process.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977
  1. /*
  2. * linux/arch/i386/kernel/process.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <stdarg.h>
  13. #include <linux/cpu.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/fs.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/smp.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/stddef.h>
  23. #include <linux/slab.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/user.h>
  26. #include <linux/a.out.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/utsname.h>
  29. #include <linux/delay.h>
  30. #include <linux/reboot.h>
  31. #include <linux/init.h>
  32. #include <linux/mc146818rtc.h>
  33. #include <linux/module.h>
  34. #include <linux/kallsyms.h>
  35. #include <linux/ptrace.h>
  36. #include <linux/random.h>
  37. #include <linux/personality.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/io.h>
  42. #include <asm/ldt.h>
  43. #include <asm/processor.h>
  44. #include <asm/i387.h>
  45. #include <asm/desc.h>
  46. #include <asm/vm86.h>
  47. #include <asm/idle.h>
  48. #ifdef CONFIG_MATH_EMULATION
  49. #include <asm/math_emu.h>
  50. #endif
  51. #include <linux/err.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/cpu.h>
  54. #include <asm/pda.h>
  55. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  56. static int hlt_counter;
  57. unsigned long boot_option_idle_override = 0;
  58. EXPORT_SYMBOL(boot_option_idle_override);
  59. /*
  60. * Return saved PC of a blocked thread.
  61. */
  62. unsigned long thread_saved_pc(struct task_struct *tsk)
  63. {
  64. return ((unsigned long *)tsk->thread.esp)[3];
  65. }
  66. /*
  67. * Powermanagement idle function, if any..
  68. */
  69. void (*pm_idle)(void);
  70. EXPORT_SYMBOL(pm_idle);
  71. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  72. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  73. void idle_notifier_register(struct notifier_block *n)
  74. {
  75. atomic_notifier_chain_register(&idle_notifier, n);
  76. }
  77. void idle_notifier_unregister(struct notifier_block *n)
  78. {
  79. atomic_notifier_chain_unregister(&idle_notifier, n);
  80. }
  81. static DEFINE_PER_CPU(volatile unsigned long, idle_state);
  82. void enter_idle(void)
  83. {
  84. /* needs to be atomic w.r.t. interrupts, not against other CPUs */
  85. __set_bit(0, &__get_cpu_var(idle_state));
  86. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  87. }
  88. static void __exit_idle(void)
  89. {
  90. /* needs to be atomic w.r.t. interrupts, not against other CPUs */
  91. if (__test_and_clear_bit(0, &__get_cpu_var(idle_state)) == 0)
  92. return;
  93. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  94. }
  95. void exit_idle(void)
  96. {
  97. if (current->pid)
  98. return;
  99. __exit_idle();
  100. }
  101. void disable_hlt(void)
  102. {
  103. hlt_counter++;
  104. }
  105. EXPORT_SYMBOL(disable_hlt);
  106. void enable_hlt(void)
  107. {
  108. hlt_counter--;
  109. }
  110. EXPORT_SYMBOL(enable_hlt);
  111. /*
  112. * We use this if we don't have any better
  113. * idle routine..
  114. */
  115. void default_idle(void)
  116. {
  117. if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
  118. current_thread_info()->status &= ~TS_POLLING;
  119. /*
  120. * TS_POLLING-cleared state must be visible before we
  121. * test NEED_RESCHED:
  122. */
  123. smp_mb();
  124. local_irq_disable();
  125. if (!need_resched())
  126. safe_halt(); /* enables interrupts racelessly */
  127. else
  128. local_irq_enable();
  129. current_thread_info()->status |= TS_POLLING;
  130. } else {
  131. /* loop is done by the caller */
  132. cpu_relax();
  133. }
  134. }
  135. #ifdef CONFIG_APM_MODULE
  136. EXPORT_SYMBOL(default_idle);
  137. #endif
  138. /*
  139. * On SMP it's slightly faster (but much more power-consuming!)
  140. * to poll the ->work.need_resched flag instead of waiting for the
  141. * cross-CPU IPI to arrive. Use this option with caution.
