clkc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Zynq clock controller
  3. *
  4. * Copyright (C) 2012 - 2013 Xilinx
  5. *
  6. * Sören Brinkmann <soren.brinkmann@xilinx.com>
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License v2 as published by
  10. * the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk/zynq.h>
  21. #include <linux/clk-provider.h>
  22. #include <linux/of.h>
  23. #include <linux/slab.h>
  24. #include <linux/string.h>
  25. #include <linux/io.h>
  26. static void __iomem *zynq_slcr_base_priv;
  27. #define SLCR_ARMPLL_CTRL (zynq_slcr_base_priv + 0x100)
  28. #define SLCR_DDRPLL_CTRL (zynq_slcr_base_priv + 0x104)
  29. #define SLCR_IOPLL_CTRL (zynq_slcr_base_priv + 0x108)
  30. #define SLCR_PLL_STATUS (zynq_slcr_base_priv + 0x10c)
  31. #define SLCR_ARM_CLK_CTRL (zynq_slcr_base_priv + 0x120)
  32. #define SLCR_DDR_CLK_CTRL (zynq_slcr_base_priv + 0x124)
  33. #define SLCR_DCI_CLK_CTRL (zynq_slcr_base_priv + 0x128)
  34. #define SLCR_APER_CLK_CTRL (zynq_slcr_base_priv + 0x12c)
  35. #define SLCR_GEM0_CLK_CTRL (zynq_slcr_base_priv + 0x140)
  36. #define SLCR_GEM1_CLK_CTRL (zynq_slcr_base_priv + 0x144)
  37. #define SLCR_SMC_CLK_CTRL (zynq_slcr_base_priv + 0x148)
  38. #define SLCR_LQSPI_CLK_CTRL (zynq_slcr_base_priv + 0x14c)
  39. #define SLCR_SDIO_CLK_CTRL (zynq_slcr_base_priv + 0x150)
  40. #define SLCR_UART_CLK_CTRL (zynq_slcr_base_priv + 0x154)
  41. #define SLCR_SPI_CLK_CTRL (zynq_slcr_base_priv + 0x158)
  42. #define SLCR_CAN_CLK_CTRL (zynq_slcr_base_priv + 0x15c)
  43. #define SLCR_CAN_MIOCLK_CTRL (zynq_slcr_base_priv + 0x160)
  44. #define SLCR_DBG_CLK_CTRL (zynq_slcr_base_priv + 0x164)
  45. #define SLCR_PCAP_CLK_CTRL (zynq_slcr_base_priv + 0x168)
  46. #define SLCR_FPGA0_CLK_CTRL (zynq_slcr_base_priv + 0x170)
  47. #define SLCR_621_TRUE (zynq_slcr_base_priv + 0x1c4)
  48. #define SLCR_SWDT_CLK_SEL (zynq_slcr_base_priv + 0x304)
  49. #define NUM_MIO_PINS 54
  50. enum zynq_clk {
  51. armpll, ddrpll, iopll,
  52. cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x,
  53. ddr2x, ddr3x, dci,
  54. lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1,
  55. sdio0, sdio1, uart0, uart1, spi0, spi1, dma,
  56. usb0_aper, usb1_aper, gem0_aper, gem1_aper,
  57. sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper,
  58. i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper,
  59. smc_aper, swdt, dbg_trc, dbg_apb, clk_max};
  60. static struct clk *ps_clk;
  61. static struct clk *clks[clk_max];
  62. static struct clk_onecell_data clk_data;
  63. static DEFINE_SPINLOCK(armpll_lock);
  64. static DEFINE_SPINLOCK(ddrpll_lock);
  65. static DEFINE_SPINLOCK(iopll_lock);
  66. static DEFINE_SPINLOCK(armclk_lock);
  67. static DEFINE_SPINLOCK(swdtclk_lock);
  68. static DEFINE_SPINLOCK(ddrclk_lock);
  69. static DEFINE_SPINLOCK(dciclk_lock);
  70. static DEFINE_SPINLOCK(gem0clk_lock);
  71. static DEFINE_SPINLOCK(gem1clk_lock);
  72. static DEFINE_SPINLOCK(canclk_lock);
  73. static DEFINE_SPINLOCK(canmioclk_lock);
  74. static DEFINE_SPINLOCK(dbgclk_lock);
  75. static DEFINE_SPINLOCK(aperclk_lock);
  76. static const char dummy_nm[] __initconst = "dummy_name";
  77. static const char *armpll_parents[] __initdata = {"armpll_int", "ps_clk"};
  78. static const char *ddrpll_parents[] __initdata = {"ddrpll_int", "ps_clk"};
  79. static const char *iopll_parents[] __initdata = {"iopll_int", "ps_clk"};
  80. static const char *gem0_mux_parents[] __initdata = {"gem0_div1", dummy_nm};
  81. static const char *gem1_mux_parents[] __initdata = {"gem1_div1", dummy_nm};
  82. static const char *can0_mio_mux2_parents[] __initdata = {"can0_gate",
  83. "can0_mio_mux"};
  84. static const char *can1_mio_mux2_parents[] __initdata = {"can1_gate",
  85. "can1_mio_mux"};
  86. static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div",
  87. dummy_nm};
  88. static const char *dbgtrc_emio_input_names[] __initdata = {"trace_emio_clk"};
  89. static const char *gem0_emio_input_names[] __initdata = {"gem0_emio_clk"};
  90. static const char *gem1_emio_input_names[] __initdata = {"gem1_emio_clk"};
  91. static const char *swdt_ext_clk_input_names[] __initdata = {"swdt_ext_clk"};
  92. static void __init zynq_clk_register_fclk(enum zynq_clk fclk,
  93. const char *clk_name, void __iomem *fclk_ctrl_reg,
  94. const char **parents)
  95. {
  96. struct clk *clk;
  97. char *mux_name;
  98. char *div0_name;
  99. char *div1_name;
