mv_udc_core.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521
  1. /*
  2. * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
  3. * Author: Chao Xie <chao.xie@marvell.com>
  4. * Neil Zhang <zhangwm@marvell.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dmapool.h>
  15. #include <linux/kernel.h>
  16. #include <linux/delay.h>
  17. #include <linux/ioport.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/errno.h>
  21. #include <linux/init.h>
  22. #include <linux/timer.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/device.h>
  27. #include <linux/usb/ch9.h>
  28. #include <linux/usb/gadget.h>
  29. #include <linux/usb/otg.h>
  30. #include <linux/pm.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/clk.h>
  35. #include <linux/platform_data/mv_usb.h>
  36. #include <asm/system.h>
  37. #include <asm/unaligned.h>
  38. #include "mv_udc.h"
  39. #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
  40. #define DRIVER_VERSION "8 Nov 2010"
  41. #define ep_dir(ep) (((ep)->ep_num == 0) ? \
  42. ((ep)->udc->ep0_dir) : ((ep)->direction))
  43. /* timeout value -- usec */
  44. #define RESET_TIMEOUT 10000
  45. #define FLUSH_TIMEOUT 10000
  46. #define EPSTATUS_TIMEOUT 10000
  47. #define PRIME_TIMEOUT 10000
  48. #define READSAFE_TIMEOUT 1000
  49. #define DTD_TIMEOUT 1000
  50. #define LOOPS_USEC_SHIFT 4
  51. #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
  52. #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
  53. static DECLARE_COMPLETION(release_done);
  54. static const char driver_name[] = "mv_udc";
  55. static const char driver_desc[] = DRIVER_DESC;
  56. /* controller device global variable */
  57. static struct mv_udc *the_controller;
  58. int mv_usb_otgsc;
  59. static void nuke(struct mv_ep *ep, int status);
  60. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
  61. /* for endpoint 0 operations */
  62. static const struct usb_endpoint_descriptor mv_ep0_desc = {
  63. .bLength = USB_DT_ENDPOINT_SIZE,
  64. .bDescriptorType = USB_DT_ENDPOINT,
  65. .bEndpointAddress = 0,
  66. .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
  67. .wMaxPacketSize = EP0_MAX_PKT_SIZE,
  68. };
  69. static void ep0_reset(struct mv_udc *udc)
  70. {
  71. struct mv_ep *ep;
  72. u32 epctrlx;
  73. int i = 0;
  74. /* ep0 in and out */
  75. for (i = 0; i < 2; i++) {
  76. ep = &udc->eps[i];
  77. ep->udc = udc;
  78. /* ep0 dQH */
  79. ep->dqh = &udc->ep_dqh[i];
  80. /* configure ep0 endpoint capabilities in dQH */
  81. ep->dqh->max_packet_length =
  82. (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  83. | EP_QUEUE_HEAD_IOS;
  84. ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
  85. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  86. if (i) { /* TX */
  87. epctrlx |= EPCTRL_TX_ENABLE
  88. | (USB_ENDPOINT_XFER_CONTROL
  89. << EPCTRL_TX_EP_TYPE_SHIFT);
  90. } else { /* RX */
  91. epctrlx |= EPCTRL_RX_ENABLE
  92. | (USB_ENDPOINT_XFER_CONTROL
  93. << EPCTRL_RX_EP_TYPE_SHIFT);
  94. }
  95. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  96. }
  97. }
  98. /* protocol ep0 stall, will automatically be cleared on new transaction */
  99. static void ep0_stall(struct mv_udc *udc)
  100. {
  101. u32 epctrlx;
  102. /* set TX and RX to stall */
  103. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  104. epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
  105. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  106. /* update ep0 state */
  107. udc->ep0_state = WAIT_FOR_SETUP;
  108. udc->ep0_dir = EP_DIR_OUT;
  109. }
  110. static int process_ep_req(struct mv_udc *udc, int index,
  111. struct mv_req *curr_req)
  112. {
  113. struct mv_dtd *curr_dtd;
  114. struct mv_dqh *curr_dqh;
  115. int td_complete, actual, remaining_length;
  116. int i, direction;
  117. int retval = 0;
  118. u32 errors;
  119. u32 bit_pos;
  120. curr_dqh = &udc->ep_dqh[index];
  121. direction = index % 2;
  122. curr_dtd = curr_req->head;
  123. td_complete = 0;
  124. actual = curr_req->req.length;
  125. for (i = 0; i < curr_req->dtd_count; i++) {
  126. if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
  127. dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
  128. udc->eps[index].name);
  129. return 1;
  130. }
  131. errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
  132. if (!errors) {
  133. remaining_length =
  134. (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
  135. >> DTD_LENGTH_BIT_POS;
  136. actual -= remaining_length;
  137. if (remaining_length) {
  138. if (direction) {
  139. dev_dbg(&udc->dev->dev,
  140. "TX dTD remains data\n");
  141. retval = -EPROTO;
  142. break;
  143. } else
  144. break;
  145. }
  146. } else {
  147. dev_info(&udc->dev->dev,
  148. "complete_tr error: ep=%d %s: error = 0x%x\n",
  149. index >> 1, direction ? "SEND" : "RECV",
  150. errors);
  151. if (errors & DTD_STATUS_HALTED) {
  152. /* Clear the errors and Halt condition */
  153. curr_dqh->size_ioc_int_sts &= ~errors;
  154. retval = -EPIPE;
  155. } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
  156. retval = -EPROTO;
  157. } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
  158. retval = -EILSEQ;
  159. }
  160. }
  161. if (i != curr_req->dtd_count - 1)
  162. curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
  163. }
  164. if (retval)
  165. return retval;
  166. if (direction == EP_DIR_OUT)
  167. bit_pos = 1 << curr_req->ep->ep_num;
  168. else
  169. bit_pos = 1 << (16 + curr_req->ep->ep_num);
  170. while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
  171. if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
  172. while (readl(&udc->op_regs->epstatus) & bit_pos)
  173. udelay(1);
  174. break;
  175. }
  176. udelay(1);
  177. }
  178. curr_req->req.actual = actual;
  179. return 0;
  180. }
  181. /*
  182. * done() - retire a request; caller blocked irqs
  183. * @status : request status to be set, only works when
  184. * request is still in progress.
  185. */
  186. static void done(struct mv_ep *ep, struct mv_req *req, int status)
  187. {
  188. struct mv_udc *udc = NULL;
  189. unsigned char stopped = ep->stopped;
  190. struct mv_dtd *curr_td, *next_td;
  191. int j;
  192. udc = (struct mv_udc *)ep->udc;
  193. /* Removed the req from fsl_ep->queue */
  194. list_del_init(&req->queue);
  195. /* req.status should be set as -EINPROGRESS in ep_queue() */
  196. if (req->req.status == -EINPROGRESS)
  197. req->req.status = status;
  198. else
  199. status = req->req.status;
  200. /* Free dtd for the request */
  201. next_td = req->head;
  202. for (j = 0; j < req->dtd_count; j++) {
  203. curr_td = next_td;
  204. if (j != req->dtd_count - 1)
  205. next_td = curr_td->next_dtd_virt;
  206. dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
  207. }
  208. if (req->mapped) {
  209. dma_unmap_single(ep->udc->gadget.dev.parent,
  210. req->req.dma, req->req.length,
  211. ((ep_dir(ep) == EP_DIR_IN) ?
  212. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  213. req->req.dma = DMA_ADDR_INVALID;
  214. req->mapped = 0;
  215. } else
  216. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  217. req->req.dma, req->req.length,
  218. ((ep_dir(ep) == EP_DIR_IN) ?
  219. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  220. if (status && (status != -ESHUTDOWN))
  221. dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
  222. ep->ep.name, &req->req, status,
  223. req->req.actual, req->req.length);
  224. ep->stopped = 1;
  225. spin_unlock(&ep->udc->lock);
  226. /*
  227. * complete() is from gadget layer,
  228. * eg fsg->bulk_in_complete()
  229. */
  230. if (req->req.complete)
  231. req->req.complete(&ep->ep, &req->req);
  232. spin_lock(&ep->udc->lock);
  233. ep->stopped = stopped;
  234. }
  235. static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
  236. {
  237. u32 tmp, epstatus, bit_pos, direction;
  238. struct mv_udc *udc;
  239. struct mv_dqh *dqh;
  240. unsigned int loops;
  241. int readsafe, retval = 0;
  242. udc = ep->udc;
  243. direction = ep_dir(ep);
  244. dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
  245. bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  246. /* check if the pipe is empty */
  247. if (!(list_empty(&ep->queue))) {
  248. struct mv_req *lastreq;
  249. lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
  250. lastreq->tail->dtd_next =
  251. req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  252. if (readl(&udc->op_regs->epprime) & bit_pos) {
  253. loops = LOOPS(PRIME_TIMEOUT);
  254. while (readl(&udc->op_regs->epprime) & bit_pos) {
  255. if (loops == 0) {
  256. retval = -ETIME;
  257. goto done;
  258. }
  259. udelay(LOOPS_USEC);
  260. loops--;
  261. }
  262. if (readl(&udc->op_regs->epstatus) & bit_pos)
  263. goto done;
  264. }
  265. readsafe = 0;
  266. loops = LOOPS(READSAFE_TIMEOUT);
  267. while (readsafe == 0) {
  268. if (loops == 0) {
  269. retval = -ETIME;
  270. goto done;
  271. }
  272. /* start with setting the semaphores */
  273. tmp = readl(&udc->op_regs->usbcmd);
  274. tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
  275. writel(tmp, &udc->op_regs->usbcmd);
  276. /* read the endpoint status */
  277. epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
  278. /*
  279. * Reread the ATDTW semaphore bit to check if it is
  280. * cleared. When hardware see a hazard, it will clear
  281. * the bit or else we remain set to 1 and we can
  282. * proceed with priming of endpoint if not already
  283. * primed.