  142. */
  143. static void poll_idle (void)
  144. {
  145. local_irq_enable();
  146. cpu_relax();
  147. }
  148. #ifdef CONFIG_HOTPLUG_CPU
  149. #include <asm/nmi.h>
  150. /* We don't actually take CPU down, just spin without interrupts. */
  151. static inline void play_dead(void)
  152. {
  153. /* This must be done before dead CPU ack */
  154. cpu_exit_clear();
  155. wbinvd();
  156. mb();
  157. /* Ack it */
  158. __get_cpu_var(cpu_state) = CPU_DEAD;
  159. /*
  160. * With physical CPU hotplug, we should halt the cpu
  161. */
  162. local_irq_disable();
  163. while (1)
  164. halt();
  165. }
  166. #else
  167. static inline void play_dead(void)
  168. {
  169. BUG();
  170. }
  171. #endif /* CONFIG_HOTPLUG_CPU */
  172. /*
  173. * The idle thread. There's no useful work to be
  174. * done, so just try to conserve power and have a
  175. * low exit latency (ie sit in a loop waiting for
  176. * somebody to say that they'd like to reschedule)
  177. */
  178. void cpu_idle(void)
  179. {
  180. int cpu = smp_processor_id();
  181. current_thread_info()->status |= TS_POLLING;
  182. /* endless idle loop with no priority at all */
  183. while (1) {
  184. while (!need_resched()) {
  185. void (*idle)(void);
  186. if (__get_cpu_var(cpu_idle_state))
  187. __get_cpu_var(cpu_idle_state) = 0;
  188. rmb();
  189. idle = pm_idle;
  190. if (!idle)
  191. idle = default_idle;
  192. if (cpu_is_offline(cpu))
  193. play_dead();
  194. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  195. /*
  196. * Idle routines should keep interrupts disabled
  197. * from here on, until they go to idle.
  198. * Otherwise, idle callbacks can misfire.
  199. */
  200. local_irq_disable();
  201. enter_idle();
  202. idle();
  203. __exit_idle();
  204. }
  205. preempt_enable_no_resched();
  206. schedule();
  207. preempt_disable();
  208. }
  209. }
  210. void cpu_idle_wait(void)
  211. {
  212. unsigned int cpu, this_cpu = get_cpu();
  213. cpumask_t map, tmp = current->cpus_allowed;
  214. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  215. put_cpu();
  216. cpus_clear(map);
  217. for_each_online_cpu(cpu) {
  218. per_cpu(cpu_idle_state, cpu) = 1;
  219. cpu_set(cpu, map);
  220. }
  221. __get_cpu_var(cpu_idle_state) = 0;
  222. wmb();
  223. do {
  224. ssleep(1);
  225. for_each_online_cpu(cpu) {
  226. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  227. cpu_clear(cpu, map);
  228. }
  229. cpus_and(map, map, cpu_online_map);
  230. } while (!cpus_empty(map));
  231. set_cpus_allowed(current, tmp);
  232. }
  233. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  234. /*
  235. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  236. * which can obviate IPI to trigger checking of need_resched.
  237. * We execute MONITOR against need_resched and enter optimized wait state
  238. * through MWAIT. Whenever someone changes need_resched, we would be woken
  239. * up from MWAIT (without an IPI).
  240. *
  241. * New with Core Duo processors, MWAIT can take some hints based on CPU
  242. * capability.
  243. */
  244. void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
  245. {
  246. if (!need_resched()) {
  247. __monitor((void *)&current_thread_info()->flags, 0, 0);
  248. smp_mb();
  249. if (!need_resched())
  250. __sti_mwait(eax, ecx);
  251. else
  252. local_irq_enable();
  253. } else {
  254. local_irq_enable();
  255. }
  256. }
  257. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  258. static void mwait_idle(void)
  259. {
  260. local_irq_enable();
  261. mwait_idle_with_hints(0, 0);
  262. }
  263. void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
  264. {
  265. if (cpu_has(c, X86_FEATURE_MWAIT)) {
  266. printk("monitor/mwait feature present.\n");
  267. /*
  268. * Skip, if setup has overridden idle.
