ctree.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. rcu_read_lock();
  147. eb = rcu_dereference(root->node);
  148. extent_buffer_get(eb);
  149. rcu_read_unlock();
  150. return eb;
  151. }
  152. /* loop around taking references on and locking the root node of the
  153. * tree until you end up with a lock on the root. A locked buffer
  154. * is returned, with a reference held.
  155. */
  156. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  157. {
  158. struct extent_buffer *eb;
  159. while (1) {
  160. eb = btrfs_root_node(root);
  161. btrfs_tree_lock(eb);
  162. if (eb == root->node)
  163. break;
  164. btrfs_tree_unlock(eb);
  165. free_extent_buffer(eb);
  166. }
  167. return eb;
  168. }
  169. /* loop around taking references on and locking the root node of the
  170. * tree until you end up with a lock on the root. A locked buffer
  171. * is returned, with a reference held.
  172. */
  173. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  174. {
  175. struct extent_buffer *eb;
  176. while (1) {
  177. eb = btrfs_root_node(root);
  178. btrfs_tree_read_lock(eb);
  179. if (eb == root->node)
  180. break;
  181. btrfs_tree_read_unlock(eb);
  182. free_extent_buffer(eb);
  183. }
  184. return eb;
  185. }
  186. /* cowonly root (everything not a reference counted cow subvolume), just get
  187. * put onto a simple dirty list. transaction.c walks this to make sure they
  188. * get properly updated on disk.
  189. */
  190. static void add_root_to_dirty_list(struct btrfs_root *root)
  191. {
  192. if (root->track_dirty && list_empty(&root->dirty_list)) {
  193. list_add(&root->dirty_list,
  194. &root->fs_info->dirty_cowonly_roots);
  195. }
  196. }
  197. /*
  198. * used by snapshot creation to make a copy of a root for a tree with
  199. * a given objectid. The buffer with the new root node is returned in
  200. * cow_ret, and this func returns zero on success or a negative error code.
  201. */
  202. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  203. struct btrfs_root *root,
  204. struct extent_buffer *buf,
  205. struct extent_buffer **cow_ret, u64 new_root_objectid)
  206. {
  207. struct extent_buffer *cow;
  208. int ret = 0;
  209. int level;
  210. struct btrfs_disk_key disk_key;
  211. WARN_ON(root->ref_cows && trans->transid !=
  212. root->fs_info->running_transaction->transid);
  213. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  214. level = btrfs_header_level(buf);
  215. if (level == 0)
  216. btrfs_item_key(buf, &disk_key, 0);
  217. else
  218. btrfs_node_key(buf, &disk_key, 0);
  219. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  220. new_root_objectid, &disk_key, level,
  221. buf->start, 0, 1);
  222. if (IS_ERR(cow))
  223. return PTR_ERR(cow);
  224. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  225. btrfs_set_header_bytenr(cow, cow->start);
  226. btrfs_set_header_generation(cow, trans->transid);
  227. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  228. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  229. BTRFS_HEADER_FLAG_RELOC);
  230. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  231. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  232. else
  233. btrfs_set_header_owner(cow, new_root_objectid);
  234. write_extent_buffer(cow, root->fs_info->fsid,
  235. (unsigned long)btrfs_header_fsid(cow),
  236. BTRFS_FSID_SIZE);
  237. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  238. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  239. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  240. else
  241. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  242. if (ret)
  243. return ret;
  244. btrfs_mark_buffer_dirty(cow);
  245. *cow_ret = cow;
  246. return 0;
  247. }
  248. /*
  249. * check if the tree block can be shared by multiple trees
  250. */
  251. int btrfs_block_can_be_shared(struct btrfs_root *root,
  252. struct extent_buffer *buf)
  253. {
  254. /*
  255. * Tree blocks not in refernece counted trees and tree roots
  256. * are never shared. If a block was allocated after the last
  257. * snapshot and the block was not allocated by tree relocation,
  258. * we know the block is not shared.
  259. */
  260. if (root->ref_cows &&
  261. buf != root->node && buf != root->commit_root &&
  262. (btrfs_header_generation(buf) <=
  263. btrfs_root_last_snapshot(&root->root_item) ||
  264. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  265. return 1;
  266. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  267. if (root->ref_cows &&
  268. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  269. return 1;
  270. #endif
  271. return 0;
  272. }
  273. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  274. struct btrfs_root *root,
  275. struct extent_buffer *buf,
  276. struct extent_buffer *cow,
  277. int *last_ref)
  278. {
  279. u64 refs;
  280. u64 owner;
  281. u64 flags;
  282. u64 new_flags = 0;
  283. int ret;
  284. /*
  285. * Backrefs update rules:
  286. *
  287. * Always use full backrefs for extent pointers in tree block
  288. * allocated by tree relocation.
  289. *
  290. * If a shared tree block is no longer referenced by its owner
  291. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  292. * use full backrefs for extent pointers in tree block.
  293. *
  294. * If a tree block is been relocating
  295. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  296. * use full backrefs for extent pointers in tree block.
  297. * The reason for this is some operations (such as drop tree)
  298. * are only allowed for blocks use full backrefs.
  299. */
  300. if (btrfs_block_can_be_shared(root, buf)) {
  301. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  302. buf->len, &refs, &flags);
  303. if (ret)
  304. return ret;
  305. if (refs == 0) {
  306. ret = -EROFS;
  307. btrfs_std_error(root->fs_info, ret);
  308. return ret;
  309. }
  310. } else {
  311. refs = 1;
  312. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  313. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  314. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  315. else
  316. flags = 0;
  317. }
  318. owner = btrfs_header_owner(buf);
  319. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  320. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  321. if (refs > 1) {
  322. if ((owner == root->root_key.objectid ||
  323. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  324. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  325. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  326. BUG_ON(ret);
  327. if (root->root_key.objectid ==
  328. BTRFS_TREE_RELOC_OBJECTID) {
  329. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  330. BUG_ON(ret);
  331. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  332. BUG_ON(ret);
  333. }
  334. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  335. } else {
  336. if (root->root_key.objectid ==
  337. BTRFS_TREE_RELOC_OBJECTID)
  338. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  339. else
  340. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  341. BUG_ON(ret);
  342. }
  343. if (new_flags != 0) {
  344. ret = btrfs_set_disk_extent_flags(trans, root,
  345. buf->start,
  346. buf->len,
  347. new_flags, 0);
  348. if (ret)
  349. return ret;
  350. }
  351. } else {
  352. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  353. if (root->root_key.objectid ==
  354. BTRFS_TREE_RELOC_OBJECTID)
  355. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  356. else
  357. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  358. BUG_ON(ret);
  359. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  360. BUG_ON(ret);
  361. }
  362. clean_tree_block(trans, root, buf);
  363. *last_ref = 1;
  364. }
  365. return 0;
  366. }
  367. /*
  368. * does the dirty work in cow of a single block. The parent block (if
  369. * supplied) is updated to point to the new cow copy. The new buffer is marked
  370. * dirty and returned locked. If you modify the block it needs to be marked
  371. * dirty again.
  372. *
  373. * search_start -- an allocation hint for the new block
  374. *
  375. * empty_size -- a hint that you plan on doing more cow. This is the size in
  376. * bytes the allocator should try to find free next to the block it returns.
  377. * This is just a hint and may be ignored by the allocator.
  378. */
  379. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  380. struct btrfs_root *root,
  381. struct extent_buffer *buf,
  382. struct extent_buffer *parent, int parent_slot,
  383. struct extent_buffer **cow_ret,
  384. u64 search_start, u64 empty_size)
  385. {
  386. struct btrfs_disk_key disk_key;
  387. struct extent_buffer *cow;
  388. int level, ret;
  389. int last_ref = 0;
  390. int unlock_orig = 0;
  391. u64 parent_start;
  392. if (*cow_ret == buf)
  393. unlock_orig = 1;
  394. btrfs_assert_tree_locked(buf);
  395. WARN_ON(root->ref_cows && trans->transid !=
  396. root->fs_info->running_transaction->transid);
  397. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  398. level = btrfs_header_level(buf);
  399. if (level == 0)
  400. btrfs_item_key(buf, &disk_key, 0);
  401. else
  402. btrfs_node_key(buf, &disk_key, 0);
  403. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  404. if (parent)
  405. parent_start = parent->start;
  406. else
  407. parent_start = 0;
  408. } else
  409. parent_start = 0;
  410. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  411. root->root_key.objectid, &disk_key,
  412. level, search_start, empty_size, 1);
  413. if (IS_ERR(cow))
  414. return PTR_ERR(cow);
  415. /* cow is set to blocking by btrfs_init_new_buffer */
  416. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  417. btrfs_set_header_bytenr(cow, cow->start);
  418. btrfs_set_header_generation(cow, trans->transid);
  419. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  420. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  421. BTRFS_HEADER_FLAG_RELOC);
  422. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  423. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  424. else
  425. btrfs_set_header_owner(cow, root->root_key.objectid);
  426. write_extent_buffer(cow, root->fs_info->fsid,
  427. (unsigned long)btrfs_header_fsid(cow),
  428. BTRFS_FSID_SIZE);
  429. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  430. if (ret) {
  431. btrfs_std_error(root->fs_info, ret);
  432. return ret;
  433. }
  434. if (root->ref_cows)
  435. btrfs_reloc_cow_block(trans, root, buf, cow);
  436. if (buf == root->node) {
  437. WARN_ON(parent && parent != buf);
  438. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  439. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  440. parent_start = buf->start;
  441. else
  442. parent_start = 0;
  443. extent_buffer_get(cow);
  444. rcu_assign_pointer(root->node, cow);
  445. btrfs_free_tree_block(trans, root, buf, parent_start,
  446. last_ref, 1);
  447. free_extent_buffer(buf);
  448. add_root_to_dirty_list(root);
  449. } else {
  450. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  451. parent_start = parent->start;
  452. else
  453. parent_start = 0;
  454. WARN_ON(trans->transid != btrfs_header_generation(parent));
  455. btrfs_set_node_blockptr(parent, parent_slot,
  456. cow->start);
  457. btrfs_set_node_ptr_generation(parent, parent_slot,
  458. trans->transid);
  459. btrfs_mark_buffer_dirty(parent);
  460. btrfs_free_tree_block(trans, root, buf, parent_start,
  461. last_ref, 1);
  462. }
  463. if (unlock_orig)
  464. btrfs_tree_unlock(buf);
  465. free_extent_buffer(buf);
  466. btrfs_mark_buffer_dirty(cow);
  467. *cow_ret = cow;
  468. return 0;
  469. }
  470. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  471. struct btrfs_root *root,
  472. struct extent_buffer *buf)
  473. {
  474. /* ensure we can see the force_cow */
  475. smp_rmb();
  476. /*
  477. * We do not need to cow a block if
  478. * 1) this block is not created or changed in this transaction;
  479. * 2) this block does not belong to TREE_RELOC tree;
  480. * 3) the root is not forced COW.
  481. *
  482. * What is forced COW:
  483. * when we create snapshot during commiting the transaction,
  484. * after we've finished coping src root, we must COW the shared
  485. * block to ensure the metadata consistency.
  486. */
  487. if (btrfs_header_generation(buf) == trans->transid &&
  488. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  489. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  490. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  491. !root->force_cow)
  492. return 0;
  493. return 1;
  494. }
  495. /*
  496. * cows a single block, see __btrfs_cow_block for the real work.
  497. * This version of it has extra checks so that a block isn't cow'd more than
  498. * once per transaction, as long as it hasn't been written yet
  499. */
  500. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  501. struct btrfs_root *root, struct extent_buffer *buf,
  502. struct extent_buffer *parent, int parent_slot,
  503. struct extent_buffer **cow_ret)
  504. {
  505. u64 search_start;
  506. int ret;
  507. if (trans->transaction != root->fs_info->running_transaction) {
  508. printk(KERN_CRIT "trans %llu running %llu\n",
  509. (unsigned long long)trans->transid,
  510. (unsigned long long)
  511. root->fs_info->running_transaction->transid);
  512. WARN_ON(1);
  513. }
  514. if (trans->transid != root->fs_info->generation) {
  515. printk(KERN_CRIT "trans %llu running %llu\n",
  516. (unsigned long long)trans->transid,
  517. (unsigned long long)root->fs_info->generation);
  518. WARN_ON(1);
  519. }
  520. if (!should_cow_block(trans, root, buf)) {
  521. *cow_ret = buf;
  522. return 0;
  523. }
  524. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  525. if (parent)
  526. btrfs_set_lock_blocking(parent);
  527. btrfs_set_lock_blocking(buf);
  528. ret = __btrfs_cow_block(trans, root, buf, parent,
  529. parent_slot, cow_ret, search_start, 0);
  530. trace_btrfs_cow_block(root, buf, *cow_ret);
  531. return ret;
  532. }
  533. /*
  534. * helper function for defrag to decide if two blocks pointed to by a
  535. * node are actually close by
  536. */
  537. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  538. {
  539. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  540. return 1;
  541. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  542. return 1;
  543. return 0;
  544. }
  545. /*
  546. * compare two keys in a memcmp fashion
  547. */
  548. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  549. {
  550. struct btrfs_key k1;
  551. btrfs_disk_key_to_cpu(&k1, disk);
  552. return btrfs_comp_cpu_keys(&k1, k2);
  553. }
  554. /*
  555. * same as comp_keys only with two btrfs_key's
  556. */
  557. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  558. {
  559. if (k1->objectid > k2->objectid)
  560. return 1;
  561. if (k1->objectid < k2->objectid)
  562. return -1;
  563. if (k1->type > k2->type)
  564. return 1;
  565. if (k1->type < k2->type)
  566. return -1;
  567. if (k1->offset > k2->offset)
  568. return 1;
  569. if (k1->offset < k2->offset)
  570. return -1;
  571. return 0;
  572. }
  573. /*
  574. * this is used by the defrag code to go through all the
  575. * leaves pointed to by a node and reallocate them so that
  576. * disk order is close to key order
  577. */
  578. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  579. struct btrfs_root *root, struct extent_buffer *parent,
  580. int start_slot, int cache_only, u64 *last_ret,
  581. struct btrfs_key *progress)
  582. {
  583. struct extent_buffer *cur;
  584. u64 blocknr;
  585. u64 gen;
  586. u64 search_start = *last_ret;
  587. u64 last_block = 0;
  588. u64 other;
  589. u32 parent_nritems;
  590. int end_slot;
  591. int i;
  592. int err = 0;
  593. int parent_level;
  594. int uptodate;
  595. u32 blocksize;
  596. int progress_passed = 0;
  597. struct btrfs_disk_key disk_key;
  598. parent_level = btrfs_header_level(parent);
  599. if (cache_only && parent_level != 1)
  600. return 0;
  601. if (trans->transaction != root->fs_info->running_transaction)
  602. WARN_ON(1);
  603. if (trans->transid != root->fs_info->generation)
  604. WARN_ON(1);
  605. parent_nritems = btrfs_header_nritems(parent);
  606. blocksize = btrfs_level_size(root, parent_level - 1);
  607. end_slot = parent_nritems;
  608. if (parent_nritems == 1)
  609. return 0;
  610. btrfs_set_lock_blocking(parent);
  611. for (i = start_slot; i < end_slot; i++) {
  612. int close = 1;
  613. btrfs_node_key(parent, &disk_key, i);
  614. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  615. continue;
  616. progress_passed = 1;
  617. blocknr = btrfs_node_blockptr(parent, i);
  618. gen = btrfs_node_ptr_generation(parent, i);
  619. if (last_block == 0)
  620. last_block = blocknr;
  621. if (i > 0) {
  622. other = btrfs_node_blockptr(parent, i - 1);
  623. close = close_blocks(blocknr, other, blocksize);
  624. }
  625. if (!close && i < end_slot - 2) {
  626. other = btrfs_node_blockptr(parent, i + 1);
  627. close = close_blocks(blocknr, other, blocksize);
  628. }
  629. if (close) {
  630. last_block = blocknr;
  631. continue;
  632. }
  633. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  634. if (cur)
  635. uptodate = btrfs_buffer_uptodate(cur, gen);
  636. else
  637. uptodate = 0;
  638. if (!cur || !uptodate) {
  639. if (cache_only) {
  640. free_extent_buffer(cur);
  641. continue;
  642. }
  643. if (!cur) {
  644. cur = read_tree_block(root, blocknr,
  645. blocksize, gen);
  646. if (!cur)
  647. return -EIO;
  648. } else if (!uptodate) {
  649. btrfs_read_buffer(cur, gen);
  650. }
  651. }
  652. if (search_start == 0)
  653. search_start = last_block;
  654. btrfs_tree_lock(cur);
  655. btrfs_set_lock_blocking(cur);
  656. err = __btrfs_cow_block(trans, root, cur, parent, i,
  657. &cur, search_start,
  658. min(16 * blocksize,
  659. (end_slot - i) * blocksize));
  660. if (err) {
  661. btrfs_tree_unlock(cur);
  662. free_extent_buffer(cur);
  663. break;
  664. }
  665. search_start = cur->start;
  666. last_block = cur->start;
  667. *last_ret = search_start;
  668. btrfs_tree_unlock(cur);
  669. free_extent_buffer(cur);
  670. }
  671. return err;
  672. }
  673. /*
  674. * The leaf data grows from end-to-front in the node.