  284. */
  285. if (readl(&udc->op_regs->usbcmd)
  286. & USBCMD_ATDTW_TRIPWIRE_SET) {
  287. readsafe = 1;
  288. }
  289. loops--;
  290. udelay(LOOPS_USEC);
  291. }
  292. /* Clear the semaphore */
  293. tmp = readl(&udc->op_regs->usbcmd);
  294. tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
  295. writel(tmp, &udc->op_regs->usbcmd);
  296. /* If endpoint is not active, we activate it now. */
  297. if (!epstatus) {
  298. if (direction == EP_DIR_IN) {
  299. struct mv_dtd *curr_dtd = dma_to_virt(
  300. &udc->dev->dev, dqh->curr_dtd_ptr);
  301. loops = LOOPS(DTD_TIMEOUT);
  302. while (curr_dtd->size_ioc_sts
  303. & DTD_STATUS_ACTIVE) {
  304. if (loops == 0) {
  305. retval = -ETIME;
  306. goto done;
  307. }
  308. loops--;
  309. udelay(LOOPS_USEC);
  310. }
  311. }
  312. /* No other transfers on the queue */
  313. /* Write dQH next pointer and terminate bit to 0 */
  314. dqh->next_dtd_ptr = req->head->td_dma
  315. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  316. dqh->size_ioc_int_sts = 0;
  317. /*
  318. * Ensure that updates to the QH will
  319. * occur before priming.
  320. */
  321. wmb();
  322. /* Prime the Endpoint */
  323. writel(bit_pos, &udc->op_regs->epprime);
  324. }
  325. } else {
  326. /* Write dQH next pointer and terminate bit to 0 */
  327. dqh->next_dtd_ptr = req->head->td_dma
  328. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  329. dqh->size_ioc_int_sts = 0;
  330. /* Ensure that updates to the QH will occur before priming. */
  331. wmb();
  332. /* Prime the Endpoint */
  333. writel(bit_pos, &udc->op_regs->epprime);
  334. if (direction == EP_DIR_IN) {
  335. /* FIXME add status check after prime the IN ep */
  336. int prime_again;
  337. u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
  338. loops = LOOPS(DTD_TIMEOUT);
  339. prime_again = 0;
  340. while ((curr_dtd_ptr != req->head->td_dma)) {
  341. curr_dtd_ptr = dqh->curr_dtd_ptr;
  342. if (loops == 0) {
  343. dev_err(&udc->dev->dev,
  344. "failed to prime %s\n",
  345. ep->name);
  346. retval = -ETIME;
  347. goto done;
  348. }
  349. loops--;
  350. udelay(LOOPS_USEC);
  351. if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
  352. if (prime_again)
  353. goto done;
  354. dev_info(&udc->dev->dev,
  355. "prime again\n");
  356. writel(bit_pos,
  357. &udc->op_regs->epprime);
  358. prime_again = 1;
  359. }
  360. }
  361. }
  362. }
  363. done:
  364. return retval;
  365. }
  366. static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
  367. dma_addr_t *dma, int *is_last)
  368. {
  369. u32 temp;
  370. struct mv_dtd *dtd;
  371. struct mv_udc *udc;
  372. /* how big will this transfer be? */
  373. *length = min(req->req.length - req->req.actual,
  374. (unsigned)EP_MAX_LENGTH_TRANSFER);
  375. udc = req->ep->udc;
  376. /*
  377. * Be careful that no _GFP_HIGHMEM is set,
  378. * or we can not use dma_to_virt
  379. */
  380. dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
  381. if (dtd == NULL)
  382. return dtd;
  383. dtd->td_dma = *dma;
  384. /* initialize buffer page pointers */
  385. temp = (u32)(req->req.dma + req->req.actual);
  386. dtd->buff_ptr0 = cpu_to_le32(temp);
  387. temp &= ~0xFFF;
  388. dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
  389. dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
  390. dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
  391. dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
  392. req->req.actual += *length;
  393. /* zlp is needed if req->req.zero is set */
  394. if (req->req.zero) {
  395. if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
  396. *is_last = 1;
  397. else
  398. *is_last = 0;
  399. } else if (req->req.length == req->req.actual)
  400. *is_last = 1;
  401. else
  402. *is_last = 0;
  403. /* Fill in the transfer size; set active bit */
  404. temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
  405. /* Enable interrupt for the last dtd of a request */
  406. if (*is_last && !req->req.no_interrupt)
  407. temp |= DTD_IOC;
  408. dtd->size_ioc_sts = temp;
  409. mb();
  410. return dtd;
  411. }
  412. /* generate dTD linked list for a request */
  413. static int req_to_dtd(struct mv_req *req)
  414. {
  415. unsigned count;
  416. int is_last, is_first = 1;
  417. struct mv_dtd *dtd, *last_dtd = NULL;
  418. struct mv_udc *udc;
  419. dma_addr_t dma;
  420. udc = req->ep->udc;
  421. do {
  422. dtd = build_dtd(req, &count, &dma, &is_last);
  423. if (dtd == NULL)
  424. return -ENOMEM;
  425. if (is_first) {
  426. is_first = 0;
  427. req->head = dtd;
  428. } else {
  429. last_dtd->dtd_next = dma;
  430. last_dtd->next_dtd_virt = dtd;
  431. }
  432. last_dtd = dtd;
  433. req->dtd_count++;
  434. } while (!is_last);
  435. /* set terminate bit to 1 for the last dTD */
  436. dtd->dtd_next = DTD_NEXT_TERMINATE;
  437. req->tail = dtd;
  438. return 0;
  439. }
  440. static int mv_ep_enable(struct usb_ep *_ep,
  441. const struct usb_endpoint_descriptor *desc)
  442. {
  443. struct mv_udc *udc;
  444. struct mv_ep *ep;
  445. struct mv_dqh *dqh;
  446. u16 max = 0;
  447. u32 bit_pos, epctrlx, direction;
  448. unsigned char zlt = 0, ios = 0, mult = 0;
  449. unsigned long flags;
  450. ep = container_of(_ep, struct mv_ep, ep);
  451. udc = ep->udc;
  452. if (!_ep || !desc || ep->desc
  453. || desc->bDescriptorType != USB_DT_ENDPOINT)
  454. return -EINVAL;
  455. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  456. return -ESHUTDOWN;
  457. direction = ep_dir(ep);
  458. max = usb_endpoint_maxp(desc);
  459. /*
  460. * disable HW zero length termination select
  461. * driver handles zero length packet through req->req.zero
  462. */
  463. zlt = 1;
  464. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  465. /* Check if the Endpoint is Primed */
  466. if ((readl(&udc->op_regs->epprime) & bit_pos)
  467. || (readl(&udc->op_regs->epstatus) & bit_pos)) {
  468. dev_info(&udc->dev->dev,
  469. "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
  470. " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  471. (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
  472. (unsigned)readl(&udc->op_regs->epprime),
  473. (unsigned)readl(&udc->op_regs->epstatus),
  474. (unsigned)bit_pos);
  475. goto en_done;
  476. }
  477. /* Set the max packet length, interrupt on Setup and Mult fields */
  478. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  479. case USB_ENDPOINT_XFER_BULK:
  480. zlt = 1;
  481. mult = 0;
  482. break;
  483. case USB_ENDPOINT_XFER_CONTROL:
  484. ios = 1;
  485. case USB_ENDPOINT_XFER_INT:
  486. mult = 0;
  487. break;
  488. case USB_ENDPOINT_XFER_ISOC:
  489. /* Calculate transactions needed for high bandwidth iso */
  490. mult = (unsigned char)(1 + ((max >> 11) & 0x03));
  491. max = max & 0x7ff; /* bit 0~10 */
  492. /* 3 transactions at most */
  493. if (mult > 3)
  494. goto en_done;
  495. break;
  496. default:
  497. goto en_done;
  498. }
  499. spin_lock_irqsave(&udc->lock, flags);
  500. /* Get the endpoint queue head address */
  501. dqh = ep->dqh;
  502. dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  503. | (mult << EP_QUEUE_HEAD_MULT_POS)
  504. | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
  505. | (ios ? EP_QUEUE_HEAD_IOS : 0);
  506. dqh->next_dtd_ptr = 1;
  507. dqh->size_ioc_int_sts = 0;
  508. ep->ep.maxpacket = max;
  509. ep->desc = desc;
  510. ep->stopped = 0;
  511. /* Enable the endpoint for Rx or Tx and set the endpoint type */
  512. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  513. if (direction == EP_DIR_IN) {
  514. epctrlx &= ~EPCTRL_TX_ALL_MASK;
  515. epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
  516. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  517. << EPCTRL_TX_EP_TYPE_SHIFT);
  518. } else {
  519. epctrlx &= ~EPCTRL_RX_ALL_MASK;
  520. epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
  521. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  522. << EPCTRL_RX_EP_TYPE_SHIFT);
  523. }
  524. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  525. /*
  526. * Implement Guideline (GL# USB-7) The unused endpoint type must
  527. * be programmed to bulk.
