main.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. /* Generic MTRR (Memory Type Range Register) driver.
  2. Copyright (C) 1997-2000 Richard Gooch
  3. Copyright (c) 2002 Patrick Mochel
  4. This library is free software; you can redistribute it and/or
  5. modify it under the terms of the GNU Library General Public
  6. License as published by the Free Software Foundation; either
  7. version 2 of the License, or (at your option) any later version.
  8. This library is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. Library General Public License for more details.
  12. You should have received a copy of the GNU Library General Public
  13. License along with this library; if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. Richard Gooch may be reached by email at rgooch@atnf.csiro.au
  16. The postal address is:
  17. Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
  18. Source: "Pentium Pro Family Developer's Manual, Volume 3:
  19. Operating System Writer's Guide" (Intel document number 242692),
  20. section 11.11.7
  21. This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
  22. on 6-7 March 2002.
  23. Source: Intel Architecture Software Developers Manual, Volume 3:
  24. System Programming Guide; Section 9.11. (1997 edition - PPro).
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/smp.h>
  30. #include <linux/cpu.h>
  31. #include <linux/mutex.h>
  32. #include <linux/sort.h>
  33. #include <asm/e820.h>
  34. #include <asm/mtrr.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/processor.h>
  37. #include <asm/msr.h>
  38. #include <asm/kvm_para.h>
  39. #include "mtrr.h"
  40. u32 num_var_ranges = 0;
  41. unsigned int mtrr_usage_table[MAX_VAR_RANGES];
  42. static DEFINE_MUTEX(mtrr_mutex);
  43. u64 size_or_mask, size_and_mask;
  44. static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
  45. struct mtrr_ops * mtrr_if = NULL;
  46. static void set_mtrr(unsigned int reg, unsigned long base,
  47. unsigned long size, mtrr_type type);
  48. void set_mtrr_ops(struct mtrr_ops * ops)
  49. {
  50. if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
  51. mtrr_ops[ops->vendor] = ops;
  52. }
  53. /* Returns non-zero if we have the write-combining memory type */
  54. static int have_wrcomb(void)
  55. {
  56. struct pci_dev *dev;
  57. u8 rev;
  58. if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
  59. /* ServerWorks LE chipsets < rev 6 have problems with write-combining
  60. Don't allow it and leave room for other chipsets to be tagged */
  61. if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
  62. dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
  63. pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
  64. if (rev <= 5) {
  65. printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
  66. pci_dev_put(dev);
  67. return 0;
  68. }
  69. }
  70. /* Intel 450NX errata # 23. Non ascending cacheline evictions to
  71. write combining memory may resulting in data corruption */
  72. if (dev->vendor == PCI_VENDOR_ID_INTEL &&
  73. dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
  74. printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
  75. pci_dev_put(dev);
  76. return 0;
  77. }
  78. pci_dev_put(dev);
  79. }
  80. return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
  81. }
  82. /* This function returns the number of variable MTRRs */
  83. static void __init set_num_var_ranges(void)
  84. {
  85. unsigned long config = 0, dummy;
  86. if (use_intel()) {
  87. rdmsr(MTRRcap_MSR, config, dummy);
  88. } else if (is_cpu(AMD))
  89. config = 2;
  90. else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
  91. config = 8;
  92. num_var_ranges = config & 0xff;
  93. }
  94. static void __init init_table(void)
  95. {
  96. int i, max;
  97. max = num_var_ranges;
  98. for (i = 0; i < max; i++)
  99. mtrr_usage_table[i] = 1;
  100. }
  101. struct set_mtrr_data {
  102. atomic_t count;
  103. atomic_t gate;
  104. unsigned long smp_base;
  105. unsigned long smp_size;
  106. unsigned int smp_reg;
  107. mtrr_type smp_type;
  108. };
  109. static void ipi_handler(void *info)
  110. /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
  111. [RETURNS] Nothing.
  112. */
  113. {
  114. #ifdef CONFIG_SMP
  115. struct set_mtrr_data *data = info;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. atomic_dec(&data->count);
  119. while(!atomic_read(&data->gate))
  120. cpu_relax();
  121. /* The master has cleared me to execute */
  122. if (data->smp_reg != ~0U)
  123. mtrr_if->set(data->smp_reg, data->smp_base,
  124. data->smp_size, data->smp_type);
  125. else
  126. mtrr_if->set_all();
  127. atomic_dec(&data->count);
  128. while(atomic_read(&data->gate))
  129. cpu_relax();
  130. atomic_dec(&data->count);
  131. local_irq_restore(flags);
  132. #endif
  133. }
  134. static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
  135. return type1 == MTRR_TYPE_UNCACHABLE ||
  136. type2 == MTRR_TYPE_UNCACHABLE ||
  137. (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
  138. (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
  139. }
  140. /**
  141. * set_mtrr - update mtrrs on all processors
  142. * @reg: mtrr in question
  143. * @base: mtrr base
  144. * @size: mtrr size
  145. * @type: mtrr type
  146. *
  147. * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
  148. *
  149. * 1. Send IPI to do the following:
  150. * 2. Disable Interrupts
  151. * 3. Wait for all procs to do so
  152. * 4. Enter no-fill cache mode
  153. * 5. Flush caches
  154. * 6. Clear PGE bit
  155. * 7. Flush all TLBs
  156. * 8. Disable all range registers
  157. * 9. Update the MTRRs
  158. * 10. Enable all range registers
  159. * 11. Flush all TLBs and caches again
  160. * 12. Enter normal cache mode and reenable caching
  161. * 13. Set PGE
  162. * 14. Wait for buddies to catch up
  163. * 15. Enable interrupts.
  164. *
  165. * What does that mean for us? Well, first we set data.count to the number
  166. * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
  167. * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
  168. * Meanwhile, they are waiting for that flag to be set. Once it's set, each
  169. * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
  170. * differently, so we call mtrr_if->set() callback and let them take care of it.
  171. * When they're done, they again decrement data->count and wait for data.gate to
  172. * be reset.
  173. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
  174. * Everyone then enables interrupts and we all continue on.
  175. *
  176. * Note that the mechanism is the same for UP systems, too; all the SMP stuff
  177. * becomes nops.
  178. */
  179. static void set_mtrr(unsigned int reg, unsigned long base,
  180. unsigned long size, mtrr_type type)
  181. {
  182. struct set_mtrr_data data;
  183. unsigned long flags;
  184. data.smp_reg = reg;
  185. data.smp_base = base;
  186. data.smp_size = size;
  187. data.smp_type = type;
  188. atomic_set(&data.count, num_booting_cpus() - 1);
  189. /* make sure data.count is visible before unleashing other CPUs */
  190. smp_wmb();
  191. atomic_set(&data.gate,0);
  192. /* Start the ball rolling on other CPUs */
  193. if (smp_call_function(ipi_handler, &data, 0) != 0)
  194. panic("mtrr: timed out waiting for other CPUs\n");
  195. local_irq_save(flags);
  196. while(atomic_read(&data.count))
  197. cpu_relax();
  198. /* ok, reset count and toggle gate */
  199. atomic_set(&data.count, num_booting_cpus() - 1);
  200. smp_wmb();
  201. atomic_set(&data.gate,1);
  202. /* do our MTRR business */
  203. /* HACK!