  675. * this returns the address of the start of the last item,
  676. * which is the stop of the leaf data stack
  677. */
  678. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  679. struct extent_buffer *leaf)
  680. {
  681. u32 nr = btrfs_header_nritems(leaf);
  682. if (nr == 0)
  683. return BTRFS_LEAF_DATA_SIZE(root);
  684. return btrfs_item_offset_nr(leaf, nr - 1);
  685. }
  686. /*
  687. * search for key in the extent_buffer. The items start at offset p,
  688. * and they are item_size apart. There are 'max' items in p.
  689. *
  690. * the slot in the array is returned via slot, and it points to
  691. * the place where you would insert key if it is not found in
  692. * the array.
  693. *
  694. * slot may point to max if the key is bigger than all of the keys
  695. */
  696. static noinline int generic_bin_search(struct extent_buffer *eb,
  697. unsigned long p,
  698. int item_size, struct btrfs_key *key,
  699. int max, int *slot)
  700. {
  701. int low = 0;
  702. int high = max;
  703. int mid;
  704. int ret;
  705. struct btrfs_disk_key *tmp = NULL;
  706. struct btrfs_disk_key unaligned;
  707. unsigned long offset;
  708. char *kaddr = NULL;
  709. unsigned long map_start = 0;
  710. unsigned long map_len = 0;
  711. int err;
  712. while (low < high) {
  713. mid = (low + high) / 2;
  714. offset = p + mid * item_size;
  715. if (!kaddr || offset < map_start ||
  716. (offset + sizeof(struct btrfs_disk_key)) >
  717. map_start + map_len) {
  718. err = map_private_extent_buffer(eb, offset,
  719. sizeof(struct btrfs_disk_key),
  720. &kaddr, &map_start, &map_len);
  721. if (!err) {
  722. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  723. map_start);
  724. } else {
  725. read_extent_buffer(eb, &unaligned,
  726. offset, sizeof(unaligned));
  727. tmp = &unaligned;
  728. }
  729. } else {
  730. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  731. map_start);
  732. }
  733. ret = comp_keys(tmp, key);
  734. if (ret < 0)
  735. low = mid + 1;
  736. else if (ret > 0)
  737. high = mid;
  738. else {
  739. *slot = mid;
  740. return 0;
  741. }
  742. }
  743. *slot = low;
  744. return 1;
  745. }
  746. /*
  747. * simple bin_search frontend that does the right thing for
  748. * leaves vs nodes
  749. */
  750. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  751. int level, int *slot)
  752. {
  753. if (level == 0) {
  754. return generic_bin_search(eb,
  755. offsetof(struct btrfs_leaf, items),
  756. sizeof(struct btrfs_item),
  757. key, btrfs_header_nritems(eb),
  758. slot);
  759. } else {
  760. return generic_bin_search(eb,
  761. offsetof(struct btrfs_node, ptrs),
  762. sizeof(struct btrfs_key_ptr),
  763. key, btrfs_header_nritems(eb),
  764. slot);
  765. }
  766. return -1;
  767. }
  768. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  769. int level, int *slot)
  770. {
  771. return bin_search(eb, key, level, slot);
  772. }
  773. static void root_add_used(struct btrfs_root *root, u32 size)
  774. {
  775. spin_lock(&root->accounting_lock);
  776. btrfs_set_root_used(&root->root_item,
  777. btrfs_root_used(&root->root_item) + size);
  778. spin_unlock(&root->accounting_lock);
  779. }
  780. static void root_sub_used(struct btrfs_root *root, u32 size)
  781. {
  782. spin_lock(&root->accounting_lock);
  783. btrfs_set_root_used(&root->root_item,
  784. btrfs_root_used(&root->root_item) - size);
  785. spin_unlock(&root->accounting_lock);
  786. }
  787. /* given a node and slot number, this reads the blocks it points to. The
  788. * extent buffer is returned with a reference taken (but unlocked).
  789. * NULL is returned on error.
  790. */
  791. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  792. struct extent_buffer *parent, int slot)
  793. {
  794. int level = btrfs_header_level(parent);
  795. if (slot < 0)
  796. return NULL;
  797. if (slot >= btrfs_header_nritems(parent))
  798. return NULL;
  799. BUG_ON(level == 0);
  800. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  801. btrfs_level_size(root, level - 1),
  802. btrfs_node_ptr_generation(parent, slot));
  803. }
  804. /*
  805. * node level balancing, used to make sure nodes are in proper order for
  806. * item deletion. We balance from the top down, so we have to make sure
  807. * that a deletion won't leave an node completely empty later on.
  808. */
  809. static noinline int balance_level(struct btrfs_trans_handle *trans,
  810. struct btrfs_root *root,
  811. struct btrfs_path *path, int level)
  812. {
  813. struct extent_buffer *right = NULL;
  814. struct extent_buffer *mid;
  815. struct extent_buffer *left = NULL;
  816. struct extent_buffer *parent = NULL;
  817. int ret = 0;
  818. int wret;
  819. int pslot;
  820. int orig_slot = path->slots[level];
  821. u64 orig_ptr;
  822. if (level == 0)
  823. return 0;
  824. mid = path->nodes[level];
  825. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  826. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  827. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  828. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  829. if (level < BTRFS_MAX_LEVEL - 1) {
  830. parent = path->nodes[level + 1];
  831. pslot = path->slots[level + 1];
  832. }
  833. /*
  834. * deal with the case where there is only one pointer in the root
  835. * by promoting the node below to a root
  836. */
  837. if (!parent) {
  838. struct extent_buffer *child;
  839. if (btrfs_header_nritems(mid) != 1)
  840. return 0;
  841. /* promote the child to a root */
  842. child = read_node_slot(root, mid, 0);
  843. if (!child) {
  844. ret = -EROFS;
  845. btrfs_std_error(root->fs_info, ret);
  846. goto enospc;
  847. }
  848. btrfs_tree_lock(child);
  849. btrfs_set_lock_blocking(child);
  850. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  851. if (ret) {
  852. btrfs_tree_unlock(child);
  853. free_extent_buffer(child);
  854. goto enospc;
  855. }
  856. rcu_assign_pointer(root->node, child);
  857. add_root_to_dirty_list(root);
  858. btrfs_tree_unlock(child);
  859. path->locks[level] = 0;
  860. path->nodes[level] = NULL;
  861. clean_tree_block(trans, root, mid);
  862. btrfs_tree_unlock(mid);
  863. /* once for the path */
  864. free_extent_buffer(mid);
  865. root_sub_used(root, mid->len);
  866. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  867. /* once for the root ptr */
  868. free_extent_buffer(mid);
  869. return 0;
  870. }
  871. if (btrfs_header_nritems(mid) >
  872. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  873. return 0;
  874. btrfs_header_nritems(mid);
  875. left = read_node_slot(root, parent, pslot - 1);
  876. if (left) {
  877. btrfs_tree_lock(left);
  878. btrfs_set_lock_blocking(left);
  879. wret = btrfs_cow_block(trans, root, left,
  880. parent, pslot - 1, &left);
  881. if (wret) {
  882. ret = wret;
  883. goto enospc;
  884. }
  885. }
  886. right = read_node_slot(root, parent, pslot + 1);
  887. if (right) {
  888. btrfs_tree_lock(right);
  889. btrfs_set_lock_blocking(right);
  890. wret = btrfs_cow_block(trans, root, right,
  891. parent, pslot + 1, &right);
  892. if (wret) {
  893. ret = wret;
  894. goto enospc;
  895. }
  896. }
  897. /* first, try to make some room in the middle buffer */
  898. if (left) {
  899. orig_slot += btrfs_header_nritems(left);
  900. wret = push_node_left(trans, root, left, mid, 1);
  901. if (wret < 0)
  902. ret = wret;
  903. btrfs_header_nritems(mid);
  904. }
  905. /*
  906. * then try to empty the right most buffer into the middle
  907. */
  908. if (right) {
  909. wret = push_node_left(trans, root, mid, right, 1);
  910. if (wret < 0 && wret != -ENOSPC)
  911. ret = wret;
  912. if (btrfs_header_nritems(right) == 0) {
  913. clean_tree_block(trans, root, right);
  914. btrfs_tree_unlock(right);
  915. del_ptr(trans, root, path, level + 1, pslot + 1);
  916. root_sub_used(root, right->len);
  917. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  918. free_extent_buffer(right);
  919. right = NULL;
  920. } else {
  921. struct btrfs_disk_key right_key;
  922. btrfs_node_key(right, &right_key, 0);
  923. btrfs_set_node_key(parent, &right_key, pslot + 1);
  924. btrfs_mark_buffer_dirty(parent);
  925. }
  926. }
  927. if (btrfs_header_nritems(mid) == 1) {
  928. /*
  929. * we're not allowed to leave a node with one item in the
  930. * tree during a delete. A deletion from lower in the tree
  931. * could try to delete the only pointer in this node.
  932. * So, pull some keys from the left.
  933. * There has to be a left pointer at this point because
  934. * otherwise we would have pulled some pointers from the
  935. * right
  936. */
  937. if (!left) {
  938. ret = -EROFS;
  939. btrfs_std_error(root->fs_info, ret);
  940. goto enospc;
  941. }
  942. wret = balance_node_right(trans, root, mid, left);
  943. if (wret < 0) {
  944. ret = wret;
  945. goto enospc;
  946. }
  947. if (wret == 1) {
  948. wret = push_node_left(trans, root, left, mid, 1);
  949. if (wret < 0)
  950. ret = wret;
  951. }
  952. BUG_ON(wret == 1);
  953. }
  954. if (btrfs_header_nritems(mid) == 0) {
  955. clean_tree_block(trans, root, mid);
  956. btrfs_tree_unlock(mid);
  957. del_ptr(trans, root, path, level + 1, pslot);
  958. root_sub_used(root, mid->len);
  959. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  960. free_extent_buffer(mid);
  961. mid = NULL;
  962. } else {
  963. /* update the parent key to reflect our changes */
  964. struct btrfs_disk_key mid_key;
  965. btrfs_node_key(mid, &mid_key, 0);
  966. btrfs_set_node_key(parent, &mid_key, pslot);
  967. btrfs_mark_buffer_dirty(parent);
  968. }
  969. /* update the path */
  970. if (left) {
  971. if (btrfs_header_nritems(left) > orig_slot) {
  972. extent_buffer_get(left);
  973. /* left was locked after cow */
  974. path->nodes[level] = left;
  975. path->slots[level + 1] -= 1;
  976. path->slots[level] = orig_slot;
  977. if (mid) {
  978. btrfs_tree_unlock(mid);
  979. free_extent_buffer(mid);
  980. }
  981. } else {
  982. orig_slot -= btrfs_header_nritems(left);
  983. path->slots[level] = orig_slot;
  984. }
  985. }
  986. /* double check we haven't messed things up */
  987. if (orig_ptr !=
  988. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  989. BUG();
  990. enospc:
  991. if (right) {
  992. btrfs_tree_unlock(right);
  993. free_extent_buffer(right);
  994. }
  995. if (left) {
  996. if (path->nodes[level] != left)
  997. btrfs_tree_unlock(left);
  998. free_extent_buffer(left);
  999. }
  1000. return ret;
  1001. }
  1002. /* Node balancing for insertion. Here we only split or push nodes around
  1003. * when they are completely full. This is also done top down, so we
  1004. * have to be pessimistic.
  1005. */
  1006. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1007. struct btrfs_root *root,
  1008. struct btrfs_path *path, int level)
  1009. {
  1010. struct extent_buffer *right = NULL;
  1011. struct extent_buffer *mid;
  1012. struct extent_buffer *left = NULL;
  1013. struct extent_buffer *parent = NULL;
  1014. int ret = 0;
  1015. int wret;
  1016. int pslot;
  1017. int orig_slot = path->slots[level];
  1018. if (level == 0)
  1019. return 1;
  1020. mid = path->nodes[level];
  1021. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1022. if (level < BTRFS_MAX_LEVEL - 1) {
  1023. parent = path->nodes[level + 1];
  1024. pslot = path->slots[level + 1];
  1025. }
  1026. if (!parent)
  1027. return 1;
  1028. left = read_node_slot(root, parent, pslot - 1);
  1029. /* first, try to make some room in the middle buffer */
  1030. if (left) {
  1031. u32 left_nr;
  1032. btrfs_tree_lock(left);
  1033. btrfs_set_lock_blocking(left);
  1034. left_nr = btrfs_header_nritems(left);
  1035. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1036. wret = 1;
  1037. } else {
  1038. ret = btrfs_cow_block(trans, root, left, parent,
  1039. pslot - 1, &left);
  1040. if (ret)
  1041. wret = 1;
  1042. else {
  1043. wret = push_node_left(trans, root,
  1044. left, mid, 0);
  1045. }
  1046. }
  1047. if (wret < 0)
  1048. ret = wret;
  1049. if (wret == 0) {
  1050. struct btrfs_disk_key disk_key;
  1051. orig_slot += left_nr;
  1052. btrfs_node_key(mid, &disk_key, 0);
  1053. btrfs_set_node_key(parent, &disk_key, pslot);
  1054. btrfs_mark_buffer_dirty(parent);
  1055. if (btrfs_header_nritems(left) > orig_slot) {
  1056. path->nodes[level] = left;
  1057. path->slots[level + 1] -= 1;
  1058. path->slots[level] = orig_slot;
  1059. btrfs_tree_unlock(mid);
  1060. free_extent_buffer(mid);
  1061. } else {
  1062. orig_slot -=
  1063. btrfs_header_nritems(left);
  1064. path->slots[level] = orig_slot;
  1065. btrfs_tree_unlock(left);
  1066. free_extent_buffer(left);
  1067. }
  1068. return 0;
  1069. }
  1070. btrfs_tree_unlock(left);
  1071. free_extent_buffer(left);
  1072. }
  1073. right = read_node_slot(root, parent, pslot + 1);
  1074. /*
  1075. * then try to empty the right most buffer into the middle
  1076. */
  1077. if (right) {
  1078. u32 right_nr;
  1079. btrfs_tree_lock(right);
  1080. btrfs_set_lock_blocking(right);
  1081. right_nr = btrfs_header_nritems(right);
  1082. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1083. wret = 1;
  1084. } else {
  1085. ret = btrfs_cow_block(trans, root, right,
  1086. parent, pslot + 1,
  1087. &right);
  1088. if (ret)
  1089. wret = 1;
  1090. else {
  1091. wret = balance_node_right(trans, root,
  1092. right, mid);
  1093. }
  1094. }
  1095. if (wret < 0)
  1096. ret = wret;
  1097. if (wret == 0) {
  1098. struct btrfs_disk_key disk_key;
  1099. btrfs_node_key(right, &disk_key, 0);
  1100. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1101. btrfs_mark_buffer_dirty(parent);
  1102. if (btrfs_header_nritems(mid) <= orig_slot) {
  1103. path->nodes[level] = right;
  1104. path->slots[level + 1] += 1;
  1105. path->slots[level] = orig_slot -
  1106. btrfs_header_nritems(mid);
  1107. btrfs_tree_unlock(mid);
  1108. free_extent_buffer(mid);
  1109. } else {
  1110. btrfs_tree_unlock(right);
  1111. free_extent_buffer(right);
  1112. }
  1113. return 0;
  1114. }
  1115. btrfs_tree_unlock(right);
  1116. free_extent_buffer(right);
  1117. }
  1118. return 1;
  1119. }
  1120. /*
  1121. * readahead one full node of leaves, finding things that are close
  1122. * to the block in 'slot', and triggering ra on them.
