eeprom_9287.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  23. }
  24. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  25. {
  26. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  27. }
  28. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  31. struct ath_common *common = ath9k_hw_common(ah);
  32. u16 *eep_data;
  33. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  34. eep_data = (u16 *)eep;
  35. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  36. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  37. eep_data))
  38. return false;
  39. eep_data++;
  40. }
  41. return true;
  42. }
  43. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  44. {
  45. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  46. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  47. AR9287_HTC_EEP_START_LOC,
  48. SIZE_EEPROM_AR9287);
  49. return true;
  50. }
  51. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  52. {
  53. struct ath_common *common = ath9k_hw_common(ah);
  54. if (!ath9k_hw_use_flash(ah)) {
  55. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  56. }
  57. if (common->bus_ops->ath_bus_type == ATH_USB)
  58. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  59. else
  60. return __ath9k_hw_ar9287_fill_eeprom(ah);
  61. }
  62. #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
  63. static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
  64. struct modal_eep_ar9287_header *modal_hdr)
  65. {
  66. PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
  67. PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
  68. PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
  69. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  70. PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
  71. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  72. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  73. PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
  74. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  75. PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
  76. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  77. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  78. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  79. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  80. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  81. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  82. PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
  83. PR_EEP("xpdGain", modal_hdr->xpdGain);
  84. PR_EEP("External PD", modal_hdr->xpd);
  85. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  86. PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
  87. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  88. PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
  89. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  90. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  91. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  92. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  93. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  94. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  95. PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
  96. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  97. PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
  98. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  99. PR_EEP("AR92x7 Version", modal_hdr->version);
  100. PR_EEP("DriverBias1", modal_hdr->db1);
  101. PR_EEP("DriverBias2", modal_hdr->db1);
  102. PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
  103. PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
  104. PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
  105. PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
  106. return len;
  107. }
  108. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  109. u8 *buf, u32 len, u32 size)
  110. {
  111. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  112. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  113. if (!dump_base_hdr) {
  114. len += snprintf(buf + len, size - len,
  115. "%20s :\n", "2GHz modal Header");
  116. len = ar9287_dump_modal_eeprom(buf, len, size,
  117. &eep->modalHeader);
  118. goto out;
  119. }
  120. PR_EEP("Major Version", pBase->version >> 12);
  121. PR_EEP("Minor Version", pBase->version & 0xFFF);
  122. PR_EEP("Checksum", pBase->checksum);
  123. PR_EEP("Length", pBase->length);
  124. PR_EEP("RegDomain1", pBase->regDmn[0]);
  125. PR_EEP("RegDomain2", pBase->regDmn[1]);
  126. PR_EEP("TX Mask", pBase->txMask);
  127. PR_EEP("RX Mask", pBase->rxMask);