  204. * We use this same function to initialize the mtrrs on boot.
  205. * The state of the boot cpu's mtrrs has been saved, and we want
  206. * to replicate across all the APs.
  207. * If we're doing that @reg is set to something special...
  208. */
  209. if (reg != ~0U)
  210. mtrr_if->set(reg,base,size,type);
  211. /* wait for the others */
  212. while(atomic_read(&data.count))
  213. cpu_relax();
  214. atomic_set(&data.count, num_booting_cpus() - 1);
  215. smp_wmb();
  216. atomic_set(&data.gate,0);
  217. /*
  218. * Wait here for everyone to have seen the gate change
  219. * So we're the last ones to touch 'data'
  220. */
  221. while(atomic_read(&data.count))
  222. cpu_relax();
  223. local_irq_restore(flags);
  224. }
  225. /**
  226. * mtrr_add_page - Add a memory type region
  227. * @base: Physical base address of region in pages (in units of 4 kB!)
  228. * @size: Physical size of region in pages (4 kB)
  229. * @type: Type of MTRR desired
  230. * @increment: If this is true do usage counting on the region
  231. *
  232. * Memory type region registers control the caching on newer Intel and
  233. * non Intel processors. This function allows drivers to request an
  234. * MTRR is added. The details and hardware specifics of each processor's
  235. * implementation are hidden from the caller, but nevertheless the
  236. * caller should expect to need to provide a power of two size on an
  237. * equivalent power of two boundary.
  238. *
  239. * If the region cannot be added either because all regions are in use
  240. * or the CPU cannot support it a negative value is returned. On success
  241. * the register number for this entry is returned, but should be treated
  242. * as a cookie only.
  243. *
  244. * On a multiprocessor machine the changes are made to all processors.
  245. * This is required on x86 by the Intel processors.
  246. *
  247. * The available types are
  248. *
  249. * %MTRR_TYPE_UNCACHABLE - No caching
  250. *
  251. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  252. *
  253. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  254. *
  255. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  256. *
  257. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  258. * failures and do not wish system log messages to be sent.
  259. */
  260. int mtrr_add_page(unsigned long base, unsigned long size,
  261. unsigned int type, bool increment)
  262. {
  263. int i, replace, error;
  264. mtrr_type ltype;
  265. unsigned long lbase, lsize;
  266. if (!mtrr_if)
  267. return -ENXIO;
  268. if ((error = mtrr_if->validate_add_page(base,size,type)))
  269. return error;
  270. if (type >= MTRR_NUM_TYPES) {
  271. printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
  272. return -EINVAL;
  273. }
  274. /* If the type is WC, check that this processor supports it */
  275. if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
  276. printk(KERN_WARNING
  277. "mtrr: your processor doesn't support write-combining\n");
  278. return -ENOSYS;
  279. }
  280. if (!size) {
  281. printk(KERN_WARNING "mtrr: zero sized request\n");
  282. return -EINVAL;
  283. }
  284. if (base & size_or_mask || size & size_or_mask) {
  285. printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
  286. return -EINVAL;
  287. }
  288. error = -EINVAL;
  289. replace = -1;
  290. /* No CPU hotplug when we change MTRR entries */
  291. get_online_cpus();
  292. /* Search for existing MTRR */
  293. mutex_lock(&mtrr_mutex);
  294. for (i = 0; i < num_var_ranges; ++i) {
  295. mtrr_if->get(i, &lbase, &lsize, &ltype);
  296. if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
  297. continue;
  298. /* At this point we know there is some kind of overlap/enclosure */
  299. if (base < lbase || base + size - 1 > lbase + lsize - 1) {
  300. if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
  301. /* New region encloses an existing region */
  302. if (type == ltype) {
  303. replace = replace == -1 ? i : -2;
  304. continue;
  305. }
  306. else if (types_compatible(type, ltype))
  307. continue;
  308. }
  309. printk(KERN_WARNING
  310. "mtrr: 0x%lx000,0x%lx000 overlaps existing"
  311. " 0x%lx000,0x%lx000\n", base, size, lbase,
  312. lsize);
  313. goto out;
  314. }
  315. /* New region is enclosed by an existing region */
  316. if (ltype != type) {
  317. if (types_compatible(type, ltype))
  318. continue;
  319. printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
  320. base, size, mtrr_attrib_to_str(ltype),
  321. mtrr_attrib_to_str(type));
  322. goto out;
  323. }
  324. if (increment)
  325. ++mtrr_usage_table[i];
  326. error = i;
  327. goto out;
  328. }
  329. /* Search for an empty MTRR */
  330. i = mtrr_if->get_free_region(base, size, replace);
  331. if (i >= 0) {
  332. set_mtrr(i, base, size, type);
  333. if (likely(replace < 0)) {
  334. mtrr_usage_table[i] = 1;
  335. } else {
  336. mtrr_usage_table[i] = mtrr_usage_table[replace];
  337. if (increment)
  338. mtrr_usage_table[i]++;
  339. if (unlikely(replace != i)) {
  340. set_mtrr(replace, 0, 0, 0);
  341. mtrr_usage_table[replace] = 0;
  342. }
  343. }
  344. } else
  345. printk(KERN_INFO "mtrr: no more MTRRs available\n");
  346. error = i;
  347. out:
  348. mutex_unlock(&mtrr_mutex);
  349. put_online_cpus();
  350. return error;
  351. }
  352. static int mtrr_check(unsigned long base, unsigned long size)
  353. {
  354. if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
  355. printk(KERN_WARNING
  356. "mtrr: size and base must be multiples of 4 kiB\n");
  357. printk(KERN_DEBUG
  358. "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
  359. dump_stack();
  360. return -1;
  361. }
  362. return 0;
  363. }
  364. /**
  365. * mtrr_add - Add a memory type region
  366. * @base: Physical base address of region
  367. * @size: Physical size of region
  368. * @type: Type of MTRR desired
  369. * @increment: If this is true do usage counting on the region
  370. *
  371. * Memory type region registers control the caching on newer Intel and
  372. * non Intel processors. This function allows drivers to request an
  373. * MTRR is added. The details and hardware specifics of each processor's
  374. * implementation are hidden from the caller, but nevertheless the
  375. * caller should expect to need to provide a power of two size on an
  376. * equivalent power of two boundary.
  377. *
  378. * If the region cannot be added either because all regions are in use
  379. * or the CPU cannot support it a negative value is returned. On success
  380. * the register number for this entry is returned, but should be treated
  381. * as a cookie only.
  382. *
  383. * On a multiprocessor machine the changes are made to all processors.
  384. * This is required on x86 by the Intel processors.
  385. *
  386. * The available types are
  387. *
  388. * %MTRR_TYPE_UNCACHABLE - No caching
  389. *
  390. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  391. *
  392. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  393. *
  394. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  395. *
  396. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  397. * failures and do not wish system log messages to be sent.
