. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1046. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1047. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1048. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1049. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1050. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1051. return -ENODEV;
  1052. }
  1053. /*
  1054. * Identify default antenna configuration.
  1055. */
  1056. rt2x00dev->default_ant.tx =
  1057. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1058. rt2x00dev->default_ant.rx =
  1059. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1060. /*
  1061. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1062. * I am not 100% sure about this, but the legacy drivers do not
  1063. * indicate antenna swapping in software is required when
  1064. * diversity is enabled.
  1065. */
  1066. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1067. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1068. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1069. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1070. /*
  1071. * Store led mode, for correct led behaviour.
  1072. */
  1073. #ifdef CONFIG_RT2400PCI_LEDS
  1074. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1075. switch (value) {
  1076. case LED_MODE_ASUS:
  1077. case LED_MODE_ALPHA:
  1078. case LED_MODE_DEFAULT:
  1079. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1080. break;
  1081. case LED_MODE_TXRX_ACTIVITY:
  1082. rt2x00dev->led_flags =
  1083. LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
  1084. break;
  1085. case LED_MODE_SIGNAL_STRENGTH:
  1086. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1087. break;
  1088. }
  1089. #endif /* CONFIG_RT2400PCI_LEDS */
  1090. /*
  1091. * Detect if this device has an hardware controlled radio.
  1092. */
  1093. #ifdef CONFIG_RT2400PCI_RFKILL
  1094. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1095. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1096. #endif /* CONFIG_RT2400PCI_RFKILL */
  1097. /*
  1098. * Check if the BBP tuning should be enabled.
  1099. */
  1100. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1101. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1102. return 0;
  1103. }
  1104. /*
  1105. * RF value list for RF2420 & RF2421
  1106. * Supports: 2.4 GHz
  1107. */
  1108. static const struct rf_channel rf_vals_bg[] = {
  1109. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1110. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1111. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1112. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1113. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1114. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1115. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1116. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1117. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1118. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1119. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1120. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1121. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1122. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1123. };
  1124. static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1125. {
  1126. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1127. u8 *txpower;
  1128. unsigned int i;
  1129. /*
  1130. * Initialize all hw fields.
  1131. */
  1132. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1133. rt2x00dev->hw->extra_tx_headroom = 0;
  1134. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1135. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1136. rt2x00dev->hw->queues = 2;
  1137. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1138. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1139. rt2x00_eeprom_addr(rt2x00dev,
  1140. EEPROM_MAC_ADDR_0));
  1141. /*
  1142. * Convert tx_power array in eeprom.
  1143. */
  1144. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1145. for (i = 0; i < 14; i++)
  1146. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1147. /*
  1148. * Initialize hw_mode information.
  1149. */
  1150. spec->num_modes = 1;
  1151. spec->num_rates = 4;
  1152. spec->tx_power_a = NULL;
  1153. spec->tx_power_bg = txpower;
  1154. spec->tx_power_default = DEFAULT_TXPOWER;
  1155. spec->num_channels = ARRAY_SIZE(rf_vals_bg);
  1156. spec->channels = rf_vals_bg;
  1157. }
  1158. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1159. {
  1160. int retval;
  1161. /*
  1162. * Allocate eeprom data.
  1163. */
  1164. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1165. if (retval)
  1166. return retval;
  1167. retval = rt2400pci_init_eeprom(rt2x00dev);
  1168. if (retval)
  1169. return retval;
  1170. /*
  1171. * Initialize hw specifications.
  1172. */
  1173. rt2400pci_probe_hw_mode(rt2x00dev);
  1174. /*
  1175. * This device requires the atim queue
  1176. */
  1177. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1178. /*
  1179. * Set the rssi offset.
  1180. */
  1181. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1182. return 0;
  1183. }
  1184. /*
  1185. * IEEE80211 stack callback functions.
  1186. */
  1187. static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
  1188. unsigned int changed_flags,
  1189. unsigned int *total_flags,
  1190. int mc_count,
  1191. struct dev_addr_list *mc_list)
  1192. {
  1193. struct rt2x00_dev *rt2x00dev = hw->priv;
  1194. u32 reg;
  1195. /*
  1196. * Mask off any flags we are going to ignore from
  1197. * the total_flags field.
  1198. */
  1199. *total_flags &=
  1200. FIF_ALLMULTI |
  1201. FIF_FCSFAIL |
  1202. FIF_PLCPFAIL |
  1203. FIF_CONTROL |
  1204. FIF_OTHER_BSS |
  1205. FIF_PROMISC_IN_BSS;
  1206. /*
  1207. * Apply some rules to the filters:
  1208. * - Some filters imply different filters to be set.
