umem.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
  37. #include <linux/fs.h>
  38. #include <linux/bio.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/mman.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/module.h>
  44. #include <linux/init.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/timer.h>
  47. #include <linux/pci.h>
  48. #include <linux/slab.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/fcntl.h> /* O_ACCMODE */
  51. #include <linux/hdreg.h> /* HDIO_GETGEO */
  52. #include "umem.h"
  53. #include <asm/uaccess.h>
  54. #include <asm/io.h>
  55. #define MM_MAXCARDS 4
  56. #define MM_RAHEAD 2 /* two sectors */
  57. #define MM_BLKSIZE 1024 /* 1k blocks */
  58. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  59. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  60. /*
  61. * Version Information
  62. */
  63. #define DRIVER_VERSION "v2.3"
  64. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  65. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  66. static int debug;
  67. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  68. #define HW_TRACE(x)
  69. #define DEBUG_LED_ON_TRANSFER 0x01
  70. #define DEBUG_BATTERY_POLLING 0x02
  71. module_param(debug, int, 0644);
  72. MODULE_PARM_DESC(debug, "Debug bitmask");
  73. static int pci_read_cmd = 0x0C; /* Read Multiple */
  74. module_param(pci_read_cmd, int, 0);
  75. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  76. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  77. module_param(pci_write_cmd, int, 0);
  78. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  79. static int pci_cmds;
  80. static int major_nr;
  81. #include <linux/blkdev.h>
  82. #include <linux/blkpg.h>
  83. struct cardinfo {
  84. int card_number;
  85. struct pci_dev *dev;
  86. int irq;
  87. unsigned long csr_base;
  88. unsigned char __iomem *csr_remap;
  89. unsigned long csr_len;
  90. unsigned int win_size; /* PCI window size */
  91. unsigned int mm_size; /* size in kbytes */
  92. unsigned int init_size; /* initial segment, in sectors,
  93. * that we know to
  94. * have been written
  95. */
  96. struct bio *bio, *currentbio, **biotail;
  97. int current_idx;
  98. sector_t current_sector;
  99. struct request_queue *queue;
  100. struct mm_page {
  101. dma_addr_t page_dma;
  102. struct mm_dma_desc *desc;
  103. int cnt, headcnt;
  104. struct bio *bio, **biotail;
  105. int idx;
  106. } mm_pages[2];
  107. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  108. int Active, Ready;
  109. struct tasklet_struct tasklet;
  110. unsigned int dma_status;
  111. struct {
  112. int good;
  113. int warned;
  114. unsigned long last_change;
  115. } battery[2];
  116. spinlock_t lock;
  117. int check_batteries;
  118. int flags;
  119. };
  120. static struct cardinfo cards[MM_MAXCARDS];
  121. static struct block_device_operations mm_fops;
  122. static struct timer_list battery_timer;
  123. static int num_cards = 0;
  124. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  125. static void check_batteries(struct cardinfo *card);
  126. /*
  127. -----------------------------------------------------------------------------------
  128. -- get_userbit
  129. -----------------------------------------------------------------------------------
  130. */
  131. static int get_userbit(struct cardinfo *card, int bit)
  132. {
  133. unsigned char led;
  134. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  135. return led & bit;
  136. }
  137. /*
  138. -----------------------------------------------------------------------------------
  139. -- set_userbit
  140. -----------------------------------------------------------------------------------
  141. */
  142. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  143. {
  144. unsigned char led;
  145. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  146. if (state)
  147. led |= bit;
  148. else
  149. led &= ~bit;
  150. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  151. return 0;
  152. }
  153. /*
  154. -----------------------------------------------------------------------------------
  155. -- set_led
  156. -----------------------------------------------------------------------------------
  157. */
  158. /*
  159. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  160. */
  161. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  162. {
  163. unsigned char led;
  164. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  165. if (state == LED_FLIP)
  166. led ^= (1<<shift);
  167. else {
  168. led &= ~(0x03 << shift);
  169. led |= (state << shift);
  170. }