  269. * One CPU supports mwait => All CPUs supports mwait
  270. */
  271. if (!pm_idle) {
  272. printk("using mwait in idle threads.\n");
  273. pm_idle = mwait_idle;
  274. }
  275. }
  276. }
  277. static int __init idle_setup (char *str)
  278. {
  279. if (!strncmp(str, "poll", 4)) {
  280. printk("using polling idle threads.\n");
  281. pm_idle = poll_idle;
  282. #ifdef CONFIG_X86_SMP
  283. if (smp_num_siblings > 1)
  284. printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
  285. #endif
  286. } else if (!strncmp(str, "halt", 4)) {
  287. printk("using halt in idle threads.\n");
  288. pm_idle = default_idle;
  289. }
  290. boot_option_idle_override = 1;
  291. return 1;
  292. }
  293. __setup("idle=", idle_setup);
  294. void show_regs(struct pt_regs * regs)
  295. {
  296. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  297. printk("\n");
  298. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  299. printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
  300. print_symbol("EIP is at %s\n", regs->eip);
  301. if (user_mode_vm(regs))
  302. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  303. printk(" EFLAGS: %08lx %s (%s %.*s)\n",
  304. regs->eflags, print_tainted(), init_utsname()->release,
  305. (int)strcspn(init_utsname()->version, " "),
  306. init_utsname()->version);
  307. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  308. regs->eax,regs->ebx,regs->ecx,regs->edx);
  309. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  310. regs->esi, regs->edi, regs->ebp);
  311. printk(" DS: %04x ES: %04x FS: %04x\n",
  312. 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
  313. cr0 = read_cr0();
  314. cr2 = read_cr2();
  315. cr3 = read_cr3();
  316. cr4 = read_cr4_safe();
  317. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
  318. show_trace(NULL, regs, &regs->esp);
  319. }
  320. /*
  321. * This gets run with %ebx containing the
  322. * function to call, and %edx containing
  323. * the "args".
  324. */
  325. extern void kernel_thread_helper(void);
  326. /*
  327. * Create a kernel thread
  328. */
  329. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  330. {
  331. struct pt_regs regs;
  332. memset(&regs, 0, sizeof(regs));
  333. regs.ebx = (unsigned long) fn;
  334. regs.edx = (unsigned long) arg;
  335. regs.xds = __USER_DS;
  336. regs.xes = __USER_DS;
  337. regs.xfs = __KERNEL_PDA;
  338. regs.orig_eax = -1;
  339. regs.eip = (unsigned long) kernel_thread_helper;
  340. regs.xcs = __KERNEL_CS | get_kernel_rpl();
  341. regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  342. /* Ok, create the new process.. */
  343. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  344. }
  345. EXPORT_SYMBOL(kernel_thread);
  346. /*
  347. * Free current thread data structures etc..
  348. */
  349. void exit_thread(void)
  350. {
  351. /* The process may have allocated an io port bitmap... nuke it. */
  352. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  353. struct task_struct *tsk = current;
  354. struct thread_struct *t = &tsk->thread;
  355. int cpu = get_cpu();
  356. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  357. kfree(t->io_bitmap_ptr);
  358. t->io_bitmap_ptr = NULL;
  359. clear_thread_flag(TIF_IO_BITMAP);
  360. /*
  361. * Careful, clear this in the TSS too:
  362. */
  363. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  364. t->io_bitmap_max = 0;
  365. tss->io_bitmap_owner = NULL;
  366. tss->io_bitmap_max = 0;
  367. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  368. put_cpu();
  369. }
  370. }
  371. void flush_thread(void)
  372. {
  373. struct task_struct *tsk = current;
  374. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  375. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  376. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  377. /*
  378. * Forget coprocessor state..
  379. */
  380. clear_fpu(tsk);
  381. clear_used_math();
  382. }
  383. void release_thread(struct task_struct *dead_task)
  384. {
  385. BUG_ON(dead_task->mm);
  386. release_vm86_irqs(dead_task);
  387. }
  388. /*
  389. * This gets called before we allocate a new thread and copy
  390. * the current task into it.
