mm.h 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. struct mempolicy;
  15. struct anon_vma;
  16. struct file_ra_state;
  17. struct user_struct;
  18. struct writeback_control;
  19. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  20. extern unsigned long max_mapnr;
  21. #endif
  22. extern unsigned long num_physpages;
  23. extern unsigned long totalram_pages;
  24. extern void * high_memory;
  25. extern int page_cluster;
  26. #ifdef CONFIG_SYSCTL
  27. extern int sysctl_legacy_va_layout;
  28. #else
  29. #define sysctl_legacy_va_layout 0
  30. #endif
  31. #include <asm/page.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/processor.h>
  34. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  35. /* to align the pointer to the (next) page boundary */
  36. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  37. /*
  38. * Linux kernel virtual memory manager primitives.
  39. * The idea being to have a "virtual" mm in the same way
  40. * we have a virtual fs - giving a cleaner interface to the
  41. * mm details, and allowing different kinds of memory mappings
  42. * (from shared memory to executable loading to arbitrary
  43. * mmap() functions).
  44. */
  45. extern struct kmem_cache *vm_area_cachep;
  46. #ifndef CONFIG_MMU
  47. extern struct rb_root nommu_region_tree;
  48. extern struct rw_semaphore nommu_region_sem;
  49. extern unsigned int kobjsize(const void *objp);
  50. #endif
  51. /*
  52. * vm_flags in vm_area_struct, see mm_types.h.
  53. */
  54. #define VM_READ 0x00000001 /* currently active flags */
  55. #define VM_WRITE 0x00000002
  56. #define VM_EXEC 0x00000004
  57. #define VM_SHARED 0x00000008
  58. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  59. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  60. #define VM_MAYWRITE 0x00000020
  61. #define VM_MAYEXEC 0x00000040
  62. #define VM_MAYSHARE 0x00000080
  63. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  64. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  65. #define VM_GROWSUP 0x00000200
  66. #else
  67. #define VM_GROWSUP 0x00000000
  68. #endif
  69. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  70. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  71. #define VM_EXECUTABLE 0x00001000
  72. #define VM_LOCKED 0x00002000
  73. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  74. /* Used by sys_madvise() */
  75. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  76. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  77. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  78. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  79. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  80. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  81. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  82. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  83. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  84. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  85. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  86. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  87. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  88. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  89. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  90. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  91. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  92. /* Bits set in the VMA until the stack is in its final location */
  93. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  94. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  95. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  96. #endif
  97. #ifdef CONFIG_STACK_GROWSUP
  98. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  99. #else
  100. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  101. #endif
  102. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  103. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  104. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  105. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  106. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  107. /*
  108. * special vmas that are non-mergable, non-mlock()able
  109. */
  110. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  111. /*
  112. * mapping from the currently active vm_flags protection bits (the
  113. * low four bits) to a page protection mask..
  114. */
  115. extern pgprot_t protection_map[16];
  116. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  117. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  118. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  119. /*
  120. * This interface is used by x86 PAT code to identify a pfn mapping that is
  121. * linear over entire vma. This is to optimize PAT code that deals with
  122. * marking the physical region with a particular prot. This is not for generic
  123. * mm use. Note also that this check will not work if the pfn mapping is
  124. * linear for a vma starting at physical address 0. In which case PAT code
  125. * falls back to slow path of reserving physical range page by page.
  126. */
  127. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  128. {
  129. return (vma->vm_flags & VM_PFN_AT_MMAP);
  130. }
  131. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  132. {
  133. return (vma->vm_flags & VM_PFNMAP);
  134. }
  135. /*
  136. * vm_fault is filled by the the pagefault handler and passed to the vma's
  137. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  138. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  139. *
  140. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  141. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  142. * mapping support.
  143. */
  144. struct vm_fault {
  145. unsigned int flags; /* FAULT_FLAG_xxx flags */
  146. pgoff_t pgoff; /* Logical page offset based on vma */
  147. void __user *virtual_address; /* Faulting virtual address */
  148. struct page *page; /* ->fault handlers should return a
  149. * page here, unless VM_FAULT_NOPAGE
  150. * is set (which is also implied by
  151. * VM_FAULT_ERROR).
  152. */
  153. };
  154. /*
  155. * These are the virtual MM functions - opening of an area, closing and
  156. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  157. * to the functions called when a no-page or a wp-page exception occurs.
  158. */
  159. struct vm_operations_struct {
  160. void (*open)(struct vm_area_struct * area);
  161. void (*close)(struct vm_area_struct * area);
  162. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  163. /* notification that a previously read-only page is about to become
  164. * writable, if an error is returned it will cause a SIGBUS */
  165. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  166. /* called by access_process_vm when get_user_pages() fails, typically
  167. * for use by special VMAs that can switch between memory and hardware
  168. */
  169. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  170. void *buf, int len, int write);
  171. #ifdef CONFIG_NUMA
  172. /*
  173. * set_policy() op must add a reference to any non-NULL @new mempolicy
  174. * to hold the policy upon return. Caller should pass NULL @new to
  175. * remove a policy and fall back to surrounding context--i.e. do not
  176. * install a MPOL_DEFAULT policy, nor the task or system default
  177. * mempolicy.
  178. */
  179. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  180. /*
  181. * get_policy() op must add reference [mpol_get()] to any policy at
  182. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  183. * in mm/mempolicy.c will do this automatically.
