intel_ddi.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. static const u32 bdw_ddi_translations_edp[] = {
  71. 0x00FFFFFF, 0x00000012, /* DP parameters */
  72. 0x00EBAFFF, 0x00020011,
  73. 0x00C71FFF, 0x0006000F,
  74. 0x00FFFFFF, 0x00020011,
  75. 0x00DB6FFF, 0x0005000F,
  76. 0x00BEEFFF, 0x000A000C,
  77. 0x00FFFFFF, 0x0005000F,
  78. 0x00DB6FFF, 0x000A000C,
  79. 0x00FFFFFF, 0x000A000C,
  80. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  81. };
  82. static const u32 bdw_ddi_translations_dp[] = {
  83. 0x00FFFFFF, 0x0007000E, /* DP parameters */
  84. 0x00D75FFF, 0x000E000A,
  85. 0x00BEFFFF, 0x00140006,
  86. 0x00FFFFFF, 0x000E000A,
  87. 0x00D75FFF, 0x00180004,
  88. 0x80CB2FFF, 0x001B0002,
  89. 0x00F7DFFF, 0x00180004,
  90. 0x80D75FFF, 0x001B0002,
  91. 0x80FFFFFF, 0x001B0002,
  92. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  93. };
  94. static const u32 bdw_ddi_translations_fdi[] = {
  95. 0x00FFFFFF, 0x0001000E, /* FDI parameters */
  96. 0x00D75FFF, 0x0004000A,
  97. 0x00C30FFF, 0x00070006,
  98. 0x00AAAFFF, 0x000C0000,
  99. 0x00FFFFFF, 0x0004000A,
  100. 0x00D75FFF, 0x00090004,
  101. 0x00C30FFF, 0x000C0000,
  102. 0x00FFFFFF, 0x00070006,
  103. 0x00D75FFF, 0x000C0000,
  104. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  105. };
  106. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  107. {
  108. struct drm_encoder *encoder = &intel_encoder->base;
  109. int type = intel_encoder->type;
  110. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  111. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  112. struct intel_digital_port *intel_dig_port =
  113. enc_to_dig_port(encoder);
  114. return intel_dig_port->port;
  115. } else if (type == INTEL_OUTPUT_ANALOG) {
  116. return PORT_E;
  117. } else {
  118. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  119. BUG();
  120. }
  121. }
  122. /*
  123. * Starting with Haswell, DDI port buffers must be programmed with correct
  124. * values in advance. The buffer values are different for FDI and DP modes,
  125. * but the HDMI/DVI fields are shared among those. So we program the DDI
  126. * in either FDI or DP modes only, as HDMI connections will work with both
  127. * of those
  128. */
  129. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. u32 reg;
  133. int i;
  134. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  135. const u32 *ddi_translations_fdi;
  136. const u32 *ddi_translations_dp;
  137. const u32 *ddi_translations_edp;
  138. const u32 *ddi_translations;
  139. if (IS_BROADWELL(dev)) {
  140. ddi_translations_fdi = bdw_ddi_translations_fdi;
  141. ddi_translations_dp = bdw_ddi_translations_dp;
  142. ddi_translations_edp = bdw_ddi_translations_edp;
  143. } else if (IS_HASWELL(dev)) {
  144. ddi_translations_fdi = hsw_ddi_translations_fdi;
  145. ddi_translations_dp = hsw_ddi_translations_dp;
  146. ddi_translations_edp = hsw_ddi_translations_dp;
  147. } else {
  148. WARN(1, "ddi translation table missing\n");
  149. ddi_translations_edp = bdw_ddi_translations_dp;
  150. ddi_translations_fdi = bdw_ddi_translations_fdi;
  151. ddi_translations_dp = bdw_ddi_translations_dp;
  152. }
  153. switch (port) {
  154. case PORT_A:
  155. ddi_translations = ddi_translations_edp;
  156. break;
  157. case PORT_B:
  158. case PORT_C:
  159. case PORT_D:
  160. ddi_translations = ddi_translations_dp;
  161. break;
  162. case PORT_E:
  163. ddi_translations = ddi_translations_fdi;
  164. break;
  165. default:
  166. BUG();
  167. }
  168. for (i = 0, reg = DDI_BUF_TRANS(port);
  169. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  170. I915_WRITE(reg, ddi_translations[i]);
  171. reg += 4;
  172. }
  173. /* Entry 9 is for HDMI: */
  174. for (i = 0; i < 2; i++) {
  175. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  176. reg += 4;
  177. }
  178. }
  179. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  180. * mode and port E for FDI.
