i8254.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_64(rh, c);
  58. res.l.low = div64_64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static int pit_get_count(struct kvm *kvm, int channel)
  89. {
  90. struct kvm_kpit_channel_state *c =
  91. &kvm->arch.vpit->pit_state.channels[channel];
  92. s64 d, t;
  93. int counter;
  94. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  95. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  96. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  97. switch (c->mode) {
  98. case 0:
  99. case 1:
  100. case 4:
  101. case 5:
  102. counter = (c->count - d) & 0xffff;
  103. break;
  104. case 3:
  105. /* XXX: may be incorrect for odd counts */
  106. counter = c->count - (mod_64((2 * d), c->count));
  107. break;
  108. default:
  109. counter = c->count - mod_64(d, c->count);
  110. break;
  111. }
  112. return counter;
  113. }
  114. static int pit_get_out(struct kvm *kvm, int channel)
  115. {
  116. struct kvm_kpit_channel_state *c =
  117. &kvm->arch.vpit->pit_state.channels[channel];
  118. s64 d, t;
  119. int out;
  120. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  121. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  122. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  123. switch (c->mode) {
  124. default:
  125. case 0:
  126. out = (d >= c->count);
  127. break;
  128. case 1:
  129. out = (d < c->count);
  130. break;
  131. case 2:
  132. out = ((mod_64(d, c->count) == 0) && (d != 0));
  133. break;
  134. case 3:
  135. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  136. break;
  137. case 4:
  138. case 5:
  139. out = (d == c->count);
  140. break;
  141. }
  142. return out;
  143. }
  144. static void pit_latch_count(struct kvm *kvm, int channel)
  145. {
  146. struct kvm_kpit_channel_state *c =
  147. &kvm->arch.vpit->pit_state.channels[channel];
  148. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  149. if (!c->count_latched) {
  150. c->latched_count = pit_get_count(kvm, channel);
  151. c->count_latched = c->rw_mode;
  152. }
  153. }
  154. static void pit_latch_status(struct kvm *kvm, int channel)
  155. {
  156. struct kvm_kpit_channel_state *c =
  157. &kvm->arch.vpit->pit_state.channels[channel];
  158. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  159. if (!c->status_latched) {
  160. /* TODO: Return NULL COUNT (bit 6). */
  161. c->status = ((pit_get_out(kvm, channel) << 7) |
  162. (c->rw_mode << 4) |
  163. (c->mode << 1) |
  164. c->bcd);
  165. c->status_latched = 1;
  166. }
  167. }
  168. int __pit_timer_fn(struct kvm_kpit_state *ps)
  169. {
  170. struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
  171. struct kvm_kpit_timer *pt = &ps->pit_timer;
  172. atomic_inc(&pt->pending);
  173. smp_mb__after_atomic_inc();
  174. /* FIXME: handle case where the guest is in guest mode */
  175. if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
  176. vcpu0->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  177. wake_up_interruptible(&vcpu0->wq);
  178. }
  179. pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
  180. pt->scheduled = ktime_to_ns(pt->timer.expires);
  181. return (pt->period == 0 ? 0 : 1);
  182. }
  183. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  184. {
  185. struct kvm_kpit_state *ps;
  186. int restart_timer = 0;
  187. ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
  188. restart_timer = __pit_timer_fn(ps);
  189. if (restart_timer)
  190. return HRTIMER_RESTART;
  191. else
  192. return HRTIMER_NORESTART;
  193. }
  194. static void destroy_pit_timer(struct kvm_kpit_timer *pt)
  195. {
  196. pr_debug("pit: execute del timer!\n");
  197. hrtimer_cancel(&pt->timer);
  198. }
  199. static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
  200. {
  201. s64 interval;
  202. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  203. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  204. /* TODO The new value only affected after the retriggered */
  205. hrtimer_cancel(&pt->timer);
  206. pt->period = (is_period == 0) ? 0 : interval;
  207. pt->timer.function = pit_timer_fn;
  208. atomic_set(&pt->pending, 0);
  209. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  210. HRTIMER_MODE_ABS);
  211. }
  212. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  213. {
  214. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  215. WARN_ON(!mutex_is_locked(&ps->lock));
  216. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  217. /*
  218. * Though spec said the state of 8254 is undefined after power-up,
  219. * seems some tricky OS like Windows XP depends on IRQ0 interrupt
  220. * when booting up.