  184. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  185. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  186. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  187. * must return NULL--i.e., do not "fallback" to task or system default
  188. * policy.
  189. */
  190. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  191. unsigned long addr);
  192. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  193. const nodemask_t *to, unsigned long flags);
  194. #endif
  195. };
  196. struct mmu_gather;
  197. struct inode;
  198. #define page_private(page) ((page)->private)
  199. #define set_page_private(page, v) ((page)->private = (v))
  200. /*
  201. * FIXME: take this include out, include page-flags.h in
  202. * files which need it (119 of them)
  203. */
  204. #include <linux/page-flags.h>
  205. /*
  206. * Methods to modify the page usage count.
  207. *
  208. * What counts for a page usage:
  209. * - cache mapping (page->mapping)
  210. * - private data (page->private)
  211. * - page mapped in a task's page tables, each mapping
  212. * is counted separately
  213. *
  214. * Also, many kernel routines increase the page count before a critical
  215. * routine so they can be sure the page doesn't go away from under them.
  216. */
  217. /*
  218. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  219. */
  220. static inline int put_page_testzero(struct page *page)
  221. {
  222. VM_BUG_ON(atomic_read(&page->_count) == 0);
  223. return atomic_dec_and_test(&page->_count);
  224. }
  225. /*
  226. * Try to grab a ref unless the page has a refcount of zero, return false if
  227. * that is the case.
  228. */
  229. static inline int get_page_unless_zero(struct page *page)
  230. {
  231. return atomic_inc_not_zero(&page->_count);
  232. }
  233. extern int page_is_ram(unsigned long pfn);
  234. /* Support for virtually mapped pages */
  235. struct page *vmalloc_to_page(const void *addr);
  236. unsigned long vmalloc_to_pfn(const void *addr);
  237. /*
  238. * Determine if an address is within the vmalloc range
  239. *
  240. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  241. * is no special casing required.
  242. */
  243. static inline int is_vmalloc_addr(const void *x)
  244. {
  245. #ifdef CONFIG_MMU
  246. unsigned long addr = (unsigned long)x;
  247. return addr >= VMALLOC_START && addr < VMALLOC_END;
  248. #else
  249. return 0;
  250. #endif
  251. }
  252. #ifdef CONFIG_MMU
  253. extern int is_vmalloc_or_module_addr(const void *x);
  254. #else
  255. static inline int is_vmalloc_or_module_addr(const void *x)
  256. {
  257. return 0;
  258. }
  259. #endif
  260. static inline struct page *compound_head(struct page *page)
  261. {
  262. if (unlikely(PageTail(page)))
  263. return page->first_page;
  264. return page;
  265. }
  266. static inline int page_count(struct page *page)
  267. {
  268. return atomic_read(&compound_head(page)->_count);
  269. }
  270. static inline void get_page(struct page *page)
  271. {
  272. page = compound_head(page);
  273. VM_BUG_ON(atomic_read(&page->_count) == 0);
  274. atomic_inc(&page->_count);
  275. }
  276. static inline struct page *virt_to_head_page(const void *x)
  277. {
  278. struct page *page = virt_to_page(x);
  279. return compound_head(page);
  280. }
  281. /*
  282. * Setup the page count before being freed into the page allocator for
  283. * the first time (boot or memory hotplug)
  284. */
  285. static inline void init_page_count(struct page *page)
  286. {
  287. atomic_set(&page->_count, 1);
  288. }
  289. void put_page(struct page *page);
  290. void put_pages_list(struct list_head *pages);
  291. void split_page(struct page *page, unsigned int order);
  292. int split_free_page(struct page *page);
  293. /*
  294. * Compound pages have a destructor function. Provide a
  295. * prototype for that function and accessor functions.
  296. * These are _only_ valid on the head of a PG_compound page.
  297. */
  298. typedef void compound_page_dtor(struct page *);
  299. static inline void set_compound_page_dtor(struct page *page,
  300. compound_page_dtor *dtor)
  301. {
  302. page[1].lru.next = (void *)dtor;
  303. }
  304. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  305. {
  306. return (compound_page_dtor *)page[1].lru.next;
  307. }
  308. static inline int compound_order(struct page *page)
  309. {
  310. if (!PageHead(page))
  311. return 0;
  312. return (unsigned long)page[1].lru.prev;
  313. }
  314. static inline void set_compound_order(struct page *page, unsigned long order)
  315. {
  316. page[1].lru.prev = (void *)order;
  317. }
  318. /*
  319. * Multiple processes may "see" the same page. E.g. for untouched
  320. * mappings of /dev/null, all processes see the same page full of
  321. * zeroes, and text pages of executables and shared libraries have
  322. * only one copy in memory, at most, normally.
  323. *
  324. * For the non-reserved pages, page_count(page) denotes a reference count.
  325. * page_count() == 0 means the page is free. page->lru is then used for
  326. * freelist management in the buddy allocator.
  327. * page_count() > 0 means the page has been allocated.
  328. *
  329. * Pages are allocated by the slab allocator in order to provide memory
  330. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  331. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  332. * unless a particular usage is carefully commented. (the responsibility of
  333. * freeing the kmalloc memory is the caller's, of course).
  334. *
  335. * A page may be used by anyone else who does a __get_free_page().