  398. */
  399. int
  400. mtrr_add(unsigned long base, unsigned long size, unsigned int type,
  401. bool increment)
  402. {
  403. if (mtrr_check(base, size))
  404. return -EINVAL;
  405. return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
  406. increment);
  407. }
  408. /**
  409. * mtrr_del_page - delete a memory type region
  410. * @reg: Register returned by mtrr_add
  411. * @base: Physical base address
  412. * @size: Size of region
  413. *
  414. * If register is supplied then base and size are ignored. This is
  415. * how drivers should call it.
  416. *
  417. * Releases an MTRR region. If the usage count drops to zero the
  418. * register is freed and the region returns to default state.
  419. * On success the register is returned, on failure a negative error
  420. * code.
  421. */
  422. int mtrr_del_page(int reg, unsigned long base, unsigned long size)
  423. {
  424. int i, max;
  425. mtrr_type ltype;
  426. unsigned long lbase, lsize;
  427. int error = -EINVAL;
  428. if (!mtrr_if)
  429. return -ENXIO;
  430. max = num_var_ranges;
  431. /* No CPU hotplug when we change MTRR entries */
  432. get_online_cpus();
  433. mutex_lock(&mtrr_mutex);
  434. if (reg < 0) {
  435. /* Search for existing MTRR */
  436. for (i = 0; i < max; ++i) {
  437. mtrr_if->get(i, &lbase, &lsize, &ltype);
  438. if (lbase == base && lsize == size) {
  439. reg = i;
  440. break;
  441. }
  442. }
  443. if (reg < 0) {
  444. printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
  445. size);
  446. goto out;
  447. }
  448. }
  449. if (reg >= max) {
  450. printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
  451. goto out;
  452. }
  453. mtrr_if->get(reg, &lbase, &lsize, &ltype);
  454. if (lsize < 1) {
  455. printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
  456. goto out;
  457. }
  458. if (mtrr_usage_table[reg] < 1) {
  459. printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
  460. goto out;
  461. }
  462. if (--mtrr_usage_table[reg] < 1)
  463. set_mtrr(reg, 0, 0, 0);
  464. error = reg;
  465. out:
  466. mutex_unlock(&mtrr_mutex);
  467. put_online_cpus();
  468. return error;
  469. }
  470. /**
  471. * mtrr_del - delete a memory type region
  472. * @reg: Register returned by mtrr_add
  473. * @base: Physical base address
  474. * @size: Size of region
  475. *
  476. * If register is supplied then base and size are ignored. This is
  477. * how drivers should call it.
  478. *
  479. * Releases an MTRR region. If the usage count drops to zero the
  480. * register is freed and the region returns to default state.
  481. * On success the register is returned, on failure a negative error
  482. * code.
  483. */
  484. int
  485. mtrr_del(int reg, unsigned long base, unsigned long size)
  486. {
  487. if (mtrr_check(base, size))
  488. return -EINVAL;
  489. return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
  490. }
  491. EXPORT_SYMBOL(mtrr_add);
  492. EXPORT_SYMBOL(mtrr_del);
  493. /* HACK ALERT!
  494. * These should be called implicitly, but we can't yet until all the initcall
  495. * stuff is done...
  496. */
  497. static void __init init_ifs(void)
  498. {
  499. #ifndef CONFIG_X86_64
  500. amd_init_mtrr();
  501. cyrix_init_mtrr();
  502. centaur_init_mtrr();
  503. #endif
  504. }
  505. /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
  506. * MTRR driver doesn't require this
  507. */
  508. struct mtrr_value {
  509. mtrr_type ltype;
  510. unsigned long lbase;
  511. unsigned long lsize;
  512. };
  513. static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
  514. static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
  515. {
  516. int i;
  517. for (i = 0; i < num_var_ranges; i++) {
  518. mtrr_if->get(i,
  519. &mtrr_state[i].lbase,
  520. &mtrr_state[i].lsize,
  521. &mtrr_state[i].ltype);
  522. }
  523. return 0;
  524. }
  525. static int mtrr_restore(struct sys_device * sysdev)
  526. {
  527. int i;
  528. for (i = 0; i < num_var_ranges; i++) {
  529. if (mtrr_state[i].lsize)
  530. set_mtrr(i,
  531. mtrr_state[i].lbase,
  532. mtrr_state[i].lsize,
  533. mtrr_state[i].ltype);
  534. }
  535. return 0;
  536. }
  537. static struct sysdev_driver mtrr_sysdev_driver = {
  538. .suspend = mtrr_save,
  539. .resume = mtrr_restore,
  540. };
  541. /* should be related to MTRR_VAR_RANGES nums */
  542. #define RANGE_NUM 256
  543. struct res_range {
  544. unsigned long start;
  545. unsigned long end;
  546. };
  547. static int __init
  548. add_range(struct res_range *range, int nr_range, unsigned long start,
  549. unsigned long end)
  550. {
  551. /* out of slots */
  552. if (nr_range >= RANGE_NUM)
  553. return nr_range;
  554. range[nr_range].start = start;
  555. range[nr_range].end = end;
  556. nr_range++;
  557. return nr_range;
  558. }
  559. static int __init
  560. add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
  561. unsigned long end)
  562. {
  563. int i;
  564. /* try to merge it with old one */
  565. for (i = 0; i < nr_range; i++) {
  566. unsigned long final_start, final_end;
  567. unsigned long common_start, common_end;
  568. if (!range[i].end)
  569. continue;
  570. common_start = max(range[i].start, start);
  571. common_end = min(range[i].end, end);
  572. if (common_start > common_end + 1)
  573. continue;
  574. final_start = min(range[i].start, start);
  575. final_end = max(range[i].end, end);
  576. range[i].start = final_start;
  577. range[i].end = final_end;
  578. return nr_range;
  579. }
  580. /* need to add that */
  581. return add_range(range, nr_range, start, end);
  582. }
  583. static void __init
  584. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  585. {
  586. int i, j;
  587. for (j = 0; j < RANGE_NUM; j++) {
  588. if (!range[j].end)
  589. continue;
  590. if (start <= range[j].start && end >= range[j].end) {
  591. range[j].start = 0;
  592. range[j].end = 0;
  593. continue;
  594. }
  595. if (start <= range[j].start && end < range[j].end &&
  596. range[j].start < end + 1) {
  597. range[j].start = end + 1;
  598. continue;
  599. }
  600. if (start > range[j].start && end >= range[j].end &&
  601. range[j].end > start - 1) {
  602. range[j].end = start - 1;
  603. continue;
  604. }
  605. if (start > range[j].start && end < range[j].end) {
  606. /* find the new spare */