  391. */
  392. void prepare_to_copy(struct task_struct *tsk)
  393. {
  394. unlazy_fpu(tsk);
  395. }
  396. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  397. unsigned long unused,
  398. struct task_struct * p, struct pt_regs * regs)
  399. {
  400. struct pt_regs * childregs;
  401. struct task_struct *tsk;
  402. int err;
  403. childregs = task_pt_regs(p);
  404. *childregs = *regs;
  405. childregs->eax = 0;
  406. childregs->esp = esp;
  407. p->thread.esp = (unsigned long) childregs;
  408. p->thread.esp0 = (unsigned long) (childregs+1);
  409. p->thread.eip = (unsigned long) ret_from_fork;
  410. savesegment(gs,p->thread.gs);
  411. tsk = current;
  412. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  413. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  414. IO_BITMAP_BYTES, GFP_KERNEL);
  415. if (!p->thread.io_bitmap_ptr) {
  416. p->thread.io_bitmap_max = 0;
  417. return -ENOMEM;
  418. }
  419. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  420. }
  421. /*
  422. * Set a new TLS for the child thread?
  423. */
  424. if (clone_flags & CLONE_SETTLS) {
  425. struct desc_struct *desc;
  426. struct user_desc info;
  427. int idx;
  428. err = -EFAULT;
  429. if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
  430. goto out;
  431. err = -EINVAL;
  432. if (LDT_empty(&info))
  433. goto out;
  434. idx = info.entry_number;
  435. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  436. goto out;
  437. desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  438. desc->a = LDT_entry_a(&info);
  439. desc->b = LDT_entry_b(&info);
  440. }
  441. err = 0;
  442. out:
  443. if (err && p->thread.io_bitmap_ptr) {
  444. kfree(p->thread.io_bitmap_ptr);
  445. p->thread.io_bitmap_max = 0;
  446. }
  447. return err;
  448. }
  449. /*
  450. * fill in the user structure for a core dump..
  451. */
  452. void dump_thread(struct pt_regs * regs, struct user * dump)
  453. {
  454. int i;
  455. /* changed the size calculations - should hopefully work better. lbt */
  456. dump->magic = CMAGIC;
  457. dump->start_code = 0;
  458. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  459. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  460. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  461. dump->u_dsize -= dump->u_tsize;
  462. dump->u_ssize = 0;
  463. for (i = 0; i < 8; i++)
  464. dump->u_debugreg[i] = current->thread.debugreg[i];
  465. if (dump->start_stack < TASK_SIZE)
  466. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  467. dump->regs.ebx = regs->ebx;
  468. dump->regs.ecx = regs->ecx;
  469. dump->regs.edx = regs->edx;
  470. dump->regs.esi = regs->esi;
  471. dump->regs.edi = regs->edi;
  472. dump->regs.ebp = regs->ebp;
  473. dump->regs.eax = regs->eax;
  474. dump->regs.ds = regs->xds;
  475. dump->regs.es = regs->xes;
  476. dump->regs.fs = regs->xfs;
  477. savesegment(gs,dump->regs.gs);
  478. dump->regs.orig_eax = regs->orig_eax;
  479. dump->regs.eip = regs->eip;
  480. dump->regs.cs = regs->xcs;
  481. dump->regs.eflags = regs->eflags;
  482. dump->regs.esp = regs->esp;
  483. dump->regs.ss = regs->xss;
  484. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  485. }
  486. EXPORT_SYMBOL(dump_thread);
  487. /*
  488. * Capture the user space registers if the task is not running (in user space)
  489. */
  490. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  491. {
  492. struct pt_regs ptregs = *task_pt_regs(tsk);
  493. ptregs.xcs &= 0xffff;
  494. ptregs.xds &= 0xffff;
  495. ptregs.xes &= 0xffff;
  496. ptregs.xss &= 0xffff;
  497. elf_core_copy_regs(regs, &ptregs);
  498. return 1;
  499. }
  500. static noinline void __switch_to_xtra(struct task_struct *next_p,
  501. struct tss_struct *tss)
  502. {
  503. struct thread_struct *next;
  504. next = &next_p->thread;
  505. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  506. set_debugreg(next->debugreg[0], 0);
  507. set_debugreg(next->debugreg[1], 1);
  508. set_debugreg(next->debugreg[2], 2);