  221. * So here setting initialize rate for it, and not a specific number
  222. */
  223. if (val == 0)
  224. val = 0x10000;
  225. ps->channels[channel].count_load_time = ktime_get();
  226. ps->channels[channel].count = val;
  227. if (channel != 0)
  228. return;
  229. /* Two types of timer
  230. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  231. switch (ps->channels[0].mode) {
  232. case 1:
  233. create_pit_timer(&ps->pit_timer, val, 0);
  234. break;
  235. case 2:
  236. create_pit_timer(&ps->pit_timer, val, 1);
  237. break;
  238. default:
  239. destroy_pit_timer(&ps->pit_timer);
  240. }
  241. }
  242. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  243. {
  244. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  245. pit_load_count(kvm, channel, val);
  246. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  247. }
  248. static void pit_ioport_write(struct kvm_io_device *this,
  249. gpa_t addr, int len, const void *data)
  250. {
  251. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  252. struct kvm_kpit_state *pit_state = &pit->pit_state;
  253. struct kvm *kvm = pit->kvm;
  254. int channel, access;
  255. struct kvm_kpit_channel_state *s;
  256. u32 val = *(u32 *) data;
  257. val &= 0xff;
  258. addr &= KVM_PIT_CHANNEL_MASK;
  259. mutex_lock(&pit_state->lock);
  260. if (val != 0)
  261. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  262. (unsigned int)addr, len, val);
  263. if (addr == 3) {
  264. channel = val >> 6;
  265. if (channel == 3) {
  266. /* Read-Back Command. */
  267. for (channel = 0; channel < 3; channel++) {
  268. s = &pit_state->channels[channel];
  269. if (val & (2 << channel)) {
  270. if (!(val & 0x20))
  271. pit_latch_count(kvm, channel);
  272. if (!(val & 0x10))
  273. pit_latch_status(kvm, channel);
  274. }
  275. }
  276. } else {
  277. /* Select Counter <channel>. */
  278. s = &pit_state->channels[channel];
  279. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  280. if (access == 0) {
  281. pit_latch_count(kvm, channel);
  282. } else {
  283. s->rw_mode = access;
  284. s->read_state = access;
  285. s->write_state = access;
  286. s->mode = (val >> 1) & 7;
  287. if (s->mode > 5)
  288. s->mode -= 4;
  289. s->bcd = val & 1;
  290. }
  291. }
  292. } else {
  293. /* Write Count. */
  294. s = &pit_state->channels[addr];
  295. switch (s->write_state) {
  296. default:
  297. case RW_STATE_LSB:
  298. pit_load_count(kvm, addr, val);
  299. break;
  300. case RW_STATE_MSB:
  301. pit_load_count(kvm, addr, val << 8);
  302. break;
  303. case RW_STATE_WORD0:
  304. s->write_latch = val;
  305. s->write_state = RW_STATE_WORD1;
  306. break;
  307. case RW_STATE_WORD1:
  308. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  309. s->write_state = RW_STATE_WORD0;
  310. break;
  311. }
  312. }
  313. mutex_unlock(&pit_state->lock);
  314. }
  315. static void pit_ioport_read(struct kvm_io_device *this,
  316. gpa_t addr, int len, void *data)
  317. {
  318. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  319. struct kvm_kpit_state *pit_state = &pit->pit_state;
  320. struct kvm *kvm = pit->kvm;
  321. int ret, count;
  322. struct kvm_kpit_channel_state *s;
  323. addr &= KVM_PIT_CHANNEL_MASK;
  324. s = &pit_state->channels[addr];
  325. mutex_lock(&pit_state->lock);
  326. if (s->status_latched) {
  327. s->status_latched = 0;
  328. ret = s->status;
  329. } else if (s->count_latched) {
  330. switch (s->count_latched) {
  331. default:
  332. case RW_STATE_LSB:
  333. ret = s->latched_count & 0xff;
  334. s->count_latched = 0;
  335. break;
  336. case RW_STATE_MSB:
  337. ret = s->latched_count >> 8;
  338. s->count_latched = 0;
  339. break;
  340. case RW_STATE_WORD0:
  341. ret = s->latched_count & 0xff;
  342. s->count_latched = RW_STATE_MSB;
  343. break;
  344. }
  345. } else {
  346. switch (s->read_state) {
  347. default:
  348. case RW_STATE_LSB:
  349. count = pit_get_count(kvm, addr);
  350. ret = count & 0xff;
  351. break;
  352. case RW_STATE_MSB:
  353. count = pit_get_count(kvm, addr);
  354. ret = (count >> 8) & 0xff;
  355. break;
  356. case RW_STATE_WORD0:
  357. count = pit_get_count(kvm, addr);
  358. ret = count & 0xff;
  359. s->read_state = RW_STATE_WORD1;
  360. break;
  361. case RW_STATE_WORD1:
  362. count = pit_get_count(kvm, addr);
  363. ret = (count >> 8) & 0xff;
  364. s->read_state = RW_STATE_WORD0;
  365. break;
  366. }
  367. }
  368. if (len > sizeof(ret))
  369. len = sizeof(ret);
  370. memcpy(data, (char *)&ret, len);
  371. mutex_unlock(&pit_state->lock);
  372. }
  373. static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
  374. {
  375. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  376. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  377. }
  378. static void speaker_ioport_write(struct kvm_io_device *this,
  379. gpa_t addr, int len, const void *data)
  380. {