  181. */
  182. void intel_prepare_ddi(struct drm_device *dev)
  183. {
  184. int port;
  185. if (!HAS_DDI(dev))
  186. return;
  187. for (port = PORT_A; port <= PORT_E; port++)
  188. intel_prepare_ddi_buffers(dev, port);
  189. }
  190. static const long hsw_ddi_buf_ctl_values[] = {
  191. DDI_BUF_EMP_400MV_0DB_HSW,
  192. DDI_BUF_EMP_400MV_3_5DB_HSW,
  193. DDI_BUF_EMP_400MV_6DB_HSW,
  194. DDI_BUF_EMP_400MV_9_5DB_HSW,
  195. DDI_BUF_EMP_600MV_0DB_HSW,
  196. DDI_BUF_EMP_600MV_3_5DB_HSW,
  197. DDI_BUF_EMP_600MV_6DB_HSW,
  198. DDI_BUF_EMP_800MV_0DB_HSW,
  199. DDI_BUF_EMP_800MV_3_5DB_HSW
  200. };
  201. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  202. enum port port)
  203. {
  204. uint32_t reg = DDI_BUF_CTL(port);
  205. int i;
  206. for (i = 0; i < 8; i++) {
  207. udelay(1);
  208. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  209. return;
  210. }
  211. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  212. }
  213. /* Starting with Haswell, different DDI ports can work in FDI mode for
  214. * connection to the PCH-located connectors. For this, it is necessary to train
  215. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  216. *
  217. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  218. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  219. * DDI A (which is used for eDP)
  220. */
  221. void hsw_fdi_link_train(struct drm_crtc *crtc)
  222. {
  223. struct drm_device *dev = crtc->dev;
  224. struct drm_i915_private *dev_priv = dev->dev_private;
  225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  226. u32 temp, i, rx_ctl_val;
  227. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  228. * mode set "sequence for CRT port" document:
  229. * - TP1 to TP2 time with the default value
  230. * - FDI delay to 90h
  231. *
  232. * WaFDIAutoLinkSetTimingOverrride:hsw
  233. */
  234. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  235. FDI_RX_PWRDN_LANE0_VAL(2) |
  236. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  237. /* Enable the PCH Receiver FDI PLL */
  238. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  239. FDI_RX_PLL_ENABLE |
  240. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  241. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  242. POSTING_READ(_FDI_RXA_CTL);
  243. udelay(220);
  244. /* Switch from Rawclk to PCDclk */
  245. rx_ctl_val |= FDI_PCDCLK;
  246. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  247. /* Configure Port Clock Select */
  248. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  249. /* Start the training iterating through available voltages and emphasis,
  250. * testing each value twice. */
  251. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  252. /* Configure DP_TP_CTL with auto-training */
  253. I915_WRITE(DP_TP_CTL(PORT_E),
  254. DP_TP_CTL_FDI_AUTOTRAIN |
  255. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  256. DP_TP_CTL_LINK_TRAIN_PAT1 |
  257. DP_TP_CTL_ENABLE);
  258. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  259. * DDI E does not support port reversal, the functionality is
  260. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  261. * port reversal bit */
  262. I915_WRITE(DDI_BUF_CTL(PORT_E),
  263. DDI_BUF_CTL_ENABLE |
  264. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  265. hsw_ddi_buf_ctl_values[i / 2]);
  266. POSTING_READ(DDI_BUF_CTL(PORT_E));
  267. udelay(600);
  268. /* Program PCH FDI Receiver TU */
  269. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  270. /* Enable PCH FDI Receiver with auto-training */
  271. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  272. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  273. POSTING_READ(_FDI_RXA_CTL);
  274. /* Wait for FDI receiver lane calibration */
  275. udelay(30);
  276. /* Unset FDI_RX_MISC pwrdn lanes */
  277. temp = I915_READ(_FDI_RXA_MISC);
  278. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  279. I915_WRITE(_FDI_RXA_MISC, temp);
  280. POSTING_READ(_FDI_RXA_MISC);
  281. /* Wait for FDI auto training time */
  282. udelay(5);
  283. temp = I915_READ(DP_TP_STATUS(PORT_E));
  284. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  285. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  286. /* Enable normal pixel sending for FDI */
  287. I915_WRITE(DP_TP_CTL(PORT_E),
  288. DP_TP_CTL_FDI_AUTOTRAIN |
  289. DP_TP_CTL_LINK_TRAIN_NORMAL |
  290. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  291. DP_TP_CTL_ENABLE);
  292. return;
  293. }
  294. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  295. temp &= ~DDI_BUF_CTL_ENABLE;
  296. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  297. POSTING_READ(DDI_BUF_CTL(PORT_E));
  298. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  299. temp = I915_READ(DP_TP_CTL(PORT_E));
  300. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  301. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  302. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  303. POSTING_READ(DP_TP_CTL(PORT_E));
  304. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  305. rx_ctl_val &= ~FDI_RX_ENABLE;
  306. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  307. POSTING_READ(_FDI_RXA_CTL);
  308. /* Reset FDI_RX_MISC pwrdn lanes */
  309. temp = I915_READ(_FDI_RXA_MISC);
  310. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  311. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  312. I915_WRITE(_FDI_RXA_MISC, temp);
  313. POSTING_READ(_FDI_RXA_MISC);
  314. }
  315. DRM_ERROR("FDI link training failed!\n");
  316. }
  317. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  318. {
  319. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  320. int port = intel_ddi_get_encoder_port(encoder);
  321. int pipe = crtc->pipe;
  322. int type = encoder->type;
  323. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  324. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  325. port_name(port), pipe_name(pipe));
  326. crtc->eld_vld = false;
  327. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  328. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  329. struct intel_digital_port *intel_dig_port =
  330. enc_to_dig_port(&encoder->base);
  331. intel_dp->DP = intel_dig_port->saved_port_bits |
  332. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  333. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  334. if (intel_dp->has_audio) {
  335. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  336. pipe_name(crtc->pipe));
  337. /* write eld */
  338. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  339. intel_write_eld(&encoder->base, adjusted_mode);
  340. }
  341. } else if (type == INTEL_OUTPUT_HDMI) {
  342. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  343. if (intel_hdmi->has_audio) {
  344. /* Proper support for digital audio needs a new logic
  345. * and a new set of registers, so we leave it for future
  346. * patch bombing.