  100. spinlock_t *fclk_lock;
  101. spinlock_t *fclk_gate_lock;
  102. void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8;
  103. fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL);
  104. if (!fclk_lock)
  105. goto err;
  106. fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL);
  107. if (!fclk_gate_lock)
  108. goto err;
  109. spin_lock_init(fclk_lock);
  110. spin_lock_init(fclk_gate_lock);
  111. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name);
  112. div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name);
  113. div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name);
  114. clk = clk_register_mux(NULL, mux_name, parents, 4, 0,
  115. fclk_ctrl_reg, 4, 2, 0, fclk_lock);
  116. clk = clk_register_divider(NULL, div0_name, mux_name,
  117. 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED |
  118. CLK_DIVIDER_ALLOW_ZERO, fclk_lock);
  119. clk = clk_register_divider(NULL, div1_name, div0_name,
  120. CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6,
  121. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  122. fclk_lock);
  123. clks[fclk] = clk_register_gate(NULL, clk_name,
  124. div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg,
  125. 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock);
  126. kfree(mux_name);
  127. kfree(div0_name);
  128. kfree(div1_name);
  129. return;
  130. err:
  131. clks[fclk] = ERR_PTR(-ENOMEM);
  132. }
  133. static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0,
  134. enum zynq_clk clk1, const char *clk_name0,
  135. const char *clk_name1, void __iomem *clk_ctrl,
  136. const char **parents, unsigned int two_gates)
  137. {
  138. struct clk *clk;
  139. char *mux_name;
  140. char *div_name;
  141. spinlock_t *lock;
  142. lock = kmalloc(sizeof(*lock), GFP_KERNEL);
  143. if (!lock)
  144. goto err;
  145. spin_lock_init(lock);
  146. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0);
  147. div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0);
  148. clk = clk_register_mux(NULL, mux_name, parents, 4, 0,
  149. clk_ctrl, 4, 2, 0, lock);
  150. clk = clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6,
  151. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock);
  152. clks[clk0] = clk_register_gate(NULL, clk_name0, div_name,
  153. CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock);
  154. if (two_gates)
  155. clks[clk1] = clk_register_gate(NULL, clk_name1, div_name,
  156. CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock);
  157. kfree(mux_name);
  158. kfree(div_name);
  159. return;
  160. err:
  161. clks[clk0] = ERR_PTR(-ENOMEM);
  162. if (two_gates)
  163. clks[clk1] = ERR_PTR(-ENOMEM);
  164. }
  165. static void __init zynq_clk_setup(struct device_node *np)
  166. {
  167. int i;
  168. u32 tmp;
  169. int ret;
  170. struct clk *clk;
  171. char *clk_name;
  172. const char *clk_output_name[clk_max];
  173. const char *cpu_parents[4];
  174. const char *periph_parents[4];
  175. const char *swdt_ext_clk_mux_parents[2];
  176. const char *can_mio_mux_parents[NUM_MIO_PINS];
  177. pr_info("Zynq clock init\n");
  178. /* get clock output names from DT */
  179. for (i = 0; i < clk_max; i++) {
  180. if (of_property_read_string_index(np, "clock-output-names",
  181. i, &clk_output_name[i])) {
  182. pr_err("%s: clock output name not in DT\n", __func__);
  183. BUG();
  184. }
  185. }
  186. cpu_parents[0] = clk_output_name[armpll];
  187. cpu_parents[1] = clk_output_name[armpll];
  188. cpu_parents[2] = clk_output_name[ddrpll];
  189. cpu_parents[3] = clk_output_name[iopll];
  190. periph_parents[0] = clk_output_name[iopll];
  191. periph_parents[1] = clk_output_name[iopll];
  192. periph_parents[2] = clk_output_name[armpll];
  193. periph_parents[3] = clk_output_name[ddrpll];
  194. /* ps_clk */
  195. ret = of_property_read_u32(np, "ps-clk-frequency", &tmp);
  196. if (ret) {
  197. pr_warn("ps_clk frequency not specified, using 33 MHz.\n");
  198. tmp = 33333333;
  199. }
  200. ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, CLK_IS_ROOT,
  201. tmp);
  202. /* PLLs */
  203. clk = clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL,
  204. SLCR_PLL_STATUS, 0, &armpll_lock);
  205. clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll],
  206. armpll_parents, 2, 0, SLCR_ARMPLL_CTRL, 4, 1, 0,
  207. &armpll_lock);
  208. clk = clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL,