  509. set_debugreg(next->debugreg[3], 3);
  510. /* no 4 and 5 */
  511. set_debugreg(next->debugreg[6], 6);
  512. set_debugreg(next->debugreg[7], 7);
  513. }
  514. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  515. /*
  516. * Disable the bitmap via an invalid offset. We still cache
  517. * the previous bitmap owner and the IO bitmap contents:
  518. */
  519. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  520. return;
  521. }
  522. if (likely(next == tss->io_bitmap_owner)) {
  523. /*
  524. * Previous owner of the bitmap (hence the bitmap content)
  525. * matches the next task, we dont have to do anything but
  526. * to set a valid offset in the TSS:
  527. */
  528. tss->io_bitmap_base = IO_BITMAP_OFFSET;
  529. return;
  530. }
  531. /*
  532. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  533. * and we let the task to get a GPF in case an I/O instruction
  534. * is performed. The handler of the GPF will verify that the
  535. * faulting task has a valid I/O bitmap and, it true, does the
  536. * real copy and restart the instruction. This will save us
  537. * redundant copies when the currently switched task does not
  538. * perform any I/O during its timeslice.
  539. */
  540. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  541. }
  542. /*
  543. * This function selects if the context switch from prev to next
  544. * has to tweak the TSC disable bit in the cr4.
  545. */
  546. static inline void disable_tsc(struct task_struct *prev_p,
  547. struct task_struct *next_p)
  548. {
  549. struct thread_info *prev, *next;
  550. /*
  551. * gcc should eliminate the ->thread_info dereference if
  552. * has_secure_computing returns 0 at compile time (SECCOMP=n).
  553. */
  554. prev = task_thread_info(prev_p);
  555. next = task_thread_info(next_p);
  556. if (has_secure_computing(prev) || has_secure_computing(next)) {
  557. /* slow path here */
  558. if (has_secure_computing(prev) &&
  559. !has_secure_computing(next)) {
  560. write_cr4(read_cr4() & ~X86_CR4_TSD);
  561. } else if (!has_secure_computing(prev) &&
  562. has_secure_computing(next))
  563. write_cr4(read_cr4() | X86_CR4_TSD);
  564. }
  565. }
  566. /*
  567. * switch_to(x,yn) should switch tasks from x to y.
  568. *
  569. * We fsave/fwait so that an exception goes off at the right time
  570. * (as a call from the fsave or fwait in effect) rather than to
  571. * the wrong process. Lazy FP saving no longer makes any sense
  572. * with modern CPU's, and this simplifies a lot of things (SMP
  573. * and UP become the same).
  574. *
  575. * NOTE! We used to use the x86 hardware context switching. The
  576. * reason for not using it any more becomes apparent when you
  577. * try to recover gracefully from saved state that is no longer
  578. * valid (stale segment register values in particular). With the
  579. * hardware task-switch, there is no way to fix up bad state in
  580. * a reasonable manner.
  581. *
  582. * The fact that Intel documents the hardware task-switching to
  583. * be slow is a fairly red herring - this code is not noticeably
  584. * faster. However, there _is_ some room for improvement here,
  585. * so the performance issues may eventually be a valid point.
  586. * More important, however, is the fact that this allows us much
  587. * more flexibility.
  588. *
  589. * The return value (in %eax) will be the "prev" task after
  590. * the task-switch, and shows up in ret_from_fork in entry.S,
  591. * for example.
  592. */
  593. struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  594. {
  595. struct thread_struct *prev = &prev_p->thread,
  596. *next = &next_p->thread;
  597. int cpu = smp_processor_id();
  598. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  599. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  600. __unlazy_fpu(prev_p);
  601. /* we're going to use this soon, after a few expensive things */
  602. if (next_p->fpu_counter > 5)
  603. prefetch(&next->i387.fxsave);
  604. /*
  605. * Reload esp0.