  528. */
  529. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  530. if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
  531. epctrlx |= (USB_ENDPOINT_XFER_BULK
  532. << EPCTRL_RX_EP_TYPE_SHIFT);
  533. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  534. }
  535. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  536. if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
  537. epctrlx |= (USB_ENDPOINT_XFER_BULK
  538. << EPCTRL_TX_EP_TYPE_SHIFT);
  539. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  540. }
  541. spin_unlock_irqrestore(&udc->lock, flags);
  542. return 0;
  543. en_done:
  544. return -EINVAL;
  545. }
  546. static int mv_ep_disable(struct usb_ep *_ep)
  547. {
  548. struct mv_udc *udc;
  549. struct mv_ep *ep;
  550. struct mv_dqh *dqh;
  551. u32 bit_pos, epctrlx, direction;
  552. unsigned long flags;
  553. ep = container_of(_ep, struct mv_ep, ep);
  554. if ((_ep == NULL) || !ep->desc)
  555. return -EINVAL;
  556. udc = ep->udc;
  557. /* Get the endpoint queue head address */
  558. dqh = ep->dqh;
  559. spin_lock_irqsave(&udc->lock, flags);
  560. direction = ep_dir(ep);
  561. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  562. /* Reset the max packet length and the interrupt on Setup */
  563. dqh->max_packet_length = 0;
  564. /* Disable the endpoint for Rx or Tx and reset the endpoint type */
  565. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  566. epctrlx &= ~((direction == EP_DIR_IN)
  567. ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
  568. : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
  569. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  570. /* nuke all pending requests (does flush) */
  571. nuke(ep, -ESHUTDOWN);
  572. ep->desc = NULL;
  573. ep->stopped = 1;
  574. spin_unlock_irqrestore(&udc->lock, flags);
  575. return 0;
  576. }
  577. static struct usb_request *
  578. mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
  579. {
  580. struct mv_req *req = NULL;
  581. req = kzalloc(sizeof *req, gfp_flags);
  582. if (!req)
  583. return NULL;
  584. req->req.dma = DMA_ADDR_INVALID;
  585. INIT_LIST_HEAD(&req->queue);
  586. return &req->req;
  587. }
  588. static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
  589. {
  590. struct mv_req *req = NULL;
  591. req = container_of(_req, struct mv_req, req);
  592. if (_req)
  593. kfree(req);
  594. }
  595. static void mv_ep_fifo_flush(struct usb_ep *_ep)
  596. {
  597. struct mv_udc *udc;
  598. u32 bit_pos, direction;
  599. struct mv_ep *ep;
  600. unsigned int loops;
  601. if (!_ep)
  602. return;
  603. ep = container_of(_ep, struct mv_ep, ep);
  604. if (!ep->desc)
  605. return;
  606. udc = ep->udc;
  607. direction = ep_dir(ep);
  608. if (ep->ep_num == 0)
  609. bit_pos = (1 << 16) | 1;
  610. else if (direction == EP_DIR_OUT)
  611. bit_pos = 1 << ep->ep_num;
  612. else
  613. bit_pos = 1 << (16 + ep->ep_num);
  614. loops = LOOPS(EPSTATUS_TIMEOUT);
  615. do {
  616. unsigned int inter_loops;
  617. if (loops == 0) {
  618. dev_err(&udc->dev->dev,
  619. "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  620. (unsigned)readl(&udc->op_regs->epstatus),
  621. (unsigned)bit_pos);
  622. return;
  623. }
  624. /* Write 1 to the Flush register */
  625. writel(bit_pos, &udc->op_regs->epflush);
  626. /* Wait until flushing completed */
  627. inter_loops = LOOPS(FLUSH_TIMEOUT);
  628. while (readl(&udc->op_regs->epflush)) {
  629. /*
  630. * ENDPTFLUSH bit should be cleared to indicate this
  631. * operation is complete
  632. */
  633. if (inter_loops == 0) {
  634. dev_err(&udc->dev->dev,
  635. "TIMEOUT for ENDPTFLUSH=0x%x,"
  636. "bit_pos=0x%x\n",
  637. (unsigned)readl(&udc->op_regs->epflush),
  638. (unsigned)bit_pos);
  639. return;
  640. }
  641. inter_loops--;
  642. udelay(LOOPS_USEC);
  643. }
  644. loops--;
  645. } while (readl(&udc->op_regs->epstatus) & bit_pos);
  646. }
  647. /* queues (submits) an I/O request to an endpoint */
  648. static int
  649. mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
  650. {
  651. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  652. struct mv_req *req = container_of(_req, struct mv_req, req);
  653. struct mv_udc *udc = ep->udc;
  654. unsigned long flags;
  655. /* catch various bogus parameters */
  656. if (!_req || !req->req.complete || !req->req.buf
  657. || !list_empty(&req->queue)) {
  658. dev_err(&udc->dev->dev, "%s, bad params", __func__);
  659. return -EINVAL;
  660. }
  661. if (unlikely(!_ep || !ep->desc)) {
  662. dev_err(&udc->dev->dev, "%s, bad ep", __func__);
  663. return -EINVAL;
  664. }
  665. if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  666. if (req->req.length > ep->ep.maxpacket)
  667. return -EMSGSIZE;
  668. }
  669. udc = ep->udc;
  670. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  671. return -ESHUTDOWN;
  672. req->ep = ep;
  673. /* map virtual address to hardware */
  674. if (req->req.dma == DMA_ADDR_INVALID) {
  675. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  676. req->req.buf,
  677. req->req.length, ep_dir(ep)
  678. ? DMA_TO_DEVICE
  679. : DMA_FROM_DEVICE);
  680. req->mapped = 1;
  681. } else {
  682. dma_sync_single_for_device(ep->udc->gadget.dev.parent,
  683. req->req.dma, req->req.length,
  684. ep_dir(ep)
  685. ? DMA_TO_DEVICE
  686. : DMA_FROM_DEVICE);
  687. req->mapped = 0;
  688. }
  689. req->req.status = -EINPROGRESS;
  690. req->req.actual = 0;
  691. req->dtd_count = 0;
  692. spin_lock_irqsave(&udc->lock, flags);
  693. /* build dtds and push them to device queue */
  694. if (!req_to_dtd(req)) {
  695. int retval;
  696. retval = queue_dtd(ep, req);
  697. if (retval) {
  698. spin_unlock_irqrestore(&udc->lock, flags);
  699. return retval;
  700. }
  701. } else {
  702. spin_unlock_irqrestore(&udc->lock, flags);
  703. return -ENOMEM;
  704. }
  705. /* Update ep0 state */
  706. if (ep->ep_num == 0)
  707. udc->ep0_state = DATA_STATE_XMIT;
  708. /* irq handler advances the queue */
  709. if (req != NULL)
  710. list_add_tail(&req->queue, &ep->queue);
  711. spin_unlock_irqrestore(&udc->lock, flags);
  712. return 0;
  713. }
  714. /* dequeues (cancels, unlinks) an I/O request from an endpoint */
  715. static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
  716. {
  717. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  718. struct mv_req *req;
  719. struct mv_udc *udc = ep->udc;
  720. unsigned long flags;
  721. int stopped, ret = 0;
  722. u32 epctrlx;
  723. if (!_ep || !_req)
  724. return -EINVAL;
  725. spin_lock_irqsave(&ep->udc->lock, flags);
  726. stopped = ep->stopped;
  727. /* Stop the ep before we deal with the queue */
  728. ep->stopped = 1;
  729. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  730. if (ep_dir(ep) == EP_DIR_IN)
  731. epctrlx &= ~EPCTRL_TX_ENABLE;
  732. else
  733. epctrlx &= ~EPCTRL_RX_ENABLE;
  734. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  735. /* make sure it's actually queued on this endpoint */
  736. list_for_each_entry(req, &ep->queue, queue) {
  737. if (&req->req == _req)
  738. break;
  739. }
  740. if (&req->req != _req) {
  741. ret = -EINVAL;
  742. goto out;
  743. }
  744. /* The request is in progress, or completed but not dequeued */
  745. if (ep->queue.next == &req->queue) {
  746. _req->status = -ECONNRESET;
  747. mv_ep_fifo_flush(_ep); /* flush current transfer */
  748. /* The request isn't the last request in this ep queue */
  749. if (req->queue.next != &ep->queue) {
  750. struct mv_dqh *qh;
  751. struct mv_req *next_req;
  752. qh = ep->dqh;
  753. next_req = list_entry(req->queue.next, struct mv_req,
  754. queue);
  755. /* Point the QH to the first TD of next request */
  756. writel((u32) next_req->head, &qh->curr_dtd_ptr);
  757. } else {
  758. struct mv_dqh *qh;
  759. qh = ep->dqh;
  760. qh->next_dtd_ptr = 1;
  761. qh->size_ioc_int_sts = 0;
  762. }
  763. /* The request hasn't been processed, patch up the TD chain */
  764. } else {
  765. struct mv_req *prev_req;
  766. prev_req = list_entry(req->queue.prev, struct mv_req, queue);
  767. writel(readl(&req->tail->dtd_next),
  768. &prev_req->tail->dtd_next);
  769. }
  770. done(ep, req, -ECONNRESET);
  771. /* Enable EP */
  772. out:
  773. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  774. if (ep_dir(ep) == EP_DIR_IN)
  775. epctrlx |= EPCTRL_TX_ENABLE;
  776. else
  777. epctrlx |= EPCTRL_RX_ENABLE;
  778. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  779. ep->stopped = stopped;
  780. spin_unlock_irqrestore(&ep->udc->lock, flags);
  781. return ret;
  782. }
  783. static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
  784. {
  785. u32 epctrlx;