  347. */
  348. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  349. pipe_name(crtc->pipe));
  350. /* write eld */
  351. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  352. intel_write_eld(&encoder->base, adjusted_mode);
  353. }
  354. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  355. }
  356. }
  357. static struct intel_encoder *
  358. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  359. {
  360. struct drm_device *dev = crtc->dev;
  361. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  362. struct intel_encoder *intel_encoder, *ret = NULL;
  363. int num_encoders = 0;
  364. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  365. ret = intel_encoder;
  366. num_encoders++;
  367. }
  368. if (num_encoders != 1)
  369. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  370. pipe_name(intel_crtc->pipe));
  371. BUG_ON(ret == NULL);
  372. return ret;
  373. }
  374. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  375. {
  376. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  377. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  378. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  379. uint32_t val;
  380. switch (intel_crtc->ddi_pll_sel) {
  381. case PORT_CLK_SEL_SPLL:
  382. plls->spll_refcount--;
  383. if (plls->spll_refcount == 0) {
  384. DRM_DEBUG_KMS("Disabling SPLL\n");
  385. val = I915_READ(SPLL_CTL);
  386. WARN_ON(!(val & SPLL_PLL_ENABLE));
  387. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  388. POSTING_READ(SPLL_CTL);
  389. }
  390. break;
  391. case PORT_CLK_SEL_WRPLL1:
  392. plls->wrpll1_refcount--;
  393. if (plls->wrpll1_refcount == 0) {
  394. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  395. val = I915_READ(WRPLL_CTL1);
  396. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  397. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  398. POSTING_READ(WRPLL_CTL1);
  399. }
  400. break;
  401. case PORT_CLK_SEL_WRPLL2:
  402. plls->wrpll2_refcount--;
  403. if (plls->wrpll2_refcount == 0) {
  404. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  405. val = I915_READ(WRPLL_CTL2);
  406. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  407. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  408. POSTING_READ(WRPLL_CTL2);
  409. }
  410. break;
  411. }
  412. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  413. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  414. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  415. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  416. }
  417. #define LC_FREQ 2700
  418. #define LC_FREQ_2K (LC_FREQ * 2000)
  419. #define P_MIN 2
  420. #define P_MAX 64
  421. #define P_INC 2
  422. /* Constraints for PLL good behavior */
  423. #define REF_MIN 48
  424. #define REF_MAX 400
  425. #define VCO_MIN 2400
  426. #define VCO_MAX 4800
  427. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  428. struct wrpll_rnp {
  429. unsigned p, n2, r2;
  430. };
  431. static unsigned wrpll_get_budget_for_freq(int clock)
  432. {
  433. unsigned budget;
  434. switch (clock) {
  435. case 25175000:
  436. case 25200000:
  437. case 27000000:
  438. case 27027000:
  439. case 37762500:
  440. case 37800000:
  441. case 40500000:
  442. case 40541000:
  443. case 54000000:
  444. case 54054000:
  445. case 59341000:
  446. case 59400000:
  447. case 72000000:
  448. case 74176000:
  449. case 74250000:
  450. case 81000000:
  451. case 81081000:
  452. case 89012000:
  453. case 89100000:
  454. case 108000000:
  455. case 108108000:
  456. case 111264000:
  457. case 111375000:
  458. case 148352000:
  459. case 148500000:
  460. case 162000000:
  461. case 162162000:
  462. case 222525000:
  463. case 222750000:
  464. case 296703000:
  465. case 297000000:
  466. budget = 0;
  467. break;
  468. case 233500000:
  469. case 245250000:
  470. case 247750000:
  471. case 253250000:
  472. case 298000000:
  473. budget = 1500;
  474. break;
  475. case 169128000:
  476. case 169500000:
  477. case 179500000:
  478. case 202000000:
  479. budget = 2000;
  480. break;
  481. case 256250000:
  482. case 262500000:
  483. case 270000000:
  484. case 272500000:
  485. case 273750000:
  486. case 280750000:
  487. case 281250000:
  488. case 286000000:
  489. case 291750000:
  490. budget = 4000;
  491. break;
  492. case 267250000:
  493. case 268500000:
  494. budget = 5000;
  495. break;
  496. default:
  497. budget = 1000;
  498. break;
  499. }
  500. return budget;
  501. }
  502. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  503. unsigned r2, unsigned n2, unsigned p,
  504. struct wrpll_rnp *best)
  505. {
  506. uint64_t a, b, c, d, diff, diff_best;
  507. /* No best (r,n,p) yet */
  508. if (best->p == 0) {
  509. best->p = p;
  510. best->n2 = n2;
  511. best->r2 = r2;
  512. return;
  513. }
  514. /*
  515. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  516. * freq2k.