  1209. * - Some things we can't filter out at all.
  1210. */
  1211. *total_flags |= FIF_ALLMULTI;
  1212. if (*total_flags & FIF_OTHER_BSS ||
  1213. *total_flags & FIF_PROMISC_IN_BSS)
  1214. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1215. /*
  1216. * Check if there is any work left for us.
  1217. */
  1218. if (rt2x00dev->packet_filter == *total_flags)
  1219. return;
  1220. rt2x00dev->packet_filter = *total_flags;
  1221. /*
  1222. * Start configuration steps.
  1223. * Note that the version error will always be dropped
  1224. * since there is no filter for it at this time.
  1225. */
  1226. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1227. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1228. !(*total_flags & FIF_FCSFAIL));
  1229. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1230. !(*total_flags & FIF_PLCPFAIL));
  1231. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1232. !(*total_flags & FIF_CONTROL));
  1233. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1234. !(*total_flags & FIF_PROMISC_IN_BSS));
  1235. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1236. !(*total_flags & FIF_PROMISC_IN_BSS));
  1237. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1238. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1239. }
  1240. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1241. u32 short_retry, u32 long_retry)
  1242. {
  1243. struct rt2x00_dev *rt2x00dev = hw->priv;
  1244. u32 reg;
  1245. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1246. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1247. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1248. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1249. return 0;
  1250. }
  1251. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1252. int queue,
  1253. const struct ieee80211_tx_queue_params *params)
  1254. {
  1255. struct rt2x00_dev *rt2x00dev = hw->priv;
  1256. /*
  1257. * We don't support variating cw_min and cw_max variables
  1258. * per queue. So by default we only configure the TX queue,
  1259. * and ignore all other configurations.
  1260. */
  1261. if (queue != IEEE80211_TX_QUEUE_DATA0)
  1262. return -EINVAL;
  1263. if (rt2x00mac_conf_tx(hw, queue, params))
  1264. return -EINVAL;
  1265. /*
  1266. * Write configuration to register.
  1267. */
  1268. rt2400pci_config_cw(rt2x00dev,
  1269. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1270. return 0;
  1271. }
  1272. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1273. {
  1274. struct rt2x00_dev *rt2x00dev = hw->priv;
  1275. u64 tsf;
  1276. u32 reg;
  1277. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1278. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1279. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1280. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1281. return tsf;
  1282. }
  1283. static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
  1284. {
  1285. struct rt2x00_dev *rt2x00dev = hw->priv;
  1286. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1287. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1288. }
  1289. static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1290. struct ieee80211_tx_control *control)
  1291. {
  1292. struct rt2x00_dev *rt2x00dev = hw->priv;
  1293. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1294. struct queue_entry_priv_pci_tx *priv_tx;
  1295. struct skb_frame_desc *skbdesc;
  1296. if (unlikely(!intf->beacon))
  1297. return -ENOBUFS;
  1298. priv_tx = intf->beacon->priv_data;
  1299. /*
  1300. * Fill in skb descriptor
  1301. */
  1302. skbdesc = get_skb_frame_desc(skb);
  1303. memset(skbdesc, 0, sizeof(*skbdesc));
  1304. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1305. skbdesc->data = skb->data;
  1306. skbdesc->data_len = skb->len;
  1307. skbdesc->desc = priv_tx->desc;
  1308. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1309. skbdesc->entry = intf->beacon;
  1310. /*
  1311. * mac80211 doesn't provide the control->queue variable
  1312. * for beacons. Set our own queue identification so
  1313. * it can be used during descriptor initialization.
  1314. */
  1315. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1316. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1317. /*
  1318. * Enable beacon generation.
  1319. * Write entire beacon with descriptor to register,
  1320. * and kick the beacon generator.