  786. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  787. if (stall) {
  788. if (direction == EP_DIR_IN)
  789. epctrlx |= EPCTRL_TX_EP_STALL;
  790. else
  791. epctrlx |= EPCTRL_RX_EP_STALL;
  792. } else {
  793. if (direction == EP_DIR_IN) {
  794. epctrlx &= ~EPCTRL_TX_EP_STALL;
  795. epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
  796. } else {
  797. epctrlx &= ~EPCTRL_RX_EP_STALL;
  798. epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
  799. }
  800. }
  801. writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
  802. }
  803. static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
  804. {
  805. u32 epctrlx;
  806. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  807. if (direction == EP_DIR_OUT)
  808. return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
  809. else
  810. return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
  811. }
  812. static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
  813. {
  814. struct mv_ep *ep;
  815. unsigned long flags = 0;
  816. int status = 0;
  817. struct mv_udc *udc;
  818. ep = container_of(_ep, struct mv_ep, ep);
  819. udc = ep->udc;
  820. if (!_ep || !ep->desc) {
  821. status = -EINVAL;
  822. goto out;
  823. }
  824. if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  825. status = -EOPNOTSUPP;
  826. goto out;
  827. }
  828. /*
  829. * Attempt to halt IN ep will fail if any transfer requests
  830. * are still queue
  831. */
  832. if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
  833. status = -EAGAIN;
  834. goto out;
  835. }
  836. spin_lock_irqsave(&ep->udc->lock, flags);
  837. ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
  838. if (halt && wedge)
  839. ep->wedge = 1;
  840. else if (!halt)
  841. ep->wedge = 0;
  842. spin_unlock_irqrestore(&ep->udc->lock, flags);
  843. if (ep->ep_num == 0) {
  844. udc->ep0_state = WAIT_FOR_SETUP;
  845. udc->ep0_dir = EP_DIR_OUT;
  846. }
  847. out:
  848. return status;
  849. }
  850. static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
  851. {
  852. return mv_ep_set_halt_wedge(_ep, halt, 0);
  853. }
  854. static int mv_ep_set_wedge(struct usb_ep *_ep)
  855. {
  856. return mv_ep_set_halt_wedge(_ep, 1, 1);
  857. }
  858. static struct usb_ep_ops mv_ep_ops = {
  859. .enable = mv_ep_enable,
  860. .disable = mv_ep_disable,
  861. .alloc_request = mv_alloc_request,
  862. .free_request = mv_free_request,
  863. .queue = mv_ep_queue,
  864. .dequeue = mv_ep_dequeue,
  865. .set_wedge = mv_ep_set_wedge,
  866. .set_halt = mv_ep_set_halt,
  867. .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
  868. };
  869. static void udc_clock_enable(struct mv_udc *udc)
  870. {
  871. unsigned int i;
  872. for (i = 0; i < udc->clknum; i++)
  873. clk_enable(udc->clk[i]);
  874. }
  875. static void udc_clock_disable(struct mv_udc *udc)
  876. {
  877. unsigned int i;
  878. for (i = 0; i < udc->clknum; i++)
  879. clk_disable(udc->clk[i]);
  880. }
  881. static void udc_stop(struct mv_udc *udc)
  882. {
  883. u32 tmp;
  884. /* Disable interrupts */
  885. tmp = readl(&udc->op_regs->usbintr);
  886. tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
  887. USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
  888. writel(tmp, &udc->op_regs->usbintr);
  889. udc->stopped = 1;
  890. /* Reset the Run the bit in the command register to stop VUSB */
  891. tmp = readl(&udc->op_regs->usbcmd);
  892. tmp &= ~USBCMD_RUN_STOP;
  893. writel(tmp, &udc->op_regs->usbcmd);
  894. }
  895. static void udc_start(struct mv_udc *udc)
  896. {
  897. u32 usbintr;
  898. usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
  899. | USBINTR_PORT_CHANGE_DETECT_EN
  900. | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
  901. /* Enable interrupts */
  902. writel(usbintr, &udc->op_regs->usbintr);
  903. udc->stopped = 0;
  904. /* Set the Run bit in the command register */
  905. writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
  906. }
  907. static int udc_reset(struct mv_udc *udc)
  908. {
  909. unsigned int loops;
  910. u32 tmp, portsc;
  911. /* Stop the controller */
  912. tmp = readl(&udc->op_regs->usbcmd);
  913. tmp &= ~USBCMD_RUN_STOP;
  914. writel(tmp, &udc->op_regs->usbcmd);
  915. /* Reset the controller to get default values */
  916. writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
  917. /* wait for reset to complete */
  918. loops = LOOPS(RESET_TIMEOUT);
  919. while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
  920. if (loops == 0) {
  921. dev_err(&udc->dev->dev,
  922. "Wait for RESET completed TIMEOUT\n");
  923. return -ETIMEDOUT;
  924. }
  925. loops--;
  926. udelay(LOOPS_USEC);
  927. }
  928. /* set controller to device mode */
  929. tmp = readl(&udc->op_regs->usbmode);
  930. tmp |= USBMODE_CTRL_MODE_DEVICE;
  931. /* turn setup lockout off, require setup tripwire in usbcmd */
  932. tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
  933. writel(tmp, &udc->op_regs->usbmode);
  934. writel(0x0, &udc->op_regs->epsetupstat);
  935. /* Configure the Endpoint List Address */
  936. writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
  937. &udc->op_regs->eplistaddr);
  938. portsc = readl(&udc->op_regs->portsc[0]);
  939. if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
  940. portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
  941. if (udc->force_fs)
  942. portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
  943. else
  944. portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
  945. writel(portsc, &udc->op_regs->portsc[0]);
  946. tmp = readl(&udc->op_regs->epctrlx[0]);
  947. tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
  948. writel(tmp, &udc->op_regs->epctrlx[0]);
  949. return 0;
  950. }
  951. static int mv_udc_enable(struct mv_udc *udc)
  952. {
  953. int retval;
  954. if (udc->clock_gating == 0 || udc->active)
  955. return 0;
  956. dev_dbg(&udc->dev->dev, "enable udc\n");
  957. udc_clock_enable(udc);
  958. if (udc->pdata->phy_init) {
  959. retval = udc->pdata->phy_init(udc->phy_regs);
  960. if (retval) {
  961. dev_err(&udc->dev->dev,
  962. "init phy error %d\n", retval);
  963. udc_clock_disable(udc);
  964. return retval;
  965. }
  966. }
  967. udc->active = 1;
  968. return 0;
  969. }
  970. static void mv_udc_disable(struct mv_udc *udc)
  971. {
  972. if (udc->clock_gating && udc->active) {
  973. dev_dbg(&udc->dev->dev, "disable udc\n");
  974. if (udc->pdata->phy_deinit)
  975. udc->pdata->phy_deinit(udc->phy_regs);
  976. udc_clock_disable(udc);
  977. udc->active = 0;
  978. }
  979. }
  980. static int mv_udc_get_frame(struct usb_gadget *gadget)
  981. {
  982. struct mv_udc *udc;
  983. u16 retval;
  984. if (!gadget)
  985. return -ENODEV;
  986. udc = container_of(gadget, struct mv_udc, gadget);
  987. retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
  988. return retval;
  989. }
  990. /* Tries to wake up the host connected to this gadget */
  991. static int mv_udc_wakeup(struct usb_gadget *gadget)
  992. {
  993. struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
  994. u32 portsc;
  995. /* Remote wakeup feature not enabled by host */
  996. if (!udc->remote_wakeup)
  997. return -ENOTSUPP;
  998. portsc = readl(&udc->op_regs->portsc);
  999. /* not suspended? */
  1000. if (!(portsc & PORTSCX_PORT_SUSPEND))
  1001. return 0;
  1002. /* trigger force resume */
  1003. portsc |= PORTSCX_PORT_FORCE_RESUME;
  1004. writel(portsc, &udc->op_regs->portsc[0]);
  1005. return 0;
  1006. }
  1007. static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
  1008. {
  1009. struct mv_udc *udc;
  1010. unsigned long flags;
  1011. int retval = 0;
  1012. udc = container_of(gadget, struct mv_udc, gadget);
  1013. spin_lock_irqsave(&udc->lock, flags);
  1014. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  1015. __func__, udc->softconnect, udc->vbus_active);
  1016. udc->vbus_active = (is_active != 0);
  1017. if (udc->driver && udc->softconnect && udc->vbus_active) {
  1018. retval = mv_udc_enable(udc);
  1019. if (retval == 0) {
  1020. /* Clock is disabled, need re-init registers */
  1021. udc_reset(udc);
  1022. ep0_reset(udc);
  1023. udc_start(udc);
  1024. }
  1025. } else if (udc->driver && udc->softconnect) {
  1026. /* stop all the transfer in queue*/
  1027. stop_activity(udc, udc->driver);
  1028. udc_stop(udc);
  1029. mv_udc_disable(udc);
  1030. }
  1031. spin_unlock_irqrestore(&udc->lock, flags);
  1032. return retval;
  1033. }
  1034. static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
  1035. {
  1036. struct mv_udc *udc;
  1037. unsigned long flags;
  1038. int retval = 0;
  1039. udc = container_of(gadget, struct mv_udc, gadget);
  1040. spin_lock_irqsave(&udc->lock, flags);
