Kconfig 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. #
  2. # Generic algorithms support
  3. #
  4. config XOR_BLOCKS
  5. tristate
  6. #
  7. # async_tx api: hardware offloaded memory transfer/transform support
  8. #
  9. source "crypto/async_tx/Kconfig"
  10. #
  11. # Cryptographic API Configuration
  12. #
  13. menuconfig CRYPTO
  14. tristate "Cryptographic API"
  15. help
  16. This option provides the core Cryptographic API.
  17. if CRYPTO
  18. comment "Crypto core or helper"
  19. config CRYPTO_FIPS
  20. bool "FIPS 200 compliance"
  21. depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
  22. help
  23. This options enables the fips boot option which is
  24. required if you want to system to operate in a FIPS 200
  25. certification. You should say no unless you know what
  26. this is.
  27. config CRYPTO_ALGAPI
  28. tristate
  29. select CRYPTO_ALGAPI2
  30. help
  31. This option provides the API for cryptographic algorithms.
  32. config CRYPTO_ALGAPI2
  33. tristate
  34. config CRYPTO_AEAD
  35. tristate
  36. select CRYPTO_AEAD2
  37. select CRYPTO_ALGAPI
  38. config CRYPTO_AEAD2
  39. tristate
  40. select CRYPTO_ALGAPI2
  41. config CRYPTO_BLKCIPHER
  42. tristate
  43. select CRYPTO_BLKCIPHER2
  44. select CRYPTO_ALGAPI
  45. config CRYPTO_BLKCIPHER2
  46. tristate
  47. select CRYPTO_ALGAPI2
  48. select CRYPTO_RNG2
  49. select CRYPTO_WORKQUEUE
  50. config CRYPTO_HASH
  51. tristate
  52. select CRYPTO_HASH2
  53. select CRYPTO_ALGAPI
  54. config CRYPTO_HASH2
  55. tristate
  56. select CRYPTO_ALGAPI2
  57. config CRYPTO_RNG
  58. tristate
  59. select CRYPTO_RNG2
  60. select CRYPTO_ALGAPI
  61. config CRYPTO_RNG2
  62. tristate
  63. select CRYPTO_ALGAPI2
  64. config CRYPTO_PCOMP
  65. tristate
  66. select CRYPTO_PCOMP2
  67. select CRYPTO_ALGAPI
  68. config CRYPTO_PCOMP2
  69. tristate
  70. select CRYPTO_ALGAPI2
  71. config CRYPTO_MANAGER
  72. tristate "Cryptographic algorithm manager"
  73. select CRYPTO_MANAGER2
  74. help
  75. Create default cryptographic template instantiations such as
  76. cbc(aes).
  77. config CRYPTO_MANAGER2
  78. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  79. select CRYPTO_AEAD2
  80. select CRYPTO_HASH2
  81. select CRYPTO_BLKCIPHER2
  82. select CRYPTO_PCOMP2
  83. config CRYPTO_USER
  84. tristate "Userspace cryptographic algorithm configuration"
  85. depends on NET
  86. select CRYPTO_MANAGER
  87. help
  88. Userspace configuration for cryptographic instantiations such as
  89. cbc(aes).
  90. config CRYPTO_MANAGER_DISABLE_TESTS
  91. bool "Disable run-time self tests"
  92. default y
  93. depends on CRYPTO_MANAGER2
  94. help
  95. Disable run-time self tests that normally take place at
  96. algorithm registration.
  97. config CRYPTO_GF128MUL
  98. tristate "GF(2^128) multiplication functions"
  99. help
  100. Efficient table driven implementation of multiplications in the
  101. field GF(2^128). This is needed by some cypher modes. This
  102. option will be selected automatically if you select such a
  103. cipher mode. Only select this option by hand if you expect to load
  104. an external module that requires these functions.
  105. config CRYPTO_NULL
  106. tristate "Null algorithms"
  107. select CRYPTO_ALGAPI
  108. select CRYPTO_BLKCIPHER
  109. select CRYPTO_HASH
  110. help
  111. These are 'Null' algorithms, used by IPsec, which do nothing.
  112. config CRYPTO_PCRYPT
  113. tristate "Parallel crypto engine (EXPERIMENTAL)"
  114. depends on SMP && EXPERIMENTAL
  115. select PADATA
  116. select CRYPTO_MANAGER
  117. select CRYPTO_AEAD
  118. help
  119. This converts an arbitrary crypto algorithm into a parallel
  120. algorithm that executes in kernel threads.