  607. for (i = 0; i < RANGE_NUM; i++) {
  608. if (range[i].end == 0)
  609. break;
  610. }
  611. if (i < RANGE_NUM) {
  612. range[i].end = range[j].end;
  613. range[i].start = end + 1;
  614. } else {
  615. printk(KERN_ERR "run of slot in ranges\n");
  616. }
  617. range[j].end = start - 1;
  618. continue;
  619. }
  620. }
  621. }
  622. static int __init cmp_range(const void *x1, const void *x2)
  623. {
  624. const struct res_range *r1 = x1;
  625. const struct res_range *r2 = x2;
  626. long start1, start2;
  627. start1 = r1->start;
  628. start2 = r2->start;
  629. return start1 - start2;
  630. }
  631. struct var_mtrr_range_state {
  632. unsigned long base_pfn;
  633. unsigned long size_pfn;
  634. mtrr_type type;
  635. };
  636. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  637. static int __initdata debug_print;
  638. static int __init
  639. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  640. unsigned long extra_remove_base,
  641. unsigned long extra_remove_size)
  642. {
  643. unsigned long i, base, size;
  644. mtrr_type type;
  645. for (i = 0; i < num_var_ranges; i++) {
  646. type = range_state[i].type;
  647. if (type != MTRR_TYPE_WRBACK)
  648. continue;
  649. base = range_state[i].base_pfn;
  650. size = range_state[i].size_pfn;
  651. nr_range = add_range_with_merge(range, nr_range, base,
  652. base + size - 1);
  653. }
  654. if (debug_print) {
  655. printk(KERN_DEBUG "After WB checking\n");
  656. for (i = 0; i < nr_range; i++)
  657. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  658. range[i].start, range[i].end + 1);
  659. }
  660. /* take out UC ranges */
  661. for (i = 0; i < num_var_ranges; i++) {
  662. type = range_state[i].type;
  663. if (type != MTRR_TYPE_UNCACHABLE &&
  664. type != MTRR_TYPE_WRPROT)
  665. continue;
  666. size = range_state[i].size_pfn;
  667. if (!size)
  668. continue;
  669. base = range_state[i].base_pfn;
  670. subtract_range(range, base, base + size - 1);
  671. }
  672. if (extra_remove_size)
  673. subtract_range(range, extra_remove_base,
  674. extra_remove_base + extra_remove_size - 1);
  675. /* get new range num */
  676. nr_range = 0;
  677. for (i = 0; i < RANGE_NUM; i++) {
  678. if (!range[i].end)
  679. continue;
  680. nr_range++;
  681. }
  682. if (debug_print) {
  683. printk(KERN_DEBUG "After UC checking\n");
  684. for (i = 0; i < nr_range; i++)
  685. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  686. range[i].start, range[i].end + 1);
  687. }
  688. /* sort the ranges */
  689. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  690. if (debug_print) {
  691. printk(KERN_DEBUG "After sorting\n");
  692. for (i = 0; i < nr_range; i++)
  693. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  694. range[i].start, range[i].end + 1);
  695. }
  696. /* clear those is not used */
  697. for (i = nr_range; i < RANGE_NUM; i++)
  698. memset(&range[i], 0, sizeof(range[i]));
  699. return nr_range;
  700. }
  701. static struct res_range __initdata range[RANGE_NUM];
  702. static int __initdata nr_range;
  703. #ifdef CONFIG_MTRR_SANITIZER
  704. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  705. {
  706. unsigned long sum;
  707. int i;
  708. sum = 0;
  709. for (i = 0; i < nr_range; i++)
  710. sum += range[i].end + 1 - range[i].start;
  711. return sum;
  712. }
  713. static int enable_mtrr_cleanup __initdata =
  714. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  715. static int __init disable_mtrr_cleanup_setup(char *str)
  716. {
  717. if (enable_mtrr_cleanup != -1)
  718. enable_mtrr_cleanup = 0;
  719. return 0;
  720. }
  721. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  722. static int __init enable_mtrr_cleanup_setup(char *str)
  723. {
  724. if (enable_mtrr_cleanup != -1)
  725. enable_mtrr_cleanup = 1;
  726. return 0;
  727. }
  728. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  729. static int __init mtrr_cleanup_debug_setup(char *str)
  730. {
  731. debug_print = 1;
  732. return 0;
  733. }
  734. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  735. struct var_mtrr_state {
  736. unsigned long range_startk;
  737. unsigned long range_sizek;
  738. unsigned long chunk_sizek;
  739. unsigned long gran_sizek;
  740. unsigned int reg;
  741. };
  742. static void __init
  743. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  744. unsigned char type, unsigned int address_bits)
  745. {
  746. u32 base_lo, base_hi, mask_lo, mask_hi;
  747. u64 base, mask;
  748. if (!sizek) {
  749. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  750. return;
  751. }
  752. mask = (1ULL << address_bits) - 1;
  753. mask &= ~((((u64)sizek) << 10) - 1);
  754. base = ((u64)basek) << 10;
  755. base |= type;
  756. mask |= 0x800;
  757. base_lo = base & ((1ULL<<32) - 1);
  758. base_hi = base >> 32;
  759. mask_lo = mask & ((1ULL<<32) - 1);
  760. mask_hi = mask >> 32;
  761. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  762. }
  763. static void __init
  764. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  765. unsigned char type)
  766. {
  767. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  768. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  769. range_state[reg].type = type;
  770. }
  771. static void __init
  772. set_var_mtrr_all(unsigned int address_bits)
  773. {
  774. unsigned long basek, sizek;
  775. unsigned char type;
  776. unsigned int reg;
  777. for (reg = 0; reg < num_var_ranges; reg++) {
  778. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  779. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  780. type = range_state[reg].type;
  781. set_var_mtrr(reg, basek, sizek, type, address_bits);
  782. }
  783. }
  784. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  785. {
  786. char factor;
  787. unsigned long base = sizek;
  788. if (base & ((1<<10) - 1)) {
  789. /* not MB alignment */
  790. factor = 'K';
  791. } else if (base & ((1<<20) - 1)){
  792. factor = 'M';
  793. base >>= 10;
  794. } else {
  795. factor = 'G';
  796. base >>= 20;
  797. }
  798. *factorp = factor;
  799. return base;
  800. }
  801. static unsigned int __init
  802. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  803. unsigned long range_sizek, unsigned char type)
  804. {
  805. if (!range_sizek || (reg >= num_var_ranges))