  1041. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  1042. __func__, udc->softconnect, udc->vbus_active);
  1043. udc->softconnect = (is_on != 0);
  1044. if (udc->driver && udc->softconnect && udc->vbus_active) {
  1045. retval = mv_udc_enable(udc);
  1046. if (retval == 0) {
  1047. /* Clock is disabled, need re-init registers */
  1048. udc_reset(udc);
  1049. ep0_reset(udc);
  1050. udc_start(udc);
  1051. }
  1052. } else if (udc->driver && udc->vbus_active) {
  1053. /* stop all the transfer in queue*/
  1054. stop_activity(udc, udc->driver);
  1055. udc_stop(udc);
  1056. mv_udc_disable(udc);
  1057. }
  1058. spin_unlock_irqrestore(&udc->lock, flags);
  1059. return retval;
  1060. }
  1061. static int mv_udc_start(struct usb_gadget_driver *driver,
  1062. int (*bind)(struct usb_gadget *));
  1063. static int mv_udc_stop(struct usb_gadget_driver *driver);
  1064. /* device controller usb_gadget_ops structure */
  1065. static const struct usb_gadget_ops mv_ops = {
  1066. /* returns the current frame number */
  1067. .get_frame = mv_udc_get_frame,
  1068. /* tries to wake up the host connected to this gadget */
  1069. .wakeup = mv_udc_wakeup,
  1070. /* notify controller that VBUS is powered or not */
  1071. .vbus_session = mv_udc_vbus_session,
  1072. /* D+ pullup, software-controlled connect/disconnect to USB host */
  1073. .pullup = mv_udc_pullup,
  1074. .start = mv_udc_start,
  1075. .stop = mv_udc_stop,
  1076. };
  1077. static int eps_init(struct mv_udc *udc)
  1078. {
  1079. struct mv_ep *ep;
  1080. char name[14];
  1081. int i;
  1082. /* initialize ep0 */
  1083. ep = &udc->eps[0];
  1084. ep->udc = udc;
  1085. strncpy(ep->name, "ep0", sizeof(ep->name));
  1086. ep->ep.name = ep->name;
  1087. ep->ep.ops = &mv_ep_ops;
  1088. ep->wedge = 0;
  1089. ep->stopped = 0;
  1090. ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
  1091. ep->ep_num = 0;
  1092. ep->desc = &mv_ep0_desc;
  1093. INIT_LIST_HEAD(&ep->queue);
  1094. ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
  1095. /* initialize other endpoints */
  1096. for (i = 2; i < udc->max_eps * 2; i++) {
  1097. ep = &udc->eps[i];
  1098. if (i % 2) {
  1099. snprintf(name, sizeof(name), "ep%din", i / 2);
  1100. ep->direction = EP_DIR_IN;
  1101. } else {
  1102. snprintf(name, sizeof(name), "ep%dout", i / 2);
  1103. ep->direction = EP_DIR_OUT;
  1104. }
  1105. ep->udc = udc;
  1106. strncpy(ep->name, name, sizeof(ep->name));
  1107. ep->ep.name = ep->name;
  1108. ep->ep.ops = &mv_ep_ops;
  1109. ep->stopped = 0;
  1110. ep->ep.maxpacket = (unsigned short) ~0;
  1111. ep->ep_num = i / 2;
  1112. INIT_LIST_HEAD(&ep->queue);
  1113. list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
  1114. ep->dqh = &udc->ep_dqh[i];
  1115. }
  1116. return 0;
  1117. }
  1118. /* delete all endpoint requests, called with spinlock held */
  1119. static void nuke(struct mv_ep *ep, int status)
  1120. {
  1121. /* called with spinlock held */
  1122. ep->stopped = 1;
  1123. /* endpoint fifo flush */
  1124. mv_ep_fifo_flush(&ep->ep);
  1125. while (!list_empty(&ep->queue)) {
  1126. struct mv_req *req = NULL;
  1127. req = list_entry(ep->queue.next, struct mv_req, queue);
  1128. done(ep, req, status);
  1129. }
  1130. }
  1131. /* stop all USB activities */
  1132. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
  1133. {
  1134. struct mv_ep *ep;
  1135. nuke(&udc->eps[0], -ESHUTDOWN);
  1136. list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
  1137. nuke(ep, -ESHUTDOWN);
  1138. }
  1139. /* report disconnect; the driver is already quiesced */
  1140. if (driver) {
  1141. spin_unlock(&udc->lock);
  1142. driver->disconnect(&udc->gadget);
  1143. spin_lock(&udc->lock);
  1144. }
  1145. }
  1146. static int mv_udc_start(struct usb_gadget_driver *driver,
  1147. int (*bind)(struct usb_gadget *))
  1148. {
  1149. struct mv_udc *udc = the_controller;
  1150. int retval = 0;
  1151. unsigned long flags;
  1152. if (!udc)
  1153. return -ENODEV;
  1154. if (udc->driver)
  1155. return -EBUSY;
  1156. spin_lock_irqsave(&udc->lock, flags);
  1157. /* hook up the driver ... */
  1158. driver->driver.bus = NULL;
  1159. udc->driver = driver;
  1160. udc->gadget.dev.driver = &driver->driver;
  1161. udc->usb_state = USB_STATE_ATTACHED;
  1162. udc->ep0_state = WAIT_FOR_SETUP;
  1163. udc->ep0_dir = EP_DIR_OUT;
  1164. spin_unlock_irqrestore(&udc->lock, flags);
  1165. retval = bind(&udc->gadget);
  1166. if (retval) {
  1167. dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
  1168. driver->driver.name, retval);
  1169. udc->driver = NULL;
  1170. udc->gadget.dev.driver = NULL;
  1171. return retval;
  1172. }
  1173. if (udc->transceiver) {
  1174. retval = otg_set_peripheral(udc->transceiver, &udc->gadget);
  1175. if (retval) {
  1176. dev_err(&udc->dev->dev,
  1177. "unable to register peripheral to otg\n");
  1178. if (driver->unbind) {
  1179. driver->unbind(&udc->gadget);
  1180. udc->gadget.dev.driver = NULL;
  1181. udc->driver = NULL;
  1182. }
  1183. return retval;
  1184. }
  1185. }
  1186. /* pullup is always on */
  1187. mv_udc_pullup(&udc->gadget, 1);
  1188. /* When boot with cable attached, there will be no vbus irq occurred */
  1189. if (udc->qwork)
  1190. queue_work(udc->qwork, &udc->vbus_work);
  1191. return 0;
  1192. }
  1193. static int mv_udc_stop(struct usb_gadget_driver *driver)
  1194. {
  1195. struct mv_udc *udc = the_controller;
  1196. unsigned long flags;
  1197. if (!udc)
  1198. return -ENODEV;
  1199. spin_lock_irqsave(&udc->lock, flags);
  1200. mv_udc_enable(udc);
  1201. udc_stop(udc);
  1202. /* stop all usb activities */
  1203. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1204. stop_activity(udc, driver);
  1205. mv_udc_disable(udc);
  1206. spin_unlock_irqrestore(&udc->lock, flags);
  1207. /* unbind gadget driver */
  1208. driver->unbind(&udc->gadget);
  1209. udc->gadget.dev.driver = NULL;
  1210. udc->driver = NULL;
  1211. return 0;
  1212. }
  1213. static void mv_set_ptc(struct mv_udc *udc, u32 mode)
  1214. {
  1215. u32 portsc;
  1216. portsc = readl(&udc->op_regs->portsc[0]);
  1217. portsc |= mode << 16;
  1218. writel(portsc, &udc->op_regs->portsc[0]);
  1219. }
  1220. static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
  1221. {
  1222. struct mv_udc *udc = the_controller;
  1223. struct mv_req *req = container_of(_req, struct mv_req, req);
  1224. unsigned long flags;
  1225. dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
  1226. spin_lock_irqsave(&udc->lock, flags);
  1227. if (req->test_mode) {
  1228. mv_set_ptc(udc, req->test_mode);
  1229. req->test_mode = 0;
  1230. }
  1231. spin_unlock_irqrestore(&udc->lock, flags);
  1232. }
  1233. static int
  1234. udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
  1235. {
  1236. int retval = 0;
  1237. struct mv_req *req;
  1238. struct mv_ep *ep;
  1239. ep = &udc->eps[0];
  1240. udc->ep0_dir = direction;
  1241. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1242. req = udc->status_req;
  1243. /* fill in the reqest structure */
  1244. if (empty == false) {
  1245. *((u16 *) req->req.buf) = cpu_to_le16(status);
  1246. req->req.length = 2;
  1247. } else
  1248. req->req.length = 0;
  1249. req->ep = ep;
  1250. req->req.status = -EINPROGRESS;
  1251. req->req.actual = 0;
  1252. if (udc->test_mode) {
  1253. req->req.complete = prime_status_complete;
  1254. req->test_mode = udc->test_mode;
  1255. udc->test_mode = 0;
  1256. } else
  1257. req->req.complete = NULL;
  1258. req->dtd_count = 0;
  1259. if (req->req.dma == DMA_ADDR_INVALID) {
  1260. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  1261. req->req.buf, req->req.length,
  1262. ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1263. req->mapped = 1;
  1264. }
  1265. /* prime the data phase */
  1266. if (!req_to_dtd(req))
  1267. retval = queue_dtd(ep, req);
  1268. else{ /* no mem */
  1269. retval = -ENOMEM;
  1270. goto out;
  1271. }
  1272. if (retval) {
  1273. dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
  1274. goto out;
  1275. }
  1276. list_add_tail(&req->queue, &ep->queue);
  1277. return 0;
  1278. out:
  1279. return retval;
  1280. }
  1281. static void mv_udc_testmode(struct mv_udc *udc, u16 index)
  1282. {
  1283. if (index <= TEST_FORCE_EN) {
  1284. udc->test_mode = index;
  1285. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1286. ep0_stall(udc);
  1287. } else
  1288. dev_err(&udc->dev->dev,
  1289. "This test mode(%d) is not supported\n", index);
  1290. }
  1291. static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1292. {
  1293. udc->dev_addr = (u8)setup->wValue;
  1294. /* update usb state */
  1295. udc->usb_state = USB_STATE_ADDRESS;