  171. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  172. }
  173. #ifdef MM_DIAG
  174. /*
  175. -----------------------------------------------------------------------------------
  176. -- dump_regs
  177. -----------------------------------------------------------------------------------
  178. */
  179. static void dump_regs(struct cardinfo *card)
  180. {
  181. unsigned char *p;
  182. int i, i1;
  183. p = card->csr_remap;
  184. for (i = 0; i < 8; i++) {
  185. printk(KERN_DEBUG "%p ", p);
  186. for (i1 = 0; i1 < 16; i1++)
  187. printk("%02x ", *p++);
  188. printk("\n");
  189. }
  190. }
  191. #endif
  192. /*
  193. -----------------------------------------------------------------------------------
  194. -- dump_dmastat
  195. -----------------------------------------------------------------------------------
  196. */
  197. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  198. {
  199. printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
  200. if (dmastat & DMASCR_ANY_ERR)
  201. printk("ANY_ERR ");
  202. if (dmastat & DMASCR_MBE_ERR)
  203. printk("MBE_ERR ");
  204. if (dmastat & DMASCR_PARITY_ERR_REP)
  205. printk("PARITY_ERR_REP ");
  206. if (dmastat & DMASCR_PARITY_ERR_DET)
  207. printk("PARITY_ERR_DET ");
  208. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  209. printk("SYSTEM_ERR_SIG ");
  210. if (dmastat & DMASCR_TARGET_ABT)
  211. printk("TARGET_ABT ");
  212. if (dmastat & DMASCR_MASTER_ABT)
  213. printk("MASTER_ABT ");
  214. if (dmastat & DMASCR_CHAIN_COMPLETE)
  215. printk("CHAIN_COMPLETE ");
  216. if (dmastat & DMASCR_DMA_COMPLETE)
  217. printk("DMA_COMPLETE ");
  218. printk("\n");
  219. }
  220. /*
  221. * Theory of request handling
  222. *
  223. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  224. * We have two pages of mm_dma_desc, holding about 64 descriptors
  225. * each. These are allocated at init time.
  226. * One page is "Ready" and is either full, or can have request added.
  227. * The other page might be "Active", which DMA is happening on it.
  228. *
  229. * Whenever IO on the active page completes, the Ready page is activated
  230. * and the ex-Active page is clean out and made Ready.
  231. * Otherwise the Ready page is only activated when it becomes full, or
  232. * when mm_unplug_device is called via the unplug_io_fn.
  233. *
  234. * If a request arrives while both pages a full, it is queued, and b_rdev is
  235. * overloaded to record whether it was a read or a write.
  236. *
  237. * The interrupt handler only polls the device to clear the interrupt.
  238. * The processing of the result is done in a tasklet.
  239. */
  240. static void mm_start_io(struct cardinfo *card)
  241. {
  242. /* we have the lock, we know there is
  243. * no IO active, and we know that card->Active
  244. * is set
  245. */
  246. struct mm_dma_desc *desc;
  247. struct mm_page *page;
  248. int offset;
  249. /* make the last descriptor end the chain */
  250. page = &card->mm_pages[card->Active];
  251. pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
  252. desc = &page->desc[page->cnt-1];
  253. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  254. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  255. desc->sem_control_bits = desc->control_bits;
  256. if (debug & DEBUG_LED_ON_TRANSFER)
  257. set_led(card, LED_REMOVE, LED_ON);
  258. desc = &page->desc[page->headcnt];
  259. writel(0, card->csr_remap + DMA_PCI_ADDR);
  260. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  261. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  262. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  263. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  264. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  265. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  266. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  267. offset = ((char*)desc) - ((char*)page->desc);
  268. writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
  269. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  270. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  271. * and on some ports will do nothing ! */
  272. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  273. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  274. /* Go, go, go */
  275. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  276. card->csr_remap + DMA_STATUS_CTRL);
  277. }
  278. static int add_bio(struct cardinfo *card);
  279. static void activate(struct cardinfo *card)
  280. {
  281. /* if No page is Active, and Ready is
  282. * not empty, then switch Ready page
  283. * to active and start IO.