  128. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  129. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  130. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  131. AR5416_OPFLAGS_N_2G_HT20));
  132. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  133. AR5416_OPFLAGS_N_2G_HT40));
  134. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  135. AR5416_OPFLAGS_N_5G_HT20));
  136. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  137. AR5416_OPFLAGS_N_5G_HT40));
  138. PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
  139. PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
  140. PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
  141. PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
  142. PR_EEP("Power Table Offset", pBase->pwrTableOffset);
  143. PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
  144. len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  145. pBase->macAddr);
  146. out:
  147. if (len > size)
  148. len = size;
  149. return len;
  150. }
  151. #else
  152. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  153. u8 *buf, u32 len, u32 size)
  154. {
  155. return 0;
  156. }
  157. #endif
  158. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  159. {
  160. u32 sum = 0, el, integer;
  161. u16 temp, word, magic, magic2, *eepdata;
  162. int i, addr;
  163. bool need_swap = false;
  164. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  165. struct ath_common *common = ath9k_hw_common(ah);
  166. if (!ath9k_hw_use_flash(ah)) {
  167. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  168. &magic)) {
  169. ath_err(common, "Reading Magic # failed\n");
  170. return false;
  171. }
  172. ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
  173. if (magic != AR5416_EEPROM_MAGIC) {
  174. magic2 = swab16(magic);
  175. if (magic2 == AR5416_EEPROM_MAGIC) {
  176. need_swap = true;
  177. eepdata = (u16 *)(&ah->eeprom);
  178. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  179. temp = swab16(*eepdata);
  180. *eepdata = temp;
  181. eepdata++;
  182. }
  183. } else {
  184. ath_err(common,
  185. "Invalid EEPROM Magic. Endianness mismatch.\n");
  186. return -EINVAL;
  187. }
  188. }
  189. }
  190. ath_dbg(common, EEPROM, "need_swap = %s\n",
  191. need_swap ? "True" : "False");
  192. if (need_swap)
  193. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  194. else
  195. el = ah->eeprom.map9287.baseEepHeader.length;
  196. if (el > sizeof(struct ar9287_eeprom))
  197. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  198. else
  199. el = el / sizeof(u16);
  200. eepdata = (u16 *)(&ah->eeprom);
  201. for (i = 0; i < el; i++)
  202. sum ^= *eepdata++;
  203. if (need_swap) {
  204. word = swab16(eep->baseEepHeader.length);
  205. eep->baseEepHeader.length = word;
  206. word = swab16(eep->baseEepHeader.checksum);
  207. eep->baseEepHeader.checksum = word;
  208. word = swab16(eep->baseEepHeader.version);
  209. eep->baseEepHeader.version = word;
  210. word = swab16(eep->baseEepHeader.regDmn[0]);
  211. eep->baseEepHeader.regDmn[0] = word;
  212. word = swab16(eep->baseEepHeader.regDmn[1]);
  213. eep->baseEepHeader.regDmn[1] = word;
  214. word = swab16(eep->baseEepHeader.rfSilent);
  215. eep->baseEepHeader.rfSilent = word;
  216. word = swab16(eep->baseEepHeader.blueToothOptions);
  217. eep->baseEepHeader.blueToothOptions = word;
  218. word = swab16(eep->baseEepHeader.deviceCap);
  219. eep->baseEepHeader.deviceCap = word;
  220. integer = swab32(eep->modalHeader.antCtrlCommon);
  221. eep->modalHeader.antCtrlCommon = integer;
  222. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  223. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  224. eep->modalHeader.antCtrlChain[i] = integer;
  225. }
  226. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  227. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  228. eep->modalHeader.spurChans[i].spurChan = word;
  229. }
  230. }
  231. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  232. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  233. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  234. sum, ah->eep_ops->get_eeprom_ver(ah));
  235. return -EINVAL;
  236. }
  237. return 0;
  238. }
  239. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  240. enum eeprom_param param)
  241. {
  242. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  243. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  244. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  245. u16 ver_minor;
  246. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  247. switch (param) {