  121. config CRYPTO_WORKQUEUE
  122. tristate
  123. config CRYPTO_CRYPTD
  124. tristate "Software async crypto daemon"
  125. select CRYPTO_BLKCIPHER
  126. select CRYPTO_HASH
  127. select CRYPTO_MANAGER
  128. select CRYPTO_WORKQUEUE
  129. help
  130. This is a generic software asynchronous crypto daemon that
  131. converts an arbitrary synchronous software crypto algorithm
  132. into an asynchronous algorithm that executes in a kernel thread.
  133. config CRYPTO_AUTHENC
  134. tristate "Authenc support"
  135. select CRYPTO_AEAD
  136. select CRYPTO_BLKCIPHER
  137. select CRYPTO_MANAGER
  138. select CRYPTO_HASH
  139. help
  140. Authenc: Combined mode wrapper for IPsec.
  141. This is required for IPSec.
  142. config CRYPTO_TEST
  143. tristate "Testing module"
  144. depends on m
  145. select CRYPTO_MANAGER
  146. help
  147. Quick & dirty crypto test module.
  148. config CRYPTO_ABLK_HELPER_X86
  149. tristate
  150. depends on X86
  151. select CRYPTO_CRYPTD
  152. comment "Authenticated Encryption with Associated Data"
  153. config CRYPTO_CCM
  154. tristate "CCM support"
  155. select CRYPTO_CTR
  156. select CRYPTO_AEAD
  157. help
  158. Support for Counter with CBC MAC. Required for IPsec.
  159. config CRYPTO_GCM
  160. tristate "GCM/GMAC support"
  161. select CRYPTO_CTR
  162. select CRYPTO_AEAD
  163. select CRYPTO_GHASH
  164. help
  165. Support for Galois/Counter Mode (GCM) and Galois Message
  166. Authentication Code (GMAC). Required for IPSec.
  167. config CRYPTO_SEQIV
  168. tristate "Sequence Number IV Generator"
  169. select CRYPTO_AEAD
  170. select CRYPTO_BLKCIPHER
  171. select CRYPTO_RNG
  172. help
  173. This IV generator generates an IV based on a sequence number by
  174. xoring it with a salt. This algorithm is mainly useful for CTR
  175. comment "Block modes"
  176. config CRYPTO_CBC
  177. tristate "CBC support"
  178. select CRYPTO_BLKCIPHER
  179. select CRYPTO_MANAGER
  180. help
  181. CBC: Cipher Block Chaining mode
  182. This block cipher algorithm is required for IPSec.
  183. config CRYPTO_CTR
  184. tristate "CTR support"
  185. select CRYPTO_BLKCIPHER
  186. select CRYPTO_SEQIV
  187. select CRYPTO_MANAGER
  188. help
  189. CTR: Counter mode
  190. This block cipher algorithm is required for IPSec.
  191. config CRYPTO_CTS
  192. tristate "CTS support"
  193. select CRYPTO_BLKCIPHER
  194. help
  195. CTS: Cipher Text Stealing
  196. This is the Cipher Text Stealing mode as described by
  197. Section 8 of rfc2040 and referenced by rfc3962.
  198. (rfc3962 includes errata information in its Appendix A)
  199. This mode is required for Kerberos gss mechanism support
  200. for AES encryption.
  201. config CRYPTO_ECB
  202. tristate "ECB support"
  203. select CRYPTO_BLKCIPHER
  204. select CRYPTO_MANAGER
  205. help
  206. ECB: Electronic CodeBook mode
  207. This is the simplest block cipher algorithm. It simply encrypts
  208. the input block by block.
  209. config CRYPTO_LRW
  210. tristate "LRW support"
  211. select CRYPTO_BLKCIPHER
  212. select CRYPTO_MANAGER
  213. select CRYPTO_GF128MUL
  214. help
  215. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  216. narrow block cipher mode for dm-crypt. Use it with cipher
  217. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  218. The first 128, 192 or 256 bits in the key are used for AES and the
  219. rest is used to tie each cipher block to its logical position.