  336. * In this case, page_count still tracks the references, and should only
  337. * be used through the normal accessor functions. The top bits of page->flags
  338. * and page->virtual store page management information, but all other fields
  339. * are unused and could be used privately, carefully. The management of this
  340. * page is the responsibility of the one who allocated it, and those who have
  341. * subsequently been given references to it.
  342. *
  343. * The other pages (we may call them "pagecache pages") are completely
  344. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  345. * The following discussion applies only to them.
  346. *
  347. * A pagecache page contains an opaque `private' member, which belongs to the
  348. * page's address_space. Usually, this is the address of a circular list of
  349. * the page's disk buffers. PG_private must be set to tell the VM to call
  350. * into the filesystem to release these pages.
  351. *
  352. * A page may belong to an inode's memory mapping. In this case, page->mapping
  353. * is the pointer to the inode, and page->index is the file offset of the page,
  354. * in units of PAGE_CACHE_SIZE.
  355. *
  356. * If pagecache pages are not associated with an inode, they are said to be
  357. * anonymous pages. These may become associated with the swapcache, and in that
  358. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  359. *
  360. * In either case (swapcache or inode backed), the pagecache itself holds one
  361. * reference to the page. Setting PG_private should also increment the
  362. * refcount. The each user mapping also has a reference to the page.
  363. *
  364. * The pagecache pages are stored in a per-mapping radix tree, which is
  365. * rooted at mapping->page_tree, and indexed by offset.
  366. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  367. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  368. *
  369. * All pagecache pages may be subject to I/O:
  370. * - inode pages may need to be read from disk,
  371. * - inode pages which have been modified and are MAP_SHARED may need
  372. * to be written back to the inode on disk,
  373. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  374. * modified may need to be swapped out to swap space and (later) to be read
  375. * back into memory.
  376. */
  377. /*
  378. * The zone field is never updated after free_area_init_core()
  379. * sets it, so none of the operations on it need to be atomic.
  380. */
  381. /*
  382. * page->flags layout:
  383. *
  384. * There are three possibilities for how page->flags get
  385. * laid out. The first is for the normal case, without
  386. * sparsemem. The second is for sparsemem when there is
  387. * plenty of space for node and section. The last is when
  388. * we have run out of space and have to fall back to an
  389. * alternate (slower) way of determining the node.
  390. *
  391. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  392. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  393. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  394. */
  395. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  396. #define SECTIONS_WIDTH SECTIONS_SHIFT
  397. #else
  398. #define SECTIONS_WIDTH 0
  399. #endif
  400. #define ZONES_WIDTH ZONES_SHIFT
  401. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  402. #define NODES_WIDTH NODES_SHIFT
  403. #else
  404. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  405. #error "Vmemmap: No space for nodes field in page flags"
  406. #endif
  407. #define NODES_WIDTH 0
  408. #endif
  409. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  410. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  411. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  412. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  413. /*
  414. * We are going to use the flags for the page to node mapping if its in
  415. * there. This includes the case where there is no node, so it is implicit.
  416. */
  417. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  418. #define NODE_NOT_IN_PAGE_FLAGS
  419. #endif
  420. #ifndef PFN_SECTION_SHIFT
  421. #define PFN_SECTION_SHIFT 0
  422. #endif
  423. /*
  424. * Define the bit shifts to access each section. For non-existant
  425. * sections we define the shift as 0; that plus a 0 mask ensures
  426. * the compiler will optimise away reference to them.
  427. */
  428. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  429. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  430. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  431. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  432. #ifdef NODE_NOT_IN_PAGEFLAGS
  433. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  434. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  435. SECTIONS_PGOFF : ZONES_PGOFF)
  436. #else
  437. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  438. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  439. NODES_PGOFF : ZONES_PGOFF)
  440. #endif
  441. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  442. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  443. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  444. #endif
  445. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  446. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  447. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  448. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  449. static inline enum zone_type page_zonenum(struct page *page)
  450. {
  451. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  452. }
  453. /*
  454. * The identification function is only used by the buddy allocator for
  455. * determining if two pages could be buddies. We are not really
  456. * identifying a zone since we could be using a the section number
  457. * id if we have not node id available in page flags.
  458. * We guarantee only that it will return the same value for two
  459. * combinable pages in a zone.