  1123. */
  1124. static void reada_for_search(struct btrfs_root *root,
  1125. struct btrfs_path *path,
  1126. int level, int slot, u64 objectid)
  1127. {
  1128. struct extent_buffer *node;
  1129. struct btrfs_disk_key disk_key;
  1130. u32 nritems;
  1131. u64 search;
  1132. u64 target;
  1133. u64 nread = 0;
  1134. u64 gen;
  1135. int direction = path->reada;
  1136. struct extent_buffer *eb;
  1137. u32 nr;
  1138. u32 blocksize;
  1139. u32 nscan = 0;
  1140. if (level != 1)
  1141. return;
  1142. if (!path->nodes[level])
  1143. return;
  1144. node = path->nodes[level];
  1145. search = btrfs_node_blockptr(node, slot);
  1146. blocksize = btrfs_level_size(root, level - 1);
  1147. eb = btrfs_find_tree_block(root, search, blocksize);
  1148. if (eb) {
  1149. free_extent_buffer(eb);
  1150. return;
  1151. }
  1152. target = search;
  1153. nritems = btrfs_header_nritems(node);
  1154. nr = slot;
  1155. while (1) {
  1156. if (direction < 0) {
  1157. if (nr == 0)
  1158. break;
  1159. nr--;
  1160. } else if (direction > 0) {
  1161. nr++;
  1162. if (nr >= nritems)
  1163. break;
  1164. }
  1165. if (path->reada < 0 && objectid) {
  1166. btrfs_node_key(node, &disk_key, nr);
  1167. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1168. break;
  1169. }
  1170. search = btrfs_node_blockptr(node, nr);
  1171. if ((search <= target && target - search <= 65536) ||
  1172. (search > target && search - target <= 65536)) {
  1173. gen = btrfs_node_ptr_generation(node, nr);
  1174. readahead_tree_block(root, search, blocksize, gen);
  1175. nread += blocksize;
  1176. }
  1177. nscan++;
  1178. if ((nread > 65536 || nscan > 32))
  1179. break;
  1180. }
  1181. }
  1182. /*
  1183. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1184. * cache
  1185. */
  1186. static noinline int reada_for_balance(struct btrfs_root *root,
  1187. struct btrfs_path *path, int level)
  1188. {
  1189. int slot;
  1190. int nritems;
  1191. struct extent_buffer *parent;
  1192. struct extent_buffer *eb;
  1193. u64 gen;
  1194. u64 block1 = 0;
  1195. u64 block2 = 0;
  1196. int ret = 0;
  1197. int blocksize;
  1198. parent = path->nodes[level + 1];
  1199. if (!parent)
  1200. return 0;
  1201. nritems = btrfs_header_nritems(parent);
  1202. slot = path->slots[level + 1];
  1203. blocksize = btrfs_level_size(root, level);
  1204. if (slot > 0) {
  1205. block1 = btrfs_node_blockptr(parent, slot - 1);
  1206. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1207. eb = btrfs_find_tree_block(root, block1, blocksize);
  1208. if (eb && btrfs_buffer_uptodate(eb, gen))
  1209. block1 = 0;
  1210. free_extent_buffer(eb);
  1211. }
  1212. if (slot + 1 < nritems) {
  1213. block2 = btrfs_node_blockptr(parent, slot + 1);
  1214. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1215. eb = btrfs_find_tree_block(root, block2, blocksize);
  1216. if (eb && btrfs_buffer_uptodate(eb, gen))
  1217. block2 = 0;
  1218. free_extent_buffer(eb);
  1219. }
  1220. if (block1 || block2) {
  1221. ret = -EAGAIN;
  1222. /* release the whole path */
  1223. btrfs_release_path(path);
  1224. /* read the blocks */
  1225. if (block1)
  1226. readahead_tree_block(root, block1, blocksize, 0);
  1227. if (block2)
  1228. readahead_tree_block(root, block2, blocksize, 0);
  1229. if (block1) {
  1230. eb = read_tree_block(root, block1, blocksize, 0);
  1231. free_extent_buffer(eb);
  1232. }
  1233. if (block2) {
  1234. eb = read_tree_block(root, block2, blocksize, 0);
  1235. free_extent_buffer(eb);
  1236. }
  1237. }
  1238. return ret;
  1239. }
  1240. /*
  1241. * when we walk down the tree, it is usually safe to unlock the higher layers
  1242. * in the tree. The exceptions are when our path goes through slot 0, because
  1243. * operations on the tree might require changing key pointers higher up in the
  1244. * tree.
  1245. *
  1246. * callers might also have set path->keep_locks, which tells this code to keep
  1247. * the lock if the path points to the last slot in the block. This is part of
  1248. * walking through the tree, and selecting the next slot in the higher block.
  1249. *
  1250. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1251. * if lowest_unlock is 1, level 0 won't be unlocked
  1252. */
  1253. static noinline void unlock_up(struct btrfs_path *path, int level,
  1254. int lowest_unlock)
  1255. {
  1256. int i;
  1257. int skip_level = level;
  1258. int no_skips = 0;
  1259. struct extent_buffer *t;
  1260. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1261. if (!path->nodes[i])
  1262. break;
  1263. if (!path->locks[i])
  1264. break;
  1265. if (!no_skips && path->slots[i] == 0) {
  1266. skip_level = i + 1;
  1267. continue;
  1268. }
  1269. if (!no_skips && path->keep_locks) {
  1270. u32 nritems;
  1271. t = path->nodes[i];
  1272. nritems = btrfs_header_nritems(t);
  1273. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1274. skip_level = i + 1;
  1275. continue;
  1276. }
  1277. }
  1278. if (skip_level < i && i >= lowest_unlock)
  1279. no_skips = 1;
  1280. t = path->nodes[i];
  1281. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1282. btrfs_tree_unlock_rw(t, path->locks[i]);
  1283. path->locks[i] = 0;
  1284. }
  1285. }
  1286. }
  1287. /*
  1288. * This releases any locks held in the path starting at level and
  1289. * going all the way up to the root.
  1290. *
  1291. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1292. * corner cases, such as COW of the block at slot zero in the node. This
  1293. * ignores those rules, and it should only be called when there are no
  1294. * more updates to be done higher up in the tree.
  1295. */
  1296. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1297. {
  1298. int i;
  1299. if (path->keep_locks)
  1300. return;
  1301. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1302. if (!path->nodes[i])
  1303. continue;
  1304. if (!path->locks[i])
  1305. continue;
  1306. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1307. path->locks[i] = 0;
  1308. }
  1309. }
  1310. /*
  1311. * helper function for btrfs_search_slot. The goal is to find a block
  1312. * in cache without setting the path to blocking. If we find the block
  1313. * we return zero and the path is unchanged.
  1314. *
  1315. * If we can't find the block, we set the path blocking and do some
  1316. * reada. -EAGAIN is returned and the search must be repeated.
  1317. */
  1318. static int
  1319. read_block_for_search(struct btrfs_trans_handle *trans,
  1320. struct btrfs_root *root, struct btrfs_path *p,
  1321. struct extent_buffer **eb_ret, int level, int slot,
  1322. struct btrfs_key *key)
  1323. {
  1324. u64 blocknr;
  1325. u64 gen;
  1326. u32 blocksize;
  1327. struct extent_buffer *b = *eb_ret;
  1328. struct extent_buffer *tmp;
  1329. int ret;
  1330. blocknr = btrfs_node_blockptr(b, slot);
  1331. gen = btrfs_node_ptr_generation(b, slot);
  1332. blocksize = btrfs_level_size(root, level - 1);
  1333. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1334. if (tmp) {
  1335. if (btrfs_buffer_uptodate(tmp, 0)) {
  1336. if (btrfs_buffer_uptodate(tmp, gen)) {
  1337. /*
  1338. * we found an up to date block without
  1339. * sleeping, return
  1340. * right away
  1341. */
  1342. *eb_ret = tmp;
  1343. return 0;
  1344. }
  1345. /* the pages were up to date, but we failed
  1346. * the generation number check. Do a full
  1347. * read for the generation number that is correct.
  1348. * We must do this without dropping locks so
  1349. * we can trust our generation number
  1350. */
  1351. free_extent_buffer(tmp);
  1352. btrfs_set_path_blocking(p);
  1353. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1354. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1355. *eb_ret = tmp;
  1356. return 0;
  1357. }
  1358. free_extent_buffer(tmp);
  1359. btrfs_release_path(p);
  1360. return -EIO;
  1361. }
  1362. }
  1363. /*
  1364. * reduce lock contention at high levels
  1365. * of the btree by dropping locks before
  1366. * we read. Don't release the lock on the current
  1367. * level because we need to walk this node to figure
  1368. * out which blocks to read.
  1369. */
  1370. btrfs_unlock_up_safe(p, level + 1);
  1371. btrfs_set_path_blocking(p);
  1372. free_extent_buffer(tmp);
  1373. if (p->reada)
  1374. reada_for_search(root, p, level, slot, key->objectid);
  1375. btrfs_release_path(p);
  1376. ret = -EAGAIN;
  1377. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1378. if (tmp) {
  1379. /*
  1380. * If the read above didn't mark this buffer up to date,
  1381. * it will never end up being up to date. Set ret to EIO now
  1382. * and give up so that our caller doesn't loop forever
  1383. * on our EAGAINs.
  1384. */
  1385. if (!btrfs_buffer_uptodate(tmp, 0))
  1386. ret = -EIO;
  1387. free_extent_buffer(tmp);
  1388. }
  1389. return ret;
  1390. }
  1391. /*
  1392. * helper function for btrfs_search_slot. This does all of the checks
  1393. * for node-level blocks and does any balancing required based on
  1394. * the ins_len.
  1395. *
  1396. * If no extra work was required, zero is returned. If we had to
  1397. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1398. * start over
  1399. */
  1400. static int
  1401. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1402. struct btrfs_root *root, struct btrfs_path *p,
  1403. struct extent_buffer *b, int level, int ins_len,
  1404. int *write_lock_level)
  1405. {
  1406. int ret;
  1407. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1408. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1409. int sret;
  1410. if (*write_lock_level < level + 1) {
  1411. *write_lock_level = level + 1;
  1412. btrfs_release_path(p);
  1413. goto again;
  1414. }
  1415. sret = reada_for_balance(root, p, level);
  1416. if (sret)
  1417. goto again;
  1418. btrfs_set_path_blocking(p);
  1419. sret = split_node(trans, root, p, level);
  1420. btrfs_clear_path_blocking(p, NULL, 0);
  1421. BUG_ON(sret > 0);
  1422. if (sret) {
  1423. ret = sret;
  1424. goto done;
  1425. }
  1426. b = p->nodes[level];
  1427. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1428. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1429. int sret;
  1430. if (*write_lock_level < level + 1) {
  1431. *write_lock_level = level + 1;
  1432. btrfs_release_path(p);
  1433. goto again;
  1434. }
  1435. sret = reada_for_balance(root, p, level);
  1436. if (sret)
  1437. goto again;
  1438. btrfs_set_path_blocking(p);
  1439. sret = balance_level(trans, root, p, level);
  1440. btrfs_clear_path_blocking(p, NULL, 0);
  1441. if (sret) {
  1442. ret = sret;
  1443. goto done;
  1444. }
  1445. b = p->nodes[level];
  1446. if (!b) {
  1447. btrfs_release_path(p);
  1448. goto again;
  1449. }
  1450. BUG_ON(btrfs_header_nritems(b) == 1);
  1451. }
  1452. return 0;
  1453. again:
  1454. ret = -EAGAIN;
  1455. done:
  1456. return ret;
  1457. }
  1458. /*
  1459. * look for key in the tree. path is filled in with nodes along the way
  1460. * if key is found, we return zero and you can find the item in the leaf
  1461. * level of the path (level 0)
  1462. *
  1463. * If the key isn't found, the path points to the slot where it should
  1464. * be inserted, and 1 is returned. If there are other errors during the
  1465. * search a negative error number is returned.
  1466. *
  1467. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1468. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1469. * possible)
  1470. */
  1471. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1472. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1473. ins_len, int cow)
  1474. {
  1475. struct extent_buffer *b;
  1476. int slot;
  1477. int ret;
  1478. int err;
  1479. int level;
  1480. int lowest_unlock = 1;
  1481. int root_lock;
  1482. /* everything at write_lock_level or lower must be write locked */
  1483. int write_lock_level = 0;
  1484. u8 lowest_level = 0;
  1485. lowest_level = p->lowest_level;
  1486. WARN_ON(lowest_level && ins_len > 0);
  1487. WARN_ON(p->nodes[0] != NULL);
  1488. if (ins_len < 0) {
  1489. lowest_unlock = 2;
  1490. /* when we are removing items, we might have to go up to level
  1491. * two as we update tree pointers Make sure we keep write
  1492. * for those levels as well
  1493. */
  1494. write_lock_level = 2;
  1495. } else if (ins_len > 0) {
  1496. /*
  1497. * for inserting items, make sure we have a write lock on
  1498. * level 1 so we can update keys
  1499. */
  1500. write_lock_level = 1;
  1501. }
  1502. if (!cow)
  1503. write_lock_level = -1;
  1504. if (cow && (p->keep_locks || p->lowest_level))
  1505. write_lock_level = BTRFS_MAX_LEVEL;
  1506. again:
  1507. /*
  1508. * we try very hard to do read locks on the root
  1509. */
  1510. root_lock = BTRFS_READ_LOCK;
  1511. level = 0;
  1512. if (p->search_commit_root) {
  1513. /*
  1514. * the commit roots are read only
  1515. * so we always do read locks
  1516. */
  1517. b = root->commit_root;
  1518. extent_buffer_get(b);
  1519. level = btrfs_header_level(b);
  1520. if (!p->skip_locking)
  1521. btrfs_tree_read_lock(b);
  1522. } else {
  1523. if (p->skip_locking) {
  1524. b = btrfs_root_node(root);
  1525. level = btrfs_header_level(b);
  1526. } else {
  1527. /* we don't know the level of the root node
  1528. * until we actually have it read locked
  1529. */
  1530. b = btrfs_read_lock_root_node(root);
  1531. level = btrfs_header_level(b);
  1532. if (level <= write_lock_level) {
  1533. /* whoops, must trade for write lock */
  1534. btrfs_tree_read_unlock(b);
  1535. free_extent_buffer(b);
  1536. b = btrfs_lock_root_node(root);
  1537. root_lock = BTRFS_WRITE_LOCK;
  1538. /* the level might have changed, check again */
  1539. level = btrfs_header_level(b);
  1540. }
  1541. }
  1542. }
  1543. p->nodes[level] = b;
  1544. if (!p->skip_locking)
  1545. p->locks[level] = root_lock;
  1546. while (b) {
  1547. level = btrfs_header_level(b);
  1548. /*
  1549. * setup the path here so we can release it under lock
  1550. * contention with the cow code
  1551. */
  1552. if (cow) {
  1553. /*
  1554. * if we don't really need to cow this block
  1555. * then we don't want to set the path blocking,
  1556. * so we test it here
  1557. */
  1558. if (!should_cow_block(trans, root, b))
  1559. goto cow_done;
  1560. btrfs_set_path_blocking(p);
  1561. /*
  1562. * must have write locks on this node and the
  1563. * parent
  1564. */
  1565. if (level + 1 > write_lock_level) {
  1566. write_lock_level = level + 1;
  1567. btrfs_release_path(p);
  1568. goto again;
  1569. }
  1570. err = btrfs_cow_block(trans, root, b,
  1571. p->nodes[level + 1],
  1572. p->slots[level + 1], &b);
  1573. if (err) {
  1574. ret = err;
  1575. goto done;
  1576. }
  1577. }
  1578. cow_done:
  1579. BUG_ON(!cow && ins_len);
  1580. p->nodes[level] = b;
  1581. btrfs_clear_path_blocking(p, NULL, 0);
  1582. /*
  1583. * we have a lock on b and as long as we aren't changing
  1584. * the tree, there is no way to for the items in b to change.