  209. SLCR_PLL_STATUS, 1, &ddrpll_lock);
  210. clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll],
  211. ddrpll_parents, 2, 0, SLCR_DDRPLL_CTRL, 4, 1, 0,
  212. &ddrpll_lock);
  213. clk = clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL,
  214. SLCR_PLL_STATUS, 2, &iopll_lock);
  215. clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll],
  216. iopll_parents, 2, 0, SLCR_IOPLL_CTRL, 4, 1, 0,
  217. &iopll_lock);
  218. /* CPU clocks */
  219. tmp = readl(SLCR_621_TRUE) & 1;
  220. clk = clk_register_mux(NULL, "cpu_mux", cpu_parents, 4, 0,
  221. SLCR_ARM_CLK_CTRL, 4, 2, 0, &armclk_lock);
  222. clk = clk_register_divider(NULL, "cpu_div", "cpu_mux", 0,
  223. SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  224. CLK_DIVIDER_ALLOW_ZERO, &armclk_lock);
  225. clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x],
  226. "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED,
  227. SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock);
  228. clk = clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0,
  229. 1, 2);
  230. clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x],
  231. "cpu_3or2x_div", CLK_IGNORE_UNUSED,
  232. SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock);
  233. clk = clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1,
  234. 2 + tmp);
  235. clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x],
  236. "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL,
  237. 26, 0, &armclk_lock);
  238. clk = clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1,
  239. 4 + 2 * tmp);
  240. clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x],
  241. "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27,
  242. 0, &armclk_lock);
  243. /* Timers */
  244. swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x];
  245. for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) {
  246. int idx = of_property_match_string(np, "clock-names",
  247. swdt_ext_clk_input_names[i]);
  248. if (idx >= 0)
  249. swdt_ext_clk_mux_parents[i + 1] =
  250. of_clk_get_parent_name(np, idx);
  251. else
  252. swdt_ext_clk_mux_parents[i + 1] = dummy_nm;
  253. }
  254. clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt],
  255. swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT,
  256. SLCR_SWDT_CLK_SEL, 0, 1, 0, &swdtclk_lock);
  257. /* DDR clocks */
  258. clk = clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0,
  259. SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED |
  260. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  261. clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x],
  262. "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock);
  263. clk_prepare_enable(clks[ddr2x]);
  264. clk = clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0,
  265. SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED |
  266. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  267. clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x],
  268. "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock);
  269. clk_prepare_enable(clks[ddr3x]);
  270. clk = clk_register_divider(NULL, "dci_div0", "ddrpll", 0,
  271. SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  272. CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock);
  273. clk = clk_register_divider(NULL, "dci_div1", "dci_div0",
  274. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6,
  275. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  276. &dciclk_lock);
  277. clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1",
  278. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0,
  279. &dciclk_lock);
  280. clk_prepare_enable(clks[dci]);
  281. /* Peripheral clocks */
  282. for (i = fclk0; i <= fclk3; i++)
  283. zynq_clk_register_fclk(i, clk_output_name[i],
  284. SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0),
  285. periph_parents);
  286. zynq_clk_register_periph_clk(lqspi, 0, clk_output_name[lqspi], NULL,
  287. SLCR_LQSPI_CLK_CTRL, periph_parents, 0);
  288. zynq_clk_register_periph_clk(smc, 0, clk_output_name[smc], NULL,
  289. SLCR_SMC_CLK_CTRL, periph_parents, 0);
  290. zynq_clk_register_periph_clk(pcap, 0, clk_output_name[pcap], NULL,
  291. SLCR_PCAP_CLK_CTRL, periph_parents, 0);
  292. zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0],
  293. clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL,
  294. periph_parents, 1);