  606. */
  607. load_esp0(tss, next);
  608. /*
  609. * Save away %gs. No need to save %fs, as it was saved on the
  610. * stack on entry. No need to save %es and %ds, as those are
  611. * always kernel segments while inside the kernel. Doing this
  612. * before setting the new TLS descriptors avoids the situation
  613. * where we temporarily have non-reloadable segments in %fs
  614. * and %gs. This could be an issue if the NMI handler ever
  615. * used %fs or %gs (it does not today), or if the kernel is
  616. * running inside of a hypervisor layer.
  617. */
  618. savesegment(gs, prev->gs);
  619. /*
  620. * Load the per-thread Thread-Local Storage descriptor.
  621. */
  622. load_TLS(next, cpu);
  623. /*
  624. * Restore IOPL if needed. In normal use, the flags restore
  625. * in the switch assembly will handle this. But if the kernel
  626. * is running virtualized at a non-zero CPL, the popf will
  627. * not restore flags, so it must be done in a separate step.
  628. */
  629. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  630. set_iopl_mask(next->iopl);
  631. /*
  632. * Now maybe handle debug registers and/or IO bitmaps
  633. */
  634. if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
  635. || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
  636. __switch_to_xtra(next_p, tss);
  637. disable_tsc(prev_p, next_p);
  638. /*
  639. * Leave lazy mode, flushing any hypercalls made here.
  640. * This must be done before restoring TLS segments so
  641. * the GDT and LDT are properly updated, and must be
  642. * done before math_state_restore, so the TS bit is up
  643. * to date.
  644. */
  645. arch_leave_lazy_cpu_mode();
  646. /* If the task has used fpu the last 5 timeslices, just do a full
  647. * restore of the math state immediately to avoid the trap; the
  648. * chances of needing FPU soon are obviously high now
  649. */
  650. if (next_p->fpu_counter > 5)
  651. math_state_restore();
  652. /*
  653. * Restore %gs if needed (which is common)
  654. */
  655. if (prev->gs | next->gs)
  656. loadsegment(gs, next->gs);
  657. write_pda(pcurrent, next_p);
  658. return prev_p;
  659. }
  660. asmlinkage int sys_fork(struct pt_regs regs)
  661. {
  662. return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  663. }
  664. asmlinkage int sys_clone(struct pt_regs regs)
  665. {
  666. unsigned long clone_flags;
  667. unsigned long newsp;
  668. int __user *parent_tidptr, *child_tidptr;
  669. clone_flags = regs.ebx;
  670. newsp = regs.ecx;
  671. parent_tidptr = (int __user *)regs.edx;
  672. child_tidptr = (int __user *)regs.edi;
  673. if (!newsp)
  674. newsp = regs.esp;
  675. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  676. }
  677. /*
  678. * This is trivial, and on the face of it looks like it
  679. * could equally well be done in user mode.
  680. *
  681. * Not so, for quite unobvious reasons - register pressure.
  682. * In user mode vfork() cannot have a stack frame, and if
  683. * done by calling the "clone()" system call directly, you
  684. * do not have enough call-clobbered registers to hold all
  685. * the information you need.
  686. */
  687. asmlinkage int sys_vfork(struct pt_regs regs)
  688. {
  689. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  690. }
  691. /*
  692. * sys_execve() executes a new program.