  460. */
  461. static inline int page_zone_id(struct page *page)
  462. {
  463. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  464. }
  465. static inline int zone_to_nid(struct zone *zone)
  466. {
  467. #ifdef CONFIG_NUMA
  468. return zone->node;
  469. #else
  470. return 0;
  471. #endif
  472. }
  473. #ifdef NODE_NOT_IN_PAGE_FLAGS
  474. extern int page_to_nid(struct page *page);
  475. #else
  476. static inline int page_to_nid(struct page *page)
  477. {
  478. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  479. }
  480. #endif
  481. static inline struct zone *page_zone(struct page *page)
  482. {
  483. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  484. }
  485. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  486. static inline unsigned long page_to_section(struct page *page)
  487. {
  488. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  489. }
  490. #endif
  491. static inline void set_page_zone(struct page *page, enum zone_type zone)
  492. {
  493. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  494. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  495. }
  496. static inline void set_page_node(struct page *page, unsigned long node)
  497. {
  498. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  499. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  500. }
  501. static inline void set_page_section(struct page *page, unsigned long section)
  502. {
  503. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  504. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  505. }
  506. static inline void set_page_links(struct page *page, enum zone_type zone,
  507. unsigned long node, unsigned long pfn)
  508. {
  509. set_page_zone(page, zone);
  510. set_page_node(page, node);
  511. set_page_section(page, pfn_to_section_nr(pfn));
  512. }
  513. /*
  514. * Some inline functions in vmstat.h depend on page_zone()
  515. */
  516. #include <linux/vmstat.h>
  517. static __always_inline void *lowmem_page_address(struct page *page)
  518. {
  519. return __va(PFN_PHYS(page_to_pfn(page)));
  520. }
  521. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  522. #define HASHED_PAGE_VIRTUAL
  523. #endif
  524. #if defined(WANT_PAGE_VIRTUAL)
  525. #define page_address(page) ((page)->virtual)
  526. #define set_page_address(page, address) \
  527. do { \
  528. (page)->virtual = (address); \
  529. } while(0)
  530. #define page_address_init() do { } while(0)
  531. #endif
  532. #if defined(HASHED_PAGE_VIRTUAL)
  533. void *page_address(struct page *page);
  534. void set_page_address(struct page *page, void *virtual);
  535. void page_address_init(void);
  536. #endif
  537. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  538. #define page_address(page) lowmem_page_address(page)
  539. #define set_page_address(page, address) do { } while(0)
  540. #define page_address_init() do { } while(0)
  541. #endif
  542. /*
  543. * On an anonymous page mapped into a user virtual memory area,
  544. * page->mapping points to its anon_vma, not to a struct address_space;
  545. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  546. *
  547. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  548. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  549. * and then page->mapping points, not to an anon_vma, but to a private
  550. * structure which KSM associates with that merged page. See ksm.h.
  551. *
  552. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  553. *
  554. * Please note that, confusingly, "page_mapping" refers to the inode
  555. * address_space which maps the page from disk; whereas "page_mapped"
  556. * refers to user virtual address space into which the page is mapped.
  557. */
  558. #define PAGE_MAPPING_ANON 1
  559. #define PAGE_MAPPING_KSM 2
  560. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  561. extern struct address_space swapper_space;
  562. static inline struct address_space *page_mapping(struct page *page)
  563. {
  564. struct address_space *mapping = page->mapping;
  565. VM_BUG_ON(PageSlab(page));
  566. if (unlikely(PageSwapCache(page)))
  567. mapping = &swapper_space;
  568. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  569. mapping = NULL;
  570. return mapping;
  571. }
  572. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  573. static inline void *page_rmapping(struct page *page)
  574. {
  575. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  576. }
  577. static inline int PageAnon(struct page *page)
  578. {
  579. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  580. }
  581. /*
  582. * Return the pagecache index of the passed page. Regular pagecache pages
  583. * use ->index whereas swapcache pages use ->private
  584. */
  585. static inline pgoff_t page_index(struct page *page)
  586. {
  587. if (unlikely(PageSwapCache(page)))
  588. return page_private(page);
  589. return page->index;
  590. }
  591. /*
  592. * The atomic page->_mapcount, like _count, starts from -1:
  593. * so that transitions both from it and to it can be tracked,
  594. * using atomic_inc_and_test and atomic_add_negative(-1).
  595. */
  596. static inline void reset_page_mapcount(struct page *page)
  597. {
  598. atomic_set(&(page)->_mapcount, -1);
  599. }
  600. static inline int page_mapcount(struct page *page)
  601. {
  602. return atomic_read(&(page)->_mapcount) + 1;
  603. }
  604. /*
  605. * Return true if this page is mapped into pagetables.
  606. */
  607. static inline int page_mapped(struct page *page)
  608. {
  609. return atomic_read(&(page)->_mapcount) >= 0;
  610. }
  611. /*
  612. * Different kinds of faults, as returned by handle_mm_fault().
  613. * Used to decide whether a process gets delivered SIGBUS or
  614. * just gets major/minor fault counters bumped up.
  615. */
  616. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  617. #define VM_FAULT_OOM 0x0001
  618. #define VM_FAULT_SIGBUS 0x0002
  619. #define VM_FAULT_MAJOR 0x0004
  620. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  621. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
  622. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  623. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  624. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
  625. /*
  626. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  627. */
  628. extern void pagefault_out_of_memory(void);
  629. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  630. extern void show_free_areas(void);
  631. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  632. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  633. int shmem_zero_setup(struct vm_area_struct *);
  634. #ifndef CONFIG_MMU
  635. extern unsigned long shmem_get_unmapped_area(struct file *file,
  636. unsigned long addr,
  637. unsigned long len,
  638. unsigned long pgoff,
  639. unsigned long flags);
  640. #endif
  641. extern int can_do_mlock(void);
  642. extern int user_shm_lock(size_t, struct user_struct *);
  643. extern void user_shm_unlock(size_t, struct user_struct *);
  644. /*
  645. * Parameter block passed down to zap_pte_range in exceptional cases.
