cx18-av-vbi.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. /*
  2. * cx18 ADEC VBI functions
  3. *
  4. * Derived from cx25840-vbi.c
  5. *
  6. * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version 2
  11. * of the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21. * 02110-1301, USA.
  22. */
  23. #include "cx18-driver.h"
  24. /*
  25. * For sliced VBI output, we set up to use VIP-1.1, 10-bit mode,
  26. * NN counts 4 bytes Dwords, an IDID of 0x00 0x80 or one with the VBI line #.
  27. * Thus, according to the VIP-2 Spec, our VBI ancillary data lines
  28. * (should!) look like:
  29. * 4 byte EAV code: 0xff 0x00 0x00 0xRP
  30. * unknown number of possible idle bytes
  31. * 3 byte Anc data preamble: 0x00 0xff 0xff
  32. * 1 byte data identifier: ne010iii (parity bits, 010, DID bits)
  33. * 1 byte secondary data id: nessssss (parity bits, SDID bits)
  34. * 1 byte data word count: necccccc (parity bits, NN Dword count)
  35. * 2 byte Internal DID: 0x00 0x80 (programmed value)
  36. * 4*NN data bytes
  37. * 1 byte checksum
  38. * Fill bytes needed to fil out to 4*NN bytes of payload
  39. *
  40. * The RP codes for EAVs when in VIP-1.1 mode, not in raw mode, &
  41. * in the vertical blanking interval are:
  42. * 0xb0 (Task 0 VerticalBlank HorizontalBlank 0 0 0 0)
  43. * 0xf0 (Task EvenField VerticalBlank HorizontalBlank 0 0 0 0)
  44. *
  45. * Since the V bit is only allowed to toggle in the EAV RP code, just
  46. * before the first active region line and for active lines, they are:
  47. * 0x90 (Task 0 0 HorizontalBlank 0 0 0 0)
  48. * 0xd0 (Task EvenField 0 HorizontalBlank 0 0 0 0)
  49. *
  50. * The user application DID bytes we care about are:
  51. * 0x91 (1 0 010 0 !ActiveLine AncDataPresent)
  52. * 0x55 (0 1 010 2ndField !ActiveLine AncDataPresent)
  53. *
  54. */
  55. static const u8 sliced_vbi_did[2] = { 0x91, 0x55 };
  56. struct vbi_anc_data {
  57. /* u8 eav[4]; */
  58. /* u8 idle[]; Variable number of idle bytes */
  59. u8 preamble[3];
  60. u8 did;
  61. u8 sdid;
  62. u8 data_count;
  63. u8 idid[2];
  64. u8 payload[1]; /* 4*data_count of payload */
  65. /* u8 checksum; */
  66. /* u8 fill[]; Variable number of fill bytes */
  67. };
  68. static int odd_parity(u8 c)
  69. {
  70. c ^= (c >> 4);
  71. c ^= (c >> 2);
  72. c ^= (c >> 1);
  73. return c & 1;
  74. }
  75. static int decode_vps(u8 *dst, u8 *p)
  76. {
  77. static const u8 biphase_tbl[] = {
  78. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  79. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  80. 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
  81. 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
  82. 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
  83. 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
  84. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  85. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  86. 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
  87. 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
  88. 0xc3, 0x4b, 0x43, 0xc3, 0x87, 0x0f, 0x07, 0x87,
  89. 0x83, 0x0b, 0x03, 0x83, 0xc3, 0x4b, 0x43, 0xc3,
  90. 0xc1, 0x49, 0x41, 0xc1, 0x85, 0x0d, 0x05, 0x85,
  91. 0x81, 0x09, 0x01, 0x81, 0xc1, 0x49, 0x41, 0xc1,