  1296. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1297. ep0_stall(udc);
  1298. }
  1299. static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
  1300. struct usb_ctrlrequest *setup)
  1301. {
  1302. u16 status = 0;
  1303. int retval;
  1304. if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
  1305. != (USB_DIR_IN | USB_TYPE_STANDARD))
  1306. return;
  1307. if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
  1308. status = 1 << USB_DEVICE_SELF_POWERED;
  1309. status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
  1310. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1311. == USB_RECIP_INTERFACE) {
  1312. /* get interface status */
  1313. status = 0;
  1314. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1315. == USB_RECIP_ENDPOINT) {
  1316. u8 ep_num, direction;
  1317. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1318. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1319. ? EP_DIR_IN : EP_DIR_OUT;
  1320. status = ep_is_stall(udc, ep_num, direction)
  1321. << USB_ENDPOINT_HALT;
  1322. }
  1323. retval = udc_prime_status(udc, EP_DIR_IN, status, false);
  1324. if (retval)
  1325. ep0_stall(udc);
  1326. else
  1327. udc->ep0_state = DATA_STATE_XMIT;
  1328. }
  1329. static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1330. {
  1331. u8 ep_num;
  1332. u8 direction;
  1333. struct mv_ep *ep;
  1334. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1335. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1336. switch (setup->wValue) {
  1337. case USB_DEVICE_REMOTE_WAKEUP:
  1338. udc->remote_wakeup = 0;
  1339. break;
  1340. default:
  1341. goto out;
  1342. }
  1343. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1344. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1345. switch (setup->wValue) {
  1346. case USB_ENDPOINT_HALT:
  1347. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1348. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1349. ? EP_DIR_IN : EP_DIR_OUT;
  1350. if (setup->wValue != 0 || setup->wLength != 0
  1351. || ep_num > udc->max_eps)
  1352. goto out;
  1353. ep = &udc->eps[ep_num * 2 + direction];
  1354. if (ep->wedge == 1)
  1355. break;
  1356. spin_unlock(&udc->lock);
  1357. ep_set_stall(udc, ep_num, direction, 0);
  1358. spin_lock(&udc->lock);
  1359. break;
  1360. default:
  1361. goto out;
  1362. }
  1363. } else
  1364. goto out;
  1365. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1366. ep0_stall(udc);
  1367. out:
  1368. return;
  1369. }
  1370. static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1371. {
  1372. u8 ep_num;
  1373. u8 direction;
  1374. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1375. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1376. switch (setup->wValue) {
  1377. case USB_DEVICE_REMOTE_WAKEUP:
  1378. udc->remote_wakeup = 1;
  1379. break;
  1380. case USB_DEVICE_TEST_MODE:
  1381. if (setup->wIndex & 0xFF
  1382. || udc->gadget.speed != USB_SPEED_HIGH)
  1383. ep0_stall(udc);
  1384. if (udc->usb_state != USB_STATE_CONFIGURED
  1385. && udc->usb_state != USB_STATE_ADDRESS
  1386. && udc->usb_state != USB_STATE_DEFAULT)
  1387. ep0_stall(udc);
  1388. mv_udc_testmode(udc, (setup->wIndex >> 8));
  1389. goto out;
  1390. default:
  1391. goto out;
  1392. }
  1393. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1394. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1395. switch (setup->wValue) {
  1396. case USB_ENDPOINT_HALT:
  1397. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1398. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1399. ? EP_DIR_IN : EP_DIR_OUT;
  1400. if (setup->wValue != 0 || setup->wLength != 0
  1401. || ep_num > udc->max_eps)
  1402. goto out;
  1403. spin_unlock(&udc->lock);
  1404. ep_set_stall(udc, ep_num, direction, 1);
  1405. spin_lock(&udc->lock);
  1406. break;
  1407. default:
  1408. goto out;
  1409. }
  1410. } else
  1411. goto out;
  1412. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1413. ep0_stall(udc);
  1414. out:
  1415. return;
  1416. }
  1417. static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
  1418. struct usb_ctrlrequest *setup)
  1419. {
  1420. bool delegate = false;
  1421. nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
  1422. dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
  1423. setup->bRequestType, setup->bRequest,
  1424. setup->wValue, setup->wIndex, setup->wLength);
  1425. /* We process some stardard setup requests here */
  1426. if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  1427. switch (setup->bRequest) {
  1428. case USB_REQ_GET_STATUS:
  1429. ch9getstatus(udc, ep_num, setup);
  1430. break;
  1431. case USB_REQ_SET_ADDRESS:
  1432. ch9setaddress(udc, setup);
  1433. break;
  1434. case USB_REQ_CLEAR_FEATURE:
  1435. ch9clearfeature(udc, setup);
  1436. break;
  1437. case USB_REQ_SET_FEATURE:
  1438. ch9setfeature(udc, setup);
  1439. break;
  1440. default:
  1441. delegate = true;
  1442. }
  1443. } else
  1444. delegate = true;
  1445. /* delegate USB standard requests to the gadget driver */
  1446. if (delegate == true) {
  1447. /* USB requests handled by gadget */
  1448. if (setup->wLength) {
  1449. /* DATA phase from gadget, STATUS phase from udc */
  1450. udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
  1451. ? EP_DIR_IN : EP_DIR_OUT;
  1452. spin_unlock(&udc->lock);
  1453. if (udc->driver->setup(&udc->gadget,
  1454. &udc->local_setup_buff) < 0)
  1455. ep0_stall(udc);
  1456. spin_lock(&udc->lock);
  1457. udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
  1458. ? DATA_STATE_XMIT : DATA_STATE_RECV;
  1459. } else {
  1460. /* no DATA phase, IN STATUS phase from gadget */
  1461. udc->ep0_dir = EP_DIR_IN;
  1462. spin_unlock(&udc->lock);
  1463. if (udc->driver->setup(&udc->gadget,
  1464. &udc->local_setup_buff) < 0)
  1465. ep0_stall(udc);
  1466. spin_lock(&udc->lock);
  1467. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1468. }
  1469. }
  1470. }
  1471. /* complete DATA or STATUS phase of ep0 prime status phase if needed */
  1472. static void ep0_req_complete(struct mv_udc *udc,
  1473. struct mv_ep *ep0, struct mv_req *req)
  1474. {
  1475. u32 new_addr;
  1476. if (udc->usb_state == USB_STATE_ADDRESS) {
  1477. /* set the new address */
  1478. new_addr = (u32)udc->dev_addr;
  1479. writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
  1480. &udc->op_regs->deviceaddr);
  1481. }
  1482. done(ep0, req, 0);
  1483. switch (udc->ep0_state) {
  1484. case DATA_STATE_XMIT:
  1485. /* receive status phase */
  1486. if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
  1487. ep0_stall(udc);
  1488. break;
  1489. case DATA_STATE_RECV:
  1490. /* send status phase */
  1491. if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
  1492. ep0_stall(udc);
  1493. break;
  1494. case WAIT_FOR_OUT_STATUS:
  1495. udc->ep0_state = WAIT_FOR_SETUP;
  1496. break;
  1497. case WAIT_FOR_SETUP:
  1498. dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
  1499. break;
  1500. default:
  1501. ep0_stall(udc);
  1502. break;
  1503. }
  1504. }
  1505. static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
  1506. {
  1507. u32 temp;
  1508. struct mv_dqh *dqh;
  1509. dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
  1510. /* Clear bit in ENDPTSETUPSTAT */
  1511. writel((1 << ep_num), &udc->op_regs->epsetupstat);
  1512. /* while a hazard exists when setup package arrives */
  1513. do {
  1514. /* Set Setup Tripwire */
  1515. temp = readl(&udc->op_regs->usbcmd);
  1516. writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1517. /* Copy the setup packet to local buffer */
  1518. memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
  1519. } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
  1520. /* Clear Setup Tripwire */
  1521. temp = readl(&udc->op_regs->usbcmd);
  1522. writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1523. }
  1524. static void irq_process_tr_complete(struct mv_udc *udc)
  1525. {
  1526. u32 tmp, bit_pos;
  1527. int i, ep_num = 0, direction = 0;
  1528. struct mv_ep *curr_ep;
  1529. struct mv_req *curr_req, *temp_req;
  1530. int status;
  1531. /*
  1532. * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
  1533. * because the setup packets are to be read ASAP
  1534. */
  1535. /* Process all Setup packet received interrupts */
  1536. tmp = readl(&udc->op_regs->epsetupstat);
  1537. if (tmp) {
  1538. for (i = 0; i < udc->max_eps; i++) {
  1539. if (tmp & (1 << i)) {
  1540. get_setup_data(udc, i,
  1541. (u8 *)(&udc->local_setup_buff));
  1542. handle_setup_packet(udc, i,
  1543. &udc->local_setup_buff);
  1544. }
  1545. }
  1546. }
  1547. /* Don't clear the endpoint setup status register here.