  646. */
  647. struct zap_details {
  648. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  649. struct address_space *check_mapping; /* Check page->mapping if set */
  650. pgoff_t first_index; /* Lowest page->index to unmap */
  651. pgoff_t last_index; /* Highest page->index to unmap */
  652. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  653. unsigned long truncate_count; /* Compare vm_truncate_count */
  654. };
  655. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  656. pte_t pte);
  657. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  658. unsigned long size);
  659. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  660. unsigned long size, struct zap_details *);
  661. unsigned long unmap_vmas(struct mmu_gather **tlb,
  662. struct vm_area_struct *start_vma, unsigned long start_addr,
  663. unsigned long end_addr, unsigned long *nr_accounted,
  664. struct zap_details *);
  665. /**
  666. * mm_walk - callbacks for walk_page_range
  667. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  668. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  669. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  670. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  671. * @pte_hole: if set, called for each hole at all levels
  672. * @hugetlb_entry: if set, called for each hugetlb entry
  673. *
  674. * (see walk_page_range for more details)
  675. */
  676. struct mm_walk {
  677. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  678. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  679. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  680. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  681. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  682. int (*hugetlb_entry)(pte_t *, unsigned long,
  683. unsigned long, unsigned long, struct mm_walk *);
  684. struct mm_struct *mm;
  685. void *private;
  686. };
  687. int walk_page_range(unsigned long addr, unsigned long end,
  688. struct mm_walk *walk);
  689. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  690. unsigned long end, unsigned long floor, unsigned long ceiling);
  691. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  692. struct vm_area_struct *vma);
  693. void unmap_mapping_range(struct address_space *mapping,
  694. loff_t const holebegin, loff_t const holelen, int even_cows);
  695. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  696. unsigned long *pfn);
  697. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  698. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  699. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  700. void *buf, int len, int write);
  701. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  702. loff_t const holebegin, loff_t const holelen)
  703. {
  704. unmap_mapping_range(mapping, holebegin, holelen, 0);
  705. }
  706. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  707. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  708. extern int vmtruncate(struct inode *inode, loff_t offset);
  709. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  710. int truncate_inode_page(struct address_space *mapping, struct page *page);
  711. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  712. int invalidate_inode_page(struct page *page);
  713. #ifdef CONFIG_MMU
  714. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  715. unsigned long address, unsigned int flags);
  716. #else
  717. static inline int handle_mm_fault(struct mm_struct *mm,
  718. struct vm_area_struct *vma, unsigned long address,
  719. unsigned int flags)
  720. {
  721. /* should never happen if there's no MMU */
  722. BUG();
  723. return VM_FAULT_SIGBUS;
  724. }
  725. #endif
  726. extern int make_pages_present(unsigned long addr, unsigned long end);
  727. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  728. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  729. unsigned long start, int nr_pages, int write, int force,
  730. struct page **pages, struct vm_area_struct **vmas);
  731. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  732. struct page **pages);
  733. struct page *get_dump_page(unsigned long addr);
  734. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  735. extern void do_invalidatepage(struct page *page, unsigned long offset);
  736. int __set_page_dirty_nobuffers(struct page *page);
  737. int __set_page_dirty_no_writeback(struct page *page);
  738. int redirty_page_for_writepage(struct writeback_control *wbc,
  739. struct page *page);
  740. void account_page_dirtied(struct page *page, struct address_space *mapping);
  741. int set_page_dirty(struct page *page);
  742. int set_page_dirty_lock(struct page *page);
  743. int clear_page_dirty_for_io(struct page *page);
  744. /* Is the vma a continuation of the stack vma above it? */
  745. static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
  746. {
  747. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  748. }
  749. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  750. unsigned long old_addr, struct vm_area_struct *new_vma,
  751. unsigned long new_addr, unsigned long len);
  752. extern unsigned long do_mremap(unsigned long addr,
  753. unsigned long old_len, unsigned long new_len,
  754. unsigned long flags, unsigned long new_addr);
  755. extern int mprotect_fixup(struct vm_area_struct *vma,
  756. struct vm_area_struct **pprev, unsigned long start,
  757. unsigned long end, unsigned long newflags);
  758. /*
  759. * doesn't attempt to fault and will return short.
  760. */
  761. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  762. struct page **pages);
  763. /*
  764. * per-process(per-mm_struct) statistics.
  765. */
  766. #if defined(SPLIT_RSS_COUNTING)
  767. /*
  768. * The mm counters are not protected by its page_table_lock,
  769. * so must be incremented atomically.
  770. */
  771. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  772. {
  773. atomic_long_set(&mm->rss_stat.count[member], value);
  774. }
  775. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  776. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  777. {
  778. atomic_long_add(value, &mm->rss_stat.count[member]);
  779. }
  780. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  781. {
  782. atomic_long_inc(&mm->rss_stat.count[member]);
  783. }
  784. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  785. {
  786. atomic_long_dec(&mm->rss_stat.count[member]);
  787. }
  788. #else /* !USE_SPLIT_PTLOCKS */
  789. /*
  790. * The mm counters are protected by its page_table_lock,
  791. * so can be incremented directly.
  792. */
  793. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  794. {
  795. mm->rss_stat.count[member] = value;
  796. }
  797. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  798. {
  799. return mm->rss_stat.count[member];
  800. }
  801. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  802. {
  803. mm->rss_stat.count[member] += value;
  804. }
  805. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  806. {
  807. mm->rss_stat.count[member]++;
  808. }
  809. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  810. {
  811. mm->rss_stat.count[member]--;
  812. }
  813. #endif /* !USE_SPLIT_PTLOCKS */
  814. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  815. {
  816. return get_mm_counter(mm, MM_FILEPAGES) +
  817. get_mm_counter(mm, MM_ANONPAGES);
  818. }
  819. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  820. {
  821. return max(mm->hiwater_rss, get_mm_rss(mm));
  822. }
  823. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  824. {
  825. return max(mm->hiwater_vm, mm->total_vm);
  826. }
  827. static inline void update_hiwater_rss(struct mm_struct *mm)
  828. {
  829. unsigned long _rss = get_mm_rss(mm);
  830. if ((mm)->hiwater_rss < _rss)
  831. (mm)->hiwater_rss = _rss;
  832. }
  833. static inline void update_hiwater_vm(struct mm_struct *mm)
  834. {
  835. if (mm->hiwater_vm < mm->total_vm)
  836. mm->hiwater_vm = mm->total_vm;
  837. }
  838. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  839. struct mm_struct *mm)
  840. {
  841. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  842. if (*maxrss < hiwater_rss)
  843. *maxrss = hiwater_rss;
  844. }
  845. #if defined(SPLIT_RSS_COUNTING)
  846. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  847. #else
  848. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  849. {
  850. }
  851. #endif
  852. /*
  853. * A callback you can register to apply pressure to ageable caches.