  284. * Then add any bh's that are available to Ready
  285. */
  286. do {
  287. while (add_bio(card))
  288. ;
  289. if (card->Active == -1 &&
  290. card->mm_pages[card->Ready].cnt > 0) {
  291. card->Active = card->Ready;
  292. card->Ready = 1-card->Ready;
  293. mm_start_io(card);
  294. }
  295. } while (card->Active == -1 && add_bio(card));
  296. }
  297. static inline void reset_page(struct mm_page *page)
  298. {
  299. page->cnt = 0;
  300. page->headcnt = 0;
  301. page->bio = NULL;
  302. page->biotail = & page->bio;
  303. }
  304. static void mm_unplug_device(struct request_queue *q)
  305. {
  306. struct cardinfo *card = q->queuedata;
  307. unsigned long flags;
  308. spin_lock_irqsave(&card->lock, flags);
  309. if (blk_remove_plug(q))
  310. activate(card);
  311. spin_unlock_irqrestore(&card->lock, flags);
  312. }
  313. /*
  314. * If there is room on Ready page, take
  315. * one bh off list and add it.
  316. * return 1 if there was room, else 0.
  317. */
  318. static int add_bio(struct cardinfo *card)
  319. {
  320. struct mm_page *p;
  321. struct mm_dma_desc *desc;
  322. dma_addr_t dma_handle;
  323. int offset;
  324. struct bio *bio;
  325. struct bio_vec *vec;
  326. int idx;
  327. int rw;
  328. int len;
  329. bio = card->currentbio;
  330. if (!bio && card->bio) {
  331. card->currentbio = card->bio;
  332. card->current_idx = card->bio->bi_idx;
  333. card->current_sector = card->bio->bi_sector;
  334. card->bio = card->bio->bi_next;
  335. if (card->bio == NULL)
  336. card->biotail = &card->bio;
  337. card->currentbio->bi_next = NULL;
  338. return 1;
  339. }
  340. if (!bio)
  341. return 0;
  342. idx = card->current_idx;
  343. rw = bio_rw(bio);
  344. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  345. return 0;
  346. vec = bio_iovec_idx(bio, idx);
  347. len = vec->bv_len;
  348. dma_handle = pci_map_page(card->dev,
  349. vec->bv_page,
  350. vec->bv_offset,
  351. len,
  352. (rw==READ) ?
  353. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  354. p = &card->mm_pages[card->Ready];
  355. desc = &p->desc[p->cnt];
  356. p->cnt++;
  357. if (p->bio == NULL)
  358. p->idx = idx;
  359. if ((p->biotail) != &bio->bi_next) {
  360. *(p->biotail) = bio;
  361. p->biotail = &(bio->bi_next);
  362. bio->bi_next = NULL;
  363. }
  364. desc->data_dma_handle = dma_handle;
  365. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  366. desc->local_addr = cpu_to_le64(card->current_sector << 9);
  367. desc->transfer_size = cpu_to_le32(len);
  368. offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
  369. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  370. desc->zero1 = desc->zero2 = 0;
  371. offset = ( ((char*)(desc+1)) - ((char*)p->desc));
  372. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  373. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  374. DMASCR_PARITY_INT_EN|
  375. DMASCR_CHAIN_EN |
  376. DMASCR_SEM_EN |
  377. pci_cmds);
  378. if (rw == WRITE)
  379. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  380. desc->sem_control_bits = desc->control_bits;
  381. card->current_sector += (len >> 9);
  382. idx++;
  383. card->current_idx = idx;
  384. if (idx >= bio->bi_vcnt)
  385. card->currentbio = NULL;
  386. return 1;
  387. }
  388. static void process_page(unsigned long data)
  389. {
  390. /* check if any of the requests in the page are DMA_COMPLETE,
  391. * and deal with them appropriately.
  392. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  393. * dma must have hit an error on that descriptor, so use dma_status instead
  394. * and assume that all following descriptors must be re-tried.
  395. */
  396. struct mm_page *page;
  397. struct bio *return_bio=NULL;
  398. struct cardinfo *card = (struct cardinfo *)data;
  399. unsigned int dma_status = card->dma_status;
  400. spin_lock_bh(&card->lock);
  401. if (card->Active < 0)
  402. goto out_unlock;
  403. page = &card->mm_pages[card->Active];
  404. while (page->headcnt < page->cnt) {
  405. struct bio *bio = page->bio;
  406. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  407. int control = le32_to_cpu(desc->sem_control_bits);
  408. int last=0;
  409. int idx;
  410. if (!(control & DMASCR_DMA_COMPLETE)) {
  411. control = dma_status;
  412. last=1;
  413. }
  414. page->headcnt++;
  415. idx = page->idx;
  416. page->idx++;
  417. if (page->idx >= bio->bi_vcnt) {
  418. page->bio = bio->bi_next;
  419. page->idx = page->bio->bi_idx;
  420. }
  421. pci_unmap_page(card->dev, desc->data_dma_handle,
  422. bio_iovec_idx(bio,idx)->bv_len,
  423. (control& DMASCR_TRANSFER_READ) ?