  92. 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
  93. 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
  94. 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
  95. 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
  96. 0xc2, 0x4a, 0x42, 0xc2, 0x86, 0x0e, 0x06, 0x86,
  97. 0x82, 0x0a, 0x02, 0x82, 0xc2, 0x4a, 0x42, 0xc2,
  98. 0xc0, 0x48, 0x40, 0xc0, 0x84, 0x0c, 0x04, 0x84,
  99. 0x80, 0x08, 0x00, 0x80, 0xc0, 0x48, 0x40, 0xc0,
  100. 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
  101. 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
  102. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  103. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  104. 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
  105. 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
  106. 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
  107. 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
  108. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  109. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  110. };
  111. u8 c, err = 0;
  112. int i;
  113. for (i = 0; i < 2 * 13; i += 2) {
  114. err |= biphase_tbl[p[i]] | biphase_tbl[p[i + 1]];
  115. c = (biphase_tbl[p[i + 1]] & 0xf) |
  116. ((biphase_tbl[p[i]] & 0xf) << 4);
  117. dst[i / 2] = c;
  118. }
  119. return err & 0xf0;
  120. }
  121. int cx18_av_vbi(struct cx18 *cx, unsigned int cmd, void *arg)
  122. {
  123. struct cx18_av_state *state = &cx->av_state;
  124. struct v4l2_format *fmt;
  125. struct v4l2_sliced_vbi_format *svbi;
  126. switch (cmd) {
  127. case VIDIOC_G_FMT:
  128. {
  129. static u16 lcr2vbi[] = {
  130. 0, V4L2_SLICED_TELETEXT_B, 0, /* 1 */
  131. 0, V4L2_SLICED_WSS_625, 0, /* 4 */
  132. V4L2_SLICED_CAPTION_525, /* 6 */
  133. V4L2_SLICED_VPS, 0, 0, 0, 0, /* 7 - unlike cx25840 */
  134. 0, 0, 0, 0
  135. };
  136. int is_pal = !(state->std & V4L2_STD_525_60);
  137. int i;
  138. fmt = arg;
  139. if (fmt->type != V4L2_BUF_TYPE_SLICED_VBI_CAPTURE)
  140. return -EINVAL;
  141. svbi = &fmt->fmt.sliced;
  142. memset(svbi, 0, sizeof(*svbi));
  143. /* we're done if raw VBI is active */
  144. if ((cx18_av_read(cx, 0x404) & 0x10) == 0)
  145. break;
  146. if (is_pal) {
  147. for (i = 7; i <= 23; i++) {
  148. u8 v = cx18_av_read(cx, 0x424 + i - 7);
  149. svbi->service_lines[0][i] = lcr2vbi[v >> 4];
  150. svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
  151. svbi->service_set |= svbi->service_lines[0][i] |
  152. svbi->service_lines[1][i];
  153. }
  154. } else {
  155. for (i = 10; i <= 21; i++) {
  156. u8 v = cx18_av_read(cx, 0x424 + i - 10);
  157. svbi->service_lines[0][i] = lcr2vbi[v >> 4];
  158. svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
  159. svbi->service_set |= svbi->service_lines[0][i] |
  160. svbi->service_lines[1][i];
  161. }
  162. }
  163. break;
  164. }
  165. case VIDIOC_S_FMT:
  166. {
  167. int is_pal = !(state->std & V4L2_STD_525_60);
  168. int vbi_offset = is_pal ? 1 : 0;
  169. int i, x;
  170. u8 lcr[24];
  171. fmt = arg;
  172. if (fmt->type != V4L2_BUF_TYPE_SLICED_VBI_CAPTURE &&
  173. fmt->type != V4L2_BUF_TYPE_VBI_CAPTURE)
  174. return -EINVAL;
  175. svbi = &fmt->fmt.sliced;