  381. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  382. struct kvm_kpit_state *pit_state = &pit->pit_state;
  383. struct kvm *kvm = pit->kvm;
  384. u32 val = *(u32 *) data;
  385. mutex_lock(&pit_state->lock);
  386. pit_state->speaker_data_on = (val >> 1) & 1;
  387. pit_set_gate(kvm, 2, val & 1);
  388. mutex_unlock(&pit_state->lock);
  389. }
  390. static void speaker_ioport_read(struct kvm_io_device *this,
  391. gpa_t addr, int len, void *data)
  392. {
  393. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  394. struct kvm_kpit_state *pit_state = &pit->pit_state;
  395. struct kvm *kvm = pit->kvm;
  396. unsigned int refresh_clock;
  397. int ret;
  398. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  399. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  400. mutex_lock(&pit_state->lock);
  401. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  402. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  403. if (len > sizeof(ret))
  404. len = sizeof(ret);
  405. memcpy(data, (char *)&ret, len);
  406. mutex_unlock(&pit_state->lock);
  407. }
  408. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
  409. {
  410. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  411. }
  412. void kvm_pit_reset(struct kvm_pit *pit)
  413. {
  414. int i;
  415. struct kvm_kpit_channel_state *c;
  416. mutex_lock(&pit->pit_state.lock);
  417. for (i = 0; i < 3; i++) {
  418. c = &pit->pit_state.channels[i];
  419. c->mode = 0xff;
  420. c->gate = (i != 2);
  421. pit_load_count(pit->kvm, i, 0);
  422. }
  423. mutex_unlock(&pit->pit_state.lock);
  424. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  425. pit->pit_state.inject_pending = 1;
  426. }
  427. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  428. {
  429. struct kvm_pit *pit;
  430. struct kvm_kpit_state *pit_state;
  431. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  432. if (!pit)
  433. return NULL;
  434. mutex_init(&pit->pit_state.lock);
  435. mutex_lock(&pit->pit_state.lock);
  436. /* Initialize PIO device */
  437. pit->dev.read = pit_ioport_read;
  438. pit->dev.write = pit_ioport_write;
  439. pit->dev.in_range = pit_in_range;
  440. pit->dev.private = pit;
  441. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  442. pit->speaker_dev.read = speaker_ioport_read;
  443. pit->speaker_dev.write = speaker_ioport_write;
  444. pit->speaker_dev.in_range = speaker_in_range;
  445. pit->speaker_dev.private = pit;
  446. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  447. kvm->arch.vpit = pit;
  448. pit->kvm = kvm;
  449. pit_state = &pit->pit_state;
  450. pit_state->pit = pit;
  451. hrtimer_init(&pit_state->pit_timer.timer,
  452. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  453. mutex_unlock(&pit->pit_state.lock);
  454. kvm_pit_reset(pit);
  455. return pit;
  456. }
  457. void kvm_free_pit(struct kvm *kvm)
  458. {
  459. struct hrtimer *timer;
  460. if (kvm->arch.vpit) {
  461. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  462. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  463. hrtimer_cancel(timer);
  464. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  465. kfree(kvm->arch.vpit);
  466. }
  467. }
  468. void __inject_pit_timer_intr(struct kvm *kvm)
  469. {
  470. mutex_lock(&kvm->lock);
  471. kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
  472. kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
  473. kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
  474. kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
  475. mutex_unlock(&kvm->lock);
  476. }
  477. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  478. {
  479. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  480. struct kvm *kvm = vcpu->kvm;
  481. struct kvm_kpit_state *ps;
  482. if (vcpu && pit) {
  483. ps = &pit->pit_state;
  484. /* Try to inject pending interrupts when:
  485. * 1. Pending exists
  486. * 2. Last interrupt was accepted or waited for too long time*/
  487. if (atomic_read(&ps->pit_timer.pending) &&
  488. (ps->inject_pending ||
  489. (jiffies - ps->last_injected_time
  490. >= KVM_MAX_PIT_INTR_INTERVAL))) {
  491. ps->inject_pending = 0;
  492. __inject_pit_timer_intr(kvm);
  493. ps->last_injected_time = jiffies;
  494. }
  495. }
  496. }
  497. void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
  498. {
  499. struct kvm_arch *arch = &vcpu->kvm->arch;
  500. struct kvm_kpit_state *ps;
  501. if (vcpu && arch->vpit) {
  502. ps = &arch->vpit->pit_state;
  503. if (atomic_read(&ps->pit_timer.pending) &&
  504. (((arch->vpic->pics[0].imr & 1) == 0 &&
  505. arch->vpic->pics[0].irq_base == vec) ||
  506. (arch->vioapic->redirtbl[0].fields.vector == vec &&
  507. arch->vioapic->redirtbl[0].fields.mask != 1))) {
  508. ps->inject_pending = 1;
  509. atomic_dec(&ps->pit_timer.pending);
  510. ps->channels[0].count_load_time = ktime_get();
  511. }
  512. }
  513. }