  424. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  425. if (control & DMASCR_HARD_ERROR) {
  426. /* error */
  427. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  428. printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
  429. card->card_number,
  430. le32_to_cpu(desc->local_addr)>>9,
  431. le32_to_cpu(desc->transfer_size));
  432. dump_dmastat(card, control);
  433. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  434. le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
  435. card->init_size += le32_to_cpu(desc->transfer_size)>>9;
  436. if (card->init_size>>1 >= card->mm_size) {
  437. printk(KERN_INFO "MM%d: memory now initialised\n",
  438. card->card_number);
  439. set_userbit(card, MEMORY_INITIALIZED, 1);
  440. }
  441. }
  442. if (bio != page->bio) {
  443. bio->bi_next = return_bio;
  444. return_bio = bio;
  445. }
  446. if (last) break;
  447. }
  448. if (debug & DEBUG_LED_ON_TRANSFER)
  449. set_led(card, LED_REMOVE, LED_OFF);
  450. if (card->check_batteries) {
  451. card->check_batteries = 0;
  452. check_batteries(card);
  453. }
  454. if (page->headcnt >= page->cnt) {
  455. reset_page(page);
  456. card->Active = -1;
  457. activate(card);
  458. } else {
  459. /* haven't finished with this one yet */
  460. pr_debug("do some more\n");
  461. mm_start_io(card);
  462. }
  463. out_unlock:
  464. spin_unlock_bh(&card->lock);
  465. while(return_bio) {
  466. struct bio *bio = return_bio;
  467. return_bio = bio->bi_next;
  468. bio->bi_next = NULL;
  469. bio_endio(bio, 0);
  470. }
  471. }
  472. /*
  473. -----------------------------------------------------------------------------------
  474. -- mm_make_request
  475. -----------------------------------------------------------------------------------
  476. */
  477. static int mm_make_request(struct request_queue *q, struct bio *bio)
  478. {
  479. struct cardinfo *card = q->queuedata;
  480. pr_debug("mm_make_request %llu %u\n",
  481. (unsigned long long)bio->bi_sector, bio->bi_size);
  482. spin_lock_irq(&card->lock);
  483. *card->biotail = bio;
  484. bio->bi_next = NULL;
  485. card->biotail = &bio->bi_next;
  486. blk_plug_device(q);
  487. spin_unlock_irq(&card->lock);
  488. return 0;
  489. }
  490. /*
  491. -----------------------------------------------------------------------------------
  492. -- mm_interrupt
  493. -----------------------------------------------------------------------------------
  494. */
  495. static irqreturn_t mm_interrupt(int irq, void *__card)
  496. {
  497. struct cardinfo *card = (struct cardinfo *) __card;
  498. unsigned int dma_status;
  499. unsigned short cfg_status;
  500. HW_TRACE(0x30);
  501. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  502. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  503. /* interrupt wasn't for me ... */
  504. return IRQ_NONE;
  505. }
  506. /* clear COMPLETION interrupts */
  507. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  508. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  509. card->csr_remap+ DMA_STATUS_CTRL);
  510. else
  511. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  512. card->csr_remap+ DMA_STATUS_CTRL + 2);
  513. /* log errors and clear interrupt status */
  514. if (dma_status & DMASCR_ANY_ERR) {
  515. unsigned int data_log1, data_log2;
  516. unsigned int addr_log1, addr_log2;
  517. unsigned char stat, count, syndrome, check;
  518. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  519. data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
  520. data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
  521. addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
  522. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  523. count = readb(card->csr_remap + ERROR_COUNT);
  524. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  525. check = readb(card->csr_remap + ERROR_CHECK);
  526. dump_dmastat(card, dma_status);
  527. if (stat & 0x01)
  528. printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
  529. card->card_number, count);
  530. if (stat & 0x02)
  531. printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
  532. card->card_number);
  533. printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  534. card->card_number, addr_log2, addr_log1, data_log2, data_log1);
  535. printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  536. card->card_number, check, syndrome);
  537. writeb(0, card->csr_remap + ERROR_COUNT);
  538. }
  539. if (dma_status & DMASCR_PARITY_ERR_REP) {
  540. printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