  220. config CRYPTO_PCBC
  221. tristate "PCBC support"
  222. select CRYPTO_BLKCIPHER
  223. select CRYPTO_MANAGER
  224. help
  225. PCBC: Propagating Cipher Block Chaining mode
  226. This block cipher algorithm is required for RxRPC.
  227. config CRYPTO_XTS
  228. tristate "XTS support"
  229. select CRYPTO_BLKCIPHER
  230. select CRYPTO_MANAGER
  231. select CRYPTO_GF128MUL
  232. help
  233. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  234. key size 256, 384 or 512 bits. This implementation currently
  235. can't handle a sectorsize which is not a multiple of 16 bytes.
  236. comment "Hash modes"
  237. config CRYPTO_HMAC
  238. tristate "HMAC support"
  239. select CRYPTO_HASH
  240. select CRYPTO_MANAGER
  241. help
  242. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  243. This is required for IPSec.
  244. config CRYPTO_XCBC
  245. tristate "XCBC support"
  246. depends on EXPERIMENTAL
  247. select CRYPTO_HASH
  248. select CRYPTO_MANAGER
  249. help
  250. XCBC: Keyed-Hashing with encryption algorithm
  251. http://www.ietf.org/rfc/rfc3566.txt
  252. http://csrc.nist.gov/encryption/modes/proposedmodes/
  253. xcbc-mac/xcbc-mac-spec.pdf
  254. config CRYPTO_VMAC
  255. tristate "VMAC support"
  256. depends on EXPERIMENTAL
  257. select CRYPTO_HASH
  258. select CRYPTO_MANAGER
  259. help
  260. VMAC is a message authentication algorithm designed for
  261. very high speed on 64-bit architectures.
  262. See also:
  263. <http://fastcrypto.org/vmac>
  264. comment "Digest"
  265. config CRYPTO_CRC32C
  266. tristate "CRC32c CRC algorithm"
  267. select CRYPTO_HASH
  268. select CRC32
  269. help
  270. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  271. by iSCSI for header and data digests and by others.
  272. See Castagnoli93. Module will be crc32c.
  273. config CRYPTO_CRC32C_INTEL
  274. tristate "CRC32c INTEL hardware acceleration"
  275. depends on X86
  276. select CRYPTO_HASH
  277. help
  278. In Intel processor with SSE4.2 supported, the processor will
  279. support CRC32C implementation using hardware accelerated CRC32
  280. instruction. This option will create 'crc32c-intel' module,
  281. which will enable any routine to use the CRC32 instruction to
  282. gain performance compared with software implementation.
  283. Module will be crc32c-intel.
  284. config CRYPTO_GHASH
  285. tristate "GHASH digest algorithm"
  286. select CRYPTO_GF128MUL
  287. help
  288. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  289. config CRYPTO_MD4
  290. tristate "MD4 digest algorithm"
  291. select CRYPTO_HASH
  292. help
  293. MD4 message digest algorithm (RFC1320).
  294. config CRYPTO_MD5
  295. tristate "MD5 digest algorithm"
  296. select CRYPTO_HASH
  297. help
  298. MD5 message digest algorithm (RFC1321).
  299. config CRYPTO_MICHAEL_MIC
  300. tristate "Michael MIC keyed digest algorithm"
  301. select CRYPTO_HASH
  302. help
  303. Michael MIC is used for message integrity protection in TKIP
  304. (IEEE 802.11i). This algorithm is required for TKIP, but it
  305. should not be used for other purposes because of the weakness
  306. of the algorithm.
  307. config CRYPTO_RMD128
  308. tristate "RIPEMD-128 digest algorithm"
  309. select CRYPTO_HASH
  310. help
  311. RIPEMD-128 (ISO/IEC 10118-3:2004).
  312. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  313. be used as a secure replacement for RIPEMD. For other use cases,
  314. RIPEMD-160 should be used.
  315. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  316. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  317. config CRYPTO_RMD160
  318. tristate "RIPEMD-160 digest algorithm"
  319. select CRYPTO_HASH
  320. help
  321. RIPEMD-160 (ISO/IEC 10118-3:2004).
  322. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  323. to be used as a secure replacement for the 128-bit hash functions
  324. MD4, MD5 and it's predecessor RIPEMD
  325. (not to be confused with RIPEMD-128).
  326. It's speed is comparable to SHA1 and there are no known attacks
  327. against RIPEMD-160.