  176. if (fmt->type == V4L2_BUF_TYPE_VBI_CAPTURE) {
  177. /* raw VBI */
  178. memset(svbi, 0, sizeof(*svbi));
  179. /* Setup standard */
  180. cx18_av_std_setup(cx);
  181. /* VBI Offset */
  182. cx18_av_write(cx, 0x47f, vbi_offset);
  183. cx18_av_write(cx, 0x404, 0x2e);
  184. break;
  185. }
  186. for (x = 0; x <= 23; x++)
  187. lcr[x] = 0x00;
  188. /* Setup standard */
  189. cx18_av_std_setup(cx);
  190. /* Sliced VBI */
  191. cx18_av_write(cx, 0x404, 0x32); /* Ancillary data */
  192. cx18_av_write(cx, 0x406, 0x13);
  193. cx18_av_write(cx, 0x47f, vbi_offset);
  194. if (is_pal) {
  195. for (i = 0; i <= 6; i++)
  196. svbi->service_lines[0][i] =
  197. svbi->service_lines[1][i] = 0;
  198. } else {
  199. for (i = 0; i <= 9; i++)
  200. svbi->service_lines[0][i] =
  201. svbi->service_lines[1][i] = 0;
  202. for (i = 22; i <= 23; i++)
  203. svbi->service_lines[0][i] =
  204. svbi->service_lines[1][i] = 0;
  205. }
  206. for (i = 7; i <= 23; i++) {
  207. for (x = 0; x <= 1; x++) {
  208. switch (svbi->service_lines[1-x][i]) {
  209. case V4L2_SLICED_TELETEXT_B:
  210. lcr[i] |= 1 << (4 * x);
  211. break;
  212. case V4L2_SLICED_WSS_625:
  213. lcr[i] |= 4 << (4 * x);
  214. break;
  215. case V4L2_SLICED_CAPTION_525:
  216. lcr[i] |= 6 << (4 * x);
  217. break;
  218. case V4L2_SLICED_VPS:
  219. lcr[i] |= 9 << (4 * x);
  220. break;
  221. }
  222. }
  223. }
  224. if (is_pal) {
  225. for (x = 1, i = 0x424; i <= 0x434; i++, x++)
  226. cx18_av_write(cx, i, lcr[6 + x]);
  227. } else {
  228. for (x = 1, i = 0x424; i <= 0x430; i++, x++)
  229. cx18_av_write(cx, i, lcr[9 + x]);
  230. for (i = 0x431; i <= 0x434; i++)
  231. cx18_av_write(cx, i, 0);
  232. }
  233. cx18_av_write(cx, 0x43c, 0x16);
  234. cx18_av_write(cx, 0x474, is_pal ? 0x2a : 0x22);
  235. break;
  236. }
  237. case VIDIOC_INT_DECODE_VBI_LINE:
  238. {
  239. struct v4l2_decode_vbi_line *vbi = arg;
  240. u8 *p;
  241. struct vbi_anc_data *anc = (struct vbi_anc_data *) vbi->p;
  242. int did, sdid, l, err = 0;
  243. /*
  244. * Check for the ancillary data header for sliced VBI
  245. */
  246. if (anc->preamble[0] ||
  247. anc->preamble[1] != 0xff || anc->preamble[2] != 0xff ||
  248. (anc->did != sliced_vbi_did[0] &&
  249. anc->did != sliced_vbi_did[1])) {
  250. vbi->line = vbi->type = 0;
  251. break;
  252. }
  253. did = anc->did;
  254. sdid = anc->sdid & 0xf;
  255. l = anc->idid[0] & 0x3f;
  256. l += state->vbi_line_offset;
  257. p = anc->payload;
  258. /* Decode the SDID set by the slicer */
  259. switch (sdid) {
  260. case 1:
  261. sdid = V4L2_SLICED_TELETEXT_B;
  262. break;
  263. case 4:
  264. sdid = V4L2_SLICED_WSS_625;
  265. break;
  266. case 6:
  267. sdid = V4L2_SLICED_CAPTION_525;
  268. err = !odd_parity(p[0]) || !odd_parity(p[1]);
  269. break;
  270. case 7: /* Differs from cx25840 */
  271. sdid = V4L2_SLICED_VPS;
  272. if (decode_vps(p, p) != 0)
  273. err = 1;
  274. break;
  275. default:
  276. sdid = 0;
  277. err = 1;
  278. break;
  279. }
  280. vbi->type = err ? 0 : sdid;
  281. vbi->line = err ? 0 : l;
  282. vbi->is_second_field = err ? 0 : (did == sliced_vbi_did[1]);
  283. vbi->p = p;
  284. break;
  285. }
  286. }
  287. return 0;
  288. }