  541. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  542. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  543. }
  544. if (dma_status & DMASCR_PARITY_ERR_DET) {
  545. printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
  546. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  547. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  548. }
  549. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  550. printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
  551. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  552. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  553. }
  554. if (dma_status & DMASCR_TARGET_ABT) {
  555. printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
  556. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  557. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  558. }
  559. if (dma_status & DMASCR_MASTER_ABT) {
  560. printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
  561. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  562. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  563. }
  564. /* and process the DMA descriptors */
  565. card->dma_status = dma_status;
  566. tasklet_schedule(&card->tasklet);
  567. HW_TRACE(0x36);
  568. return IRQ_HANDLED;
  569. }
  570. /*
  571. -----------------------------------------------------------------------------------
  572. -- set_fault_to_battery_status
  573. -----------------------------------------------------------------------------------
  574. */
  575. /*
  576. * If both batteries are good, no LED
  577. * If either battery has been warned, solid LED
  578. * If both batteries are bad, flash the LED quickly
  579. * If either battery is bad, flash the LED semi quickly
  580. */
  581. static void set_fault_to_battery_status(struct cardinfo *card)
  582. {
  583. if (card->battery[0].good && card->battery[1].good)
  584. set_led(card, LED_FAULT, LED_OFF);
  585. else if (card->battery[0].warned || card->battery[1].warned)
  586. set_led(card, LED_FAULT, LED_ON);
  587. else if (!card->battery[0].good && !card->battery[1].good)
  588. set_led(card, LED_FAULT, LED_FLASH_7_0);
  589. else
  590. set_led(card, LED_FAULT, LED_FLASH_3_5);
  591. }
  592. static void init_battery_timer(void);
  593. /*
  594. -----------------------------------------------------------------------------------
  595. -- check_battery
  596. -----------------------------------------------------------------------------------
  597. */
  598. static int check_battery(struct cardinfo *card, int battery, int status)
  599. {
  600. if (status != card->battery[battery].good) {
  601. card->battery[battery].good = !card->battery[battery].good;
  602. card->battery[battery].last_change = jiffies;
  603. if (card->battery[battery].good) {
  604. printk(KERN_ERR "MM%d: Battery %d now good\n",
  605. card->card_number, battery + 1);
  606. card->battery[battery].warned = 0;
  607. } else
  608. printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
  609. card->card_number, battery + 1);
  610. return 1;
  611. } else if (!card->battery[battery].good &&
  612. !card->battery[battery].warned &&
  613. time_after_eq(jiffies, card->battery[battery].last_change +
  614. (HZ * 60 * 60 * 5))) {
  615. printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
  616. card->card_number, battery + 1);
  617. card->battery[battery].warned = 1;
  618. return 1;
  619. }
  620. return 0;
  621. }
  622. /*
  623. -----------------------------------------------------------------------------------
  624. -- check_batteries
  625. -----------------------------------------------------------------------------------
  626. */
  627. static void check_batteries(struct cardinfo *card)
  628. {
  629. /* NOTE: this must *never* be called while the card
  630. * is doing (bus-to-card) DMA, or you will need the
  631. * reset switch
  632. */
  633. unsigned char status;
  634. int ret1, ret2;
  635. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  636. if (debug & DEBUG_BATTERY_POLLING)
  637. printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
  638. card->card_number,
  639. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  640. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  641. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  642. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  643. if (ret1 || ret2)
  644. set_fault_to_battery_status(card);
  645. }
  646. static void check_all_batteries(unsigned long ptr)
  647. {
  648. int i;
  649. for (i = 0; i < num_cards; i++)
  650. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  651. struct cardinfo *card = &cards[i];