  517. *
  518. * delta = 1e6 *
  519. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  520. * freq2k;
  521. *
  522. * and we would like delta <= budget.
  523. *
  524. * If the discrepancy is above the PPM-based budget, always prefer to
  525. * improve upon the previous solution. However, if you're within the
  526. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  527. */
  528. a = freq2k * budget * p * r2;
  529. b = freq2k * budget * best->p * best->r2;
  530. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  531. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  532. (LC_FREQ_2K * best->n2));
  533. c = 1000000 * diff;
  534. d = 1000000 * diff_best;
  535. if (a < c && b < d) {
  536. /* If both are above the budget, pick the closer */
  537. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  538. best->p = p;
  539. best->n2 = n2;
  540. best->r2 = r2;
  541. }
  542. } else if (a >= c && b < d) {
  543. /* If A is below the threshold but B is above it? Update. */
  544. best->p = p;
  545. best->n2 = n2;
  546. best->r2 = r2;
  547. } else if (a >= c && b >= d) {
  548. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  549. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  550. best->p = p;
  551. best->n2 = n2;
  552. best->r2 = r2;
  553. }
  554. }
  555. /* Otherwise a < c && b >= d, do nothing */
  556. }
  557. static void
  558. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  559. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  560. {
  561. uint64_t freq2k;
  562. unsigned p, n2, r2;
  563. struct wrpll_rnp best = { 0, 0, 0 };
  564. unsigned budget;
  565. freq2k = clock / 100;
  566. budget = wrpll_get_budget_for_freq(clock);
  567. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  568. * and directly pass the LC PLL to it. */
  569. if (freq2k == 5400000) {
  570. *n2_out = 2;
  571. *p_out = 1;
  572. *r2_out = 2;
  573. return;
  574. }
  575. /*
  576. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  577. * the WR PLL.
  578. *
  579. * We want R so that REF_MIN <= Ref <= REF_MAX.
  580. * Injecting R2 = 2 * R gives:
  581. * REF_MAX * r2 > LC_FREQ * 2 and
  582. * REF_MIN * r2 < LC_FREQ * 2
  583. *
  584. * Which means the desired boundaries for r2 are:
  585. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  586. *
  587. */
  588. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  589. r2 <= LC_FREQ * 2 / REF_MIN;
  590. r2++) {
  591. /*
  592. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  593. *
  594. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  595. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  596. * VCO_MAX * r2 > n2 * LC_FREQ and
  597. * VCO_MIN * r2 < n2 * LC_FREQ)
  598. *
  599. * Which means the desired boundaries for n2 are:
  600. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  601. */
  602. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  603. n2 <= VCO_MAX * r2 / LC_FREQ;
  604. n2++) {
  605. for (p = P_MIN; p <= P_MAX; p += P_INC)
  606. wrpll_update_rnp(freq2k, budget,
  607. r2, n2, p, &best);
  608. }
  609. }
  610. *n2_out = best.n2;
  611. *p_out = best.p;
  612. *r2_out = best.r2;
  613. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  614. clock, *p_out, *n2_out, *r2_out);
  615. }
  616. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  617. {
  618. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  619. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  620. struct drm_encoder *encoder = &intel_encoder->base;
  621. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  622. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  623. int type = intel_encoder->type;
  624. enum pipe pipe = intel_crtc->pipe;
  625. uint32_t reg, val;
  626. int clock = intel_crtc->config.port_clock;
  627. /* TODO: reuse PLLs when possible (compare values) */
  628. intel_ddi_put_crtc_pll(crtc);
  629. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  630. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  631. switch (intel_dp->link_bw) {
  632. case DP_LINK_BW_1_62:
  633. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  634. break;
  635. case DP_LINK_BW_2_7:
  636. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  637. break;
  638. case DP_LINK_BW_5_4:
  639. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  640. break;
  641. default:
  642. DRM_ERROR("Link bandwidth %d unsupported\n",
  643. intel_dp->link_bw);
  644. return false;
  645. }
  646. /* We don't need to turn any PLL on because we'll use LCPLL. */
  647. return true;
  648. } else if (type == INTEL_OUTPUT_HDMI) {
  649. unsigned p, n2, r2;
  650. if (plls->wrpll1_refcount == 0) {
  651. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  652. pipe_name(pipe));
  653. plls->wrpll1_refcount++;
  654. reg = WRPLL_CTL1;
  655. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  656. } else if (plls->wrpll2_refcount == 0) {
  657. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  658. pipe_name(pipe));
  659. plls->wrpll2_refcount++;
  660. reg = WRPLL_CTL2;
  661. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  662. } else {
  663. DRM_ERROR("No WRPLLs available!\n");
  664. return false;
  665. }
  666. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  667. "WRPLL already enabled\n");
  668. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  669. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  670. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  671. WRPLL_DIVIDER_POST(p);
  672. } else if (type == INTEL_OUTPUT_ANALOG) {
  673. if (plls->spll_refcount == 0) {
  674. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  675. pipe_name(pipe));
  676. plls->spll_refcount++;
  677. reg = SPLL_CTL;
  678. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  679. } else {
  680. DRM_ERROR("SPLL already in use\n");
  681. return false;
  682. }
  683. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  684. "SPLL already enabled\n");
  685. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  686. } else {