  854. *
  855. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  856. * look through the least-recently-used 'nr_to_scan' entries and
  857. * attempt to free them up. It should return the number of objects
  858. * which remain in the cache. If it returns -1, it means it cannot do
  859. * any scanning at this time (eg. there is a risk of deadlock).
  860. *
  861. * The 'gfpmask' refers to the allocation we are currently trying to
  862. * fulfil.
  863. *
  864. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  865. * querying the cache size, so a fastpath for that case is appropriate.
  866. */
  867. struct shrinker {
  868. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  869. int seeks; /* seeks to recreate an obj */
  870. /* These are for internal use */
  871. struct list_head list;
  872. long nr; /* objs pending delete */
  873. };
  874. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  875. extern void register_shrinker(struct shrinker *);
  876. extern void unregister_shrinker(struct shrinker *);
  877. int vma_wants_writenotify(struct vm_area_struct *vma);
  878. extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
  879. #ifdef __PAGETABLE_PUD_FOLDED
  880. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  881. unsigned long address)
  882. {
  883. return 0;
  884. }
  885. #else
  886. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  887. #endif
  888. #ifdef __PAGETABLE_PMD_FOLDED
  889. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  890. unsigned long address)
  891. {
  892. return 0;
  893. }
  894. #else
  895. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  896. #endif
  897. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  898. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  899. /*
  900. * The following ifdef needed to get the 4level-fixup.h header to work.
  901. * Remove it when 4level-fixup.h has been removed.
  902. */
  903. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  904. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  905. {
  906. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  907. NULL: pud_offset(pgd, address);
  908. }
  909. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  910. {
  911. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  912. NULL: pmd_offset(pud, address);
  913. }
  914. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  915. #if USE_SPLIT_PTLOCKS
  916. /*
  917. * We tuck a spinlock to guard each pagetable page into its struct page,
  918. * at page->private, with BUILD_BUG_ON to make sure that this will not
  919. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  920. * When freeing, reset page->mapping so free_pages_check won't complain.
  921. */
  922. #define __pte_lockptr(page) &((page)->ptl)
  923. #define pte_lock_init(_page) do { \
  924. spin_lock_init(__pte_lockptr(_page)); \
  925. } while (0)
  926. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  927. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  928. #else /* !USE_SPLIT_PTLOCKS */
  929. /*
  930. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  931. */
  932. #define pte_lock_init(page) do {} while (0)
  933. #define pte_lock_deinit(page) do {} while (0)
  934. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  935. #endif /* USE_SPLIT_PTLOCKS */
  936. static inline void pgtable_page_ctor(struct page *page)
  937. {
  938. pte_lock_init(page);
  939. inc_zone_page_state(page, NR_PAGETABLE);
  940. }
  941. static inline void pgtable_page_dtor(struct page *page)
  942. {
  943. pte_lock_deinit(page);
  944. dec_zone_page_state(page, NR_PAGETABLE);
  945. }
  946. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  947. ({ \
  948. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  949. pte_t *__pte = pte_offset_map(pmd, address); \
  950. *(ptlp) = __ptl; \
  951. spin_lock(__ptl); \
  952. __pte; \
  953. })
  954. #define pte_unmap_unlock(pte, ptl) do { \
  955. spin_unlock(ptl); \
  956. pte_unmap(pte); \
  957. } while (0)
  958. #define pte_alloc_map(mm, pmd, address) \
  959. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  960. NULL: pte_offset_map(pmd, address))
  961. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  962. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  963. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  964. #define pte_alloc_kernel(pmd, address) \
  965. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  966. NULL: pte_offset_kernel(pmd, address))
  967. extern void free_area_init(unsigned long * zones_size);
  968. extern void free_area_init_node(int nid, unsigned long * zones_size,
  969. unsigned long zone_start_pfn, unsigned long *zholes_size);
  970. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  971. /*
  972. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  973. * zones, allocate the backing mem_map and account for memory holes in a more
  974. * architecture independent manner. This is a substitute for creating the
  975. * zone_sizes[] and zholes_size[] arrays and passing them to
  976. * free_area_init_node()
  977. *
  978. * An architecture is expected to register range of page frames backed by
  979. * physical memory with add_active_range() before calling
  980. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  981. * usage, an architecture is expected to do something like
  982. *
  983. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  984. * max_highmem_pfn};
  985. * for_each_valid_physical_page_range()
  986. * add_active_range(node_id, start_pfn, end_pfn)
  987. * free_area_init_nodes(max_zone_pfns);
  988. *
  989. * If the architecture guarantees that there are no holes in the ranges
  990. * registered with add_active_range(), free_bootmem_active_regions()
  991. * will call free_bootmem_node() for each registered physical page range.