  652. spin_lock_bh(&card->lock);
  653. if (card->Active >= 0)
  654. card->check_batteries = 1;
  655. else
  656. check_batteries(card);
  657. spin_unlock_bh(&card->lock);
  658. }
  659. init_battery_timer();
  660. }
  661. /*
  662. -----------------------------------------------------------------------------------
  663. -- init_battery_timer
  664. -----------------------------------------------------------------------------------
  665. */
  666. static void init_battery_timer(void)
  667. {
  668. init_timer(&battery_timer);
  669. battery_timer.function = check_all_batteries;
  670. battery_timer.expires = jiffies + (HZ * 60);
  671. add_timer(&battery_timer);
  672. }
  673. /*
  674. -----------------------------------------------------------------------------------
  675. -- del_battery_timer
  676. -----------------------------------------------------------------------------------
  677. */
  678. static void del_battery_timer(void)
  679. {
  680. del_timer(&battery_timer);
  681. }
  682. /*
  683. -----------------------------------------------------------------------------------
  684. -- mm_revalidate
  685. -----------------------------------------------------------------------------------
  686. */
  687. /*
  688. * Note no locks taken out here. In a worst case scenario, we could drop
  689. * a chunk of system memory. But that should never happen, since validation
  690. * happens at open or mount time, when locks are held.
  691. *
  692. * That's crap, since doing that while some partitions are opened
  693. * or mounted will give you really nasty results.
  694. */
  695. static int mm_revalidate(struct gendisk *disk)
  696. {
  697. struct cardinfo *card = disk->private_data;
  698. set_capacity(disk, card->mm_size << 1);
  699. return 0;
  700. }
  701. static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  702. {
  703. struct cardinfo *card = bdev->bd_disk->private_data;
  704. int size = card->mm_size * (1024 / MM_HARDSECT);
  705. /*
  706. * get geometry: we have to fake one... trim the size to a
  707. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  708. * whatever cylinders.
  709. */
  710. geo->heads = 64;
  711. geo->sectors = 32;
  712. geo->cylinders = size / (geo->heads * geo->sectors);
  713. return 0;
  714. }
  715. /*
  716. -----------------------------------------------------------------------------------
  717. -- mm_check_change
  718. -----------------------------------------------------------------------------------
  719. Future support for removable devices
  720. */
  721. static int mm_check_change(struct gendisk *disk)
  722. {
  723. /* struct cardinfo *dev = disk->private_data; */
  724. return 0;
  725. }
  726. /*
  727. -----------------------------------------------------------------------------------
  728. -- mm_fops
  729. -----------------------------------------------------------------------------------
  730. */
  731. static struct block_device_operations mm_fops = {
  732. .owner = THIS_MODULE,
  733. .getgeo = mm_getgeo,
  734. .revalidate_disk= mm_revalidate,
  735. .media_changed = mm_check_change,
  736. };
  737. /*
  738. -----------------------------------------------------------------------------------
  739. -- mm_pci_probe
  740. -----------------------------------------------------------------------------------
  741. */
  742. static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
  743. {
  744. int ret = -ENODEV;
  745. struct cardinfo *card = &cards[num_cards];
  746. unsigned char mem_present;
  747. unsigned char batt_status;
  748. unsigned int saved_bar, data;
  749. int magic_number;
  750. if (pci_enable_device(dev) < 0)
  751. return -ENODEV;
  752. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  753. pci_set_master(dev);
  754. card->dev = dev;
  755. card->card_number = num_cards;
  756. card->csr_base = pci_resource_start(dev, 0);
  757. card->csr_len = pci_resource_len(dev, 0);
  758. printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
  759. card->card_number, dev->bus->number, dev->devfn);
  760. if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
  761. pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  762. printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
  763. return -ENOMEM;
  764. }
  765. if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
  766. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  767. ret = -ENOMEM;
  768. goto failed_req_csr;
  769. }
  770. card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
  771. if (!card->csr_remap) {