  1585. * It is safe to drop the lock on our parent before we
  1586. * go through the expensive btree search on b.
  1587. *
  1588. * If cow is true, then we might be changing slot zero,
  1589. * which may require changing the parent. So, we can't
  1590. * drop the lock until after we know which slot we're
  1591. * operating on.
  1592. */
  1593. if (!cow)
  1594. btrfs_unlock_up_safe(p, level + 1);
  1595. ret = bin_search(b, key, level, &slot);
  1596. if (level != 0) {
  1597. int dec = 0;
  1598. if (ret && slot > 0) {
  1599. dec = 1;
  1600. slot -= 1;
  1601. }
  1602. p->slots[level] = slot;
  1603. err = setup_nodes_for_search(trans, root, p, b, level,
  1604. ins_len, &write_lock_level);
  1605. if (err == -EAGAIN)
  1606. goto again;
  1607. if (err) {
  1608. ret = err;
  1609. goto done;
  1610. }
  1611. b = p->nodes[level];
  1612. slot = p->slots[level];
  1613. /*
  1614. * slot 0 is special, if we change the key
  1615. * we have to update the parent pointer
  1616. * which means we must have a write lock
  1617. * on the parent
  1618. */
  1619. if (slot == 0 && cow &&
  1620. write_lock_level < level + 1) {
  1621. write_lock_level = level + 1;
  1622. btrfs_release_path(p);
  1623. goto again;
  1624. }
  1625. unlock_up(p, level, lowest_unlock);
  1626. if (level == lowest_level) {
  1627. if (dec)
  1628. p->slots[level]++;
  1629. goto done;
  1630. }
  1631. err = read_block_for_search(trans, root, p,
  1632. &b, level, slot, key);
  1633. if (err == -EAGAIN)
  1634. goto again;
  1635. if (err) {
  1636. ret = err;
  1637. goto done;
  1638. }
  1639. if (!p->skip_locking) {
  1640. level = btrfs_header_level(b);
  1641. if (level <= write_lock_level) {
  1642. err = btrfs_try_tree_write_lock(b);
  1643. if (!err) {
  1644. btrfs_set_path_blocking(p);
  1645. btrfs_tree_lock(b);
  1646. btrfs_clear_path_blocking(p, b,
  1647. BTRFS_WRITE_LOCK);
  1648. }
  1649. p->locks[level] = BTRFS_WRITE_LOCK;
  1650. } else {
  1651. err = btrfs_try_tree_read_lock(b);
  1652. if (!err) {
  1653. btrfs_set_path_blocking(p);
  1654. btrfs_tree_read_lock(b);
  1655. btrfs_clear_path_blocking(p, b,
  1656. BTRFS_READ_LOCK);
  1657. }
  1658. p->locks[level] = BTRFS_READ_LOCK;
  1659. }
  1660. p->nodes[level] = b;
  1661. }
  1662. } else {
  1663. p->slots[level] = slot;
  1664. if (ins_len > 0 &&
  1665. btrfs_leaf_free_space(root, b) < ins_len) {
  1666. if (write_lock_level < 1) {
  1667. write_lock_level = 1;
  1668. btrfs_release_path(p);
  1669. goto again;
  1670. }
  1671. btrfs_set_path_blocking(p);
  1672. err = split_leaf(trans, root, key,
  1673. p, ins_len, ret == 0);
  1674. btrfs_clear_path_blocking(p, NULL, 0);
  1675. BUG_ON(err > 0);
  1676. if (err) {
  1677. ret = err;
  1678. goto done;
  1679. }
  1680. }
  1681. if (!p->search_for_split)
  1682. unlock_up(p, level, lowest_unlock);
  1683. goto done;
  1684. }
  1685. }
  1686. ret = 1;
  1687. done:
  1688. /*
  1689. * we don't really know what they plan on doing with the path
  1690. * from here on, so for now just mark it as blocking
  1691. */
  1692. if (!p->leave_spinning)
  1693. btrfs_set_path_blocking(p);
  1694. if (ret < 0)
  1695. btrfs_release_path(p);
  1696. return ret;
  1697. }
  1698. /*
  1699. * adjust the pointers going up the tree, starting at level
  1700. * making sure the right key of each node is points to 'key'.
  1701. * This is used after shifting pointers to the left, so it stops
  1702. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1703. * higher levels
  1704. *
  1705. */
  1706. static void fixup_low_keys(struct btrfs_trans_handle *trans,
  1707. struct btrfs_root *root, struct btrfs_path *path,
  1708. struct btrfs_disk_key *key, int level)
  1709. {
  1710. int i;
  1711. struct extent_buffer *t;
  1712. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1713. int tslot = path->slots[i];
  1714. if (!path->nodes[i])
  1715. break;
  1716. t = path->nodes[i];
  1717. btrfs_set_node_key(t, key, tslot);
  1718. btrfs_mark_buffer_dirty(path->nodes[i]);
  1719. if (tslot != 0)
  1720. break;
  1721. }
  1722. }
  1723. /*
  1724. * update item key.
  1725. *
  1726. * This function isn't completely safe. It's the caller's responsibility
  1727. * that the new key won't break the order
  1728. */
  1729. void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1730. struct btrfs_root *root, struct btrfs_path *path,
  1731. struct btrfs_key *new_key)
  1732. {
  1733. struct btrfs_disk_key disk_key;
  1734. struct extent_buffer *eb;
  1735. int slot;
  1736. eb = path->nodes[0];
  1737. slot = path->slots[0];
  1738. if (slot > 0) {
  1739. btrfs_item_key(eb, &disk_key, slot - 1);
  1740. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  1741. }
  1742. if (slot < btrfs_header_nritems(eb) - 1) {
  1743. btrfs_item_key(eb, &disk_key, slot + 1);
  1744. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  1745. }
  1746. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1747. btrfs_set_item_key(eb, &disk_key, slot);
  1748. btrfs_mark_buffer_dirty(eb);
  1749. if (slot == 0)
  1750. fixup_low_keys(trans, root, path, &disk_key, 1);
  1751. }
  1752. /*
  1753. * try to push data from one node into the next node left in the
  1754. * tree.
  1755. *
  1756. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1757. * error, and > 0 if there was no room in the left hand block.
  1758. */
  1759. static int push_node_left(struct btrfs_trans_handle *trans,
  1760. struct btrfs_root *root, struct extent_buffer *dst,
  1761. struct extent_buffer *src, int empty)
  1762. {
  1763. int push_items = 0;
  1764. int src_nritems;
  1765. int dst_nritems;
  1766. int ret = 0;
  1767. src_nritems = btrfs_header_nritems(src);
  1768. dst_nritems = btrfs_header_nritems(dst);
  1769. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1770. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1771. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1772. if (!empty && src_nritems <= 8)
  1773. return 1;
  1774. if (push_items <= 0)
  1775. return 1;
  1776. if (empty) {
  1777. push_items = min(src_nritems, push_items);
  1778. if (push_items < src_nritems) {
  1779. /* leave at least 8 pointers in the node if
  1780. * we aren't going to empty it
  1781. */
  1782. if (src_nritems - push_items < 8) {
  1783. if (push_items <= 8)
  1784. return 1;
  1785. push_items -= 8;
  1786. }
  1787. }
  1788. } else
  1789. push_items = min(src_nritems - 8, push_items);
  1790. copy_extent_buffer(dst, src,
  1791. btrfs_node_key_ptr_offset(dst_nritems),
  1792. btrfs_node_key_ptr_offset(0),
  1793. push_items * sizeof(struct btrfs_key_ptr));
  1794. if (push_items < src_nritems) {
  1795. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1796. btrfs_node_key_ptr_offset(push_items),
  1797. (src_nritems - push_items) *
  1798. sizeof(struct btrfs_key_ptr));
  1799. }
  1800. btrfs_set_header_nritems(src, src_nritems - push_items);
  1801. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1802. btrfs_mark_buffer_dirty(src);
  1803. btrfs_mark_buffer_dirty(dst);
  1804. return ret;
  1805. }
  1806. /*
  1807. * try to push data from one node into the next node right in the
  1808. * tree.
  1809. *
  1810. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1811. * error, and > 0 if there was no room in the right hand block.
  1812. *
  1813. * this will only push up to 1/2 the contents of the left node over
  1814. */
  1815. static int balance_node_right(struct btrfs_trans_handle *trans,
  1816. struct btrfs_root *root,
  1817. struct extent_buffer *dst,
  1818. struct extent_buffer *src)
  1819. {
  1820. int push_items = 0;
  1821. int max_push;
  1822. int src_nritems;
  1823. int dst_nritems;
  1824. int ret = 0;
  1825. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1826. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1827. src_nritems = btrfs_header_nritems(src);
  1828. dst_nritems = btrfs_header_nritems(dst);
  1829. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1830. if (push_items <= 0)
  1831. return 1;
  1832. if (src_nritems < 4)
  1833. return 1;
  1834. max_push = src_nritems / 2 + 1;
  1835. /* don't try to empty the node */
  1836. if (max_push >= src_nritems)
  1837. return 1;
  1838. if (max_push < push_items)
  1839. push_items = max_push;
  1840. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1841. btrfs_node_key_ptr_offset(0),
  1842. (dst_nritems) *
  1843. sizeof(struct btrfs_key_ptr));
  1844. copy_extent_buffer(dst, src,
  1845. btrfs_node_key_ptr_offset(0),
  1846. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1847. push_items * sizeof(struct btrfs_key_ptr));
  1848. btrfs_set_header_nritems(src, src_nritems - push_items);
  1849. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1850. btrfs_mark_buffer_dirty(src);
  1851. btrfs_mark_buffer_dirty(dst);
  1852. return ret;
  1853. }
  1854. /*
  1855. * helper function to insert a new root level in the tree.
  1856. * A new node is allocated, and a single item is inserted to
  1857. * point to the existing root
  1858. *
  1859. * returns zero on success or < 0 on failure.
  1860. */
  1861. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1862. struct btrfs_root *root,
  1863. struct btrfs_path *path, int level)
  1864. {
  1865. u64 lower_gen;
  1866. struct extent_buffer *lower;
  1867. struct extent_buffer *c;
  1868. struct extent_buffer *old;
  1869. struct btrfs_disk_key lower_key;
  1870. BUG_ON(path->nodes[level]);
  1871. BUG_ON(path->nodes[level-1] != root->node);
  1872. lower = path->nodes[level-1];
  1873. if (level == 1)
  1874. btrfs_item_key(lower, &lower_key, 0);
  1875. else
  1876. btrfs_node_key(lower, &lower_key, 0);
  1877. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1878. root->root_key.objectid, &lower_key,
  1879. level, root->node->start, 0, 0);
  1880. if (IS_ERR(c))
  1881. return PTR_ERR(c);
  1882. root_add_used(root, root->nodesize);
  1883. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1884. btrfs_set_header_nritems(c, 1);
  1885. btrfs_set_header_level(c, level);
  1886. btrfs_set_header_bytenr(c, c->start);
  1887. btrfs_set_header_generation(c, trans->transid);
  1888. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1889. btrfs_set_header_owner(c, root->root_key.objectid);
  1890. write_extent_buffer(c, root->fs_info->fsid,
  1891. (unsigned long)btrfs_header_fsid(c),
  1892. BTRFS_FSID_SIZE);
  1893. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1894. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1895. BTRFS_UUID_SIZE);
  1896. btrfs_set_node_key(c, &lower_key, 0);
  1897. btrfs_set_node_blockptr(c, 0, lower->start);
  1898. lower_gen = btrfs_header_generation(lower);
  1899. WARN_ON(lower_gen != trans->transid);
  1900. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1901. btrfs_mark_buffer_dirty(c);
  1902. old = root->node;
  1903. rcu_assign_pointer(root->node, c);
  1904. /* the super has an extra ref to root->node */
  1905. free_extent_buffer(old);
  1906. add_root_to_dirty_list(root);
  1907. extent_buffer_get(c);
  1908. path->nodes[level] = c;
  1909. path->locks[level] = BTRFS_WRITE_LOCK;
  1910. path->slots[level] = 0;
  1911. return 0;
  1912. }
  1913. /*
  1914. * worker function to insert a single pointer in a node.
  1915. * the node should have enough room for the pointer already
  1916. *
  1917. * slot and level indicate where you want the key to go, and
  1918. * blocknr is the block the key points to.
  1919. */
  1920. static void insert_ptr(struct btrfs_trans_handle *trans,
  1921. struct btrfs_root *root, struct btrfs_path *path,
  1922. struct btrfs_disk_key *key, u64 bytenr,
  1923. int slot, int level)
  1924. {
  1925. struct extent_buffer *lower;
  1926. int nritems;
  1927. BUG_ON(!path->nodes[level]);
  1928. btrfs_assert_tree_locked(path->nodes[level]);
  1929. lower = path->nodes[level];
  1930. nritems = btrfs_header_nritems(lower);
  1931. BUG_ON(slot > nritems);
  1932. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
  1933. if (slot != nritems) {
  1934. memmove_extent_buffer(lower,
  1935. btrfs_node_key_ptr_offset(slot + 1),
  1936. btrfs_node_key_ptr_offset(slot),
  1937. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1938. }
  1939. btrfs_set_node_key(lower, key, slot);
  1940. btrfs_set_node_blockptr(lower, slot, bytenr);
  1941. WARN_ON(trans->transid == 0);
  1942. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1943. btrfs_set_header_nritems(lower, nritems + 1);
  1944. btrfs_mark_buffer_dirty(lower);
  1945. }
  1946. /*
  1947. * split the node at the specified level in path in two.
  1948. * The path is corrected to point to the appropriate node after the split
  1949. *
  1950. * Before splitting this tries to make some room in the node by pushing
  1951. * left and right, if either one works, it returns right away.