  992. * Similarly sparse_memory_present_with_active_regions() calls
  993. * memory_present() for each range when SPARSEMEM is enabled.
  994. *
  995. * See mm/page_alloc.c for more information on each function exposed by
  996. * CONFIG_ARCH_POPULATES_NODE_MAP
  997. */
  998. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  999. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1000. unsigned long end_pfn);
  1001. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1002. unsigned long end_pfn);
  1003. extern void remove_all_active_ranges(void);
  1004. void sort_node_map(void);
  1005. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1006. unsigned long end_pfn);
  1007. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1008. unsigned long end_pfn);
  1009. extern void get_pfn_range_for_nid(unsigned int nid,
  1010. unsigned long *start_pfn, unsigned long *end_pfn);
  1011. extern unsigned long find_min_pfn_with_active_regions(void);
  1012. extern void free_bootmem_with_active_regions(int nid,
  1013. unsigned long max_low_pfn);
  1014. int add_from_early_node_map(struct range *range, int az,
  1015. int nr_range, int nid);
  1016. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1017. u64 goal, u64 limit);
  1018. void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
  1019. u64 goal, u64 limit);
  1020. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1021. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1022. extern void sparse_memory_present_with_active_regions(int nid);
  1023. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1024. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1025. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1026. static inline int __early_pfn_to_nid(unsigned long pfn)
  1027. {
  1028. return 0;
  1029. }
  1030. #else
  1031. /* please see mm/page_alloc.c */
  1032. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1033. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1034. /* there is a per-arch backend function. */
  1035. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1036. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1037. #endif
  1038. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1039. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1040. unsigned long, enum memmap_context);
  1041. extern void setup_per_zone_wmarks(void);
  1042. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1043. extern void mem_init(void);
  1044. extern void __init mmap_init(void);
  1045. extern void show_mem(void);
  1046. extern void si_meminfo(struct sysinfo * val);
  1047. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1048. extern int after_bootmem;
  1049. extern void setup_per_cpu_pageset(void);
  1050. extern void zone_pcp_update(struct zone *zone);
  1051. /* nommu.c */
  1052. extern atomic_long_t mmap_pages_allocated;
  1053. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1054. /* prio_tree.c */
  1055. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1056. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1057. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1058. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1059. struct prio_tree_iter *iter);
  1060. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1061. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1062. (vma = vma_prio_tree_next(vma, iter)); )
  1063. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1064. struct list_head *list)
  1065. {
  1066. vma->shared.vm_set.parent = NULL;
  1067. list_add_tail(&vma->shared.vm_set.list, list);
  1068. }
  1069. /* mmap.c */
  1070. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1071. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1072. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1073. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1074. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1075. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1076. struct mempolicy *);
  1077. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1078. extern int split_vma(struct mm_struct *,
  1079. struct vm_area_struct *, unsigned long addr, int new_below);
  1080. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1081. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1082. struct rb_node **, struct rb_node *);
  1083. extern void unlink_file_vma(struct vm_area_struct *);
  1084. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1085. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1086. extern void exit_mmap(struct mm_struct *);
  1087. extern int mm_take_all_locks(struct mm_struct *mm);
  1088. extern void mm_drop_all_locks(struct mm_struct *mm);
  1089. #ifdef CONFIG_PROC_FS
  1090. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1091. extern void added_exe_file_vma(struct mm_struct *mm);
  1092. extern void removed_exe_file_vma(struct mm_struct *mm);
  1093. #else
  1094. static inline void added_exe_file_vma(struct mm_struct *mm)
  1095. {}
  1096. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1097. {}
  1098. #endif /* CONFIG_PROC_FS */
  1099. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1100. extern int install_special_mapping(struct mm_struct *mm,
  1101. unsigned long addr, unsigned long len,
  1102. unsigned long flags, struct page **pages);
  1103. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1104. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1105. unsigned long len, unsigned long prot,
  1106. unsigned long flag, unsigned long pgoff);
  1107. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1108. unsigned long len, unsigned long flags,
  1109. unsigned int vm_flags, unsigned long pgoff);
  1110. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1111. unsigned long len, unsigned long prot,
  1112. unsigned long flag, unsigned long offset)
  1113. {
  1114. unsigned long ret = -EINVAL;
  1115. if ((offset + PAGE_ALIGN(len)) < offset)
  1116. goto out;
  1117. if (!(offset & ~PAGE_MASK))
  1118. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1119. out:
  1120. return ret;
  1121. }
  1122. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1123. extern unsigned long do_brk(unsigned long, unsigned long);
  1124. /* filemap.c */
  1125. extern unsigned long page_unuse(struct page *);
  1126. extern void truncate_inode_pages(struct address_space *, loff_t);
  1127. extern void truncate_inode_pages_range(struct address_space *,
  1128. loff_t lstart, loff_t lend);
  1129. /* generic vm_area_ops exported for stackable file systems */
  1130. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1131. /* mm/page-writeback.c */
  1132. int write_one_page(struct page *page, int wait);