  248. case EEP_NFTHRESH_2:
  249. return pModal->noiseFloorThreshCh[0];
  250. case EEP_MAC_LSW:
  251. return get_unaligned_be16(pBase->macAddr);
  252. case EEP_MAC_MID:
  253. return get_unaligned_be16(pBase->macAddr + 2);
  254. case EEP_MAC_MSW:
  255. return get_unaligned_be16(pBase->macAddr + 4);
  256. case EEP_REG_0:
  257. return pBase->regDmn[0];
  258. case EEP_OP_CAP:
  259. return pBase->deviceCap;
  260. case EEP_OP_MODE:
  261. return pBase->opCapFlags;
  262. case EEP_RF_SILENT:
  263. return pBase->rfSilent;
  264. case EEP_MINOR_REV:
  265. return ver_minor;
  266. case EEP_TX_MASK:
  267. return pBase->txMask;
  268. case EEP_RX_MASK:
  269. return pBase->rxMask;
  270. case EEP_DEV_TYPE:
  271. return pBase->deviceType;
  272. case EEP_OL_PWRCTRL:
  273. return pBase->openLoopPwrCntl;
  274. case EEP_TEMPSENSE_SLOPE:
  275. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  276. return pBase->tempSensSlope;
  277. else
  278. return 0;
  279. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  280. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  281. return pBase->tempSensSlopePalOn;
  282. else
  283. return 0;
  284. case EEP_ANTENNA_GAIN_2G:
  285. return max_t(u8, pModal->antennaGainCh[0],
  286. pModal->antennaGainCh[1]);
  287. default:
  288. return 0;
  289. }
  290. }
  291. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  292. struct ath9k_channel *chan,
  293. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  294. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  295. {
  296. u16 idxL = 0, idxR = 0, numPiers;
  297. bool match;
  298. struct chan_centers centers;
  299. ath9k_hw_get_channel_centers(ah, chan, &centers);
  300. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  301. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  302. break;
  303. }
  304. match = ath9k_hw_get_lower_upper_index(
  305. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  306. pCalChans, numPiers, &idxL, &idxR);
  307. if (match) {
  308. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  309. } else {
  310. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  311. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  312. }
  313. }
  314. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  315. int32_t txPower, u16 chain)
  316. {
  317. u32 tmpVal;
  318. u32 a;
  319. /* Enable OLPC for chain 0 */
  320. tmpVal = REG_READ(ah, 0xa270);
  321. tmpVal = tmpVal & 0xFCFFFFFF;
  322. tmpVal = tmpVal | (0x3 << 24);
  323. REG_WRITE(ah, 0xa270, tmpVal);
  324. /* Enable OLPC for chain 1 */
  325. tmpVal = REG_READ(ah, 0xb270);
  326. tmpVal = tmpVal & 0xFCFFFFFF;
  327. tmpVal = tmpVal | (0x3 << 24);
  328. REG_WRITE(ah, 0xb270, tmpVal);
  329. /* Write the OLPC ref power for chain 0 */
  330. if (chain == 0) {
  331. tmpVal = REG_READ(ah, 0xa398);
  332. tmpVal = tmpVal & 0xff00ffff;
  333. a = (txPower)&0xff;
  334. tmpVal = tmpVal | (a << 16);
  335. REG_WRITE(ah, 0xa398, tmpVal);
  336. }
  337. /* Write the OLPC ref power for chain 1 */
  338. if (chain == 1) {
  339. tmpVal = REG_READ(ah, 0xb398);
  340. tmpVal = tmpVal & 0xff00ffff;
  341. a = (txPower)&0xff;
  342. tmpVal = tmpVal | (a << 16);
  343. REG_WRITE(ah, 0xb398, tmpVal);
  344. }
  345. }
  346. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  347. struct ath9k_channel *chan)
  348. {
  349. struct cal_data_per_freq_ar9287 *pRawDataset;
  350. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  351. u8 *pCalBChans = NULL;
  352. u16 pdGainOverlap_t2;
  353. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  354. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  355. u16 numPiers = 0, i, j;
  356. u16 numXpdGain, xpdMask;
  357. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  358. u32 reg32, regOffset, regChainOffset, regval;
  359. int16_t diff = 0;
  360. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  361. xpdMask = pEepData->modalHeader.xpdGain;
  362. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  363. AR9287_EEP_MINOR_VER_2)
  364. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  365. else
  366. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  367. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  368. if (IS_CHAN_2GHZ(chan)) {
  369. pCalBChans = pEepData->calFreqPier2G;
  370. numPiers = AR9287_NUM_2G_CAL_PIERS;
  371. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  372. pRawDatasetOpenLoop =
  373. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  374. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  375. }
  376. }
  377. numXpdGain = 0;