  1952. *
  1953. * returns 0 on success and < 0 on failure
  1954. */
  1955. static noinline int split_node(struct btrfs_trans_handle *trans,
  1956. struct btrfs_root *root,
  1957. struct btrfs_path *path, int level)
  1958. {
  1959. struct extent_buffer *c;
  1960. struct extent_buffer *split;
  1961. struct btrfs_disk_key disk_key;
  1962. int mid;
  1963. int ret;
  1964. u32 c_nritems;
  1965. c = path->nodes[level];
  1966. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1967. if (c == root->node) {
  1968. /* trying to split the root, lets make a new one */
  1969. ret = insert_new_root(trans, root, path, level + 1);
  1970. if (ret)
  1971. return ret;
  1972. } else {
  1973. ret = push_nodes_for_insert(trans, root, path, level);
  1974. c = path->nodes[level];
  1975. if (!ret && btrfs_header_nritems(c) <
  1976. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1977. return 0;
  1978. if (ret < 0)
  1979. return ret;
  1980. }
  1981. c_nritems = btrfs_header_nritems(c);
  1982. mid = (c_nritems + 1) / 2;
  1983. btrfs_node_key(c, &disk_key, mid);
  1984. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1985. root->root_key.objectid,
  1986. &disk_key, level, c->start, 0, 0);
  1987. if (IS_ERR(split))
  1988. return PTR_ERR(split);
  1989. root_add_used(root, root->nodesize);
  1990. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1991. btrfs_set_header_level(split, btrfs_header_level(c));
  1992. btrfs_set_header_bytenr(split, split->start);
  1993. btrfs_set_header_generation(split, trans->transid);
  1994. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1995. btrfs_set_header_owner(split, root->root_key.objectid);
  1996. write_extent_buffer(split, root->fs_info->fsid,
  1997. (unsigned long)btrfs_header_fsid(split),
  1998. BTRFS_FSID_SIZE);
  1999. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2000. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2001. BTRFS_UUID_SIZE);
  2002. copy_extent_buffer(split, c,
  2003. btrfs_node_key_ptr_offset(0),
  2004. btrfs_node_key_ptr_offset(mid),
  2005. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2006. btrfs_set_header_nritems(split, c_nritems - mid);
  2007. btrfs_set_header_nritems(c, mid);
  2008. ret = 0;
  2009. btrfs_mark_buffer_dirty(c);
  2010. btrfs_mark_buffer_dirty(split);
  2011. insert_ptr(trans, root, path, &disk_key, split->start,
  2012. path->slots[level + 1] + 1, level + 1);
  2013. if (path->slots[level] >= mid) {
  2014. path->slots[level] -= mid;
  2015. btrfs_tree_unlock(c);
  2016. free_extent_buffer(c);
  2017. path->nodes[level] = split;
  2018. path->slots[level + 1] += 1;
  2019. } else {
  2020. btrfs_tree_unlock(split);
  2021. free_extent_buffer(split);
  2022. }
  2023. return ret;
  2024. }
  2025. /*
  2026. * how many bytes are required to store the items in a leaf. start
  2027. * and nr indicate which items in the leaf to check. This totals up the
  2028. * space used both by the item structs and the item data
  2029. */
  2030. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2031. {
  2032. int data_len;
  2033. int nritems = btrfs_header_nritems(l);
  2034. int end = min(nritems, start + nr) - 1;
  2035. if (!nr)
  2036. return 0;
  2037. data_len = btrfs_item_end_nr(l, start);
  2038. data_len = data_len - btrfs_item_offset_nr(l, end);
  2039. data_len += sizeof(struct btrfs_item) * nr;
  2040. WARN_ON(data_len < 0);
  2041. return data_len;
  2042. }
  2043. /*
  2044. * The space between the end of the leaf items and
  2045. * the start of the leaf data. IOW, how much room
  2046. * the leaf has left for both items and data
  2047. */
  2048. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2049. struct extent_buffer *leaf)
  2050. {
  2051. int nritems = btrfs_header_nritems(leaf);
  2052. int ret;
  2053. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2054. if (ret < 0) {
  2055. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2056. "used %d nritems %d\n",
  2057. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2058. leaf_space_used(leaf, 0, nritems), nritems);
  2059. }
  2060. return ret;
  2061. }
  2062. /*
  2063. * min slot controls the lowest index we're willing to push to the
  2064. * right. We'll push up to and including min_slot, but no lower
  2065. */
  2066. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2067. struct btrfs_root *root,
  2068. struct btrfs_path *path,
  2069. int data_size, int empty,
  2070. struct extent_buffer *right,
  2071. int free_space, u32 left_nritems,
  2072. u32 min_slot)
  2073. {
  2074. struct extent_buffer *left = path->nodes[0];
  2075. struct extent_buffer *upper = path->nodes[1];
  2076. struct btrfs_disk_key disk_key;
  2077. int slot;
  2078. u32 i;
  2079. int push_space = 0;
  2080. int push_items = 0;
  2081. struct btrfs_item *item;
  2082. u32 nr;
  2083. u32 right_nritems;
  2084. u32 data_end;
  2085. u32 this_item_size;
  2086. if (empty)
  2087. nr = 0;
  2088. else
  2089. nr = max_t(u32, 1, min_slot);
  2090. if (path->slots[0] >= left_nritems)
  2091. push_space += data_size;
  2092. slot = path->slots[1];
  2093. i = left_nritems - 1;
  2094. while (i >= nr) {
  2095. item = btrfs_item_nr(left, i);
  2096. if (!empty && push_items > 0) {
  2097. if (path->slots[0] > i)
  2098. break;
  2099. if (path->slots[0] == i) {
  2100. int space = btrfs_leaf_free_space(root, left);
  2101. if (space + push_space * 2 > free_space)
  2102. break;
  2103. }
  2104. }
  2105. if (path->slots[0] == i)
  2106. push_space += data_size;
  2107. this_item_size = btrfs_item_size(left, item);
  2108. if (this_item_size + sizeof(*item) + push_space > free_space)
  2109. break;
  2110. push_items++;
  2111. push_space += this_item_size + sizeof(*item);
  2112. if (i == 0)
  2113. break;
  2114. i--;
  2115. }
  2116. if (push_items == 0)
  2117. goto out_unlock;
  2118. if (!empty && push_items == left_nritems)
  2119. WARN_ON(1);
  2120. /* push left to right */
  2121. right_nritems = btrfs_header_nritems(right);
  2122. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2123. push_space -= leaf_data_end(root, left);
  2124. /* make room in the right data area */
  2125. data_end = leaf_data_end(root, right);
  2126. memmove_extent_buffer(right,
  2127. btrfs_leaf_data(right) + data_end - push_space,
  2128. btrfs_leaf_data(right) + data_end,
  2129. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2130. /* copy from the left data area */
  2131. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2132. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2133. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2134. push_space);
  2135. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2136. btrfs_item_nr_offset(0),
  2137. right_nritems * sizeof(struct btrfs_item));
  2138. /* copy the items from left to right */
  2139. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2140. btrfs_item_nr_offset(left_nritems - push_items),
  2141. push_items * sizeof(struct btrfs_item));
  2142. /* update the item pointers */
  2143. right_nritems += push_items;
  2144. btrfs_set_header_nritems(right, right_nritems);
  2145. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2146. for (i = 0; i < right_nritems; i++) {
  2147. item = btrfs_item_nr(right, i);
  2148. push_space -= btrfs_item_size(right, item);
  2149. btrfs_set_item_offset(right, item, push_space);
  2150. }
  2151. left_nritems -= push_items;
  2152. btrfs_set_header_nritems(left, left_nritems);
  2153. if (left_nritems)
  2154. btrfs_mark_buffer_dirty(left);
  2155. else
  2156. clean_tree_block(trans, root, left);
  2157. btrfs_mark_buffer_dirty(right);
  2158. btrfs_item_key(right, &disk_key, 0);
  2159. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2160. btrfs_mark_buffer_dirty(upper);
  2161. /* then fixup the leaf pointer in the path */
  2162. if (path->slots[0] >= left_nritems) {
  2163. path->slots[0] -= left_nritems;
  2164. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2165. clean_tree_block(trans, root, path->nodes[0]);
  2166. btrfs_tree_unlock(path->nodes[0]);
  2167. free_extent_buffer(path->nodes[0]);
  2168. path->nodes[0] = right;
  2169. path->slots[1] += 1;
  2170. } else {
  2171. btrfs_tree_unlock(right);
  2172. free_extent_buffer(right);
  2173. }
  2174. return 0;
  2175. out_unlock:
  2176. btrfs_tree_unlock(right);
  2177. free_extent_buffer(right);
  2178. return 1;
  2179. }
  2180. /*
  2181. * push some data in the path leaf to the right, trying to free up at
  2182. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2183. *
  2184. * returns 1 if the push failed because the other node didn't have enough
  2185. * room, 0 if everything worked out and < 0 if there were major errors.
  2186. *
  2187. * this will push starting from min_slot to the end of the leaf. It won't
  2188. * push any slot lower than min_slot
  2189. */
  2190. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2191. *root, struct btrfs_path *path,
  2192. int min_data_size, int data_size,
  2193. int empty, u32 min_slot)
  2194. {
  2195. struct extent_buffer *left = path->nodes[0];
  2196. struct extent_buffer *right;
  2197. struct extent_buffer *upper;
  2198. int slot;
  2199. int free_space;
  2200. u32 left_nritems;
  2201. int ret;
  2202. if (!path->nodes[1])
  2203. return 1;
  2204. slot = path->slots[1];
  2205. upper = path->nodes[1];
  2206. if (slot >= btrfs_header_nritems(upper) - 1)
  2207. return 1;
  2208. btrfs_assert_tree_locked(path->nodes[1]);
  2209. right = read_node_slot(root, upper, slot + 1);
  2210. if (right == NULL)
  2211. return 1;
  2212. btrfs_tree_lock(right);
  2213. btrfs_set_lock_blocking(right);
  2214. free_space = btrfs_leaf_free_space(root, right);
  2215. if (free_space < data_size)
  2216. goto out_unlock;
  2217. /* cow and double check */
  2218. ret = btrfs_cow_block(trans, root, right, upper,
  2219. slot + 1, &right);
  2220. if (ret)
  2221. goto out_unlock;
  2222. free_space = btrfs_leaf_free_space(root, right);
  2223. if (free_space < data_size)
  2224. goto out_unlock;
  2225. left_nritems = btrfs_header_nritems(left);
  2226. if (left_nritems == 0)
  2227. goto out_unlock;
  2228. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2229. right, free_space, left_nritems, min_slot);
  2230. out_unlock:
  2231. btrfs_tree_unlock(right);
  2232. free_extent_buffer(right);
  2233. return 1;
  2234. }
  2235. /*
  2236. * push some data in the path leaf to the left, trying to free up at
  2237. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2238. *
  2239. * max_slot can put a limit on how far into the leaf we'll push items. The
  2240. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2241. * items
  2242. */
  2243. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2244. struct btrfs_root *root,
  2245. struct btrfs_path *path, int data_size,
  2246. int empty, struct extent_buffer *left,
  2247. int free_space, u32 right_nritems,
  2248. u32 max_slot)
  2249. {
  2250. struct btrfs_disk_key disk_key;
  2251. struct extent_buffer *right = path->nodes[0];
  2252. int i;
  2253. int push_space = 0;
  2254. int push_items = 0;
  2255. struct btrfs_item *item;
  2256. u32 old_left_nritems;
  2257. u32 nr;
  2258. int ret = 0;
  2259. u32 this_item_size;
  2260. u32 old_left_item_size;
  2261. if (empty)
  2262. nr = min(right_nritems, max_slot);
  2263. else
  2264. nr = min(right_nritems - 1, max_slot);
  2265. for (i = 0; i < nr; i++) {
  2266. item = btrfs_item_nr(right, i);
  2267. if (!empty && push_items > 0) {
  2268. if (path->slots[0] < i)
  2269. break;
  2270. if (path->slots[0] == i) {
  2271. int space = btrfs_leaf_free_space(root, right);
  2272. if (space + push_space * 2 > free_space)
  2273. break;
  2274. }
  2275. }
  2276. if (path->slots[0] == i)
  2277. push_space += data_size;
  2278. this_item_size = btrfs_item_size(right, item);
  2279. if (this_item_size + sizeof(*item) + push_space > free_space)
  2280. break;
  2281. push_items++;
  2282. push_space += this_item_size + sizeof(*item);
  2283. }
  2284. if (push_items == 0) {
  2285. ret = 1;
  2286. goto out;
  2287. }
  2288. if (!empty && push_items == btrfs_header_nritems(right))
  2289. WARN_ON(1);
  2290. /* push data from right to left */
  2291. copy_extent_buffer(left, right,
  2292. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2293. btrfs_item_nr_offset(0),
  2294. push_items * sizeof(struct btrfs_item));
  2295. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2296. btrfs_item_offset_nr(right, push_items - 1);
  2297. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2298. leaf_data_end(root, left) - push_space,
  2299. btrfs_leaf_data(right) +
  2300. btrfs_item_offset_nr(right, push_items - 1),
  2301. push_space);
  2302. old_left_nritems = btrfs_header_nritems(left);
  2303. BUG_ON(old_left_nritems <= 0);
  2304. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2305. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2306. u32 ioff;
  2307. item = btrfs_item_nr(left, i);
  2308. ioff = btrfs_item_offset(left, item);
  2309. btrfs_set_item_offset(left, item,
  2310. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2311. }
  2312. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2313. /* fixup right node */
  2314. if (push_items > right_nritems) {
  2315. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2316. right_nritems);
  2317. WARN_ON(1);
  2318. }
  2319. if (push_items < right_nritems) {
  2320. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2321. leaf_data_end(root, right);
  2322. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2323. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2324. btrfs_leaf_data(right) +
  2325. leaf_data_end(root, right), push_space);
  2326. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2327. btrfs_item_nr_offset(push_items),
  2328. (btrfs_header_nritems(right) - push_items) *
  2329. sizeof(struct btrfs_item));
  2330. }
  2331. right_nritems -= push_items;
  2332. btrfs_set_header_nritems(right, right_nritems);
  2333. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2334. for (i = 0; i < right_nritems; i++) {
  2335. item = btrfs_item_nr(right, i);
  2336. push_space = push_space - btrfs_item_size(right, item);
  2337. btrfs_set_item_offset(right, item, push_space);
  2338. }
  2339. btrfs_mark_buffer_dirty(left);
  2340. if (right_nritems)
  2341. btrfs_mark_buffer_dirty(right);
  2342. else
  2343. clean_tree_block(trans, root, right);
  2344. btrfs_item_key(right, &disk_key, 0);
  2345. fixup_low_keys(trans, root, path, &disk_key, 1);
  2346. /* then fixup the leaf pointer in the path */
  2347. if (path->slots[0] < push_items) {
  2348. path->slots[0] += old_left_nritems;
  2349. btrfs_tree_unlock(path->nodes[0]);
  2350. free_extent_buffer(path->nodes[0]);
  2351. path->nodes[0] = left;
  2352. path->slots[1] -= 1;
  2353. } else {
  2354. btrfs_tree_unlock(left);
  2355. free_extent_buffer(left);
  2356. path->slots[0] -= push_items;
  2357. }
  2358. BUG_ON(path->slots[0] < 0);
  2359. return ret;
  2360. out:
  2361. btrfs_tree_unlock(left);
  2362. free_extent_buffer(left);
  2363. return ret;
  2364. }
  2365. /*
  2366. * push some data in the path leaf to the left, trying to free up at
  2367. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2368. *
  2369. * max_slot can put a limit on how far into the leaf we'll push items. The
  2370. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2371. * items
  2372. */
  2373. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2374. *root, struct btrfs_path *path, int min_data_size,
  2375. int data_size, int empty, u32 max_slot)
  2376. {
  2377. struct extent_buffer *right = path->nodes[0];
  2378. struct extent_buffer *left;
  2379. int slot;
  2380. int free_space;
  2381. u32 right_nritems;
  2382. int ret = 0;
  2383. slot = path->slots[1];
  2384. if (slot == 0)
  2385. return 1;
  2386. if (!path->nodes[1])
  2387. return 1;
  2388. right_nritems = btrfs_header_nritems(right);
  2389. if (right_nritems == 0)
  2390. return 1;
  2391. btrfs_assert_tree_locked(path->nodes[1]);
  2392. left = read_node_slot(root, path->nodes[1], slot - 1);
  2393. if (left == NULL)
  2394. return 1;
  2395. btrfs_tree_lock(left);
  2396. btrfs_set_lock_blocking(left);
  2397. free_space = btrfs_leaf_free_space(root, left);
  2398. if (free_space < data_size) {
  2399. ret = 1;
  2400. goto out;
  2401. }
  2402. /* cow and double check */
  2403. ret = btrfs_cow_block(trans, root, left,
  2404. path->nodes[1], slot - 1, &left);
  2405. if (ret) {
  2406. /* we hit -ENOSPC, but it isn't fatal here */
  2407. ret = 1;
  2408. goto out;
  2409. }
  2410. free_space = btrfs_leaf_free_space(root, left);
  2411. if (free_space < data_size) {
  2412. ret = 1;
  2413. goto out;
  2414. }
  2415. return __push_leaf_left(trans, root, path, min_data_size,
  2416. empty, left, free_space, right_nritems,
  2417. max_slot);
  2418. out:
  2419. btrfs_tree_unlock(left);
  2420. free_extent_buffer(left);
  2421. return ret;
  2422. }
  2423. /*
  2424. * split the path's leaf in two, making sure there is at least data_size
  2425. * available for the resulting leaf level of the path.