  328. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  329. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  330. config CRYPTO_RMD256
  331. tristate "RIPEMD-256 digest algorithm"
  332. select CRYPTO_HASH
  333. help
  334. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  335. 256 bit hash. It is intended for applications that require
  336. longer hash-results, without needing a larger security level
  337. (than RIPEMD-128).
  338. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  339. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  340. config CRYPTO_RMD320
  341. tristate "RIPEMD-320 digest algorithm"
  342. select CRYPTO_HASH
  343. help
  344. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  345. 320 bit hash. It is intended for applications that require
  346. longer hash-results, without needing a larger security level
  347. (than RIPEMD-160).
  348. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  349. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  350. config CRYPTO_SHA1
  351. tristate "SHA1 digest algorithm"
  352. select CRYPTO_HASH
  353. help
  354. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  355. config CRYPTO_SHA1_SSSE3
  356. tristate "SHA1 digest algorithm (SSSE3/AVX)"
  357. depends on X86 && 64BIT
  358. select CRYPTO_SHA1
  359. select CRYPTO_HASH
  360. help
  361. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  362. using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
  363. Extensions (AVX), when available.
  364. config CRYPTO_SHA256
  365. tristate "SHA224 and SHA256 digest algorithm"
  366. select CRYPTO_HASH
  367. help
  368. SHA256 secure hash standard (DFIPS 180-2).
  369. This version of SHA implements a 256 bit hash with 128 bits of
  370. security against collision attacks.
  371. This code also includes SHA-224, a 224 bit hash with 112 bits
  372. of security against collision attacks.
  373. config CRYPTO_SHA512
  374. tristate "SHA384 and SHA512 digest algorithms"
  375. select CRYPTO_HASH
  376. help
  377. SHA512 secure hash standard (DFIPS 180-2).
  378. This version of SHA implements a 512 bit hash with 256 bits of
  379. security against collision attacks.
  380. This code also includes SHA-384, a 384 bit hash with 192 bits
  381. of security against collision attacks.
  382. config CRYPTO_TGR192
  383. tristate "Tiger digest algorithms"
  384. select CRYPTO_HASH
  385. help
  386. Tiger hash algorithm 192, 160 and 128-bit hashes
  387. Tiger is a hash function optimized for 64-bit processors while
  388. still having decent performance on 32-bit processors.
  389. Tiger was developed by Ross Anderson and Eli Biham.
  390. See also:
  391. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  392. config CRYPTO_WP512
  393. tristate "Whirlpool digest algorithms"
  394. select CRYPTO_HASH
  395. help
  396. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  397. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  398. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  399. See also:
  400. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  401. config CRYPTO_GHASH_CLMUL_NI_INTEL
  402. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  403. depends on X86 && 64BIT
  404. select CRYPTO_CRYPTD
  405. help
  406. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  407. The implementation is accelerated by CLMUL-NI of Intel.
  408. comment "Ciphers"
  409. config CRYPTO_AES
  410. tristate "AES cipher algorithms"
  411. select CRYPTO_ALGAPI
  412. help
  413. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  414. algorithm.
  415. Rijndael appears to be consistently a very good performer in
  416. both hardware and software across a wide range of computing
  417. environments regardless of its use in feedback or non-feedback
  418. modes. Its key setup time is excellent, and its key agility is
  419. good. Rijndael's very low memory requirements make it very well
  420. suited for restricted-space environments, in which it also
  421. demonstrates excellent performance. Rijndael's operations are
  422. among the easiest to defend against power and timing attacks.
  423. The AES specifies three key sizes: 128, 192 and 256 bits
  424. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  425. config CRYPTO_AES_586
  426. tristate "AES cipher algorithms (i586)"
  427. depends on (X86 || UML_X86) && !64BIT
  428. select CRYPTO_ALGAPI
  429. select CRYPTO_AES
  430. help
  431. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  432. algorithm.
  433. Rijndael appears to be consistently a very good performer in
  434. both hardware and software across a wide range of computing
  435. environments regardless of its use in feedback or non-feedback
  436. modes. Its key setup time is excellent, and its key agility is
  437. good. Rijndael's very low memory requirements make it very well
  438. suited for restricted-space environments, in which it also
  439. demonstrates excellent performance. Rijndael's operations are
  440. among the easiest to defend against power and timing attacks.