  693. */
  694. asmlinkage int sys_execve(struct pt_regs regs)
  695. {
  696. int error;
  697. char * filename;
  698. filename = getname((char __user *) regs.ebx);
  699. error = PTR_ERR(filename);
  700. if (IS_ERR(filename))
  701. goto out;
  702. error = do_execve(filename,
  703. (char __user * __user *) regs.ecx,
  704. (char __user * __user *) regs.edx,
  705. &regs);
  706. if (error == 0) {
  707. task_lock(current);
  708. current->ptrace &= ~PT_DTRACE;
  709. task_unlock(current);
  710. /* Make sure we don't return using sysenter.. */
  711. set_thread_flag(TIF_IRET);
  712. }
  713. putname(filename);
  714. out:
  715. return error;
  716. }
  717. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  718. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  719. unsigned long get_wchan(struct task_struct *p)
  720. {
  721. unsigned long ebp, esp, eip;
  722. unsigned long stack_page;
  723. int count = 0;
  724. if (!p || p == current || p->state == TASK_RUNNING)
  725. return 0;
  726. stack_page = (unsigned long)task_stack_page(p);
  727. esp = p->thread.esp;
  728. if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
  729. return 0;
  730. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  731. ebp = *(unsigned long *) esp;
  732. do {
  733. if (ebp < stack_page || ebp > top_ebp+stack_page)
  734. return 0;
  735. eip = *(unsigned long *) (ebp+4);
  736. if (!in_sched_functions(eip))
  737. return eip;
  738. ebp = *(unsigned long *) ebp;
  739. } while (count++ < 16);
  740. return 0;
  741. }
  742. /*
  743. * sys_alloc_thread_area: get a yet unused TLS descriptor index.
  744. */
  745. static int get_free_idx(void)
  746. {
  747. struct thread_struct *t = &current->thread;
  748. int idx;
  749. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  750. if (desc_empty(t->tls_array + idx))
  751. return idx + GDT_ENTRY_TLS_MIN;
  752. return -ESRCH;
  753. }
  754. /*
  755. * Set a given TLS descriptor:
  756. */
  757. asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
  758. {
  759. struct thread_struct *t = &current->thread;
  760. struct user_desc info;
  761. struct desc_struct *desc;
  762. int cpu, idx;
  763. if (copy_from_user(&info, u_info, sizeof(info)))
  764. return -EFAULT;
  765. idx = info.entry_number;
  766. /*
  767. * index -1 means the kernel should try to find and
  768. * allocate an empty descriptor:
  769. */
  770. if (idx == -1) {
  771. idx = get_free_idx();
  772. if (idx < 0)
  773. return idx;
  774. if (put_user(idx, &u_info->entry_number))
  775. return -EFAULT;
  776. }
  777. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  778. return -EINVAL;
  779. desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
  780. /*
  781. * We must not get preempted while modifying the TLS.
  782. */
  783. cpu = get_cpu();
  784. if (LDT_empty(&info)) {
  785. desc->a = 0;
  786. desc->b = 0;
  787. } else {
  788. desc->a = LDT_entry_a(&info);
  789. desc->b = LDT_entry_b(&info);
  790. }
  791. load_TLS(t, cpu);
  792. put_cpu();
  793. return 0;
  794. }
  795. /*
  796. * Get the current Thread-Local Storage area:
  797. */
  798. #define GET_BASE(desc) ( \
  799. (((desc)->a >> 16) & 0x0000ffff) | \
  800. (((desc)->b << 16) & 0x00ff0000) | \
  801. ( (desc)->b & 0xff000000) )
  802. #define GET_LIMIT(desc) ( \
  803. ((desc)->a & 0x0ffff) | \
  804. ((desc)->b & 0xf0000) )
  805. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  806. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  807. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  808. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  809. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  810. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  811. asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
  812. {
  813. struct user_desc info;
  814. struct desc_struct *desc;
  815. int idx;
  816. if (get_user(idx, &u_info->entry_number))
  817. return -EFAULT;
  818. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  819. return -EINVAL;
  820. memset(&info, 0, sizeof(info));
  821. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  822. info.entry_number = idx;
  823. info.base_addr = GET_BASE(desc);
  824. info.limit = GET_LIMIT(desc);
  825. info.seg_32bit = GET_32BIT(desc);
  826. info.contents = GET_CONTENTS(desc);
  827. info.read_exec_only = !GET_WRITABLE(desc);
  828. info.limit_in_pages = GET_LIMIT_PAGES(desc);
  829. info.seg_not_present = !GET_PRESENT(desc);
  830. info.useable = GET_USEABLE(desc);
  831. if (copy_to_user(u_info, &info, sizeof(info)))
  832. return -EFAULT;
  833. return 0;
  834. }
  835. unsigned long arch_align_stack(unsigned long sp)
  836. {
  837. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  838. sp -= get_random_int() % 8192;
  839. return sp & ~0xf;
  840. }