  1548. * It is cleared as a setup packet is read out of the buffer
  1549. */
  1550. /* Process non-setup transaction complete interrupts */
  1551. tmp = readl(&udc->op_regs->epcomplete);
  1552. if (!tmp)
  1553. return;
  1554. writel(tmp, &udc->op_regs->epcomplete);
  1555. for (i = 0; i < udc->max_eps * 2; i++) {
  1556. ep_num = i >> 1;
  1557. direction = i % 2;
  1558. bit_pos = 1 << (ep_num + 16 * direction);
  1559. if (!(bit_pos & tmp))
  1560. continue;
  1561. if (i == 1)
  1562. curr_ep = &udc->eps[0];
  1563. else
  1564. curr_ep = &udc->eps[i];
  1565. /* process the req queue until an uncomplete request */
  1566. list_for_each_entry_safe(curr_req, temp_req,
  1567. &curr_ep->queue, queue) {
  1568. status = process_ep_req(udc, i, curr_req);
  1569. if (status)
  1570. break;
  1571. /* write back status to req */
  1572. curr_req->req.status = status;
  1573. /* ep0 request completion */
  1574. if (ep_num == 0) {
  1575. ep0_req_complete(udc, curr_ep, curr_req);
  1576. break;
  1577. } else {
  1578. done(curr_ep, curr_req, status);
  1579. }
  1580. }
  1581. }
  1582. }
  1583. void irq_process_reset(struct mv_udc *udc)
  1584. {
  1585. u32 tmp;
  1586. unsigned int loops;
  1587. udc->ep0_dir = EP_DIR_OUT;
  1588. udc->ep0_state = WAIT_FOR_SETUP;
  1589. udc->remote_wakeup = 0; /* default to 0 on reset */
  1590. /* The address bits are past bit 25-31. Set the address */
  1591. tmp = readl(&udc->op_regs->deviceaddr);
  1592. tmp &= ~(USB_DEVICE_ADDRESS_MASK);
  1593. writel(tmp, &udc->op_regs->deviceaddr);
  1594. /* Clear all the setup token semaphores */
  1595. tmp = readl(&udc->op_regs->epsetupstat);
  1596. writel(tmp, &udc->op_regs->epsetupstat);
  1597. /* Clear all the endpoint complete status bits */
  1598. tmp = readl(&udc->op_regs->epcomplete);
  1599. writel(tmp, &udc->op_regs->epcomplete);
  1600. /* wait until all endptprime bits cleared */
  1601. loops = LOOPS(PRIME_TIMEOUT);
  1602. while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
  1603. if (loops == 0) {
  1604. dev_err(&udc->dev->dev,
  1605. "Timeout for ENDPTPRIME = 0x%x\n",
  1606. readl(&udc->op_regs->epprime));
  1607. break;
  1608. }
  1609. loops--;
  1610. udelay(LOOPS_USEC);
  1611. }
  1612. /* Write 1s to the Flush register */
  1613. writel((u32)~0, &udc->op_regs->epflush);
  1614. if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
  1615. dev_info(&udc->dev->dev, "usb bus reset\n");
  1616. udc->usb_state = USB_STATE_DEFAULT;
  1617. /* reset all the queues, stop all USB activities */
  1618. stop_activity(udc, udc->driver);
  1619. } else {
  1620. dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
  1621. readl(&udc->op_regs->portsc));
  1622. /*
  1623. * re-initialize
  1624. * controller reset
  1625. */
  1626. udc_reset(udc);
  1627. /* reset all the queues, stop all USB activities */
  1628. stop_activity(udc, udc->driver);
  1629. /* reset ep0 dQH and endptctrl */
  1630. ep0_reset(udc);
  1631. /* enable interrupt and set controller to run state */
  1632. udc_start(udc);
  1633. udc->usb_state = USB_STATE_ATTACHED;
  1634. }
  1635. }
  1636. static void handle_bus_resume(struct mv_udc *udc)
  1637. {
  1638. udc->usb_state = udc->resume_state;
  1639. udc->resume_state = 0;
  1640. /* report resume to the driver */
  1641. if (udc->driver) {
  1642. if (udc->driver->resume) {
  1643. spin_unlock(&udc->lock);
  1644. udc->driver->resume(&udc->gadget);
  1645. spin_lock(&udc->lock);
  1646. }
  1647. }
  1648. }
  1649. static void irq_process_suspend(struct mv_udc *udc)
  1650. {
  1651. udc->resume_state = udc->usb_state;
  1652. udc->usb_state = USB_STATE_SUSPENDED;
  1653. if (udc->driver->suspend) {
  1654. spin_unlock(&udc->lock);
  1655. udc->driver->suspend(&udc->gadget);
  1656. spin_lock(&udc->lock);
  1657. }
  1658. }
  1659. static void irq_process_port_change(struct mv_udc *udc)
  1660. {
  1661. u32 portsc;
  1662. portsc = readl(&udc->op_regs->portsc[0]);
  1663. if (!(portsc & PORTSCX_PORT_RESET)) {
  1664. /* Get the speed */
  1665. u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
  1666. switch (speed) {
  1667. case PORTSCX_PORT_SPEED_HIGH:
  1668. udc->gadget.speed = USB_SPEED_HIGH;
  1669. break;
  1670. case PORTSCX_PORT_SPEED_FULL:
  1671. udc->gadget.speed = USB_SPEED_FULL;
  1672. break;
  1673. case PORTSCX_PORT_SPEED_LOW:
  1674. udc->gadget.speed = USB_SPEED_LOW;
  1675. break;
  1676. default:
  1677. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1678. break;
  1679. }
  1680. }
  1681. if (portsc & PORTSCX_PORT_SUSPEND) {
  1682. udc->resume_state = udc->usb_state;
  1683. udc->usb_state = USB_STATE_SUSPENDED;
  1684. if (udc->driver->suspend) {
  1685. spin_unlock(&udc->lock);
  1686. udc->driver->suspend(&udc->gadget);
  1687. spin_lock(&udc->lock);
  1688. }
  1689. }
  1690. if (!(portsc & PORTSCX_PORT_SUSPEND)
  1691. && udc->usb_state == USB_STATE_SUSPENDED) {
  1692. handle_bus_resume(udc);
  1693. }
  1694. if (!udc->resume_state)
  1695. udc->usb_state = USB_STATE_DEFAULT;
  1696. }
  1697. static void irq_process_error(struct mv_udc *udc)
  1698. {
  1699. /* Increment the error count */
  1700. udc->errors++;
  1701. }
  1702. static irqreturn_t mv_udc_irq(int irq, void *dev)
  1703. {
  1704. struct mv_udc *udc = (struct mv_udc *)dev;
  1705. u32 status, intr;
  1706. /* Disable ISR when stopped bit is set */
  1707. if (udc->stopped)
  1708. return IRQ_NONE;
  1709. spin_lock(&udc->lock);
  1710. status = readl(&udc->op_regs->usbsts);
  1711. intr = readl(&udc->op_regs->usbintr);
  1712. status &= intr;
  1713. if (status == 0) {
  1714. spin_unlock(&udc->lock);
  1715. return IRQ_NONE;
  1716. }
  1717. /* Clear all the interrupts occurred */
  1718. writel(status, &udc->op_regs->usbsts);
  1719. if (status & USBSTS_ERR)
  1720. irq_process_error(udc);
  1721. if (status & USBSTS_RESET)
  1722. irq_process_reset(udc);
  1723. if (status & USBSTS_PORT_CHANGE)
  1724. irq_process_port_change(udc);
  1725. if (status & USBSTS_INT)
  1726. irq_process_tr_complete(udc);
  1727. if (status & USBSTS_SUSPEND)
  1728. irq_process_suspend(udc);
  1729. spin_unlock(&udc->lock);
  1730. return IRQ_HANDLED;
  1731. }
  1732. static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
  1733. {
  1734. struct mv_udc *udc = (struct mv_udc *)dev;
  1735. /* polling VBUS and init phy may cause too much time*/
  1736. if (udc->qwork)
  1737. queue_work(udc->qwork, &udc->vbus_work);
  1738. return IRQ_HANDLED;
  1739. }
  1740. static void mv_udc_vbus_work(struct work_struct *work)
  1741. {
  1742. struct mv_udc *udc;
  1743. unsigned int vbus;
  1744. udc = container_of(work, struct mv_udc, vbus_work);
  1745. if (!udc->pdata->vbus)
  1746. return;
  1747. vbus = udc->pdata->vbus->poll();
  1748. dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
  1749. if (vbus == VBUS_HIGH)
  1750. mv_udc_vbus_session(&udc->gadget, 1);
  1751. else if (vbus == VBUS_LOW)
  1752. mv_udc_vbus_session(&udc->gadget, 0);
  1753. }
  1754. /* release device structure */
  1755. static void gadget_release(struct device *_dev)
  1756. {
  1757. struct mv_udc *udc = the_controller;
  1758. complete(udc->done);
  1759. }
  1760. static int __devexit mv_udc_remove(struct platform_device *dev)
  1761. {
  1762. struct mv_udc *udc = the_controller;
  1763. int clk_i;
  1764. usb_del_gadget_udc(&udc->gadget);
  1765. if (udc->qwork) {
  1766. flush_workqueue(udc->qwork);
  1767. destroy_workqueue(udc->qwork);
  1768. }
  1769. /*
  1770. * If we have transceiver inited,
  1771. * then vbus irq will not be requested in udc driver.
  1772. */
  1773. if (udc->pdata && udc->pdata->vbus
  1774. && udc->clock_gating && udc->transceiver == NULL)
  1775. free_irq(udc->pdata->vbus->irq, &dev->dev);
  1776. /* free memory allocated in probe */
  1777. if (udc->dtd_pool)
  1778. dma_pool_destroy(udc->dtd_pool);
  1779. if (udc->ep_dqh)
  1780. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1781. udc->ep_dqh, udc->ep_dqh_dma);
  1782. kfree(udc->eps);
  1783. if (udc->irq)
  1784. free_irq(udc->irq, &dev->dev);
  1785. mv_udc_disable(udc);
  1786. if (udc->cap_regs)
  1787. iounmap(udc->cap_regs);
  1788. udc->cap_regs = NULL;
  1789. if (udc->phy_regs)
  1790. iounmap((void *)udc->phy_regs);
  1791. udc->phy_regs = 0;
  1792. if (udc->status_req) {
  1793. kfree(udc->status_req->req.buf);
  1794. kfree(udc->status_req);
  1795. }
  1796. for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
  1797. clk_put(udc->clk[clk_i]);
  1798. device_unregister(&udc->gadget.dev);
  1799. /* free dev, wait for the release() finished */
  1800. wait_for_completion(udc->done);
  1801. kfree(udc);
  1802. the_controller = NULL;
  1803. return 0;
  1804. }
  1805. static int __devinit mv_udc_probe(struct platform_device *dev)
  1806. {
  1807. struct mv_usb_platform_data *pdata = dev->dev.platform_data;
  1808. struct mv_udc *udc;
  1809. int retval = 0;
  1810. int clk_i = 0;
  1811. struct resource *r;
  1812. size_t size;
  1813. if (pdata == NULL) {
  1814. dev_err(&dev->dev, "missing platform_data\n");
  1815. return -ENODEV;
  1816. }
  1817. size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
  1818. udc = kzalloc(size, GFP_KERNEL);
  1819. if (udc == NULL) {
  1820. dev_err(&dev->dev, "failed to allocate memory for udc\n");
  1821. return -ENOMEM;
  1822. }
  1823. the_controller = udc;
  1824. udc->done = &release_done;
  1825. udc->pdata = dev->dev.platform_data;
  1826. spin_lock_init(&udc->lock);
  1827. udc->dev = dev;
  1828. #ifdef CONFIG_USB_OTG_UTILS
  1829. if (pdata->mode == MV_USB_MODE_OTG)
  1830. udc->transceiver = otg_get_transceiver();
  1831. #endif
  1832. udc->clknum = pdata->clknum;
  1833. for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
  1834. udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
  1835. if (IS_ERR(udc->clk[clk_i])) {
  1836. retval = PTR_ERR(udc->clk[clk_i]);
  1837. goto err_put_clk;
  1838. }
  1839. }
  1840. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
  1841. if (r == NULL) {
  1842. dev_err(&dev->dev, "no I/O memory resource defined\n");
  1843. retval = -ENODEV;
  1844. goto err_put_clk;
  1845. }
  1846. udc->cap_regs = (struct mv_cap_regs __iomem *)
  1847. ioremap(r->start, resource_size(r));
  1848. if (udc->cap_regs == NULL) {
  1849. dev_err(&dev->dev, "failed to map I/O memory\n");
  1850. retval = -EBUSY;
  1851. goto err_put_clk;
  1852. }
  1853. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
  1854. if (r == NULL) {
  1855. dev_err(&dev->dev, "no phy I/O memory resource defined\n");
  1856. retval = -ENODEV;
  1857. goto err_iounmap_capreg;
  1858. }
  1859. udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
  1860. if (udc->phy_regs == 0) {
  1861. dev_err(&dev->dev, "failed to map phy I/O memory\n");
  1862. retval = -EBUSY;
  1863. goto err_iounmap_capreg;
  1864. }
  1865. /* we will acces controller register, so enable the clk */
  1866. udc_clock_enable(udc);
  1867. if (pdata->phy_init) {
  1868. retval = pdata->phy_init(udc->phy_regs);
  1869. if (retval) {
  1870. dev_err(&dev->dev, "phy init error %d\n", retval);
  1871. goto err_iounmap_phyreg;
  1872. }
  1873. }
  1874. udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
  1875. + (readl(&udc->cap_regs->caplength_hciversion)
  1876. & CAPLENGTH_MASK));
  1877. udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
  1878. /*
  1879. * some platform will use usb to download image, it may not disconnect
  1880. * usb gadget before loading kernel. So first stop udc here.