  441. The AES specifies three key sizes: 128, 192 and 256 bits
  442. See <http://csrc.nist.gov/encryption/aes/> for more information.
  443. config CRYPTO_AES_X86_64
  444. tristate "AES cipher algorithms (x86_64)"
  445. depends on (X86 || UML_X86) && 64BIT
  446. select CRYPTO_ALGAPI
  447. select CRYPTO_AES
  448. help
  449. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  450. algorithm.
  451. Rijndael appears to be consistently a very good performer in
  452. both hardware and software across a wide range of computing
  453. environments regardless of its use in feedback or non-feedback
  454. modes. Its key setup time is excellent, and its key agility is
  455. good. Rijndael's very low memory requirements make it very well
  456. suited for restricted-space environments, in which it also
  457. demonstrates excellent performance. Rijndael's operations are
  458. among the easiest to defend against power and timing attacks.
  459. The AES specifies three key sizes: 128, 192 and 256 bits
  460. See <http://csrc.nist.gov/encryption/aes/> for more information.
  461. config CRYPTO_AES_NI_INTEL
  462. tristate "AES cipher algorithms (AES-NI)"
  463. depends on X86
  464. select CRYPTO_AES_X86_64 if 64BIT
  465. select CRYPTO_AES_586 if !64BIT
  466. select CRYPTO_CRYPTD
  467. select CRYPTO_ALGAPI
  468. help
  469. Use Intel AES-NI instructions for AES algorithm.
  470. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  471. algorithm.
  472. Rijndael appears to be consistently a very good performer in
  473. both hardware and software across a wide range of computing
  474. environments regardless of its use in feedback or non-feedback
  475. modes. Its key setup time is excellent, and its key agility is
  476. good. Rijndael's very low memory requirements make it very well
  477. suited for restricted-space environments, in which it also
  478. demonstrates excellent performance. Rijndael's operations are
  479. among the easiest to defend against power and timing attacks.
  480. The AES specifies three key sizes: 128, 192 and 256 bits
  481. See <http://csrc.nist.gov/encryption/aes/> for more information.
  482. In addition to AES cipher algorithm support, the acceleration
  483. for some popular block cipher mode is supported too, including
  484. ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
  485. acceleration for CTR.
  486. config CRYPTO_ANUBIS
  487. tristate "Anubis cipher algorithm"
  488. select CRYPTO_ALGAPI
  489. help
  490. Anubis cipher algorithm.
  491. Anubis is a variable key length cipher which can use keys from
  492. 128 bits to 320 bits in length. It was evaluated as a entrant
  493. in the NESSIE competition.
  494. See also:
  495. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  496. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  497. config CRYPTO_ARC4
  498. tristate "ARC4 cipher algorithm"
  499. select CRYPTO_ALGAPI
  500. help
  501. ARC4 cipher algorithm.
  502. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  503. bits in length. This algorithm is required for driver-based
  504. WEP, but it should not be for other purposes because of the
  505. weakness of the algorithm.
  506. config CRYPTO_BLOWFISH
  507. tristate "Blowfish cipher algorithm"
  508. select CRYPTO_ALGAPI
  509. select CRYPTO_BLOWFISH_COMMON
  510. help
  511. Blowfish cipher algorithm, by Bruce Schneier.
  512. This is a variable key length cipher which can use keys from 32
  513. bits to 448 bits in length. It's fast, simple and specifically
  514. designed for use on "large microprocessors".
  515. See also:
  516. <http://www.schneier.com/blowfish.html>
  517. config CRYPTO_BLOWFISH_COMMON
  518. tristate
  519. help
  520. Common parts of the Blowfish cipher algorithm shared by the
  521. generic c and the assembler implementations.
  522. See also:
  523. <http://www.schneier.com/blowfish.html>
  524. config CRYPTO_BLOWFISH_X86_64
  525. tristate "Blowfish cipher algorithm (x86_64)"
  526. depends on X86 && 64BIT
  527. select CRYPTO_ALGAPI
  528. select CRYPTO_BLOWFISH_COMMON
  529. help
  530. Blowfish cipher algorithm (x86_64), by Bruce Schneier.
  531. This is a variable key length cipher which can use keys from 32
  532. bits to 448 bits in length. It's fast, simple and specifically
  533. designed for use on "large microprocessors".
  534. See also:
  535. <http://www.schneier.com/blowfish.html>
  536. config CRYPTO_CAMELLIA
  537. tristate "Camellia cipher algorithms"
  538. depends on CRYPTO
  539. select CRYPTO_ALGAPI
  540. help
  541. Camellia cipher algorithms module.
  542. Camellia is a symmetric key block cipher developed jointly
  543. at NTT and Mitsubishi Electric Corporation.