  687. WARN(1, "Invalid DDI encoder type %d\n", type);
  688. return false;
  689. }
  690. I915_WRITE(reg, val);
  691. udelay(20);
  692. return true;
  693. }
  694. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  695. {
  696. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  697. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  698. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  699. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  700. int type = intel_encoder->type;
  701. uint32_t temp;
  702. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  703. temp = TRANS_MSA_SYNC_CLK;
  704. switch (intel_crtc->config.pipe_bpp) {
  705. case 18:
  706. temp |= TRANS_MSA_6_BPC;
  707. break;
  708. case 24:
  709. temp |= TRANS_MSA_8_BPC;
  710. break;
  711. case 30:
  712. temp |= TRANS_MSA_10_BPC;
  713. break;
  714. case 36:
  715. temp |= TRANS_MSA_12_BPC;
  716. break;
  717. default:
  718. BUG();
  719. }
  720. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  721. }
  722. }
  723. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  724. {
  725. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  726. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  727. struct drm_encoder *encoder = &intel_encoder->base;
  728. struct drm_device *dev = crtc->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. enum pipe pipe = intel_crtc->pipe;
  731. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  732. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  733. int type = intel_encoder->type;
  734. uint32_t temp;
  735. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  736. temp = TRANS_DDI_FUNC_ENABLE;
  737. temp |= TRANS_DDI_SELECT_PORT(port);
  738. switch (intel_crtc->config.pipe_bpp) {
  739. case 18:
  740. temp |= TRANS_DDI_BPC_6;
  741. break;
  742. case 24:
  743. temp |= TRANS_DDI_BPC_8;
  744. break;
  745. case 30:
  746. temp |= TRANS_DDI_BPC_10;
  747. break;
  748. case 36:
  749. temp |= TRANS_DDI_BPC_12;
  750. break;
  751. default:
  752. BUG();
  753. }
  754. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  755. temp |= TRANS_DDI_PVSYNC;
  756. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  757. temp |= TRANS_DDI_PHSYNC;
  758. if (cpu_transcoder == TRANSCODER_EDP) {
  759. switch (pipe) {
  760. case PIPE_A:
  761. /* On Haswell, can only use the always-on power well for
  762. * eDP when not using the panel fitter, and when not
  763. * using motion blur mitigation (which we don't
  764. * support). */
  765. if (IS_HASWELL(dev) && intel_crtc->config.pch_pfit.enabled)
  766. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  767. else
  768. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  769. break;
  770. case PIPE_B:
  771. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  772. break;
  773. case PIPE_C:
  774. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  775. break;
  776. default:
  777. BUG();
  778. break;
  779. }
  780. }
  781. if (type == INTEL_OUTPUT_HDMI) {
  782. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  783. if (intel_hdmi->has_hdmi_sink)
  784. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  785. else
  786. temp |= TRANS_DDI_MODE_SELECT_DVI;
  787. } else if (type == INTEL_OUTPUT_ANALOG) {
  788. temp |= TRANS_DDI_MODE_SELECT_FDI;
  789. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  790. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  791. type == INTEL_OUTPUT_EDP) {
  792. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  793. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  794. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  795. } else {
  796. WARN(1, "Invalid encoder type %d for pipe %c\n",
  797. intel_encoder->type, pipe_name(pipe));
  798. }
  799. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  800. }
  801. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  802. enum transcoder cpu_transcoder)
  803. {
  804. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  805. uint32_t val = I915_READ(reg);
  806. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  807. val |= TRANS_DDI_PORT_NONE;
  808. I915_WRITE(reg, val);
  809. }
  810. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  811. {
  812. struct drm_device *dev = intel_connector->base.dev;
  813. struct drm_i915_private *dev_priv = dev->dev_private;
  814. struct intel_encoder *intel_encoder = intel_connector->encoder;
  815. int type = intel_connector->base.connector_type;
  816. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  817. enum pipe pipe = 0;
  818. enum transcoder cpu_transcoder;
  819. uint32_t tmp;
  820. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  821. return false;
  822. if (port == PORT_A)
  823. cpu_transcoder = TRANSCODER_EDP;
  824. else
  825. cpu_transcoder = (enum transcoder) pipe;
  826. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  827. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  828. case TRANS_DDI_MODE_SELECT_HDMI:
  829. case TRANS_DDI_MODE_SELECT_DVI:
  830. return (type == DRM_MODE_CONNECTOR_HDMIA);
  831. case TRANS_DDI_MODE_SELECT_DP_SST:
  832. if (type == DRM_MODE_CONNECTOR_eDP)
  833. return true;
  834. case TRANS_DDI_MODE_SELECT_DP_MST:
  835. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  836. case TRANS_DDI_MODE_SELECT_FDI:
  837. return (type == DRM_MODE_CONNECTOR_VGA);
  838. default:
  839. return false;
  840. }
  841. }
  842. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  843. enum pipe *pipe)
  844. {
  845. struct drm_device *dev = encoder->base.dev;
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. enum port port = intel_ddi_get_encoder_port(encoder);
  848. u32 tmp;
  849. int i;
  850. tmp = I915_READ(DDI_BUF_CTL(port));
  851. if (!(tmp & DDI_BUF_CTL_ENABLE))
  852. return false;
  853. if (port == PORT_A) {
  854. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  855. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  856. case TRANS_DDI_EDP_INPUT_A_ON:
  857. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  858. *pipe = PIPE_A;
  859. break;
  860. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  861. *pipe = PIPE_B;
  862. break;
  863. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  864. *pipe = PIPE_C;
  865. break;
  866. }
  867. return true;
  868. } else {
  869. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  870. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  871. if ((tmp & TRANS_DDI_PORT_MASK)
  872. == TRANS_DDI_SELECT_PORT(port)) {
  873. *pipe = i;
  874. return true;
  875. }
  876. }
  877. }
  878. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  879. return false;
  880. }
  881. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  882. enum pipe pipe)
  883. {
  884. uint32_t temp, ret;
  885. enum port port = I915_MAX_PORTS;
  886. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  887. pipe);
  888. int i;
  889. if (cpu_transcoder == TRANSCODER_EDP) {
  890. port = PORT_A;
  891. } else {
  892. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  893. temp &= TRANS_DDI_PORT_MASK;
  894. for (i = PORT_B; i <= PORT_E; i++)
  895. if (temp == TRANS_DDI_SELECT_PORT(i))
  896. port = i;
  897. }
  898. if (port == I915_MAX_PORTS) {
  899. WARN(1, "Pipe %c enabled on an unknown port\n",
  900. pipe_name(pipe));
  901. ret = PORT_CLK_SEL_NONE;
  902. } else {
  903. ret = I915_READ(PORT_CLK_SEL(port));
  904. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  905. "0x%08x\n", pipe_name(pipe), port_name(port),
  906. ret);
  907. }
  908. return ret;
  909. }
  910. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  911. {
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. enum pipe pipe;
  914. struct intel_crtc *intel_crtc;
  915. for_each_pipe(pipe) {
  916. intel_crtc =
  917. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  918. if (!intel_crtc->active)
  919. continue;
  920. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  921. pipe);
  922. switch (intel_crtc->ddi_pll_sel) {
  923. case PORT_CLK_SEL_SPLL:
  924. dev_priv->ddi_plls.spll_refcount++;
  925. break;
  926. case PORT_CLK_SEL_WRPLL1:
  927. dev_priv->ddi_plls.wrpll1_refcount++;
  928. break;
  929. case PORT_CLK_SEL_WRPLL2:
  930. dev_priv->ddi_plls.wrpll2_refcount++;
  931. break;
  932. }
  933. }
  934. }
  935. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  936. {
  937. struct drm_crtc *crtc = &intel_crtc->base;
  938. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  939. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  940. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  941. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  942. if (cpu_transcoder != TRANSCODER_EDP)
  943. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  944. TRANS_CLK_SEL_PORT(port));
  945. }
  946. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  947. {
  948. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  949. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  950. if (cpu_transcoder != TRANSCODER_EDP)
  951. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  952. TRANS_CLK_SEL_DISABLED);
  953. }
  954. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  955. {
  956. struct drm_encoder *encoder = &intel_encoder->base;
  957. struct drm_crtc *crtc = encoder->crtc;
  958. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  960. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  961. int type = intel_encoder->type;
  962. if (type == INTEL_OUTPUT_EDP) {
  963. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  964. ironlake_edp_panel_vdd_on(intel_dp);
  965. ironlake_edp_panel_on(intel_dp);
  966. ironlake_edp_panel_vdd_off(intel_dp, true);
  967. }
  968. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  969. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  970. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  971. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  972. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  973. intel_dp_start_link_train(intel_dp);
  974. intel_dp_complete_link_train(intel_dp);
  975. if (port != PORT_A)
  976. intel_dp_stop_link_train(intel_dp);
  977. }
  978. }
  979. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  980. {
  981. struct drm_encoder *encoder = &intel_encoder->base;
  982. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  983. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  984. int type = intel_encoder->type;
  985. uint32_t val;
  986. bool wait = false;
  987. val = I915_READ(DDI_BUF_CTL(port));
  988. if (val & DDI_BUF_CTL_ENABLE) {
  989. val &= ~DDI_BUF_CTL_ENABLE;
  990. I915_WRITE(DDI_BUF_CTL(port), val);
  991. wait = true;
  992. }
  993. val = I915_READ(DP_TP_CTL(port));
  994. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  995. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  996. I915_WRITE(DP_TP_CTL(port), val);
  997. if (wait)
  998. intel_wait_ddi_buf_idle(dev_priv, port);
  999. if (type == INTEL_OUTPUT_EDP) {
  1000. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1001. ironlake_edp_panel_vdd_on(intel_dp);
  1002. ironlake_edp_panel_off(intel_dp);
  1003. }
  1004. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1005. }
  1006. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1007. {
  1008. struct drm_encoder *encoder = &intel_encoder->base;
  1009. struct drm_crtc *crtc = encoder->crtc;
  1010. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1011. int pipe = intel_crtc->pipe;
  1012. struct drm_device *dev = encoder->dev;
  1013. struct drm_i915_private *dev_priv = dev->dev_private;
  1014. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1015. int type = intel_encoder->type;
  1016. uint32_t tmp;
  1017. if (type == INTEL_OUTPUT_HDMI) {
  1018. struct intel_digital_port *intel_dig_port =
  1019. enc_to_dig_port(encoder);
  1020. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1021. * are ignored so nothing special needs to be done besides
  1022. * enabling the port.