  772. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  773. ret = -ENOMEM;
  774. goto failed_remap_csr;
  775. }
  776. printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
  777. card->csr_base, card->csr_remap, card->csr_len);
  778. switch(card->dev->device) {
  779. case 0x5415:
  780. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  781. magic_number = 0x59;
  782. break;
  783. case 0x5425:
  784. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  785. magic_number = 0x5C;
  786. break;
  787. case 0x6155:
  788. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  789. magic_number = 0x99;
  790. break;
  791. default:
  792. magic_number = 0x100;
  793. break;
  794. }
  795. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  796. printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
  797. ret = -ENOMEM;
  798. goto failed_magic;
  799. }
  800. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  801. PAGE_SIZE*2,
  802. &card->mm_pages[0].page_dma);
  803. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  804. PAGE_SIZE*2,
  805. &card->mm_pages[1].page_dma);
  806. if (card->mm_pages[0].desc == NULL ||
  807. card->mm_pages[1].desc == NULL) {
  808. printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
  809. goto failed_alloc;
  810. }
  811. reset_page(&card->mm_pages[0]);
  812. reset_page(&card->mm_pages[1]);
  813. card->Ready = 0; /* page 0 is ready */
  814. card->Active = -1; /* no page is active */
  815. card->bio = NULL;
  816. card->biotail = &card->bio;
  817. card->queue = blk_alloc_queue(GFP_KERNEL);
  818. if (!card->queue)
  819. goto failed_alloc;
  820. blk_queue_make_request(card->queue, mm_make_request);
  821. card->queue->queuedata = card;
  822. card->queue->unplug_fn = mm_unplug_device;
  823. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  824. card->check_batteries = 0;
  825. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  826. switch (mem_present) {
  827. case MEM_128_MB:
  828. card->mm_size = 1024 * 128;
  829. break;
  830. case MEM_256_MB:
  831. card->mm_size = 1024 * 256;
  832. break;
  833. case MEM_512_MB:
  834. card->mm_size = 1024 * 512;
  835. break;
  836. case MEM_1_GB:
  837. card->mm_size = 1024 * 1024;
  838. break;
  839. case MEM_2_GB:
  840. card->mm_size = 1024 * 2048;
  841. break;
  842. default:
  843. card->mm_size = 0;
  844. break;
  845. }
  846. /* Clear the LED's we control */
  847. set_led(card, LED_REMOVE, LED_OFF);
  848. set_led(card, LED_FAULT, LED_OFF);
  849. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  850. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  851. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  852. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  853. if (card->flags & UM_FLAG_NO_BATT)
  854. printk(KERN_INFO "MM%d: Size %d KB\n",
  855. card->card_number, card->mm_size);
  856. else {
  857. printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  858. card->card_number, card->mm_size,
  859. (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
  860. card->battery[0].good ? "OK" : "FAILURE",
  861. (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
  862. card->battery[1].good ? "OK" : "FAILURE");
  863. set_fault_to_battery_status(card);
  864. }
  865. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  866. data = 0xffffffff;
  867. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  868. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  869. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  870. data &= 0xfffffff0;
  871. data = ~data;
  872. data += 1;
  873. card->win_size = data;
  874. if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
  875. printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
  876. ret = -ENODEV;
  877. goto failed_req_irq;
  878. }
  879. card->irq = dev->irq;
  880. printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
  881. card->win_size, card->irq);
  882. spin_lock_init(&card->lock);
  883. pci_set_drvdata(dev, card);
  884. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  885. pci_write_cmd = 0x07; /* then Memory Write command */
  886. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  887. unsigned short cfg_command;
  888. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  889. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  890. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  891. }
  892. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  893. num_cards++;
  894. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  895. printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