  544. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  545. See also:
  546. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  547. config CRYPTO_CAMELLIA_X86_64
  548. tristate "Camellia cipher algorithm (x86_64)"
  549. depends on X86 && 64BIT
  550. depends on CRYPTO
  551. select CRYPTO_ALGAPI
  552. select CRYPTO_LRW
  553. select CRYPTO_XTS
  554. help
  555. Camellia cipher algorithm module (x86_64).
  556. Camellia is a symmetric key block cipher developed jointly
  557. at NTT and Mitsubishi Electric Corporation.
  558. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  559. See also:
  560. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  561. config CRYPTO_CAST5
  562. tristate "CAST5 (CAST-128) cipher algorithm"
  563. select CRYPTO_ALGAPI
  564. help
  565. The CAST5 encryption algorithm (synonymous with CAST-128) is
  566. described in RFC2144.
  567. config CRYPTO_CAST6
  568. tristate "CAST6 (CAST-256) cipher algorithm"
  569. select CRYPTO_ALGAPI
  570. help
  571. The CAST6 encryption algorithm (synonymous with CAST-256) is
  572. described in RFC2612.
  573. config CRYPTO_DES
  574. tristate "DES and Triple DES EDE cipher algorithms"
  575. select CRYPTO_ALGAPI
  576. help
  577. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  578. config CRYPTO_FCRYPT
  579. tristate "FCrypt cipher algorithm"
  580. select CRYPTO_ALGAPI
  581. select CRYPTO_BLKCIPHER
  582. help
  583. FCrypt algorithm used by RxRPC.
  584. config CRYPTO_KHAZAD
  585. tristate "Khazad cipher algorithm"
  586. select CRYPTO_ALGAPI
  587. help
  588. Khazad cipher algorithm.
  589. Khazad was a finalist in the initial NESSIE competition. It is
  590. an algorithm optimized for 64-bit processors with good performance
  591. on 32-bit processors. Khazad uses an 128 bit key size.
  592. See also:
  593. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  594. config CRYPTO_SALSA20
  595. tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
  596. depends on EXPERIMENTAL
  597. select CRYPTO_BLKCIPHER
  598. help
  599. Salsa20 stream cipher algorithm.
  600. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  601. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  602. The Salsa20 stream cipher algorithm is designed by Daniel J.
  603. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  604. config CRYPTO_SALSA20_586
  605. tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
  606. depends on (X86 || UML_X86) && !64BIT
  607. depends on EXPERIMENTAL
  608. select CRYPTO_BLKCIPHER
  609. help
  610. Salsa20 stream cipher algorithm.
  611. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  612. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  613. The Salsa20 stream cipher algorithm is designed by Daniel J.
  614. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  615. config CRYPTO_SALSA20_X86_64
  616. tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
  617. depends on (X86 || UML_X86) && 64BIT
  618. depends on EXPERIMENTAL
  619. select CRYPTO_BLKCIPHER
  620. help
  621. Salsa20 stream cipher algorithm.
  622. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  623. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  624. The Salsa20 stream cipher algorithm is designed by Daniel J.
  625. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  626. config CRYPTO_SEED
  627. tristate "SEED cipher algorithm"
  628. select CRYPTO_ALGAPI
  629. help
  630. SEED cipher algorithm (RFC4269).
  631. SEED is a 128-bit symmetric key block cipher that has been
  632. developed by KISA (Korea Information Security Agency) as a
  633. national standard encryption algorithm of the Republic of Korea.
  634. It is a 16 round block cipher with the key size of 128 bit.
  635. See also:
  636. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  637. config CRYPTO_SERPENT
  638. tristate "Serpent cipher algorithm"
  639. select CRYPTO_ALGAPI
  640. help
  641. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  642. Keys are allowed to be from 0 to 256 bits in length, in steps
  643. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  644. variant of Serpent for compatibility with old kerneli.org code.