  1023. */
  1024. I915_WRITE(DDI_BUF_CTL(port),
  1025. intel_dig_port->saved_port_bits |
  1026. DDI_BUF_CTL_ENABLE);
  1027. } else if (type == INTEL_OUTPUT_EDP) {
  1028. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1029. if (port == PORT_A)
  1030. intel_dp_stop_link_train(intel_dp);
  1031. ironlake_edp_backlight_on(intel_dp);
  1032. intel_edp_psr_enable(intel_dp);
  1033. }
  1034. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1035. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1036. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  1037. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1038. }
  1039. }
  1040. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1041. {
  1042. struct drm_encoder *encoder = &intel_encoder->base;
  1043. struct drm_crtc *crtc = encoder->crtc;
  1044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1045. int pipe = intel_crtc->pipe;
  1046. int type = intel_encoder->type;
  1047. struct drm_device *dev = encoder->dev;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. uint32_t tmp;
  1050. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1051. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1052. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  1053. (pipe * 4));
  1054. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1055. }
  1056. if (type == INTEL_OUTPUT_EDP) {
  1057. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1058. intel_edp_psr_disable(intel_dp);
  1059. ironlake_edp_backlight_off(intel_dp);
  1060. }
  1061. }
  1062. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1063. {
  1064. struct drm_device *dev = dev_priv->dev;
  1065. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1066. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1067. if (lcpll & LCPLL_CD_SOURCE_FCLK) {
  1068. return 800000;
  1069. } else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT) {
  1070. return 450000;
  1071. } else if (freq == LCPLL_CLK_FREQ_450) {
  1072. return 450000;
  1073. } else if (IS_HASWELL(dev)) {
  1074. if (IS_ULT(dev))
  1075. return 337500;
  1076. else
  1077. return 540000;
  1078. } else {
  1079. if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1080. return 540000;
  1081. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1082. return 337500;
  1083. else
  1084. return 675000;
  1085. }
  1086. }
  1087. void intel_ddi_pll_init(struct drm_device *dev)
  1088. {
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. uint32_t val = I915_READ(LCPLL_CTL);
  1091. /* The LCPLL register should be turned on by the BIOS. For now let's
  1092. * just check its state and print errors in case something is wrong.
  1093. * Don't even try to turn it on.
  1094. */
  1095. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1096. intel_ddi_get_cdclk_freq(dev_priv));
  1097. if (val & LCPLL_CD_SOURCE_FCLK)
  1098. DRM_ERROR("CDCLK source is not LCPLL\n");
  1099. if (val & LCPLL_PLL_DISABLE)
  1100. DRM_ERROR("LCPLL is disabled\n");
  1101. }
  1102. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1103. {
  1104. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1105. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1106. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1107. enum port port = intel_dig_port->port;
  1108. uint32_t val;
  1109. bool wait = false;
  1110. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1111. val = I915_READ(DDI_BUF_CTL(port));
  1112. if (val & DDI_BUF_CTL_ENABLE) {
  1113. val &= ~DDI_BUF_CTL_ENABLE;
  1114. I915_WRITE(DDI_BUF_CTL(port), val);
  1115. wait = true;
  1116. }
  1117. val = I915_READ(DP_TP_CTL(port));
  1118. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1119. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1120. I915_WRITE(DP_TP_CTL(port), val);
  1121. POSTING_READ(DP_TP_CTL(port));
  1122. if (wait)
  1123. intel_wait_ddi_buf_idle(dev_priv, port);
  1124. }
  1125. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1126. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1127. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1128. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1129. I915_WRITE(DP_TP_CTL(port), val);
  1130. POSTING_READ(DP_TP_CTL(port));
  1131. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1132. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1133. POSTING_READ(DDI_BUF_CTL(port));
  1134. udelay(600);
  1135. }
  1136. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1137. {
  1138. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1139. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1140. uint32_t val;
  1141. intel_ddi_post_disable(intel_encoder);
  1142. val = I915_READ(_FDI_RXA_CTL);
  1143. val &= ~FDI_RX_ENABLE;
  1144. I915_WRITE(_FDI_RXA_CTL, val);
  1145. val = I915_READ(_FDI_RXA_MISC);
  1146. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1147. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1148. I915_WRITE(_FDI_RXA_MISC, val);
  1149. val = I915_READ(_FDI_RXA_CTL);
  1150. val &= ~FDI_PCDCLK;
  1151. I915_WRITE(_FDI_RXA_CTL, val);
  1152. val = I915_READ(_FDI_RXA_CTL);
  1153. val &= ~FDI_RX_PLL_ENABLE;
  1154. I915_WRITE(_FDI_RXA_CTL, val);
  1155. }
  1156. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1157. {
  1158. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1159. int type = intel_encoder->type;
  1160. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1161. intel_dp_check_link_status(intel_dp);
  1162. }
  1163. void intel_ddi_get_config(struct intel_encoder *encoder,
  1164. struct intel_crtc_config *pipe_config)
  1165. {