  2426. */
  2427. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  2428. struct btrfs_root *root,
  2429. struct btrfs_path *path,
  2430. struct extent_buffer *l,
  2431. struct extent_buffer *right,
  2432. int slot, int mid, int nritems)
  2433. {
  2434. int data_copy_size;
  2435. int rt_data_off;
  2436. int i;
  2437. struct btrfs_disk_key disk_key;
  2438. nritems = nritems - mid;
  2439. btrfs_set_header_nritems(right, nritems);
  2440. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2441. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2442. btrfs_item_nr_offset(mid),
  2443. nritems * sizeof(struct btrfs_item));
  2444. copy_extent_buffer(right, l,
  2445. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2446. data_copy_size, btrfs_leaf_data(l) +
  2447. leaf_data_end(root, l), data_copy_size);
  2448. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2449. btrfs_item_end_nr(l, mid);
  2450. for (i = 0; i < nritems; i++) {
  2451. struct btrfs_item *item = btrfs_item_nr(right, i);
  2452. u32 ioff;
  2453. ioff = btrfs_item_offset(right, item);
  2454. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2455. }
  2456. btrfs_set_header_nritems(l, mid);
  2457. btrfs_item_key(right, &disk_key, 0);
  2458. insert_ptr(trans, root, path, &disk_key, right->start,
  2459. path->slots[1] + 1, 1);
  2460. btrfs_mark_buffer_dirty(right);
  2461. btrfs_mark_buffer_dirty(l);
  2462. BUG_ON(path->slots[0] != slot);
  2463. if (mid <= slot) {
  2464. btrfs_tree_unlock(path->nodes[0]);
  2465. free_extent_buffer(path->nodes[0]);
  2466. path->nodes[0] = right;
  2467. path->slots[0] -= mid;
  2468. path->slots[1] += 1;
  2469. } else {
  2470. btrfs_tree_unlock(right);
  2471. free_extent_buffer(right);
  2472. }
  2473. BUG_ON(path->slots[0] < 0);
  2474. }
  2475. /*
  2476. * double splits happen when we need to insert a big item in the middle
  2477. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2478. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2479. * A B C
  2480. *
  2481. * We avoid this by trying to push the items on either side of our target
  2482. * into the adjacent leaves. If all goes well we can avoid the double split
  2483. * completely.
  2484. */
  2485. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2486. struct btrfs_root *root,
  2487. struct btrfs_path *path,
  2488. int data_size)
  2489. {
  2490. int ret;
  2491. int progress = 0;
  2492. int slot;
  2493. u32 nritems;
  2494. slot = path->slots[0];
  2495. /*
  2496. * try to push all the items after our slot into the
  2497. * right leaf
  2498. */
  2499. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2500. if (ret < 0)
  2501. return ret;
  2502. if (ret == 0)
  2503. progress++;
  2504. nritems = btrfs_header_nritems(path->nodes[0]);
  2505. /*
  2506. * our goal is to get our slot at the start or end of a leaf. If
  2507. * we've done so we're done
  2508. */
  2509. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2510. return 0;
  2511. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2512. return 0;
  2513. /* try to push all the items before our slot into the next leaf */
  2514. slot = path->slots[0];
  2515. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2516. if (ret < 0)
  2517. return ret;
  2518. if (ret == 0)
  2519. progress++;
  2520. if (progress)
  2521. return 0;
  2522. return 1;
  2523. }
  2524. /*
  2525. * split the path's leaf in two, making sure there is at least data_size
  2526. * available for the resulting leaf level of the path.
  2527. *
  2528. * returns 0 if all went well and < 0 on failure.
  2529. */
  2530. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2531. struct btrfs_root *root,
  2532. struct btrfs_key *ins_key,
  2533. struct btrfs_path *path, int data_size,
  2534. int extend)
  2535. {
  2536. struct btrfs_disk_key disk_key;
  2537. struct extent_buffer *l;
  2538. u32 nritems;
  2539. int mid;
  2540. int slot;
  2541. struct extent_buffer *right;
  2542. int ret = 0;
  2543. int wret;
  2544. int split;
  2545. int num_doubles = 0;
  2546. int tried_avoid_double = 0;
  2547. l = path->nodes[0];
  2548. slot = path->slots[0];
  2549. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2550. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2551. return -EOVERFLOW;
  2552. /* first try to make some room by pushing left and right */
  2553. if (data_size) {
  2554. wret = push_leaf_right(trans, root, path, data_size,
  2555. data_size, 0, 0);
  2556. if (wret < 0)
  2557. return wret;
  2558. if (wret) {
  2559. wret = push_leaf_left(trans, root, path, data_size,
  2560. data_size, 0, (u32)-1);
  2561. if (wret < 0)
  2562. return wret;
  2563. }
  2564. l = path->nodes[0];
  2565. /* did the pushes work? */
  2566. if (btrfs_leaf_free_space(root, l) >= data_size)
  2567. return 0;
  2568. }
  2569. if (!path->nodes[1]) {
  2570. ret = insert_new_root(trans, root, path, 1);
  2571. if (ret)
  2572. return ret;
  2573. }
  2574. again:
  2575. split = 1;
  2576. l = path->nodes[0];
  2577. slot = path->slots[0];
  2578. nritems = btrfs_header_nritems(l);
  2579. mid = (nritems + 1) / 2;
  2580. if (mid <= slot) {
  2581. if (nritems == 1 ||
  2582. leaf_space_used(l, mid, nritems - mid) + data_size >
  2583. BTRFS_LEAF_DATA_SIZE(root)) {
  2584. if (slot >= nritems) {
  2585. split = 0;
  2586. } else {
  2587. mid = slot;
  2588. if (mid != nritems &&
  2589. leaf_space_used(l, mid, nritems - mid) +
  2590. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2591. if (data_size && !tried_avoid_double)
  2592. goto push_for_double;
  2593. split = 2;
  2594. }
  2595. }
  2596. }
  2597. } else {
  2598. if (leaf_space_used(l, 0, mid) + data_size >
  2599. BTRFS_LEAF_DATA_SIZE(root)) {
  2600. if (!extend && data_size && slot == 0) {
  2601. split = 0;
  2602. } else if ((extend || !data_size) && slot == 0) {
  2603. mid = 1;
  2604. } else {
  2605. mid = slot;
  2606. if (mid != nritems &&
  2607. leaf_space_used(l, mid, nritems - mid) +
  2608. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2609. if (data_size && !tried_avoid_double)
  2610. goto push_for_double;
  2611. split = 2 ;
  2612. }
  2613. }
  2614. }
  2615. }
  2616. if (split == 0)
  2617. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2618. else
  2619. btrfs_item_key(l, &disk_key, mid);
  2620. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2621. root->root_key.objectid,
  2622. &disk_key, 0, l->start, 0, 0);
  2623. if (IS_ERR(right))
  2624. return PTR_ERR(right);
  2625. root_add_used(root, root->leafsize);
  2626. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2627. btrfs_set_header_bytenr(right, right->start);
  2628. btrfs_set_header_generation(right, trans->transid);
  2629. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2630. btrfs_set_header_owner(right, root->root_key.objectid);
  2631. btrfs_set_header_level(right, 0);
  2632. write_extent_buffer(right, root->fs_info->fsid,
  2633. (unsigned long)btrfs_header_fsid(right),
  2634. BTRFS_FSID_SIZE);
  2635. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2636. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2637. BTRFS_UUID_SIZE);
  2638. if (split == 0) {
  2639. if (mid <= slot) {
  2640. btrfs_set_header_nritems(right, 0);
  2641. insert_ptr(trans, root, path, &disk_key, right->start,
  2642. path->slots[1] + 1, 1);
  2643. btrfs_tree_unlock(path->nodes[0]);
  2644. free_extent_buffer(path->nodes[0]);
  2645. path->nodes[0] = right;
  2646. path->slots[0] = 0;
  2647. path->slots[1] += 1;
  2648. } else {
  2649. btrfs_set_header_nritems(right, 0);
  2650. insert_ptr(trans, root, path, &disk_key, right->start,
  2651. path->slots[1], 1);
  2652. btrfs_tree_unlock(path->nodes[0]);
  2653. free_extent_buffer(path->nodes[0]);
  2654. path->nodes[0] = right;
  2655. path->slots[0] = 0;
  2656. if (path->slots[1] == 0)
  2657. fixup_low_keys(trans, root, path,
  2658. &disk_key, 1);
  2659. }
  2660. btrfs_mark_buffer_dirty(right);
  2661. return ret;
  2662. }
  2663. copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2664. if (split == 2) {
  2665. BUG_ON(num_doubles != 0);
  2666. num_doubles++;
  2667. goto again;
  2668. }
  2669. return 0;
  2670. push_for_double:
  2671. push_for_double_split(trans, root, path, data_size);
  2672. tried_avoid_double = 1;
  2673. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2674. return 0;
  2675. goto again;
  2676. }
  2677. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2678. struct btrfs_root *root,
  2679. struct btrfs_path *path, int ins_len)
  2680. {
  2681. struct btrfs_key key;
  2682. struct extent_buffer *leaf;
  2683. struct btrfs_file_extent_item *fi;
  2684. u64 extent_len = 0;
  2685. u32 item_size;
  2686. int ret;
  2687. leaf = path->nodes[0];
  2688. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2689. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2690. key.type != BTRFS_EXTENT_CSUM_KEY);
  2691. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2692. return 0;
  2693. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2694. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2695. fi = btrfs_item_ptr(leaf, path->slots[0],
  2696. struct btrfs_file_extent_item);
  2697. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2698. }
  2699. btrfs_release_path(path);
  2700. path->keep_locks = 1;
  2701. path->search_for_split = 1;
  2702. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2703. path->search_for_split = 0;
  2704. if (ret < 0)
  2705. goto err;
  2706. ret = -EAGAIN;
  2707. leaf = path->nodes[0];
  2708. /* if our item isn't there or got smaller, return now */
  2709. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2710. goto err;
  2711. /* the leaf has changed, it now has room. return now */
  2712. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2713. goto err;
  2714. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2715. fi = btrfs_item_ptr(leaf, path->slots[0],
  2716. struct btrfs_file_extent_item);
  2717. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2718. goto err;
  2719. }
  2720. btrfs_set_path_blocking(path);
  2721. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2722. if (ret)
  2723. goto err;
  2724. path->keep_locks = 0;
  2725. btrfs_unlock_up_safe(path, 1);
  2726. return 0;
  2727. err:
  2728. path->keep_locks = 0;
  2729. return ret;
  2730. }
  2731. static noinline int split_item(struct btrfs_trans_handle *trans,
  2732. struct btrfs_root *root,
  2733. struct btrfs_path *path,
  2734. struct btrfs_key *new_key,
  2735. unsigned long split_offset)
  2736. {
  2737. struct extent_buffer *leaf;
  2738. struct btrfs_item *item;
  2739. struct btrfs_item *new_item;
  2740. int slot;
  2741. char *buf;
  2742. u32 nritems;
  2743. u32 item_size;
  2744. u32 orig_offset;
  2745. struct btrfs_disk_key disk_key;
  2746. leaf = path->nodes[0];
  2747. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2748. btrfs_set_path_blocking(path);
  2749. item = btrfs_item_nr(leaf, path->slots[0]);
  2750. orig_offset = btrfs_item_offset(leaf, item);
  2751. item_size = btrfs_item_size(leaf, item);
  2752. buf = kmalloc(item_size, GFP_NOFS);
  2753. if (!buf)
  2754. return -ENOMEM;
  2755. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2756. path->slots[0]), item_size);
  2757. slot = path->slots[0] + 1;
  2758. nritems = btrfs_header_nritems(leaf);
  2759. if (slot != nritems) {
  2760. /* shift the items */
  2761. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2762. btrfs_item_nr_offset(slot),
  2763. (nritems - slot) * sizeof(struct btrfs_item));
  2764. }
  2765. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2766. btrfs_set_item_key(leaf, &disk_key, slot);
  2767. new_item = btrfs_item_nr(leaf, slot);
  2768. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2769. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2770. btrfs_set_item_offset(leaf, item,
  2771. orig_offset + item_size - split_offset);
  2772. btrfs_set_item_size(leaf, item, split_offset);
  2773. btrfs_set_header_nritems(leaf, nritems + 1);
  2774. /* write the data for the start of the original item */
  2775. write_extent_buffer(leaf, buf,
  2776. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2777. split_offset);
  2778. /* write the data for the new item */
  2779. write_extent_buffer(leaf, buf + split_offset,
  2780. btrfs_item_ptr_offset(leaf, slot),
  2781. item_size - split_offset);
  2782. btrfs_mark_buffer_dirty(leaf);
  2783. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2784. kfree(buf);
  2785. return 0;
  2786. }
  2787. /*
  2788. * This function splits a single item into two items,
  2789. * giving 'new_key' to the new item and splitting the
  2790. * old one at split_offset (from the start of the item).
  2791. *
  2792. * The path may be released by this operation. After
  2793. * the split, the path is pointing to the old item. The
  2794. * new item is going to be in the same node as the old one.
  2795. *
  2796. * Note, the item being split must be smaller enough to live alone on
  2797. * a tree block with room for one extra struct btrfs_item
  2798. *
  2799. * This allows us to split the item in place, keeping a lock on the
  2800. * leaf the entire time.
  2801. */
  2802. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2803. struct btrfs_root *root,
  2804. struct btrfs_path *path,
  2805. struct btrfs_key *new_key,
  2806. unsigned long split_offset)
  2807. {
  2808. int ret;
  2809. ret = setup_leaf_for_split(trans, root, path,
  2810. sizeof(struct btrfs_item));
  2811. if (ret)
  2812. return ret;
  2813. ret = split_item(trans, root, path, new_key, split_offset);
  2814. return ret;
  2815. }
  2816. /*
  2817. * This function duplicate a item, giving 'new_key' to the new item.
  2818. * It guarantees both items live in the same tree leaf and the new item
  2819. * is contiguous with the original item.
  2820. *
  2821. * This allows us to split file extent in place, keeping a lock on the
  2822. * leaf the entire time.
  2823. */
  2824. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2825. struct btrfs_root *root,
  2826. struct btrfs_path *path,
  2827. struct btrfs_key *new_key)
  2828. {
  2829. struct extent_buffer *leaf;
  2830. int ret;
  2831. u32 item_size;
  2832. leaf = path->nodes[0];
  2833. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2834. ret = setup_leaf_for_split(trans, root, path,
  2835. item_size + sizeof(struct btrfs_item));
  2836. if (ret)
  2837. return ret;
  2838. path->slots[0]++;
  2839. setup_items_for_insert(trans, root, path, new_key, &item_size,
  2840. item_size, item_size +
  2841. sizeof(struct btrfs_item), 1);
  2842. leaf = path->nodes[0];
  2843. memcpy_extent_buffer(leaf,
  2844. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2845. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2846. item_size);
  2847. return 0;
  2848. }
  2849. /*
  2850. * make the item pointed to by the path smaller. new_size indicates
  2851. * how small to make it, and from_end tells us if we just chop bytes
  2852. * off the end of the item or if we shift the item to chop bytes off
  2853. * the front.