  1321. */
  1322. memcpy(priv_tx->data, skb->data, skb->len);
  1323. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1324. return 0;
  1325. }
  1326. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1327. {
  1328. struct rt2x00_dev *rt2x00dev = hw->priv;
  1329. u32 reg;
  1330. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1331. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1332. }
  1333. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1334. .tx = rt2x00mac_tx,
  1335. .start = rt2x00mac_start,
  1336. .stop = rt2x00mac_stop,
  1337. .add_interface = rt2x00mac_add_interface,
  1338. .remove_interface = rt2x00mac_remove_interface,
  1339. .config = rt2x00mac_config,
  1340. .config_interface = rt2x00mac_config_interface,
  1341. .configure_filter = rt2400pci_configure_filter,
  1342. .get_stats = rt2x00mac_get_stats,
  1343. .set_retry_limit = rt2400pci_set_retry_limit,
  1344. .bss_info_changed = rt2x00mac_bss_info_changed,
  1345. .conf_tx = rt2400pci_conf_tx,
  1346. .get_tx_stats = rt2x00mac_get_tx_stats,
  1347. .get_tsf = rt2400pci_get_tsf,
  1348. .reset_tsf = rt2400pci_reset_tsf,
  1349. .beacon_update = rt2400pci_beacon_update,
  1350. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1351. };
  1352. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1353. .irq_handler = rt2400pci_interrupt,
  1354. .probe_hw = rt2400pci_probe_hw,
  1355. .initialize = rt2x00pci_initialize,
  1356. .uninitialize = rt2x00pci_uninitialize,
  1357. .init_rxentry = rt2400pci_init_rxentry,
  1358. .init_txentry = rt2400pci_init_txentry,
  1359. .set_device_state = rt2400pci_set_device_state,
  1360. .rfkill_poll = rt2400pci_rfkill_poll,
  1361. .link_stats = rt2400pci_link_stats,
  1362. .reset_tuner = rt2400pci_reset_tuner,
  1363. .link_tuner = rt2400pci_link_tuner,
  1364. .led_brightness = rt2400pci_led_brightness,
  1365. .write_tx_desc = rt2400pci_write_tx_desc,
  1366. .write_tx_data = rt2x00pci_write_tx_data,
  1367. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1368. .fill_rxdone = rt2400pci_fill_rxdone,
  1369. .config_intf = rt2400pci_config_intf,
  1370. .config_preamble = rt2400pci_config_preamble,
  1371. .config = rt2400pci_config,
  1372. };
  1373. static const struct data_queue_desc rt2400pci_queue_rx = {
  1374. .entry_num = RX_ENTRIES,
  1375. .data_size = DATA_FRAME_SIZE,
  1376. .desc_size = RXD_DESC_SIZE,
  1377. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1378. };
  1379. static const struct data_queue_desc rt2400pci_queue_tx = {
  1380. .entry_num = TX_ENTRIES,
  1381. .data_size = DATA_FRAME_SIZE,
  1382. .desc_size = TXD_DESC_SIZE,
  1383. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1384. };
  1385. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1386. .entry_num = BEACON_ENTRIES,
  1387. .data_size = MGMT_FRAME_SIZE,
  1388. .desc_size = TXD_DESC_SIZE,
  1389. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1390. };
  1391. static const struct data_queue_desc rt2400pci_queue_atim = {
  1392. .entry_num = ATIM_ENTRIES,
  1393. .data_size = DATA_FRAME_SIZE,
  1394. .desc_size = TXD_DESC_SIZE,
  1395. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1396. };
  1397. static const struct rt2x00_ops rt2400pci_ops = {
  1398. .name = KBUILD_MODNAME,
  1399. .max_sta_intf = 1,
  1400. .max_ap_intf = 1,
  1401. .eeprom_size = EEPROM_SIZE,
  1402. .rf_size = RF_SIZE,
  1403. .rx = &rt2400pci_queue_rx,
  1404. .tx = &rt2400pci_queue_tx,
  1405. .bcn = &rt2400pci_queue_bcn,
  1406. .atim = &rt2400pci_queue_atim,
  1407. .lib = &rt2400pci_rt2x00_ops,
  1408. .hw = &rt2400pci_mac80211_ops,
  1409. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1410. .debugfs = &rt2400pci_rt2x00debug,
  1411. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1412. };
  1413. /*
  1414. * RT2400pci module information.
  1415. */
  1416. static struct pci_device_id rt2400pci_device_table[] = {
  1417. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1418. { 0, }
  1419. };
  1420. MODULE_AUTHOR(DRV_PROJECT);
  1421. MODULE_VERSION(DRV_VERSION);
  1422. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1423. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1424. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1425. MODULE_LICENSE("GPL");
  1426. static struct pci_driver rt2400pci_driver = {
  1427. .name = KBUILD_MODNAME,
  1428. .id_table = rt2400pci_device_table,
  1429. .probe = rt2x00pci_probe,
  1430. .remove = __devexit_p(rt2x00pci_remove),
  1431. .suspend = rt2x00pci_suspend,
  1432. .resume = rt2x00pci_resume,
  1433. };
  1434. static int __init rt2400pci_init(void)
  1435. {
  1436. return pci_register_driver(&rt2400pci_driver);
  1437. }
  1438. static void __exit rt2400pci_exit(void)
  1439. {
  1440. pci_unregister_driver(&rt2400pci_driver);
  1441. }
  1442. module_init(rt2400pci_init);
  1443. module_exit(rt2400pci_exit);