  645. See also:
  646. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  647. config CRYPTO_SERPENT_SSE2_X86_64
  648. tristate "Serpent cipher algorithm (x86_64/SSE2)"
  649. depends on X86 && 64BIT
  650. select CRYPTO_ALGAPI
  651. select CRYPTO_CRYPTD
  652. select CRYPTO_ABLK_HELPER_X86
  653. select CRYPTO_SERPENT
  654. select CRYPTO_LRW
  655. select CRYPTO_XTS
  656. help
  657. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  658. Keys are allowed to be from 0 to 256 bits in length, in steps
  659. of 8 bits.
  660. This module provides Serpent cipher algorithm that processes eigth
  661. blocks parallel using SSE2 instruction set.
  662. See also:
  663. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  664. config CRYPTO_SERPENT_SSE2_586
  665. tristate "Serpent cipher algorithm (i586/SSE2)"
  666. depends on X86 && !64BIT
  667. select CRYPTO_ALGAPI
  668. select CRYPTO_CRYPTD
  669. select CRYPTO_ABLK_HELPER_X86
  670. select CRYPTO_SERPENT
  671. select CRYPTO_LRW
  672. select CRYPTO_XTS
  673. help
  674. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  675. Keys are allowed to be from 0 to 256 bits in length, in steps
  676. of 8 bits.
  677. This module provides Serpent cipher algorithm that processes four
  678. blocks parallel using SSE2 instruction set.
  679. See also:
  680. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  681. config CRYPTO_SERPENT_AVX_X86_64
  682. tristate "Serpent cipher algorithm (x86_64/AVX)"
  683. depends on X86 && 64BIT
  684. select CRYPTO_ALGAPI
  685. select CRYPTO_CRYPTD
  686. select CRYPTO_ABLK_HELPER_X86
  687. select CRYPTO_SERPENT
  688. select CRYPTO_LRW
  689. select CRYPTO_XTS
  690. help
  691. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  692. Keys are allowed to be from 0 to 256 bits in length, in steps
  693. of 8 bits.
  694. This module provides the Serpent cipher algorithm that processes
  695. eight blocks parallel using the AVX instruction set.
  696. See also:
  697. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  698. config CRYPTO_TEA
  699. tristate "TEA, XTEA and XETA cipher algorithms"
  700. select CRYPTO_ALGAPI
  701. help
  702. TEA cipher algorithm.
  703. Tiny Encryption Algorithm is a simple cipher that uses
  704. many rounds for security. It is very fast and uses
  705. little memory.
  706. Xtendend Tiny Encryption Algorithm is a modification to
  707. the TEA algorithm to address a potential key weakness
  708. in the TEA algorithm.
  709. Xtendend Encryption Tiny Algorithm is a mis-implementation
  710. of the XTEA algorithm for compatibility purposes.
  711. config CRYPTO_TWOFISH
  712. tristate "Twofish cipher algorithm"
  713. select CRYPTO_ALGAPI
  714. select CRYPTO_TWOFISH_COMMON
  715. help
  716. Twofish cipher algorithm.
  717. Twofish was submitted as an AES (Advanced Encryption Standard)
  718. candidate cipher by researchers at CounterPane Systems. It is a
  719. 16 round block cipher supporting key sizes of 128, 192, and 256
  720. bits.
  721. See also:
  722. <http://www.schneier.com/twofish.html>
  723. config CRYPTO_TWOFISH_COMMON
  724. tristate
  725. help
  726. Common parts of the Twofish cipher algorithm shared by the
  727. generic c and the assembler implementations.
  728. config CRYPTO_TWOFISH_586
  729. tristate "Twofish cipher algorithms (i586)"
  730. depends on (X86 || UML_X86) && !64BIT
  731. select CRYPTO_ALGAPI
  732. select CRYPTO_TWOFISH_COMMON
  733. help
  734. Twofish cipher algorithm.
  735. Twofish was submitted as an AES (Advanced Encryption Standard)
  736. candidate cipher by researchers at CounterPane Systems. It is a
  737. 16 round block cipher supporting key sizes of 128, 192, and 256
  738. bits.
  739. See also:
  740. <http://www.schneier.com/twofish.html>
  741. config CRYPTO_TWOFISH_X86_64
  742. tristate "Twofish cipher algorithm (x86_64)"
  743. depends on (X86 || UML_X86) && 64BIT
  744. select CRYPTO_ALGAPI
  745. select CRYPTO_TWOFISH_COMMON
  746. help
  747. Twofish cipher algorithm (x86_64).
  748. Twofish was submitted as an AES (Advanced Encryption Standard)
  749. candidate cipher by researchers at CounterPane Systems. It is a
  750. 16 round block cipher supporting key sizes of 128, 192, and 256
  751. bits.