  1166. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1167. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1168. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1169. u32 temp, flags = 0;
  1170. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1171. if (temp & TRANS_DDI_PHSYNC)
  1172. flags |= DRM_MODE_FLAG_PHSYNC;
  1173. else
  1174. flags |= DRM_MODE_FLAG_NHSYNC;
  1175. if (temp & TRANS_DDI_PVSYNC)
  1176. flags |= DRM_MODE_FLAG_PVSYNC;
  1177. else
  1178. flags |= DRM_MODE_FLAG_NVSYNC;
  1179. pipe_config->adjusted_mode.flags |= flags;
  1180. switch (temp & TRANS_DDI_BPC_MASK) {
  1181. case TRANS_DDI_BPC_6:
  1182. pipe_config->pipe_bpp = 18;
  1183. break;
  1184. case TRANS_DDI_BPC_8:
  1185. pipe_config->pipe_bpp = 24;
  1186. break;
  1187. case TRANS_DDI_BPC_10:
  1188. pipe_config->pipe_bpp = 30;
  1189. break;
  1190. case TRANS_DDI_BPC_12:
  1191. pipe_config->pipe_bpp = 36;
  1192. break;
  1193. default:
  1194. break;
  1195. }
  1196. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1197. case TRANS_DDI_MODE_SELECT_HDMI:
  1198. case TRANS_DDI_MODE_SELECT_DVI:
  1199. case TRANS_DDI_MODE_SELECT_FDI:
  1200. break;
  1201. case TRANS_DDI_MODE_SELECT_DP_SST:
  1202. case TRANS_DDI_MODE_SELECT_DP_MST:
  1203. pipe_config->has_dp_encoder = true;
  1204. intel_dp_get_m_n(intel_crtc, pipe_config);
  1205. break;
  1206. default:
  1207. break;
  1208. }
  1209. }
  1210. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1211. {
  1212. /* HDMI has nothing special to destroy, so we can go with this. */
  1213. intel_dp_encoder_destroy(encoder);
  1214. }
  1215. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1216. struct intel_crtc_config *pipe_config)
  1217. {
  1218. int type = encoder->type;
  1219. int port = intel_ddi_get_encoder_port(encoder);
  1220. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1221. if (port == PORT_A)
  1222. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1223. if (type == INTEL_OUTPUT_HDMI)
  1224. return intel_hdmi_compute_config(encoder, pipe_config);
  1225. else
  1226. return intel_dp_compute_config(encoder, pipe_config);
  1227. }
  1228. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1229. .destroy = intel_ddi_destroy,
  1230. };
  1231. static struct intel_connector *
  1232. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1233. {
  1234. struct intel_connector *connector;
  1235. enum port port = intel_dig_port->port;
  1236. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1237. if (!connector)
  1238. return NULL;
  1239. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1240. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1241. kfree(connector);
  1242. return NULL;
  1243. }
  1244. return connector;
  1245. }
  1246. static struct intel_connector *
  1247. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1248. {
  1249. struct intel_connector *connector;
  1250. enum port port = intel_dig_port->port;
  1251. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1252. if (!connector)
  1253. return NULL;
  1254. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1255. intel_hdmi_init_connector(intel_dig_port, connector);
  1256. return connector;
  1257. }
  1258. void intel_ddi_init(struct drm_device *dev, enum port port)
  1259. {
  1260. struct drm_i915_private *dev_priv = dev->dev_private;
  1261. struct intel_digital_port *intel_dig_port;
  1262. struct intel_encoder *intel_encoder;
  1263. struct drm_encoder *encoder;
  1264. struct intel_connector *hdmi_connector = NULL;
  1265. struct intel_connector *dp_connector = NULL;
  1266. bool init_hdmi, init_dp;
  1267. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1268. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1269. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1270. if (!init_dp && !init_hdmi) {
  1271. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n",
  1272. port_name(port));
  1273. init_hdmi = true;
  1274. init_dp = true;
  1275. }
  1276. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1277. if (!intel_dig_port)
  1278. return;
  1279. intel_encoder = &intel_dig_port->base;
  1280. encoder = &intel_encoder->base;
  1281. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1282. DRM_MODE_ENCODER_TMDS);
  1283. intel_encoder->compute_config = intel_ddi_compute_config;
  1284. intel_encoder->mode_set = intel_ddi_mode_set;
  1285. intel_encoder->enable = intel_enable_ddi;
  1286. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1287. intel_encoder->disable = intel_disable_ddi;
  1288. intel_encoder->post_disable = intel_ddi_post_disable;
  1289. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1290. intel_encoder->get_config = intel_ddi_get_config;
  1291. intel_dig_port->port = port;
  1292. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1293. (DDI_BUF_PORT_REVERSAL |
  1294. DDI_A_4_LANES);
  1295. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1296. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1297. intel_encoder->cloneable = false;
  1298. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1299. if (init_dp)
  1300. dp_connector = intel_ddi_init_dp_connector(intel_dig_port);
  1301. /* In theory we don't need the encoder->type check, but leave it just in
  1302. * case we have some really bad VBTs... */
  1303. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi)
  1304. hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port);
  1305. if (!dp_connector && !hdmi_connector) {
  1306. drm_encoder_cleanup(encoder);
  1307. kfree(intel_dig_port);
  1308. }
  1309. }