  378. /* Calculate the value of xpdgains from the xpdGain Mask */
  379. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  380. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  381. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  382. break;
  383. xpdGainValues[numXpdGain] =
  384. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  385. numXpdGain++;
  386. }
  387. }
  388. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  389. (numXpdGain - 1) & 0x3);
  390. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  391. xpdGainValues[0]);
  392. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  393. xpdGainValues[1]);
  394. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  395. xpdGainValues[2]);
  396. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  397. regChainOffset = i * 0x1000;
  398. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  399. pRawDatasetOpenLoop =
  400. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  401. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  402. int8_t txPower;
  403. ar9287_eeprom_get_tx_gain_index(ah, chan,
  404. pRawDatasetOpenLoop,
  405. pCalBChans, numPiers,
  406. &txPower);
  407. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  408. } else {
  409. pRawDataset =
  410. (struct cal_data_per_freq_ar9287 *)
  411. pEepData->calPierData2G[i];
  412. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  413. pRawDataset,
  414. pCalBChans, numPiers,
  415. pdGainOverlap_t2,
  416. gainBoundaries,
  417. pdadcValues,
  418. numXpdGain);
  419. }
  420. ENABLE_REGWRITE_BUFFER(ah);
  421. if (i == 0) {
  422. if (!ath9k_hw_ar9287_get_eeprom(ah,
  423. EEP_OL_PWRCTRL)) {
  424. regval = SM(pdGainOverlap_t2,
  425. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  426. | SM(gainBoundaries[0],
  427. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  428. | SM(gainBoundaries[1],
  429. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  430. | SM(gainBoundaries[2],
  431. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  432. | SM(gainBoundaries[3],
  433. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  434. REG_WRITE(ah,
  435. AR_PHY_TPCRG5 + regChainOffset,
  436. regval);
  437. }
  438. }
  439. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  440. pEepData->baseEepHeader.pwrTableOffset) {
  441. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  442. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  443. diff *= 2;
  444. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  445. pdadcValues[j] = pdadcValues[j+diff];
  446. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  447. j < AR5416_NUM_PDADC_VALUES; j++)
  448. pdadcValues[j] =
  449. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  450. }
  451. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  452. regOffset = AR_PHY_BASE +
  453. (672 << 2) + regChainOffset;
  454. for (j = 0; j < 32; j++) {
  455. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  456. REG_WRITE(ah, regOffset, reg32);
  457. regOffset += 4;
  458. }
  459. }
  460. REGWRITE_BUFFER_FLUSH(ah);
  461. }
  462. }
  463. }
  464. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  465. struct ath9k_channel *chan,
  466. int16_t *ratesArray,
  467. u16 cfgCtl,
  468. u16 antenna_reduction,
  469. u16 powerLimit)
  470. {
  471. #define CMP_CTL \
  472. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  473. pEepData->ctlIndex[i])
  474. #define CMP_NO_CTL \
  475. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  476. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  477. u16 twiceMaxEdgePower;
  478. int i;
  479. struct cal_ctl_data_ar9287 *rep;
  480. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  481. targetPowerCck = {0, {0, 0, 0, 0} };
  482. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  483. targetPowerCckExt = {0, {0, 0, 0, 0} };
  484. struct cal_target_power_ht targetPowerHt20,
  485. targetPowerHt40 = {0, {0, 0, 0, 0} };
  486. u16 scaledPower = 0, minCtlPower;
  487. static const u16 ctlModesFor11g[] = {
  488. CTL_11B, CTL_11G, CTL_2GHT20,
  489. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  490. };
  491. u16 numCtlModes = 0;
  492. const u16 *pCtlMode = NULL;
  493. u16 ctlMode, freq;
  494. struct chan_centers centers;
  495. int tx_chainmask;
  496. u16 twiceMinEdgePower;
  497. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  498. tx_chainmask = ah->txchainmask;
  499. ath9k_hw_get_channel_centers(ah, chan, &centers);
  500. scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
  501. antenna_reduction);
  502. /*
  503. * Get TX power from EEPROM.