  2854. */
  2855. void btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2856. struct btrfs_root *root,
  2857. struct btrfs_path *path,
  2858. u32 new_size, int from_end)
  2859. {
  2860. int slot;
  2861. struct extent_buffer *leaf;
  2862. struct btrfs_item *item;
  2863. u32 nritems;
  2864. unsigned int data_end;
  2865. unsigned int old_data_start;
  2866. unsigned int old_size;
  2867. unsigned int size_diff;
  2868. int i;
  2869. leaf = path->nodes[0];
  2870. slot = path->slots[0];
  2871. old_size = btrfs_item_size_nr(leaf, slot);
  2872. if (old_size == new_size)
  2873. return;
  2874. nritems = btrfs_header_nritems(leaf);
  2875. data_end = leaf_data_end(root, leaf);
  2876. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2877. size_diff = old_size - new_size;
  2878. BUG_ON(slot < 0);
  2879. BUG_ON(slot >= nritems);
  2880. /*
  2881. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2882. */
  2883. /* first correct the data pointers */
  2884. for (i = slot; i < nritems; i++) {
  2885. u32 ioff;
  2886. item = btrfs_item_nr(leaf, i);
  2887. ioff = btrfs_item_offset(leaf, item);
  2888. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2889. }
  2890. /* shift the data */
  2891. if (from_end) {
  2892. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2893. data_end + size_diff, btrfs_leaf_data(leaf) +
  2894. data_end, old_data_start + new_size - data_end);
  2895. } else {
  2896. struct btrfs_disk_key disk_key;
  2897. u64 offset;
  2898. btrfs_item_key(leaf, &disk_key, slot);
  2899. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2900. unsigned long ptr;
  2901. struct btrfs_file_extent_item *fi;
  2902. fi = btrfs_item_ptr(leaf, slot,
  2903. struct btrfs_file_extent_item);
  2904. fi = (struct btrfs_file_extent_item *)(
  2905. (unsigned long)fi - size_diff);
  2906. if (btrfs_file_extent_type(leaf, fi) ==
  2907. BTRFS_FILE_EXTENT_INLINE) {
  2908. ptr = btrfs_item_ptr_offset(leaf, slot);
  2909. memmove_extent_buffer(leaf, ptr,
  2910. (unsigned long)fi,
  2911. offsetof(struct btrfs_file_extent_item,
  2912. disk_bytenr));
  2913. }
  2914. }
  2915. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2916. data_end + size_diff, btrfs_leaf_data(leaf) +
  2917. data_end, old_data_start - data_end);
  2918. offset = btrfs_disk_key_offset(&disk_key);
  2919. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2920. btrfs_set_item_key(leaf, &disk_key, slot);
  2921. if (slot == 0)
  2922. fixup_low_keys(trans, root, path, &disk_key, 1);
  2923. }
  2924. item = btrfs_item_nr(leaf, slot);
  2925. btrfs_set_item_size(leaf, item, new_size);
  2926. btrfs_mark_buffer_dirty(leaf);
  2927. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2928. btrfs_print_leaf(root, leaf);
  2929. BUG();
  2930. }
  2931. }
  2932. /*
  2933. * make the item pointed to by the path bigger, data_size is the new size.
  2934. */
  2935. void btrfs_extend_item(struct btrfs_trans_handle *trans,
  2936. struct btrfs_root *root, struct btrfs_path *path,
  2937. u32 data_size)
  2938. {
  2939. int slot;
  2940. struct extent_buffer *leaf;
  2941. struct btrfs_item *item;
  2942. u32 nritems;
  2943. unsigned int data_end;
  2944. unsigned int old_data;
  2945. unsigned int old_size;
  2946. int i;
  2947. leaf = path->nodes[0];
  2948. nritems = btrfs_header_nritems(leaf);
  2949. data_end = leaf_data_end(root, leaf);
  2950. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2951. btrfs_print_leaf(root, leaf);
  2952. BUG();
  2953. }
  2954. slot = path->slots[0];
  2955. old_data = btrfs_item_end_nr(leaf, slot);
  2956. BUG_ON(slot < 0);
  2957. if (slot >= nritems) {
  2958. btrfs_print_leaf(root, leaf);
  2959. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2960. slot, nritems);
  2961. BUG_ON(1);
  2962. }
  2963. /*
  2964. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2965. */
  2966. /* first correct the data pointers */
  2967. for (i = slot; i < nritems; i++) {
  2968. u32 ioff;
  2969. item = btrfs_item_nr(leaf, i);
  2970. ioff = btrfs_item_offset(leaf, item);
  2971. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2972. }
  2973. /* shift the data */
  2974. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2975. data_end - data_size, btrfs_leaf_data(leaf) +
  2976. data_end, old_data - data_end);
  2977. data_end = old_data;
  2978. old_size = btrfs_item_size_nr(leaf, slot);
  2979. item = btrfs_item_nr(leaf, slot);
  2980. btrfs_set_item_size(leaf, item, old_size + data_size);
  2981. btrfs_mark_buffer_dirty(leaf);
  2982. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2983. btrfs_print_leaf(root, leaf);
  2984. BUG();
  2985. }
  2986. }
  2987. /*
  2988. * Given a key and some data, insert items into the tree.
  2989. * This does all the path init required, making room in the tree if needed.
  2990. * Returns the number of keys that were inserted.
  2991. */
  2992. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2993. struct btrfs_root *root,
  2994. struct btrfs_path *path,
  2995. struct btrfs_key *cpu_key, u32 *data_size,
  2996. int nr)
  2997. {
  2998. struct extent_buffer *leaf;
  2999. struct btrfs_item *item;
  3000. int ret = 0;
  3001. int slot;
  3002. int i;
  3003. u32 nritems;
  3004. u32 total_data = 0;
  3005. u32 total_size = 0;
  3006. unsigned int data_end;
  3007. struct btrfs_disk_key disk_key;
  3008. struct btrfs_key found_key;
  3009. for (i = 0; i < nr; i++) {
  3010. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3011. BTRFS_LEAF_DATA_SIZE(root)) {
  3012. break;
  3013. nr = i;
  3014. }
  3015. total_data += data_size[i];
  3016. total_size += data_size[i] + sizeof(struct btrfs_item);
  3017. }
  3018. BUG_ON(nr == 0);
  3019. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3020. if (ret == 0)
  3021. return -EEXIST;
  3022. if (ret < 0)
  3023. goto out;
  3024. leaf = path->nodes[0];
  3025. nritems = btrfs_header_nritems(leaf);
  3026. data_end = leaf_data_end(root, leaf);
  3027. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3028. for (i = nr; i >= 0; i--) {
  3029. total_data -= data_size[i];
  3030. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3031. if (total_size < btrfs_leaf_free_space(root, leaf))
  3032. break;
  3033. }
  3034. nr = i;
  3035. }
  3036. slot = path->slots[0];
  3037. BUG_ON(slot < 0);
  3038. if (slot != nritems) {
  3039. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3040. item = btrfs_item_nr(leaf, slot);
  3041. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3042. /* figure out how many keys we can insert in here */
  3043. total_data = data_size[0];
  3044. for (i = 1; i < nr; i++) {
  3045. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3046. break;
  3047. total_data += data_size[i];
  3048. }
  3049. nr = i;
  3050. if (old_data < data_end) {
  3051. btrfs_print_leaf(root, leaf);
  3052. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3053. slot, old_data, data_end);
  3054. BUG_ON(1);
  3055. }
  3056. /*
  3057. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3058. */
  3059. /* first correct the data pointers */
  3060. for (i = slot; i < nritems; i++) {
  3061. u32 ioff;
  3062. item = btrfs_item_nr(leaf, i);
  3063. ioff = btrfs_item_offset(leaf, item);
  3064. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3065. }
  3066. /* shift the items */
  3067. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3068. btrfs_item_nr_offset(slot),
  3069. (nritems - slot) * sizeof(struct btrfs_item));
  3070. /* shift the data */
  3071. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3072. data_end - total_data, btrfs_leaf_data(leaf) +
  3073. data_end, old_data - data_end);
  3074. data_end = old_data;
  3075. } else {
  3076. /*
  3077. * this sucks but it has to be done, if we are inserting at
  3078. * the end of the leaf only insert 1 of the items, since we
  3079. * have no way of knowing whats on the next leaf and we'd have
  3080. * to drop our current locks to figure it out
  3081. */
  3082. nr = 1;
  3083. }
  3084. /* setup the item for the new data */
  3085. for (i = 0; i < nr; i++) {
  3086. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3087. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3088. item = btrfs_item_nr(leaf, slot + i);
  3089. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3090. data_end -= data_size[i];
  3091. btrfs_set_item_size(leaf, item, data_size[i]);
  3092. }
  3093. btrfs_set_header_nritems(leaf, nritems + nr);
  3094. btrfs_mark_buffer_dirty(leaf);
  3095. ret = 0;
  3096. if (slot == 0) {
  3097. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3098. fixup_low_keys(trans, root, path, &disk_key, 1);
  3099. }
  3100. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3101. btrfs_print_leaf(root, leaf);
  3102. BUG();
  3103. }
  3104. out:
  3105. if (!ret)
  3106. ret = nr;
  3107. return ret;
  3108. }
  3109. /*
  3110. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3111. * to save stack depth by doing the bulk of the work in a function
  3112. * that doesn't call btrfs_search_slot
  3113. */
  3114. void setup_items_for_insert(struct btrfs_trans_handle *trans,
  3115. struct btrfs_root *root, struct btrfs_path *path,
  3116. struct btrfs_key *cpu_key, u32 *data_size,
  3117. u32 total_data, u32 total_size, int nr)
  3118. {
  3119. struct btrfs_item *item;
  3120. int i;
  3121. u32 nritems;
  3122. unsigned int data_end;
  3123. struct btrfs_disk_key disk_key;
  3124. struct extent_buffer *leaf;
  3125. int slot;
  3126. leaf = path->nodes[0];
  3127. slot = path->slots[0];
  3128. nritems = btrfs_header_nritems(leaf);
  3129. data_end = leaf_data_end(root, leaf);
  3130. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3131. btrfs_print_leaf(root, leaf);
  3132. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3133. total_size, btrfs_leaf_free_space(root, leaf));
  3134. BUG();
  3135. }
  3136. if (slot != nritems) {
  3137. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3138. if (old_data < data_end) {
  3139. btrfs_print_leaf(root, leaf);
  3140. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3141. slot, old_data, data_end);
  3142. BUG_ON(1);
  3143. }
  3144. /*
  3145. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3146. */
  3147. /* first correct the data pointers */
  3148. for (i = slot; i < nritems; i++) {
  3149. u32 ioff;
  3150. item = btrfs_item_nr(leaf, i);
  3151. ioff = btrfs_item_offset(leaf, item);
  3152. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3153. }
  3154. /* shift the items */
  3155. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3156. btrfs_item_nr_offset(slot),
  3157. (nritems - slot) * sizeof(struct btrfs_item));
  3158. /* shift the data */
  3159. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3160. data_end - total_data, btrfs_leaf_data(leaf) +
  3161. data_end, old_data - data_end);
  3162. data_end = old_data;
  3163. }
  3164. /* setup the item for the new data */
  3165. for (i = 0; i < nr; i++) {
  3166. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3167. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3168. item = btrfs_item_nr(leaf, slot + i);
  3169. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3170. data_end -= data_size[i];
  3171. btrfs_set_item_size(leaf, item, data_size[i]);
  3172. }
  3173. btrfs_set_header_nritems(leaf, nritems + nr);
  3174. if (slot == 0) {
  3175. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3176. fixup_low_keys(trans, root, path, &disk_key, 1);
  3177. }
  3178. btrfs_unlock_up_safe(path, 1);
  3179. btrfs_mark_buffer_dirty(leaf);
  3180. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3181. btrfs_print_leaf(root, leaf);
  3182. BUG();
  3183. }
  3184. }
  3185. /*
  3186. * Given a key and some data, insert items into the tree.
  3187. * This does all the path init required, making room in the tree if needed.
  3188. */
  3189. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3190. struct btrfs_root *root,
  3191. struct btrfs_path *path,
  3192. struct btrfs_key *cpu_key, u32 *data_size,
  3193. int nr)
  3194. {
  3195. int ret = 0;
  3196. int slot;
  3197. int i;
  3198. u32 total_size = 0;
  3199. u32 total_data = 0;
  3200. for (i = 0; i < nr; i++)
  3201. total_data += data_size[i];
  3202. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3203. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3204. if (ret == 0)
  3205. return -EEXIST;
  3206. if (ret < 0)
  3207. return ret;
  3208. slot = path->slots[0];
  3209. BUG_ON(slot < 0);
  3210. setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3211. total_data, total_size, nr);
  3212. return 0;
  3213. }
  3214. /*
  3215. * Given a key and some data, insert an item into the tree.
  3216. * This does all the path init required, making room in the tree if needed.
  3217. */
  3218. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3219. *root, struct btrfs_key *cpu_key, void *data, u32
  3220. data_size)
  3221. {
  3222. int ret = 0;
  3223. struct btrfs_path *path;
  3224. struct extent_buffer *leaf;
  3225. unsigned long ptr;
  3226. path = btrfs_alloc_path();
  3227. if (!path)
  3228. return -ENOMEM;
  3229. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3230. if (!ret) {
  3231. leaf = path->nodes[0];
  3232. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3233. write_extent_buffer(leaf, data, ptr, data_size);
  3234. btrfs_mark_buffer_dirty(leaf);
  3235. }
  3236. btrfs_free_path(path);
  3237. return ret;
  3238. }
  3239. /*
  3240. * delete the pointer from a given node.
  3241. *
  3242. * the tree should have been previously balanced so the deletion does not
  3243. * empty a node.
  3244. */
  3245. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3246. struct btrfs_path *path, int level, int slot)
  3247. {
  3248. struct extent_buffer *parent = path->nodes[level];
  3249. u32 nritems;
  3250. nritems = btrfs_header_nritems(parent);
  3251. if (slot != nritems - 1) {
  3252. memmove_extent_buffer(parent,
  3253. btrfs_node_key_ptr_offset(slot),
  3254. btrfs_node_key_ptr_offset(slot + 1),
  3255. sizeof(struct btrfs_key_ptr) *
  3256. (nritems - slot - 1));
  3257. }
  3258. nritems--;
  3259. btrfs_set_header_nritems(parent, nritems);
  3260. if (nritems == 0 && parent == root->node) {
  3261. BUG_ON(btrfs_header_level(root->node) != 1);
  3262. /* just turn the root into a leaf and break */
  3263. btrfs_set_header_level(root->node, 0);
  3264. } else if (slot == 0) {
  3265. struct btrfs_disk_key disk_key;
  3266. btrfs_node_key(parent, &disk_key, 0);
  3267. fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3268. }
  3269. btrfs_mark_buffer_dirty(parent);
  3270. }
  3271. /*
  3272. * a helper function to delete the leaf pointed to by path->slots[1] and
  3273. * path->nodes[1].
  3274. *
  3275. * This deletes the pointer in path->nodes[1] and frees the leaf
  3276. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3277. *
  3278. * The path must have already been setup for deleting the leaf, including
  3279. * all the proper balancing. path->nodes[1] must be locked.
  3280. */
  3281. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3282. struct btrfs_root *root,
  3283. struct btrfs_path *path,
  3284. struct extent_buffer *leaf)
  3285. {
  3286. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3287. del_ptr(trans, root, path, 1, path->slots[1]);
  3288. /*
  3289. * btrfs_free_extent is expensive, we want to make sure we
  3290. * aren't holding any locks when we call it
  3291. */
  3292. btrfs_unlock_up_safe(path, 0);
  3293. root_sub_used(root, leaf->len);
  3294. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3295. }
  3296. /*
  3297. * delete the item at the leaf level in path. If that empties
  3298. * the leaf, remove it from the tree
  3299. */
  3300. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3301. struct btrfs_path *path, int slot, int nr)
  3302. {
  3303. struct extent_buffer *leaf;
  3304. struct btrfs_item *item;
  3305. int last_off;
  3306. int dsize = 0;
  3307. int ret = 0;
  3308. int wret;
  3309. int i;
  3310. u32 nritems;
  3311. leaf = path->nodes[0];
  3312. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3313. for (i = 0; i < nr; i++)
  3314. dsize += btrfs_item_size_nr(leaf, slot + i);
  3315. nritems = btrfs_header_nritems(leaf);
  3316. if (slot + nr != nritems) {
  3317. int data_end = leaf_data_end(root, leaf);
  3318. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3319. data_end + dsize,
  3320. btrfs_leaf_data(leaf) + data_end,
  3321. last_off - data_end);
  3322. for (i = slot + nr; i < nritems; i++) {
  3323. u32 ioff;
  3324. item = btrfs_item_nr(leaf, i);
  3325. ioff = btrfs_item_offset(leaf, item);
  3326. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3327. }
  3328. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3329. btrfs_item_nr_offset(slot + nr),
  3330. sizeof(struct btrfs_item) *
  3331. (nritems - slot - nr));
  3332. }
  3333. btrfs_set_header_nritems(leaf, nritems - nr);
  3334. nritems -= nr;
  3335. /* delete the leaf if we've emptied it */
  3336. if (nritems == 0) {
  3337. if (leaf == root->node) {
  3338. btrfs_set_header_level(leaf, 0);
  3339. } else {
  3340. btrfs_set_path_blocking(path);
  3341. clean_tree_block(trans, root, leaf);
  3342. btrfs_del_leaf(trans, root, path, leaf);
  3343. }
  3344. } else {
  3345. int used = leaf_space_used(leaf, 0, nritems);
  3346. if (slot == 0) {
  3347. struct btrfs_disk_key disk_key;
  3348. btrfs_item_key(leaf, &disk_key, 0);
  3349. fixup_low_keys(trans, root, path, &disk_key, 1);
  3350. }
  3351. /* delete the leaf if it is mostly empty */
  3352. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3353. /* push_leaf_left fixes the path.