  295. zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0],
  296. clk_output_name[uart1], SLCR_UART_CLK_CTRL,
  297. periph_parents, 1);
  298. zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0],
  299. clk_output_name[spi1], SLCR_SPI_CLK_CTRL,
  300. periph_parents, 1);
  301. for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) {
  302. int idx = of_property_match_string(np, "clock-names",
  303. gem0_emio_input_names[i]);
  304. if (idx >= 0)
  305. gem0_mux_parents[i + 1] = of_clk_get_parent_name(np,
  306. idx);
  307. }
  308. clk = clk_register_mux(NULL, "gem0_mux", periph_parents, 4, 0,
  309. SLCR_GEM0_CLK_CTRL, 4, 2, 0, &gem0clk_lock);
  310. clk = clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0,
  311. SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  312. CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock);
  313. clk = clk_register_divider(NULL, "gem0_div1", "gem0_div0",
  314. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6,
  315. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  316. &gem0clk_lock);
  317. clk = clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2,
  318. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 6, 1, 0,
  319. &gem0clk_lock);
  320. clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0],
  321. "gem0_emio_mux", CLK_SET_RATE_PARENT,
  322. SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock);
  323. for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) {
  324. int idx = of_property_match_string(np, "clock-names",
  325. gem1_emio_input_names[i]);
  326. if (idx >= 0)
  327. gem1_mux_parents[i + 1] = of_clk_get_parent_name(np,
  328. idx);
  329. }
  330. clk = clk_register_mux(NULL, "gem1_mux", periph_parents, 4, 0,
  331. SLCR_GEM1_CLK_CTRL, 4, 2, 0, &gem1clk_lock);
  332. clk = clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0,
  333. SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  334. CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock);
  335. clk = clk_register_divider(NULL, "gem1_div1", "gem1_div0",
  336. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6,
  337. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  338. &gem1clk_lock);
  339. clk = clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2,
  340. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 6, 1, 0,
  341. &gem1clk_lock);
  342. clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1],
  343. "gem1_emio_mux", CLK_SET_RATE_PARENT,
  344. SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock);
  345. tmp = strlen("mio_clk_00x");
  346. clk_name = kmalloc(tmp, GFP_KERNEL);
  347. for (i = 0; i < NUM_MIO_PINS; i++) {
  348. int idx;
  349. snprintf(clk_name, tmp, "mio_clk_%2.2d", i);
  350. idx = of_property_match_string(np, "clock-names", clk_name);
  351. if (idx >= 0)
  352. can_mio_mux_parents[i] = of_clk_get_parent_name(np,
  353. idx);
  354. else
  355. can_mio_mux_parents[i] = dummy_nm;
  356. }
  357. kfree(clk_name);
  358. clk = clk_register_mux(NULL, "can_mux", periph_parents, 4, 0,
  359. SLCR_CAN_CLK_CTRL, 4, 2, 0, &canclk_lock);
  360. clk = clk_register_divider(NULL, "can_div0", "can_mux", 0,
  361. SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  362. CLK_DIVIDER_ALLOW_ZERO, &canclk_lock);
  363. clk = clk_register_divider(NULL, "can_div1", "can_div0",
  364. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6,
  365. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  366. &canclk_lock);
  367. clk = clk_register_gate(NULL, "can0_gate", "can_div1",
  368. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0,
  369. &canclk_lock);
  370. clk = clk_register_gate(NULL, "can1_gate", "can_div1",
  371. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0,
  372. &canclk_lock);
  373. clk = clk_register_mux(NULL, "can0_mio_mux",
  374. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT,
  375. SLCR_CAN_MIOCLK_CTRL, 0, 6, 0, &canmioclk_lock);
  376. clk = clk_register_mux(NULL, "can1_mio_mux",
  377. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT,
  378. SLCR_CAN_MIOCLK_CTRL, 16, 6, 0, &canmioclk_lock);
  379. clks[can0] = clk_register_mux(NULL, clk_output_name[can0],
  380. can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT,
  381. SLCR_CAN_MIOCLK_CTRL, 6, 1, 0, &canmioclk_lock);
  382. clks[can1] = clk_register_mux(NULL, clk_output_name[can1],
  383. can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT,