  504. */
  505. if (IS_CHAN_2GHZ(chan)) {
  506. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  507. numCtlModes =
  508. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  509. pCtlMode = ctlModesFor11g;
  510. ath9k_hw_get_legacy_target_powers(ah, chan,
  511. pEepData->calTargetPowerCck,
  512. AR9287_NUM_2G_CCK_TARGET_POWERS,
  513. &targetPowerCck, 4, false);
  514. ath9k_hw_get_legacy_target_powers(ah, chan,
  515. pEepData->calTargetPower2G,
  516. AR9287_NUM_2G_20_TARGET_POWERS,
  517. &targetPowerOfdm, 4, false);
  518. ath9k_hw_get_target_powers(ah, chan,
  519. pEepData->calTargetPower2GHT20,
  520. AR9287_NUM_2G_20_TARGET_POWERS,
  521. &targetPowerHt20, 8, false);
  522. if (IS_CHAN_HT40(chan)) {
  523. /* All 2G CTLs */
  524. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  525. ath9k_hw_get_target_powers(ah, chan,
  526. pEepData->calTargetPower2GHT40,
  527. AR9287_NUM_2G_40_TARGET_POWERS,
  528. &targetPowerHt40, 8, true);
  529. ath9k_hw_get_legacy_target_powers(ah, chan,
  530. pEepData->calTargetPowerCck,
  531. AR9287_NUM_2G_CCK_TARGET_POWERS,
  532. &targetPowerCckExt, 4, true);
  533. ath9k_hw_get_legacy_target_powers(ah, chan,
  534. pEepData->calTargetPower2G,
  535. AR9287_NUM_2G_20_TARGET_POWERS,
  536. &targetPowerOfdmExt, 4, true);
  537. }
  538. }
  539. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  540. bool isHt40CtlMode =
  541. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  542. if (isHt40CtlMode)
  543. freq = centers.synth_center;
  544. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  545. freq = centers.ext_center;
  546. else
  547. freq = centers.ctl_center;
  548. twiceMaxEdgePower = MAX_RATE_POWER;
  549. /* Walk through the CTL indices stored in EEPROM */
  550. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  551. struct cal_ctl_edges *pRdEdgesPower;
  552. /*
  553. * Compare test group from regulatory channel list
  554. * with test mode from pCtlMode list
  555. */
  556. if (CMP_CTL || CMP_NO_CTL) {
  557. rep = &(pEepData->ctlData[i]);
  558. pRdEdgesPower =
  559. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  560. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  561. pRdEdgesPower,
  562. IS_CHAN_2GHZ(chan),
  563. AR5416_NUM_BAND_EDGES);
  564. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  565. twiceMaxEdgePower = min(twiceMaxEdgePower,
  566. twiceMinEdgePower);
  567. } else {
  568. twiceMaxEdgePower = twiceMinEdgePower;
  569. break;
  570. }
  571. }
  572. }
  573. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  574. /* Apply ctl mode to correct target power set */
  575. switch (pCtlMode[ctlMode]) {
  576. case CTL_11B:
  577. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  578. targetPowerCck.tPow2x[i] =
  579. (u8)min((u16)targetPowerCck.tPow2x[i],
  580. minCtlPower);
  581. }
  582. break;
  583. case CTL_11A:
  584. case CTL_11G:
  585. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  586. targetPowerOfdm.tPow2x[i] =
  587. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  588. minCtlPower);
  589. }
  590. break;
  591. case CTL_5GHT20:
  592. case CTL_2GHT20:
  593. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  594. targetPowerHt20.tPow2x[i] =
  595. (u8)min((u16)targetPowerHt20.tPow2x[i],
  596. minCtlPower);
  597. }
  598. break;
  599. case CTL_11B_EXT:
  600. targetPowerCckExt.tPow2x[0] =
  601. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  602. minCtlPower);
  603. break;
  604. case CTL_11A_EXT:
  605. case CTL_11G_EXT:
  606. targetPowerOfdmExt.tPow2x[0] =
  607. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  608. minCtlPower);
  609. break;
  610. case CTL_5GHT40:
  611. case CTL_2GHT40:
  612. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  613. targetPowerHt40.tPow2x[i] =
  614. (u8)min((u16)targetPowerHt40.tPow2x[i],
  615. minCtlPower);
  616. }
  617. break;
  618. default:
  619. break;
  620. }
  621. }
  622. /* Now set the rates array */
  623. ratesArray[rate6mb] =
  624. ratesArray[rate9mb] =
  625. ratesArray[rate12mb] =
  626. ratesArray[rate18mb] =
  627. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  628. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  629. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  630. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  631. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  632. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  633. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  634. if (IS_CHAN_2GHZ(chan)) {
  635. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  636. ratesArray[rate2s] =
  637. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  638. ratesArray[rate5_5s] =
  639. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  640. ratesArray[rate11s] =
  641. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  642. }
  643. if (IS_CHAN_HT40(chan)) {
  644. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  645. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  646. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  647. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  648. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  649. if (IS_CHAN_2GHZ(chan))
  650. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  651. }
  652. #undef CMP_CTL
  653. #undef CMP_NO_CTL
  654. }
  655. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  656. struct ath9k_channel *chan, u16 cfgCtl,