  806. return reg;
  807. while (range_sizek) {
  808. unsigned long max_align, align;
  809. unsigned long sizek;
  810. /* Compute the maximum size I can make a range */
  811. if (range_startk)
  812. max_align = ffs(range_startk) - 1;
  813. else
  814. max_align = 32;
  815. align = fls(range_sizek) - 1;
  816. if (align > max_align)
  817. align = max_align;
  818. sizek = 1 << align;
  819. if (debug_print) {
  820. char start_factor = 'K', size_factor = 'K';
  821. unsigned long start_base, size_base;
  822. start_base = to_size_factor(range_startk, &start_factor),
  823. size_base = to_size_factor(sizek, &size_factor),
  824. printk(KERN_DEBUG "Setting variable MTRR %d, "
  825. "base: %ld%cB, range: %ld%cB, type %s\n",
  826. reg, start_base, start_factor,
  827. size_base, size_factor,
  828. (type == MTRR_TYPE_UNCACHABLE)?"UC":
  829. ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
  830. );
  831. }
  832. save_var_mtrr(reg++, range_startk, sizek, type);
  833. range_startk += sizek;
  834. range_sizek -= sizek;
  835. if (reg >= num_var_ranges)
  836. break;
  837. }
  838. return reg;
  839. }
  840. static unsigned __init
  841. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  842. unsigned long sizek)
  843. {
  844. unsigned long hole_basek, hole_sizek;
  845. unsigned long second_basek, second_sizek;
  846. unsigned long range0_basek, range0_sizek;
  847. unsigned long range_basek, range_sizek;
  848. unsigned long chunk_sizek;
  849. unsigned long gran_sizek;
  850. hole_basek = 0;
  851. hole_sizek = 0;
  852. second_basek = 0;
  853. second_sizek = 0;
  854. chunk_sizek = state->chunk_sizek;
  855. gran_sizek = state->gran_sizek;
  856. /* align with gran size, prevent small block used up MTRRs */
  857. range_basek = ALIGN(state->range_startk, gran_sizek);
  858. if ((range_basek > basek) && basek)
  859. return second_sizek;
  860. state->range_sizek -= (range_basek - state->range_startk);
  861. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  862. while (range_sizek > state->range_sizek) {
  863. range_sizek -= gran_sizek;
  864. if (!range_sizek)
  865. return 0;
  866. }
  867. state->range_sizek = range_sizek;
  868. /* try to append some small hole */
  869. range0_basek = state->range_startk;
  870. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  871. /* no increase */
  872. if (range0_sizek == state->range_sizek) {
  873. if (debug_print)
  874. printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
  875. range0_basek<<10,
  876. (range0_basek + state->range_sizek)<<10);
  877. state->reg = range_to_mtrr(state->reg, range0_basek,
  878. state->range_sizek, MTRR_TYPE_WRBACK);
  879. return 0;
  880. }
  881. /* only cut back, when it is not the last */
  882. if (sizek) {
  883. while (range0_basek + range0_sizek > (basek + sizek)) {
  884. if (range0_sizek >= chunk_sizek)
  885. range0_sizek -= chunk_sizek;
  886. else
  887. range0_sizek = 0;
  888. if (!range0_sizek)
  889. break;
  890. }
  891. }
  892. second_try:
  893. range_basek = range0_basek + range0_sizek;
  894. /* one hole in the middle */
  895. if (range_basek > basek && range_basek <= (basek + sizek))
  896. second_sizek = range_basek - basek;
  897. if (range0_sizek > state->range_sizek) {
  898. /* one hole in middle or at end */
  899. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  900. /* hole size should be less than half of range0 size */
  901. if (hole_sizek >= (range0_sizek >> 1) &&
  902. range0_sizek >= chunk_sizek) {
  903. range0_sizek -= chunk_sizek;
  904. second_sizek = 0;
  905. hole_sizek = 0;
  906. goto second_try;
  907. }
  908. }
  909. if (range0_sizek) {
  910. if (debug_print)
  911. printk(KERN_DEBUG "range0: %016lx - %016lx\n",
  912. range0_basek<<10,
  913. (range0_basek + range0_sizek)<<10);
  914. state->reg = range_to_mtrr(state->reg, range0_basek,
  915. range0_sizek, MTRR_TYPE_WRBACK);
  916. }
  917. if (range0_sizek < state->range_sizek) {
  918. /* need to handle left over */
  919. range_sizek = state->range_sizek - range0_sizek;
  920. if (debug_print)
  921. printk(KERN_DEBUG "range: %016lx - %016lx\n",
  922. range_basek<<10,
  923. (range_basek + range_sizek)<<10);
  924. state->reg = range_to_mtrr(state->reg, range_basek,
  925. range_sizek, MTRR_TYPE_WRBACK);
  926. }
  927. if (hole_sizek) {
  928. hole_basek = range_basek - hole_sizek - second_sizek;
  929. if (debug_print)
  930. printk(KERN_DEBUG "hole: %016lx - %016lx\n",
  931. hole_basek<<10,
  932. (hole_basek + hole_sizek)<<10);
  933. state->reg = range_to_mtrr(state->reg, hole_basek,
  934. hole_sizek, MTRR_TYPE_UNCACHABLE);
  935. }
  936. return second_sizek;
  937. }
  938. static void __init
  939. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  940. unsigned long size_pfn)
  941. {
  942. unsigned long basek, sizek;
  943. unsigned long second_sizek = 0;
  944. if (state->reg >= num_var_ranges)
  945. return;
  946. basek = base_pfn << (PAGE_SHIFT - 10);
  947. sizek = size_pfn << (PAGE_SHIFT - 10);
  948. /* See if I can merge with the last range */
  949. if ((basek <= 1024) ||
  950. (state->range_startk + state->range_sizek == basek)) {
  951. unsigned long endk = basek + sizek;
  952. state->range_sizek = endk - state->range_startk;
  953. return;
  954. }
  955. /* Write the range mtrrs */
  956. if (state->range_sizek != 0)
  957. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  958. /* Allocate an msr */
  959. state->range_startk = basek + second_sizek;
  960. state->range_sizek = sizek - second_sizek;
  961. }
  962. /* mininum size of mtrr block that can take hole */
  963. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  964. static int __init parse_mtrr_chunk_size_opt(char *p)
  965. {
  966. if (!p)
  967. return -EINVAL;
  968. mtrr_chunk_size = memparse(p, &p);
  969. return 0;
  970. }
  971. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  972. /* granity of mtrr of block */
  973. static u64 mtrr_gran_size __initdata;
  974. static int __init parse_mtrr_gran_size_opt(char *p)
  975. {
  976. if (!p)
  977. return -EINVAL;
  978. mtrr_gran_size = memparse(p, &p);
  979. return 0;
  980. }
  981. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  982. static int nr_mtrr_spare_reg __initdata =
  983. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  984. static int __init parse_mtrr_spare_reg(char *arg)