  384. SLCR_CAN_MIOCLK_CTRL, 22, 1, 0, &canmioclk_lock);
  385. for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) {
  386. int idx = of_property_match_string(np, "clock-names",
  387. dbgtrc_emio_input_names[i]);
  388. if (idx >= 0)
  389. dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np,
  390. idx);
  391. }
  392. clk = clk_register_mux(NULL, "dbg_mux", periph_parents, 4, 0,
  393. SLCR_DBG_CLK_CTRL, 4, 2, 0, &dbgclk_lock);
  394. clk = clk_register_divider(NULL, "dbg_div", "dbg_mux", 0,
  395. SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  396. CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock);
  397. clk = clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2, 0,
  398. SLCR_DBG_CLK_CTRL, 6, 1, 0, &dbgclk_lock);
  399. clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc],
  400. "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL,
  401. 0, 0, &dbgclk_lock);
  402. clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb],
  403. clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0,
  404. &dbgclk_lock);
  405. /* One gated clock for all APER clocks. */
  406. clks[dma] = clk_register_gate(NULL, clk_output_name[dma],
  407. clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0,
  408. &aperclk_lock);
  409. clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper],
  410. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0,
  411. &aperclk_lock);
  412. clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper],
  413. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0,
  414. &aperclk_lock);
  415. clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper],
  416. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0,
  417. &aperclk_lock);
  418. clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper],
  419. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0,
  420. &aperclk_lock);
  421. clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper],
  422. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0,
  423. &aperclk_lock);
  424. clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper],
  425. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0,
  426. &aperclk_lock);
  427. clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper],
  428. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0,
  429. &aperclk_lock);
  430. clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper],
  431. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0,
  432. &aperclk_lock);
  433. clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper],
  434. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0,
  435. &aperclk_lock);
  436. clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper],
  437. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0,
  438. &aperclk_lock);
  439. clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper],
  440. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0,
  441. &aperclk_lock);
  442. clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper],
  443. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0,
  444. &aperclk_lock);
  445. clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper],
  446. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0,
  447. &aperclk_lock);
  448. clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper],
  449. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0,
  450. &aperclk_lock);
  451. clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper],
  452. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0,
  453. &aperclk_lock);
  454. clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper],
  455. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0,
  456. &aperclk_lock);
  457. clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper],
  458. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0,
  459. &aperclk_lock);
  460. for (i = 0; i < ARRAY_SIZE(clks); i++) {
  461. if (IS_ERR(clks[i])) {
  462. pr_err("Zynq clk %d: register failed with %ld\n",
  463. i, PTR_ERR(clks[i]));
  464. BUG();
  465. }
  466. }
  467. clk_data.clks = clks;
  468. clk_data.clk_num = ARRAY_SIZE(clks);
  469. of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
  470. }
  471. CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup);
  472. void __init zynq_clock_init(void __iomem *slcr_base)
  473. {
  474. zynq_slcr_base_priv = slcr_base;
  475. of_clk_init(NULL);
  476. }