  657. u8 twiceAntennaReduction,
  658. u8 powerLimit, bool test)
  659. {
  660. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  661. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  662. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  663. int16_t ratesArray[Ar5416RateSize];
  664. u8 ht40PowerIncForPdadc = 2;
  665. int i;
  666. memset(ratesArray, 0, sizeof(ratesArray));
  667. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  668. AR9287_EEP_MINOR_VER_2)
  669. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  670. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  671. &ratesArray[0], cfgCtl,
  672. twiceAntennaReduction,
  673. powerLimit);
  674. ath9k_hw_set_ar9287_power_cal_table(ah, chan);
  675. regulatory->max_power_level = 0;
  676. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  677. if (ratesArray[i] > MAX_RATE_POWER)
  678. ratesArray[i] = MAX_RATE_POWER;
  679. if (ratesArray[i] > regulatory->max_power_level)
  680. regulatory->max_power_level = ratesArray[i];
  681. }
  682. ath9k_hw_update_regulatory_maxpower(ah);
  683. if (test)
  684. return;
  685. for (i = 0; i < Ar5416RateSize; i++)
  686. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  687. ENABLE_REGWRITE_BUFFER(ah);
  688. /* OFDM power per rate */
  689. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  690. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  691. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  692. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  693. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  694. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  695. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  696. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  697. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  698. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  699. /* CCK power per rate */
  700. if (IS_CHAN_2GHZ(chan)) {
  701. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  702. ATH9K_POW_SM(ratesArray[rate2s], 24)
  703. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  704. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  705. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  706. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  707. ATH9K_POW_SM(ratesArray[rate11s], 24)
  708. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  709. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  710. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  711. }
  712. /* HT20 power per rate */
  713. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  714. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  715. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  716. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  717. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  718. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  719. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  720. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  721. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  722. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  723. /* HT40 power per rate */
  724. if (IS_CHAN_HT40(chan)) {
  725. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  726. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  727. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  728. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  729. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  730. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  731. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  732. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  733. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  734. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  735. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  736. } else {
  737. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  738. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  739. ht40PowerIncForPdadc, 24)
  740. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  741. ht40PowerIncForPdadc, 16)
  742. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  743. ht40PowerIncForPdadc, 8)
  744. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  745. ht40PowerIncForPdadc, 0));
  746. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  747. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  748. ht40PowerIncForPdadc, 24)
  749. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  750. ht40PowerIncForPdadc, 16)
  751. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  752. ht40PowerIncForPdadc, 8)
  753. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  754. ht40PowerIncForPdadc, 0));
  755. }
  756. /* Dup/Ext power per rate */
  757. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  758. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  759. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  760. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  761. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  762. }
  763. REGWRITE_BUFFER_FLUSH(ah);
  764. }
  765. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  766. struct ath9k_channel *chan)
  767. {
  768. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  769. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  770. u32 regChainOffset, regval;
  771. u8 txRxAttenLocal;
  772. int i;
  773. pModal = &eep->modalHeader;