  985. {
  986. if (arg)
  987. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  988. return 0;
  989. }
  990. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  991. static int __init
  992. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  993. u64 chunk_size, u64 gran_size)
  994. {
  995. struct var_mtrr_state var_state;
  996. int i;
  997. int num_reg;
  998. var_state.range_startk = 0;
  999. var_state.range_sizek = 0;
  1000. var_state.reg = 0;
  1001. var_state.chunk_sizek = chunk_size >> 10;
  1002. var_state.gran_sizek = gran_size >> 10;
  1003. memset(range_state, 0, sizeof(range_state));
  1004. /* Write the range etc */
  1005. for (i = 0; i < nr_range; i++)
  1006. set_var_mtrr_range(&var_state, range[i].start,
  1007. range[i].end - range[i].start + 1);
  1008. /* Write the last range */
  1009. if (var_state.range_sizek != 0)
  1010. range_to_mtrr_with_hole(&var_state, 0, 0);
  1011. num_reg = var_state.reg;
  1012. /* Clear out the extra MTRR's */
  1013. while (var_state.reg < num_var_ranges) {
  1014. save_var_mtrr(var_state.reg, 0, 0, 0);
  1015. var_state.reg++;
  1016. }
  1017. return num_reg;
  1018. }
  1019. struct mtrr_cleanup_result {
  1020. unsigned long gran_sizek;
  1021. unsigned long chunk_sizek;
  1022. unsigned long lose_cover_sizek;
  1023. unsigned int num_reg;
  1024. int bad;
  1025. };
  1026. /*
  1027. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  1028. * chunk size: gran_size, ..., 2G
  1029. * so we need (1+16)*8
  1030. */
  1031. #define NUM_RESULT 136
  1032. #define PSHIFT (PAGE_SHIFT - 10)
  1033. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  1034. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  1035. static void __init print_out_mtrr_range_state(void)
  1036. {
  1037. int i;
  1038. char start_factor = 'K', size_factor = 'K';
  1039. unsigned long start_base, size_base;
  1040. mtrr_type type;
  1041. for (i = 0; i < num_var_ranges; i++) {
  1042. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  1043. if (!size_base)
  1044. continue;
  1045. size_base = to_size_factor(size_base, &size_factor),
  1046. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  1047. start_base = to_size_factor(start_base, &start_factor),
  1048. type = range_state[i].type;
  1049. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  1050. i, start_base, start_factor,
  1051. size_base, size_factor,
  1052. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  1053. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  1054. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  1055. );
  1056. }
  1057. }
  1058. static int __init mtrr_need_cleanup(void)
  1059. {
  1060. int i;
  1061. mtrr_type type;
  1062. unsigned long size;
  1063. /* extra one for all 0 */
  1064. int num[MTRR_NUM_TYPES + 1];
  1065. /* check entries number */
  1066. memset(num, 0, sizeof(num));
  1067. for (i = 0; i < num_var_ranges; i++) {
  1068. type = range_state[i].type;
  1069. size = range_state[i].size_pfn;
  1070. if (type >= MTRR_NUM_TYPES)
  1071. continue;
  1072. if (!size)
  1073. type = MTRR_NUM_TYPES;
  1074. if (type == MTRR_TYPE_WRPROT)
  1075. type = MTRR_TYPE_UNCACHABLE;
  1076. num[type]++;
  1077. }
  1078. /* check if we got UC entries */
  1079. if (!num[MTRR_TYPE_UNCACHABLE])
  1080. return 0;
  1081. /* check if we only had WB and UC */
  1082. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1083. num_var_ranges - num[MTRR_NUM_TYPES])
  1084. return 0;
  1085. return 1;
  1086. }
  1087. static unsigned long __initdata range_sums;
  1088. static void __init mtrr_calc_range_state(u64 chunk_size, u64 gran_size,
  1089. unsigned long extra_remove_base,
  1090. unsigned long extra_remove_size,
  1091. int i)
  1092. {
  1093. int num_reg;
  1094. static struct res_range range_new[RANGE_NUM];
  1095. static int nr_range_new;
  1096. unsigned long range_sums_new;
  1097. /* convert ranges to var ranges state */
  1098. num_reg = x86_setup_var_mtrrs(range, nr_range,
  1099. chunk_size, gran_size);
  1100. /* we got new setting in range_state, check it */
  1101. memset(range_new, 0, sizeof(range_new));
  1102. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1103. extra_remove_base, extra_remove_size);
  1104. range_sums_new = sum_ranges(range_new, nr_range_new);
  1105. result[i].chunk_sizek = chunk_size >> 10;
  1106. result[i].gran_sizek = gran_size >> 10;
  1107. result[i].num_reg = num_reg;
  1108. if (range_sums < range_sums_new) {
  1109. result[i].lose_cover_sizek =
  1110. (range_sums_new - range_sums) << PSHIFT;
  1111. result[i].bad = 1;
  1112. } else
  1113. result[i].lose_cover_sizek =
  1114. (range_sums - range_sums_new) << PSHIFT;
  1115. /* double check it */
  1116. if (!result[i].bad && !result[i].lose_cover_sizek) {
  1117. if (nr_range_new != nr_range ||
  1118. memcmp(range, range_new, sizeof(range)))
  1119. result[i].bad = 1;
  1120. }
  1121. if (!result[i].bad && (range_sums - range_sums_new <
  1122. min_loss_pfn[num_reg])) {
  1123. min_loss_pfn[num_reg] =
  1124. range_sums - range_sums_new;
  1125. }
  1126. }
  1127. static void __init mtrr_print_out_one_result(int i)
  1128. {
  1129. char gran_factor, chunk_factor, lose_factor;
  1130. unsigned long gran_base, chunk_base, lose_base;
  1131. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1132. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1133. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1134. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  1135. result[i].bad ? "*BAD*" : " ",
  1136. gran_base, gran_factor, chunk_base, chunk_factor);
  1137. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  1138. result[i].num_reg, result[i].bad ? "-" : "",
  1139. lose_base, lose_factor);
  1140. }
  1141. static int __init mtrr_search_optimal_index(void)
  1142. {
  1143. int i;
  1144. int num_reg_good;
  1145. int index_good;
  1146. if (nr_mtrr_spare_reg >= num_var_ranges)
  1147. nr_mtrr_spare_reg = num_var_ranges - 1;
  1148. num_reg_good = -1;
  1149. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  1150. if (!min_loss_pfn[i])
  1151. num_reg_good = i;
  1152. }
  1153. index_good = -1;
  1154. if (num_reg_good != -1) {
  1155. for (i = 0; i < NUM_RESULT; i++) {
  1156. if (!result[i].bad &&
  1157. result[i].num_reg == num_reg_good &&