  752. See also:
  753. <http://www.schneier.com/twofish.html>
  754. config CRYPTO_TWOFISH_X86_64_3WAY
  755. tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
  756. depends on X86 && 64BIT
  757. select CRYPTO_ALGAPI
  758. select CRYPTO_TWOFISH_COMMON
  759. select CRYPTO_TWOFISH_X86_64
  760. select CRYPTO_LRW
  761. select CRYPTO_XTS
  762. help
  763. Twofish cipher algorithm (x86_64, 3-way parallel).
  764. Twofish was submitted as an AES (Advanced Encryption Standard)
  765. candidate cipher by researchers at CounterPane Systems. It is a
  766. 16 round block cipher supporting key sizes of 128, 192, and 256
  767. bits.
  768. This module provides Twofish cipher algorithm that processes three
  769. blocks parallel, utilizing resources of out-of-order CPUs better.
  770. See also:
  771. <http://www.schneier.com/twofish.html>
  772. config CRYPTO_TWOFISH_AVX_X86_64
  773. tristate "Twofish cipher algorithm (x86_64/AVX)"
  774. depends on X86 && 64BIT
  775. select CRYPTO_ALGAPI
  776. select CRYPTO_CRYPTD
  777. select CRYPTO_ABLK_HELPER_X86
  778. select CRYPTO_TWOFISH_COMMON
  779. select CRYPTO_TWOFISH_X86_64
  780. select CRYPTO_TWOFISH_X86_64_3WAY
  781. select CRYPTO_LRW
  782. select CRYPTO_XTS
  783. help
  784. Twofish cipher algorithm (x86_64/AVX).
  785. Twofish was submitted as an AES (Advanced Encryption Standard)
  786. candidate cipher by researchers at CounterPane Systems. It is a
  787. 16 round block cipher supporting key sizes of 128, 192, and 256
  788. bits.
  789. This module provides the Twofish cipher algorithm that processes
  790. eight blocks parallel using the AVX Instruction Set.
  791. See also:
  792. <http://www.schneier.com/twofish.html>
  793. comment "Compression"
  794. config CRYPTO_DEFLATE
  795. tristate "Deflate compression algorithm"
  796. select CRYPTO_ALGAPI
  797. select ZLIB_INFLATE
  798. select ZLIB_DEFLATE
  799. help
  800. This is the Deflate algorithm (RFC1951), specified for use in
  801. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  802. You will most probably want this if using IPSec.
  803. config CRYPTO_ZLIB
  804. tristate "Zlib compression algorithm"
  805. select CRYPTO_PCOMP
  806. select ZLIB_INFLATE
  807. select ZLIB_DEFLATE
  808. select NLATTR
  809. help
  810. This is the zlib algorithm.
  811. config CRYPTO_LZO
  812. tristate "LZO compression algorithm"
  813. select CRYPTO_ALGAPI
  814. select LZO_COMPRESS
  815. select LZO_DECOMPRESS
  816. help
  817. This is the LZO algorithm.
  818. comment "Random Number Generation"
  819. config CRYPTO_ANSI_CPRNG
  820. tristate "Pseudo Random Number Generation for Cryptographic modules"
  821. default m
  822. select CRYPTO_AES
  823. select CRYPTO_RNG
  824. help
  825. This option enables the generic pseudo random number generator
  826. for cryptographic modules. Uses the Algorithm specified in
  827. ANSI X9.31 A.2.4. Note that this option must be enabled if
  828. CRYPTO_FIPS is selected
  829. config CRYPTO_USER_API
  830. tristate
  831. config CRYPTO_USER_API_HASH
  832. tristate "User-space interface for hash algorithms"
  833. depends on NET
  834. select CRYPTO_HASH
  835. select CRYPTO_USER_API
  836. help
  837. This option enables the user-spaces interface for hash
  838. algorithms.
  839. config CRYPTO_USER_API_SKCIPHER
  840. tristate "User-space interface for symmetric key cipher algorithms"
  841. depends on NET
  842. select CRYPTO_BLKCIPHER
  843. select CRYPTO_USER_API
  844. help
  845. This option enables the user-spaces interface for symmetric
  846. key cipher algorithms.
  847. source "drivers/crypto/Kconfig"
  848. endif # if CRYPTO