  3354. * make sure the path still points to our leaf
  3355. * for possible call to del_ptr below
  3356. */
  3357. slot = path->slots[1];
  3358. extent_buffer_get(leaf);
  3359. btrfs_set_path_blocking(path);
  3360. wret = push_leaf_left(trans, root, path, 1, 1,
  3361. 1, (u32)-1);
  3362. if (wret < 0 && wret != -ENOSPC)
  3363. ret = wret;
  3364. if (path->nodes[0] == leaf &&
  3365. btrfs_header_nritems(leaf)) {
  3366. wret = push_leaf_right(trans, root, path, 1,
  3367. 1, 1, 0);
  3368. if (wret < 0 && wret != -ENOSPC)
  3369. ret = wret;
  3370. }
  3371. if (btrfs_header_nritems(leaf) == 0) {
  3372. path->slots[1] = slot;
  3373. btrfs_del_leaf(trans, root, path, leaf);
  3374. free_extent_buffer(leaf);
  3375. ret = 0;
  3376. } else {
  3377. /* if we're still in the path, make sure
  3378. * we're dirty. Otherwise, one of the
  3379. * push_leaf functions must have already
  3380. * dirtied this buffer
  3381. */
  3382. if (path->nodes[0] == leaf)
  3383. btrfs_mark_buffer_dirty(leaf);
  3384. free_extent_buffer(leaf);
  3385. }
  3386. } else {
  3387. btrfs_mark_buffer_dirty(leaf);
  3388. }
  3389. }
  3390. return ret;
  3391. }
  3392. /*
  3393. * search the tree again to find a leaf with lesser keys
  3394. * returns 0 if it found something or 1 if there are no lesser leaves.
  3395. * returns < 0 on io errors.
  3396. *
  3397. * This may release the path, and so you may lose any locks held at the
  3398. * time you call it.
  3399. */
  3400. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3401. {
  3402. struct btrfs_key key;
  3403. struct btrfs_disk_key found_key;
  3404. int ret;
  3405. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3406. if (key.offset > 0)
  3407. key.offset--;
  3408. else if (key.type > 0)
  3409. key.type--;
  3410. else if (key.objectid > 0)
  3411. key.objectid--;
  3412. else
  3413. return 1;
  3414. btrfs_release_path(path);
  3415. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3416. if (ret < 0)
  3417. return ret;
  3418. btrfs_item_key(path->nodes[0], &found_key, 0);
  3419. ret = comp_keys(&found_key, &key);
  3420. if (ret < 0)
  3421. return 0;
  3422. return 1;
  3423. }
  3424. /*
  3425. * A helper function to walk down the tree starting at min_key, and looking
  3426. * for nodes or leaves that are either in cache or have a minimum
  3427. * transaction id. This is used by the btree defrag code, and tree logging
  3428. *
  3429. * This does not cow, but it does stuff the starting key it finds back
  3430. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3431. * key and get a writable path.
  3432. *
  3433. * This does lock as it descends, and path->keep_locks should be set
  3434. * to 1 by the caller.
  3435. *
  3436. * This honors path->lowest_level to prevent descent past a given level
  3437. * of the tree.
  3438. *
  3439. * min_trans indicates the oldest transaction that you are interested
  3440. * in walking through. Any nodes or leaves older than min_trans are
  3441. * skipped over (without reading them).
  3442. *
  3443. * returns zero if something useful was found, < 0 on error and 1 if there
  3444. * was nothing in the tree that matched the search criteria.
  3445. */
  3446. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3447. struct btrfs_key *max_key,
  3448. struct btrfs_path *path, int cache_only,
  3449. u64 min_trans)
  3450. {
  3451. struct extent_buffer *cur;
  3452. struct btrfs_key found_key;
  3453. int slot;
  3454. int sret;
  3455. u32 nritems;
  3456. int level;
  3457. int ret = 1;
  3458. WARN_ON(!path->keep_locks);
  3459. again:
  3460. cur = btrfs_read_lock_root_node(root);
  3461. level = btrfs_header_level(cur);
  3462. WARN_ON(path->nodes[level]);
  3463. path->nodes[level] = cur;
  3464. path->locks[level] = BTRFS_READ_LOCK;
  3465. if (btrfs_header_generation(cur) < min_trans) {
  3466. ret = 1;
  3467. goto out;
  3468. }
  3469. while (1) {
  3470. nritems = btrfs_header_nritems(cur);
  3471. level = btrfs_header_level(cur);
  3472. sret = bin_search(cur, min_key, level, &slot);
  3473. /* at the lowest level, we're done, setup the path and exit */
  3474. if (level == path->lowest_level) {
  3475. if (slot >= nritems)
  3476. goto find_next_key;
  3477. ret = 0;
  3478. path->slots[level] = slot;
  3479. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3480. goto out;
  3481. }
  3482. if (sret && slot > 0)
  3483. slot--;
  3484. /*
  3485. * check this node pointer against the cache_only and
  3486. * min_trans parameters. If it isn't in cache or is too
  3487. * old, skip to the next one.
  3488. */
  3489. while (slot < nritems) {
  3490. u64 blockptr;
  3491. u64 gen;
  3492. struct extent_buffer *tmp;
  3493. struct btrfs_disk_key disk_key;
  3494. blockptr = btrfs_node_blockptr(cur, slot);
  3495. gen = btrfs_node_ptr_generation(cur, slot);
  3496. if (gen < min_trans) {
  3497. slot++;
  3498. continue;
  3499. }
  3500. if (!cache_only)
  3501. break;
  3502. if (max_key) {
  3503. btrfs_node_key(cur, &disk_key, slot);
  3504. if (comp_keys(&disk_key, max_key) >= 0) {
  3505. ret = 1;
  3506. goto out;
  3507. }
  3508. }
  3509. tmp = btrfs_find_tree_block(root, blockptr,
  3510. btrfs_level_size(root, level - 1));
  3511. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3512. free_extent_buffer(tmp);
  3513. break;
  3514. }
  3515. if (tmp)
  3516. free_extent_buffer(tmp);
  3517. slot++;
  3518. }
  3519. find_next_key:
  3520. /*
  3521. * we didn't find a candidate key in this node, walk forward
  3522. * and find another one
  3523. */
  3524. if (slot >= nritems) {
  3525. path->slots[level] = slot;
  3526. btrfs_set_path_blocking(path);
  3527. sret = btrfs_find_next_key(root, path, min_key, level,
  3528. cache_only, min_trans);
  3529. if (sret == 0) {
  3530. btrfs_release_path(path);
  3531. goto again;
  3532. } else {
  3533. goto out;
  3534. }
  3535. }
  3536. /* save our key for returning back */
  3537. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3538. path->slots[level] = slot;
  3539. if (level == path->lowest_level) {
  3540. ret = 0;
  3541. unlock_up(path, level, 1);
  3542. goto out;
  3543. }
  3544. btrfs_set_path_blocking(path);
  3545. cur = read_node_slot(root, cur, slot);
  3546. BUG_ON(!cur);
  3547. btrfs_tree_read_lock(cur);
  3548. path->locks[level - 1] = BTRFS_READ_LOCK;
  3549. path->nodes[level - 1] = cur;
  3550. unlock_up(path, level, 1);
  3551. btrfs_clear_path_blocking(path, NULL, 0);
  3552. }
  3553. out:
  3554. if (ret == 0)
  3555. memcpy(min_key, &found_key, sizeof(found_key));
  3556. btrfs_set_path_blocking(path);
  3557. return ret;
  3558. }
  3559. /*
  3560. * this is similar to btrfs_next_leaf, but does not try to preserve
  3561. * and fixup the path. It looks for and returns the next key in the
  3562. * tree based on the current path and the cache_only and min_trans
  3563. * parameters.
  3564. *
  3565. * 0 is returned if another key is found, < 0 if there are any errors
  3566. * and 1 is returned if there are no higher keys in the tree
  3567. *
  3568. * path->keep_locks should be set to 1 on the search made before
  3569. * calling this function.
  3570. */
  3571. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3572. struct btrfs_key *key, int level,
  3573. int cache_only, u64 min_trans)
  3574. {
  3575. int slot;
  3576. struct extent_buffer *c;
  3577. WARN_ON(!path->keep_locks);
  3578. while (level < BTRFS_MAX_LEVEL) {
  3579. if (!path->nodes[level])
  3580. return 1;
  3581. slot = path->slots[level] + 1;
  3582. c = path->nodes[level];
  3583. next:
  3584. if (slot >= btrfs_header_nritems(c)) {
  3585. int ret;
  3586. int orig_lowest;
  3587. struct btrfs_key cur_key;
  3588. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3589. !path->nodes[level + 1])
  3590. return 1;
  3591. if (path->locks[level + 1]) {
  3592. level++;
  3593. continue;
  3594. }
  3595. slot = btrfs_header_nritems(c) - 1;
  3596. if (level == 0)
  3597. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3598. else
  3599. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3600. orig_lowest = path->lowest_level;
  3601. btrfs_release_path(path);
  3602. path->lowest_level = level;
  3603. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3604. 0, 0);
  3605. path->lowest_level = orig_lowest;
  3606. if (ret < 0)
  3607. return ret;
  3608. c = path->nodes[level];
  3609. slot = path->slots[level];
  3610. if (ret == 0)
  3611. slot++;
  3612. goto next;
  3613. }
  3614. if (level == 0)
  3615. btrfs_item_key_to_cpu(c, key, slot);
  3616. else {
  3617. u64 blockptr = btrfs_node_blockptr(c, slot);
  3618. u64 gen = btrfs_node_ptr_generation(c, slot);
  3619. if (cache_only) {
  3620. struct extent_buffer *cur;
  3621. cur = btrfs_find_tree_block(root, blockptr,
  3622. btrfs_level_size(root, level - 1));
  3623. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3624. slot++;
  3625. if (cur)
  3626. free_extent_buffer(cur);
  3627. goto next;
  3628. }
  3629. free_extent_buffer(cur);
  3630. }
  3631. if (gen < min_trans) {
  3632. slot++;
  3633. goto next;
  3634. }
  3635. btrfs_node_key_to_cpu(c, key, slot);
  3636. }
  3637. return 0;
  3638. }
  3639. return 1;
  3640. }
  3641. /*
  3642. * search the tree again to find a leaf with greater keys
  3643. * returns 0 if it found something or 1 if there are no greater leaves.
  3644. * returns < 0 on io errors.
  3645. */
  3646. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3647. {
  3648. int slot;
  3649. int level;
  3650. struct extent_buffer *c;
  3651. struct extent_buffer *next;
  3652. struct btrfs_key key;
  3653. u32 nritems;
  3654. int ret;
  3655. int old_spinning = path->leave_spinning;
  3656. int next_rw_lock = 0;
  3657. nritems = btrfs_header_nritems(path->nodes[0]);
  3658. if (nritems == 0)
  3659. return 1;
  3660. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3661. again:
  3662. level = 1;
  3663. next = NULL;
  3664. next_rw_lock = 0;
  3665. btrfs_release_path(path);
  3666. path->keep_locks = 1;
  3667. path->leave_spinning = 1;
  3668. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3669. path->keep_locks = 0;
  3670. if (ret < 0)
  3671. return ret;
  3672. nritems = btrfs_header_nritems(path->nodes[0]);
  3673. /*
  3674. * by releasing the path above we dropped all our locks. A balance
  3675. * could have added more items next to the key that used to be
  3676. * at the very end of the block. So, check again here and
  3677. * advance the path if there are now more items available.
  3678. */
  3679. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3680. if (ret == 0)
  3681. path->slots[0]++;
  3682. ret = 0;
  3683. goto done;
  3684. }
  3685. while (level < BTRFS_MAX_LEVEL) {
  3686. if (!path->nodes[level]) {
  3687. ret = 1;
  3688. goto done;
  3689. }
  3690. slot = path->slots[level] + 1;
  3691. c = path->nodes[level];
  3692. if (slot >= btrfs_header_nritems(c)) {
  3693. level++;
  3694. if (level == BTRFS_MAX_LEVEL) {
  3695. ret = 1;
  3696. goto done;
  3697. }
  3698. continue;
  3699. }
  3700. if (next) {
  3701. btrfs_tree_unlock_rw(next, next_rw_lock);
  3702. free_extent_buffer(next);
  3703. }
  3704. next = c;
  3705. next_rw_lock = path->locks[level];
  3706. ret = read_block_for_search(NULL, root, path, &next, level,
  3707. slot, &key);
  3708. if (ret == -EAGAIN)
  3709. goto again;
  3710. if (ret < 0) {
  3711. btrfs_release_path(path);
  3712. goto done;
  3713. }
  3714. if (!path->skip_locking) {
  3715. ret = btrfs_try_tree_read_lock(next);
  3716. if (!ret) {
  3717. btrfs_set_path_blocking(path);
  3718. btrfs_tree_read_lock(next);
  3719. btrfs_clear_path_blocking(path, next,
  3720. BTRFS_READ_LOCK);
  3721. }
  3722. next_rw_lock = BTRFS_READ_LOCK;
  3723. }
  3724. break;
  3725. }
  3726. path->slots[level] = slot;
  3727. while (1) {
  3728. level--;
  3729. c = path->nodes[level];
  3730. if (path->locks[level])
  3731. btrfs_tree_unlock_rw(c, path->locks[level]);
  3732. free_extent_buffer(c);
  3733. path->nodes[level] = next;
  3734. path->slots[level] = 0;
  3735. if (!path->skip_locking)
  3736. path->locks[level] = next_rw_lock;
  3737. if (!level)
  3738. break;
  3739. ret = read_block_for_search(NULL, root, path, &next, level,
  3740. 0, &key);
  3741. if (ret == -EAGAIN)
  3742. goto again;
  3743. if (ret < 0) {
  3744. btrfs_release_path(path);
  3745. goto done;
  3746. }
  3747. if (!path->skip_locking) {
  3748. ret = btrfs_try_tree_read_lock(next);
  3749. if (!ret) {
  3750. btrfs_set_path_blocking(path);
  3751. btrfs_tree_read_lock(next);
  3752. btrfs_clear_path_blocking(path, next,
  3753. BTRFS_READ_LOCK);
  3754. }
  3755. next_rw_lock = BTRFS_READ_LOCK;
  3756. }
  3757. }
  3758. ret = 0;
  3759. done:
  3760. unlock_up(path, 0, 1);
  3761. path->leave_spinning = old_spinning;
  3762. if (!old_spinning)
  3763. btrfs_set_path_blocking(path);
  3764. return ret;
  3765. }
  3766. /*
  3767. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3768. * searching until it gets past min_objectid or finds an item of 'type'
  3769. *
  3770. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3771. */
  3772. int btrfs_previous_item(struct btrfs_root *root,
  3773. struct btrfs_path *path, u64 min_objectid,
  3774. int type)
  3775. {
  3776. struct btrfs_key found_key;
  3777. struct extent_buffer *leaf;
  3778. u32 nritems;
  3779. int ret;
  3780. while (1) {
  3781. if (path->slots[0] == 0) {
  3782. btrfs_set_path_blocking(path);
  3783. ret = btrfs_prev_leaf(root, path);
  3784. if (ret != 0)
  3785. return ret;
  3786. } else {
  3787. path->slots[0]--;
  3788. }
  3789. leaf = path->nodes[0];
  3790. nritems = btrfs_header_nritems(leaf);
  3791. if (nritems == 0)
  3792. return 1;
  3793. if (path->slots[0] == nritems)
  3794. path->slots[0]--;
  3795. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3796. if (found_key.objectid < min_objectid)
  3797. break;
  3798. if (found_key.type == type)
  3799. return 0;
  3800. if (found_key.objectid == min_objectid &&
  3801. found_key.type < type)
  3802. break;
  3803. }
  3804. return 1;
  3805. }