  1881. */
  1882. udc_stop(udc);
  1883. writel(0xFFFFFFFF, &udc->op_regs->usbsts);
  1884. size = udc->max_eps * sizeof(struct mv_dqh) *2;
  1885. size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
  1886. udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
  1887. &udc->ep_dqh_dma, GFP_KERNEL);
  1888. if (udc->ep_dqh == NULL) {
  1889. dev_err(&dev->dev, "allocate dQH memory failed\n");
  1890. retval = -ENOMEM;
  1891. goto err_disable_clock;
  1892. }
  1893. udc->ep_dqh_size = size;
  1894. /* create dTD dma_pool resource */
  1895. udc->dtd_pool = dma_pool_create("mv_dtd",
  1896. &dev->dev,
  1897. sizeof(struct mv_dtd),
  1898. DTD_ALIGNMENT,
  1899. DMA_BOUNDARY);
  1900. if (!udc->dtd_pool) {
  1901. retval = -ENOMEM;
  1902. goto err_free_dma;
  1903. }
  1904. size = udc->max_eps * sizeof(struct mv_ep) *2;
  1905. udc->eps = kzalloc(size, GFP_KERNEL);
  1906. if (udc->eps == NULL) {
  1907. dev_err(&dev->dev, "allocate ep memory failed\n");
  1908. retval = -ENOMEM;
  1909. goto err_destroy_dma;
  1910. }
  1911. /* initialize ep0 status request structure */
  1912. udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
  1913. if (!udc->status_req) {
  1914. dev_err(&dev->dev, "allocate status_req memory failed\n");
  1915. retval = -ENOMEM;
  1916. goto err_free_eps;
  1917. }
  1918. INIT_LIST_HEAD(&udc->status_req->queue);
  1919. /* allocate a small amount of memory to get valid address */
  1920. udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
  1921. udc->status_req->req.dma = DMA_ADDR_INVALID;
  1922. udc->resume_state = USB_STATE_NOTATTACHED;
  1923. udc->usb_state = USB_STATE_POWERED;
  1924. udc->ep0_dir = EP_DIR_OUT;
  1925. udc->remote_wakeup = 0;
  1926. r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
  1927. if (r == NULL) {
  1928. dev_err(&dev->dev, "no IRQ resource defined\n");
  1929. retval = -ENODEV;
  1930. goto err_free_status_req;
  1931. }
  1932. udc->irq = r->start;
  1933. if (request_irq(udc->irq, mv_udc_irq,
  1934. IRQF_SHARED, driver_name, udc)) {
  1935. dev_err(&dev->dev, "Request irq %d for UDC failed\n",
  1936. udc->irq);
  1937. retval = -ENODEV;
  1938. goto err_free_status_req;
  1939. }
  1940. /* initialize gadget structure */
  1941. udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
  1942. udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
  1943. INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
  1944. udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
  1945. udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
  1946. /* the "gadget" abstracts/virtualizes the controller */
  1947. dev_set_name(&udc->gadget.dev, "gadget");
  1948. udc->gadget.dev.parent = &dev->dev;
  1949. udc->gadget.dev.dma_mask = dev->dev.dma_mask;
  1950. udc->gadget.dev.release = gadget_release;
  1951. udc->gadget.name = driver_name; /* gadget name */
  1952. retval = device_register(&udc->gadget.dev);
  1953. if (retval)
  1954. goto err_free_irq;
  1955. eps_init(udc);
  1956. /* VBUS detect: we can disable/enable clock on demand.*/
  1957. if (udc->transceiver)
  1958. udc->clock_gating = 1;
  1959. else if (pdata->vbus) {
  1960. udc->clock_gating = 1;
  1961. retval = request_threaded_irq(pdata->vbus->irq, NULL,
  1962. mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
  1963. if (retval) {
  1964. dev_info(&dev->dev,
  1965. "Can not request irq for VBUS, "
  1966. "disable clock gating\n");
  1967. udc->clock_gating = 0;
  1968. }
  1969. udc->qwork = create_singlethread_workqueue("mv_udc_queue");
  1970. if (!udc->qwork) {
  1971. dev_err(&dev->dev, "cannot create workqueue\n");
  1972. retval = -ENOMEM;
  1973. goto err_unregister;
  1974. }
  1975. INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
  1976. }
  1977. /*
  1978. * When clock gating is supported, we can disable clk and phy.
  1979. * If not, it means that VBUS detection is not supported, we
  1980. * have to enable vbus active all the time to let controller work.
  1981. */
  1982. if (udc->clock_gating) {
  1983. if (udc->pdata->phy_deinit)
  1984. udc->pdata->phy_deinit(udc->phy_regs);
  1985. udc_clock_disable(udc);
  1986. } else
  1987. udc->vbus_active = 1;
  1988. retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
  1989. if (retval)
  1990. goto err_unregister;
  1991. dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
  1992. udc->clock_gating ? "with" : "without");
  1993. return 0;
  1994. err_unregister:
  1995. if (udc->pdata && udc->pdata->vbus
  1996. && udc->clock_gating && udc->transceiver == NULL)
  1997. free_irq(pdata->vbus->irq, &dev->dev);
  1998. device_unregister(&udc->gadget.dev);
  1999. err_free_irq:
  2000. free_irq(udc->irq, &dev->dev);
  2001. err_free_status_req:
  2002. kfree(udc->status_req->req.buf);
  2003. kfree(udc->status_req);
  2004. err_free_eps:
  2005. kfree(udc->eps);
  2006. err_destroy_dma:
  2007. dma_pool_destroy(udc->dtd_pool);
  2008. err_free_dma:
  2009. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  2010. udc->ep_dqh, udc->ep_dqh_dma);
  2011. err_disable_clock:
  2012. if (udc->pdata->phy_deinit)
  2013. udc->pdata->phy_deinit(udc->phy_regs);
  2014. udc_clock_disable(udc);
  2015. err_iounmap_phyreg:
  2016. iounmap((void *)udc->phy_regs);
  2017. err_iounmap_capreg:
  2018. iounmap(udc->cap_regs);
  2019. err_put_clk:
  2020. for (clk_i--; clk_i >= 0; clk_i--)
  2021. clk_put(udc->clk[clk_i]);
  2022. the_controller = NULL;
  2023. kfree(udc);
  2024. return retval;
  2025. }
  2026. #ifdef CONFIG_PM
  2027. static int mv_udc_suspend(struct device *_dev)
  2028. {
  2029. struct mv_udc *udc = the_controller;
  2030. udc_stop(udc);
  2031. return 0;
  2032. }
  2033. static int mv_udc_resume(struct device *_dev)
  2034. {
  2035. struct mv_udc *udc = the_controller;
  2036. int retval;
  2037. if (udc->pdata->phy_init) {
  2038. retval = udc->pdata->phy_init(udc->phy_regs);
  2039. if (retval) {
  2040. dev_err(&udc->dev->dev,
  2041. "init phy error %d when resume back\n",
  2042. retval);
  2043. return retval;
  2044. }
  2045. }
  2046. udc_reset(udc);
  2047. ep0_reset(udc);
  2048. udc_start(udc);
  2049. return 0;
  2050. }
  2051. static const struct dev_pm_ops mv_udc_pm_ops = {
  2052. .suspend = mv_udc_suspend,
  2053. .resume = mv_udc_resume,
  2054. };
  2055. #endif
  2056. static void mv_udc_shutdown(struct platform_device *dev)
  2057. {
  2058. struct mv_udc *udc = the_controller;
  2059. u32 mode;
  2060. /* reset controller mode to IDLE */
  2061. mode = readl(&udc->op_regs->usbmode);
  2062. mode &= ~3;
  2063. writel(mode, &udc->op_regs->usbmode);
  2064. }
  2065. static struct platform_driver udc_driver = {
  2066. .probe = mv_udc_probe,
  2067. .remove = __exit_p(mv_udc_remove),
  2068. .shutdown = mv_udc_shutdown,
  2069. .driver = {
  2070. .owner = THIS_MODULE,
  2071. .name = "pxa-u2o",
  2072. #ifdef CONFIG_PM
  2073. .pm = &mv_udc_pm_ops,
  2074. #endif
  2075. },
  2076. };
  2077. MODULE_ALIAS("platform:pxa-u2o");
  2078. MODULE_DESCRIPTION(DRIVER_DESC);
  2079. MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
  2080. MODULE_VERSION(DRIVER_VERSION);
  2081. MODULE_LICENSE("GPL");
  2082. static int __init init(void)
  2083. {
  2084. return platform_driver_register(&udc_driver);
  2085. }
  2086. module_init(init);
  2087. static void __exit cleanup(void)
  2088. {
  2089. platform_driver_unregister(&udc_driver);
  2090. }
  2091. module_exit(cleanup);