  896. card->init_size = 0;
  897. } else {
  898. printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
  899. card->init_size = card->mm_size;
  900. }
  901. /* Enable ECC */
  902. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  903. return 0;
  904. failed_req_irq:
  905. failed_alloc:
  906. if (card->mm_pages[0].desc)
  907. pci_free_consistent(card->dev, PAGE_SIZE*2,
  908. card->mm_pages[0].desc,
  909. card->mm_pages[0].page_dma);
  910. if (card->mm_pages[1].desc)
  911. pci_free_consistent(card->dev, PAGE_SIZE*2,
  912. card->mm_pages[1].desc,
  913. card->mm_pages[1].page_dma);
  914. failed_magic:
  915. iounmap(card->csr_remap);
  916. failed_remap_csr:
  917. release_mem_region(card->csr_base, card->csr_len);
  918. failed_req_csr:
  919. return ret;
  920. }
  921. /*
  922. -----------------------------------------------------------------------------------
  923. -- mm_pci_remove
  924. -----------------------------------------------------------------------------------
  925. */
  926. static void mm_pci_remove(struct pci_dev *dev)
  927. {
  928. struct cardinfo *card = pci_get_drvdata(dev);
  929. tasklet_kill(&card->tasklet);
  930. iounmap(card->csr_remap);
  931. release_mem_region(card->csr_base, card->csr_len);
  932. free_irq(card->irq, card);
  933. if (card->mm_pages[0].desc)
  934. pci_free_consistent(card->dev, PAGE_SIZE*2,
  935. card->mm_pages[0].desc,
  936. card->mm_pages[0].page_dma);
  937. if (card->mm_pages[1].desc)
  938. pci_free_consistent(card->dev, PAGE_SIZE*2,
  939. card->mm_pages[1].desc,
  940. card->mm_pages[1].page_dma);
  941. blk_cleanup_queue(card->queue);
  942. }
  943. static const struct pci_device_id mm_pci_ids[] = {
  944. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
  945. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
  946. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
  947. {
  948. .vendor = 0x8086,
  949. .device = 0xB555,
  950. .subvendor= 0x1332,
  951. .subdevice= 0x5460,
  952. .class = 0x050000,
  953. .class_mask= 0,
  954. }, { /* end: all zeroes */ }
  955. };
  956. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  957. static struct pci_driver mm_pci_driver = {
  958. .name = "umem",
  959. .id_table = mm_pci_ids,
  960. .probe = mm_pci_probe,
  961. .remove = mm_pci_remove,
  962. };
  963. /*
  964. -----------------------------------------------------------------------------------
  965. -- mm_init
  966. -----------------------------------------------------------------------------------
  967. */
  968. static int __init mm_init(void)
  969. {
  970. int retval, i;
  971. int err;
  972. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  973. retval = pci_register_driver(&mm_pci_driver);
  974. if (retval)
  975. return -ENOMEM;
  976. err = major_nr = register_blkdev(0, "umem");
  977. if (err < 0) {
  978. pci_unregister_driver(&mm_pci_driver);
  979. return -EIO;
  980. }
  981. for (i = 0; i < num_cards; i++) {
  982. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  983. if (!mm_gendisk[i])
  984. goto out;
  985. }
  986. for (i = 0; i < num_cards; i++) {
  987. struct gendisk *disk = mm_gendisk[i];
  988. sprintf(disk->disk_name, "umem%c", 'a'+i);
  989. spin_lock_init(&cards[i].lock);
  990. disk->major = major_nr;
  991. disk->first_minor = i << MM_SHIFT;
  992. disk->fops = &mm_fops;
  993. disk->private_data = &cards[i];
  994. disk->queue = cards[i].queue;
  995. set_capacity(disk, cards[i].mm_size << 1);
  996. add_disk(disk);
  997. }
  998. init_battery_timer();
  999. printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  1000. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  1001. return 0;
  1002. out:
  1003. pci_unregister_driver(&mm_pci_driver);
  1004. unregister_blkdev(major_nr, "umem");
  1005. while (i--)
  1006. put_disk(mm_gendisk[i]);
  1007. return -ENOMEM;
  1008. }
  1009. /*
  1010. -----------------------------------------------------------------------------------
  1011. -- mm_cleanup
  1012. -----------------------------------------------------------------------------------
  1013. */
  1014. static void __exit mm_cleanup(void)
  1015. {
  1016. int i;
  1017. del_battery_timer();
  1018. for (i=0; i < num_cards ; i++) {
  1019. del_gendisk(mm_gendisk[i]);
  1020. put_disk(mm_gendisk[i]);
  1021. }
  1022. pci_unregister_driver(&mm_pci_driver);
  1023. unregister_blkdev(major_nr, "umem");
  1024. }
  1025. module_init(mm_init);
  1026. module_exit(mm_cleanup);
  1027. MODULE_AUTHOR(DRIVER_AUTHOR);
  1028. MODULE_DESCRIPTION(DRIVER_DESC);
  1029. MODULE_LICENSE("GPL");