  1158. !result[i].lose_cover_sizek) {
  1159. index_good = i;
  1160. break;
  1161. }
  1162. }
  1163. }
  1164. return index_good;
  1165. }
  1166. static int __init mtrr_cleanup(unsigned address_bits)
  1167. {
  1168. unsigned long extra_remove_base, extra_remove_size;
  1169. unsigned long base, size, def, dummy;
  1170. mtrr_type type;
  1171. u64 chunk_size, gran_size;
  1172. int index_good;
  1173. int i;
  1174. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  1175. return 0;
  1176. rdmsr(MTRRdefType_MSR, def, dummy);
  1177. def &= 0xff;
  1178. if (def != MTRR_TYPE_UNCACHABLE)
  1179. return 0;
  1180. /* get it and store it aside */
  1181. memset(range_state, 0, sizeof(range_state));
  1182. for (i = 0; i < num_var_ranges; i++) {
  1183. mtrr_if->get(i, &base, &size, &type);
  1184. range_state[i].base_pfn = base;
  1185. range_state[i].size_pfn = size;
  1186. range_state[i].type = type;
  1187. }
  1188. /* check if we need handle it and can handle it */
  1189. if (!mtrr_need_cleanup())
  1190. return 0;
  1191. /* print original var MTRRs at first, for debugging: */
  1192. printk(KERN_DEBUG "original variable MTRRs\n");
  1193. print_out_mtrr_range_state();
  1194. memset(range, 0, sizeof(range));
  1195. extra_remove_size = 0;
  1196. extra_remove_base = 1 << (32 - PAGE_SHIFT);
  1197. if (mtrr_tom2)
  1198. extra_remove_size =
  1199. (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
  1200. nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
  1201. extra_remove_size);
  1202. /*
  1203. * [0, 1M) should always be coverred by var mtrr with WB
  1204. * and fixed mtrrs should take effective before var mtrr for it
  1205. */
  1206. nr_range = add_range_with_merge(range, nr_range, 0,
  1207. (1ULL<<(20 - PAGE_SHIFT)) - 1);
  1208. /* sort the ranges */
  1209. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  1210. range_sums = sum_ranges(range, nr_range);
  1211. printk(KERN_INFO "total RAM coverred: %ldM\n",
  1212. range_sums >> (20 - PAGE_SHIFT));
  1213. if (mtrr_chunk_size && mtrr_gran_size) {
  1214. i = 0;
  1215. mtrr_calc_range_state(mtrr_chunk_size, mtrr_gran_size,
  1216. extra_remove_base, extra_remove_size, i);
  1217. mtrr_print_out_one_result(i);
  1218. if (!result[i].bad) {
  1219. set_var_mtrr_all(address_bits);
  1220. return 1;
  1221. }
  1222. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  1223. "will find optimal one\n");
  1224. }
  1225. i = 0;
  1226. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  1227. memset(result, 0, sizeof(result));
  1228. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  1229. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  1230. chunk_size <<= 1) {
  1231. if (i >= NUM_RESULT)
  1232. continue;
  1233. mtrr_calc_range_state(chunk_size, gran_size,
  1234. extra_remove_base, extra_remove_size, i);
  1235. if (debug_print) {
  1236. mtrr_print_out_one_result(i);
  1237. printk(KERN_INFO "\n");
  1238. }
  1239. i++;
  1240. }
  1241. }
  1242. /* try to find the optimal index */
  1243. index_good = mtrr_search_optimal_index();
  1244. if (index_good != -1) {
  1245. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  1246. i = index_good;
  1247. mtrr_print_out_one_result(i);
  1248. /* convert ranges to var ranges state */
  1249. chunk_size = result[i].chunk_sizek;
  1250. chunk_size <<= 10;
  1251. gran_size = result[i].gran_sizek;
  1252. gran_size <<= 10;
  1253. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  1254. set_var_mtrr_all(address_bits);
  1255. printk(KERN_DEBUG "New variable MTRRs\n");
  1256. print_out_mtrr_range_state();
  1257. return 1;
  1258. } else {
  1259. /* print out all */
  1260. for (i = 0; i < NUM_RESULT; i++)
  1261. mtrr_print_out_one_result(i);
  1262. }
  1263. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  1264. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  1265. return 0;
  1266. }
  1267. #else
  1268. static int __init mtrr_cleanup(unsigned address_bits)
  1269. {
  1270. return 0;
  1271. }
  1272. #endif
  1273. static int __initdata changed_by_mtrr_cleanup;
  1274. static int disable_mtrr_trim;
  1275. static int __init disable_mtrr_trim_setup(char *str)
  1276. {
  1277. disable_mtrr_trim = 1;
  1278. return 0;
  1279. }
  1280. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  1281. /*
  1282. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  1283. * for memory >4GB. Check for that here.
  1284. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  1285. * apply to are wrong, but so far we don't know of any such case in the wild.
  1286. */
  1287. #define Tom2Enabled (1U << 21)
  1288. #define Tom2ForceMemTypeWB (1U << 22)
  1289. int __init amd_special_default_mtrr(void)
  1290. {
  1291. u32 l, h;
  1292. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  1293. return 0;
  1294. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  1295. return 0;
  1296. /* In case some hypervisor doesn't pass SYSCFG through */
  1297. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  1298. return 0;
  1299. /*
  1300. * Memory between 4GB and top of mem is forced WB by this magic bit.
  1301. * Reserved before K8RevF, but should be zero there.
  1302. */
  1303. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  1304. (Tom2Enabled | Tom2ForceMemTypeWB))
  1305. return 1;
  1306. return 0;
  1307. }
  1308. static u64 __init real_trim_memory(unsigned long start_pfn,
  1309. unsigned long limit_pfn)
  1310. {
  1311. u64 trim_start, trim_size;
  1312. trim_start = start_pfn;
  1313. trim_start <<= PAGE_SHIFT;
  1314. trim_size = limit_pfn;
  1315. trim_size <<= PAGE_SHIFT;
  1316. trim_size -= trim_start;
  1317. return e820_update_range(trim_start, trim_size, E820_RAM,
  1318. E820_RESERVED);
  1319. }
  1320. /**
  1321. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  1322. * @end_pfn: ending page frame number
  1323. *
  1324. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  1325. * memory configurations. This routine checks that the highest MTRR matches
  1326. * the end of memory, to make sure the MTRRs having a write back type cover
  1327. * all of the memory the kernel is intending to use. If not, it'll trim any
  1328. * memory off the end by adjusting end_pfn, removing it from the kernel's
  1329. * allocation pools, warning the user with an obnoxious message.