  774. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  775. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  776. regChainOffset = i * 0x1000;
  777. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  778. pModal->antCtrlChain[i]);
  779. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  780. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  781. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  782. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  783. SM(pModal->iqCalICh[i],
  784. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  785. SM(pModal->iqCalQCh[i],
  786. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  787. txRxAttenLocal = pModal->txRxAttenCh[i];
  788. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  789. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  790. pModal->bswMargin[i]);
  791. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  792. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  793. pModal->bswAtten[i]);
  794. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  795. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  796. txRxAttenLocal);
  797. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  798. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  799. pModal->rxTxMarginCh[i]);
  800. }
  801. if (IS_CHAN_HT40(chan))
  802. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  803. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  804. else
  805. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  806. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  807. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  808. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  809. REG_WRITE(ah, AR_PHY_RF_CTL4,
  810. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  811. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  812. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  813. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  814. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  815. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  816. REG_RMW_FIELD(ah, AR_PHY_CCA,
  817. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  818. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  819. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  820. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  821. regval &= ~(AR9287_AN_RF2G3_DB1 |
  822. AR9287_AN_RF2G3_DB2 |
  823. AR9287_AN_RF2G3_OB_CCK |
  824. AR9287_AN_RF2G3_OB_PSK |
  825. AR9287_AN_RF2G3_OB_QAM |
  826. AR9287_AN_RF2G3_OB_PAL_OFF);
  827. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  828. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  829. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  830. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  831. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  832. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  833. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  834. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  835. regval &= ~(AR9287_AN_RF2G3_DB1 |
  836. AR9287_AN_RF2G3_DB2 |
  837. AR9287_AN_RF2G3_OB_CCK |
  838. AR9287_AN_RF2G3_OB_PSK |
  839. AR9287_AN_RF2G3_OB_QAM |
  840. AR9287_AN_RF2G3_OB_PAL_OFF);
  841. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  842. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  843. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  844. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  845. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  846. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  847. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  848. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  849. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  850. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  851. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  852. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  853. AR9287_AN_TOP2_XPABIAS_LVL,
  854. AR9287_AN_TOP2_XPABIAS_LVL_S,
  855. pModal->xpaBiasLvl);
  856. }
  857. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  858. u16 i, bool is2GHz)
  859. {
  860. #define EEP_MAP9287_SPURCHAN \
  861. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  862. struct ath_common *common = ath9k_hw_common(ah);
  863. u16 spur_val = AR_NO_SPUR;
  864. ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
  865. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  866. switch (ah->config.spurmode) {
  867. case SPUR_DISABLE:
  868. break;
  869. case SPUR_ENABLE_IOCTL:
  870. spur_val = ah->config.spurchans[i][is2GHz];
  871. ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
  872. spur_val);
  873. break;
  874. case SPUR_ENABLE_EEPROM:
  875. spur_val = EEP_MAP9287_SPURCHAN;
  876. break;
  877. }
  878. return spur_val;
  879. #undef EEP_MAP9287_SPURCHAN
  880. }
  881. const struct eeprom_ops eep_ar9287_ops = {
  882. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  883. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  884. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  885. .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
  886. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  887. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  888. .set_board_values = ath9k_hw_ar9287_set_board_values,
  889. .set_txpower = ath9k_hw_ar9287_set_txpower,
  890. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  891. };