  1133. void task_dirty_inc(struct task_struct *tsk);
  1134. /* readahead.c */
  1135. #define VM_MAX_READAHEAD 128 /* kbytes */
  1136. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1137. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1138. pgoff_t offset, unsigned long nr_to_read);
  1139. void page_cache_sync_readahead(struct address_space *mapping,
  1140. struct file_ra_state *ra,
  1141. struct file *filp,
  1142. pgoff_t offset,
  1143. unsigned long size);
  1144. void page_cache_async_readahead(struct address_space *mapping,
  1145. struct file_ra_state *ra,
  1146. struct file *filp,
  1147. struct page *pg,
  1148. pgoff_t offset,
  1149. unsigned long size);
  1150. unsigned long max_sane_readahead(unsigned long nr);
  1151. unsigned long ra_submit(struct file_ra_state *ra,
  1152. struct address_space *mapping,
  1153. struct file *filp);
  1154. /* Do stack extension */
  1155. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1156. #if VM_GROWSUP
  1157. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1158. #else
  1159. #define expand_upwards(vma, address) do { } while (0)
  1160. #endif
  1161. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1162. unsigned long address);
  1163. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1164. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1165. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1166. struct vm_area_struct **pprev);
  1167. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1168. NULL if none. Assume start_addr < end_addr. */
  1169. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1170. {
  1171. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1172. if (vma && end_addr <= vma->vm_start)
  1173. vma = NULL;
  1174. return vma;
  1175. }
  1176. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1177. {
  1178. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1179. }
  1180. #ifdef CONFIG_MMU
  1181. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1182. #else
  1183. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1184. {
  1185. return __pgprot(0);
  1186. }
  1187. #endif
  1188. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1189. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1190. unsigned long pfn, unsigned long size, pgprot_t);
  1191. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1192. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1193. unsigned long pfn);
  1194. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1195. unsigned long pfn);
  1196. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1197. unsigned int foll_flags);
  1198. #define FOLL_WRITE 0x01 /* check pte is writable */
  1199. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1200. #define FOLL_GET 0x04 /* do get_page on page */
  1201. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1202. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1203. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1204. void *data);
  1205. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1206. unsigned long size, pte_fn_t fn, void *data);
  1207. #ifdef CONFIG_PROC_FS
  1208. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1209. #else
  1210. static inline void vm_stat_account(struct mm_struct *mm,
  1211. unsigned long flags, struct file *file, long pages)
  1212. {
  1213. }
  1214. #endif /* CONFIG_PROC_FS */
  1215. #ifdef CONFIG_DEBUG_PAGEALLOC
  1216. extern int debug_pagealloc_enabled;
  1217. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1218. static inline void enable_debug_pagealloc(void)
  1219. {
  1220. debug_pagealloc_enabled = 1;
  1221. }
  1222. #ifdef CONFIG_HIBERNATION
  1223. extern bool kernel_page_present(struct page *page);
  1224. #endif /* CONFIG_HIBERNATION */
  1225. #else
  1226. static inline void
  1227. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1228. static inline void enable_debug_pagealloc(void)
  1229. {
  1230. }
  1231. #ifdef CONFIG_HIBERNATION
  1232. static inline bool kernel_page_present(struct page *page) { return true; }
  1233. #endif /* CONFIG_HIBERNATION */
  1234. #endif
  1235. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1236. #ifdef __HAVE_ARCH_GATE_AREA
  1237. int in_gate_area_no_task(unsigned long addr);
  1238. int in_gate_area(struct task_struct *task, unsigned long addr);
  1239. #else
  1240. int in_gate_area_no_task(unsigned long addr);
  1241. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1242. #endif /* __HAVE_ARCH_GATE_AREA */
  1243. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1244. void __user *, size_t *, loff_t *);
  1245. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1246. unsigned long lru_pages);
  1247. #ifndef CONFIG_MMU
  1248. #define randomize_va_space 0
  1249. #else
  1250. extern int randomize_va_space;
  1251. #endif
  1252. const char * arch_vma_name(struct vm_area_struct *vma);
  1253. void print_vma_addr(char *prefix, unsigned long rip);
  1254. void sparse_mem_maps_populate_node(struct page **map_map,
  1255. unsigned long pnum_begin,
  1256. unsigned long pnum_end,
  1257. unsigned long map_count,
  1258. int nodeid);
  1259. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1260. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1261. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1262. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1263. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1264. void *vmemmap_alloc_block(unsigned long size, int node);
  1265. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1266. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1267. int vmemmap_populate_basepages(struct page *start_page,
  1268. unsigned long pages, int node);
  1269. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1270. void vmemmap_populate_print_last(void);
  1271. enum mf_flags {
  1272. MF_COUNT_INCREASED = 1 << 0,
  1273. };
  1274. extern void memory_failure(unsigned long pfn, int trapno);
  1275. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1276. extern int unpoison_memory(unsigned long pfn);
  1277. extern int sysctl_memory_failure_early_kill;
  1278. extern int sysctl_memory_failure_recovery;
  1279. extern void shake_page(struct page *p, int access);
  1280. extern atomic_long_t mce_bad_pages;
  1281. extern int soft_offline_page(struct page *page, int flags);
  1282. #ifdef CONFIG_MEMORY_FAILURE
  1283. int is_hwpoison_address(unsigned long addr);
  1284. #else
  1285. static inline int is_hwpoison_address(unsigned long addr)
  1286. {
  1287. return 0;
  1288. }
  1289. #endif
  1290. extern void dump_page(struct page *page);
  1291. #endif /* __KERNEL__ */
  1292. #endif /* _LINUX_MM_H */