  1330. */
  1331. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  1332. {
  1333. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  1334. mtrr_type type;
  1335. u64 total_trim_size;
  1336. /* extra one for all 0 */
  1337. int num[MTRR_NUM_TYPES + 1];
  1338. /*
  1339. * Make sure we only trim uncachable memory on machines that
  1340. * support the Intel MTRR architecture:
  1341. */
  1342. if (!is_cpu(INTEL) || disable_mtrr_trim)
  1343. return 0;
  1344. rdmsr(MTRRdefType_MSR, def, dummy);
  1345. def &= 0xff;
  1346. if (def != MTRR_TYPE_UNCACHABLE)
  1347. return 0;
  1348. /* get it and store it aside */
  1349. memset(range_state, 0, sizeof(range_state));
  1350. for (i = 0; i < num_var_ranges; i++) {
  1351. mtrr_if->get(i, &base, &size, &type);
  1352. range_state[i].base_pfn = base;
  1353. range_state[i].size_pfn = size;
  1354. range_state[i].type = type;
  1355. }
  1356. /* Find highest cached pfn */
  1357. for (i = 0; i < num_var_ranges; i++) {
  1358. type = range_state[i].type;
  1359. if (type != MTRR_TYPE_WRBACK)
  1360. continue;
  1361. base = range_state[i].base_pfn;
  1362. size = range_state[i].size_pfn;
  1363. if (highest_pfn < base + size)
  1364. highest_pfn = base + size;
  1365. }
  1366. /* kvm/qemu doesn't have mtrr set right, don't trim them all */
  1367. if (!highest_pfn) {
  1368. WARN(!kvm_para_available(), KERN_WARNING
  1369. "WARNING: strange, CPU MTRRs all blank?\n");
  1370. return 0;
  1371. }
  1372. /* check entries number */
  1373. memset(num, 0, sizeof(num));
  1374. for (i = 0; i < num_var_ranges; i++) {
  1375. type = range_state[i].type;
  1376. if (type >= MTRR_NUM_TYPES)
  1377. continue;
  1378. size = range_state[i].size_pfn;
  1379. if (!size)
  1380. type = MTRR_NUM_TYPES;
  1381. num[type]++;
  1382. }
  1383. /* no entry for WB? */
  1384. if (!num[MTRR_TYPE_WRBACK])
  1385. return 0;
  1386. /* check if we only had WB and UC */
  1387. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1388. num_var_ranges - num[MTRR_NUM_TYPES])
  1389. return 0;
  1390. memset(range, 0, sizeof(range));
  1391. nr_range = 0;
  1392. if (mtrr_tom2) {
  1393. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  1394. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  1395. if (highest_pfn < range[nr_range].end + 1)
  1396. highest_pfn = range[nr_range].end + 1;
  1397. nr_range++;
  1398. }
  1399. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  1400. total_trim_size = 0;
  1401. /* check the head */
  1402. if (range[0].start)
  1403. total_trim_size += real_trim_memory(0, range[0].start);
  1404. /* check the holes */
  1405. for (i = 0; i < nr_range - 1; i++) {
  1406. if (range[i].end + 1 < range[i+1].start)
  1407. total_trim_size += real_trim_memory(range[i].end + 1,
  1408. range[i+1].start);
  1409. }
  1410. /* check the top */
  1411. i = nr_range - 1;
  1412. if (range[i].end + 1 < end_pfn)
  1413. total_trim_size += real_trim_memory(range[i].end + 1,
  1414. end_pfn);
  1415. if (total_trim_size) {
  1416. printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
  1417. " all of memory, losing %lluMB of RAM.\n",
  1418. total_trim_size >> 20);
  1419. if (!changed_by_mtrr_cleanup)
  1420. WARN_ON(1);
  1421. printk(KERN_INFO "update e820 for mtrr\n");
  1422. update_e820();
  1423. return 1;
  1424. }
  1425. return 0;
  1426. }
  1427. /**
  1428. * mtrr_bp_init - initialize mtrrs on the boot CPU
  1429. *
  1430. * This needs to be called early; before any of the other CPUs are
  1431. * initialized (i.e. before smp_init()).
  1432. *
  1433. */
  1434. void __init mtrr_bp_init(void)
  1435. {
  1436. u32 phys_addr;
  1437. init_ifs();
  1438. phys_addr = 32;
  1439. if (cpu_has_mtrr) {
  1440. mtrr_if = &generic_mtrr_ops;
  1441. size_or_mask = 0xff000000; /* 36 bits */
  1442. size_and_mask = 0x00f00000;
  1443. phys_addr = 36;
  1444. /* This is an AMD specific MSR, but we assume(hope?) that
  1445. Intel will implement it to when they extend the address
  1446. bus of the Xeon. */
  1447. if (cpuid_eax(0x80000000) >= 0x80000008) {
  1448. phys_addr = cpuid_eax(0x80000008) & 0xff;
  1449. /* CPUID workaround for Intel 0F33/0F34 CPU */
  1450. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  1451. boot_cpu_data.x86 == 0xF &&
  1452. boot_cpu_data.x86_model == 0x3 &&
  1453. (boot_cpu_data.x86_mask == 0x3 ||
  1454. boot_cpu_data.x86_mask == 0x4))
  1455. phys_addr = 36;
  1456. size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
  1457. size_and_mask = ~size_or_mask & 0xfffff00000ULL;
  1458. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
  1459. boot_cpu_data.x86 == 6) {
  1460. /* VIA C* family have Intel style MTRRs, but
  1461. don't support PAE */
  1462. size_or_mask = 0xfff00000; /* 32 bits */
  1463. size_and_mask = 0;
  1464. phys_addr = 32;
  1465. }
  1466. } else {
  1467. switch (boot_cpu_data.x86_vendor) {
  1468. case X86_VENDOR_AMD:
  1469. if (cpu_has_k6_mtrr) {
  1470. /* Pre-Athlon (K6) AMD CPU MTRRs */
  1471. mtrr_if = mtrr_ops[X86_VENDOR_AMD];
  1472. size_or_mask = 0xfff00000; /* 32 bits */
  1473. size_and_mask = 0;
  1474. }
  1475. break;
  1476. case X86_VENDOR_CENTAUR:
  1477. if (cpu_has_centaur_mcr) {
  1478. mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
  1479. size_or_mask = 0xfff00000; /* 32 bits */
  1480. size_and_mask = 0;
  1481. }
  1482. break;
  1483. case X86_VENDOR_CYRIX:
  1484. if (cpu_has_cyrix_arr) {
  1485. mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
  1486. size_or_mask = 0xfff00000; /* 32 bits */
  1487. size_and_mask = 0;
  1488. }
  1489. break;
  1490. default:
  1491. break;
  1492. }
  1493. }
  1494. if (mtrr_if) {
  1495. set_num_var_ranges();
  1496. init_table();
  1497. if (use_intel()) {
  1498. get_mtrr_state();
  1499. if (mtrr_cleanup(phys_addr)) {
  1500. changed_by_mtrr_cleanup = 1;
  1501. mtrr_if->set_all();
  1502. }
  1503. }
  1504. }
  1505. }
  1506. void mtrr_ap_init(void)
  1507. {
  1508. unsigned long flags;
  1509. if (!mtrr_if || !use_intel())
  1510. return;
  1511. /*
  1512. * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
  1513. * but this routine will be called in cpu boot time, holding the lock
  1514. * breaks it. This routine is called in two cases: 1.very earily time
  1515. * of software resume, when there absolutely isn't mtrr entry changes;
  1516. * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
  1517. * prevent mtrr entry changes
  1518. */
  1519. local_irq_save(flags);
  1520. mtrr_if->set_all();
  1521. local_irq_restore(flags);
  1522. }
  1523. /**
  1524. * Save current fixed-range MTRR state of the BSP
  1525. */
  1526. void mtrr_save_state(void)
  1527. {
  1528. smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
  1529. }
  1530. static int __init mtrr_init_finialize(void)
  1531. {
  1532. if (!mtrr_if)
  1533. return 0;
  1534. if (use_intel()) {
  1535. if (!changed_by_mtrr_cleanup)
  1536. mtrr_state_warn();
  1537. } else {
  1538. /* The CPUs haven't MTRR and seem to not support SMP. They have
  1539. * specific drivers, we use a tricky method to support
  1540. * suspend/resume for them.
  1541. * TBD: is there any system with such CPU which supports
  1542. * suspend/resume? if no, we should remove the code.
  1543. */
  1544. sysdev_driver_register(&cpu_sysdev_class,
  1545. &mtrr_sysdev_driver);
  1546. }
  1547. return 0;
  1548. }
  1549. subsys_initcall(mtrr_init_finialize);