hugetlb.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
  23. static unsigned long surplus_huge_pages;
  24. unsigned long max_huge_pages;
  25. static struct list_head hugepage_freelists[MAX_NUMNODES];
  26. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  27. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  28. static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
  29. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  30. unsigned long hugepages_treat_as_movable;
  31. int hugetlb_dynamic_pool;
  32. static int hugetlb_next_nid;
  33. /*
  34. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  35. */
  36. static DEFINE_SPINLOCK(hugetlb_lock);
  37. static void clear_huge_page(struct page *page, unsigned long addr)
  38. {
  39. int i;
  40. might_sleep();
  41. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  42. cond_resched();
  43. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  44. }
  45. }
  46. static void copy_huge_page(struct page *dst, struct page *src,
  47. unsigned long addr, struct vm_area_struct *vma)
  48. {
  49. int i;
  50. might_sleep();
  51. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  52. cond_resched();
  53. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  54. }
  55. }
  56. static void enqueue_huge_page(struct page *page)
  57. {
  58. int nid = page_to_nid(page);
  59. list_add(&page->lru, &hugepage_freelists[nid]);
  60. free_huge_pages++;
  61. free_huge_pages_node[nid]++;
  62. }
  63. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  64. unsigned long address)
  65. {
  66. int nid;
  67. struct page *page = NULL;
  68. struct mempolicy *mpol;
  69. struct zonelist *zonelist = huge_zonelist(vma, address,
  70. htlb_alloc_mask, &mpol);
  71. struct zone **z;
  72. for (z = zonelist->zones; *z; z++) {
  73. nid = zone_to_nid(*z);
  74. if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
  75. !list_empty(&hugepage_freelists[nid])) {
  76. page = list_entry(hugepage_freelists[nid].next,
  77. struct page, lru);
  78. list_del(&page->lru);
  79. free_huge_pages--;
  80. free_huge_pages_node[nid]--;
  81. if (vma && vma->vm_flags & VM_MAYSHARE)
  82. resv_huge_pages--;
  83. break;
  84. }
  85. }
  86. mpol_free(mpol); /* unref if mpol !NULL */
  87. return page;
  88. }
  89. static void update_and_free_page(struct page *page)
  90. {
  91. int i;
  92. nr_huge_pages--;
  93. nr_huge_pages_node[page_to_nid(page)]--;
  94. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  95. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  96. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  97. 1 << PG_private | 1<< PG_writeback);
  98. }
  99. set_compound_page_dtor(page, NULL);
  100. set_page_refcounted(page);
  101. __free_pages(page, HUGETLB_PAGE_ORDER);
  102. }
  103. static void free_huge_page(struct page *page)
  104. {
  105. int nid = page_to_nid(page);
  106. struct address_space *mapping;
  107. mapping = (struct address_space *) page_private(page);
  108. BUG_ON(page_count(page));
  109. INIT_LIST_HEAD(&page->lru);
  110. spin_lock(&hugetlb_lock);
  111. if (surplus_huge_pages_node[nid]) {
  112. update_and_free_page(page);
  113. surplus_huge_pages--;
  114. surplus_huge_pages_node[nid]--;
  115. } else {
  116. enqueue_huge_page(page);
  117. }
  118. spin_unlock(&hugetlb_lock);
  119. if (mapping)
  120. hugetlb_put_quota(mapping);
  121. set_page_private(page, 0);
  122. }
  123. /*
  124. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  125. * balanced by operating on them in a round-robin fashion.
  126. * Returns 1 if an adjustment was made.
  127. */
  128. static int adjust_pool_surplus(int delta)
  129. {
  130. static int prev_nid;
  131. int nid = prev_nid;
  132. int ret = 0;
  133. VM_BUG_ON(delta != -1 && delta != 1);
  134. do {
  135. nid = next_node(nid, node_online_map);
  136. if (nid == MAX_NUMNODES)
  137. nid = first_node(node_online_map);
  138. /* To shrink on this node, there must be a surplus page */
  139. if (delta < 0 && !surplus_huge_pages_node[nid])
  140. continue;
  141. /* Surplus cannot exceed the total number of pages */
  142. if (delta > 0 && surplus_huge_pages_node[nid] >=
  143. nr_huge_pages_node[nid])
  144. continue;
  145. surplus_huge_pages += delta;
  146. surplus_huge_pages_node[nid] += delta;
  147. ret = 1;
  148. break;
  149. } while (nid != prev_nid);
  150. prev_nid = nid;
  151. return ret;
  152. }
  153. static struct page *alloc_fresh_huge_page_node(int nid)
  154. {
  155. struct page *page;
  156. page = alloc_pages_node(nid,
  157. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
  158. HUGETLB_PAGE_ORDER);
  159. if (page) {
  160. set_compound_page_dtor(page, free_huge_page);
  161. spin_lock(&hugetlb_lock);
  162. nr_huge_pages++;
  163. nr_huge_pages_node[nid]++;
  164. spin_unlock(&hugetlb_lock);
  165. put_page(page); /* free it into the hugepage allocator */
  166. }
  167. return page;
  168. }
  169. static int alloc_fresh_huge_page(void)
  170. {
  171. struct page *page;
  172. int start_nid;
  173. int next_nid;
  174. int ret = 0;
  175. start_nid = hugetlb_next_nid;
  176. do {
  177. page = alloc_fresh_huge_page_node(hugetlb_next_nid);
  178. if (page)
  179. ret = 1;
  180. /*
  181. * Use a helper variable to find the next node and then
  182. * copy it back to hugetlb_next_nid afterwards:
  183. * otherwise there's a window in which a racer might
  184. * pass invalid nid MAX_NUMNODES to alloc_pages_node.
  185. * But we don't need to use a spin_lock here: it really
  186. * doesn't matter if occasionally a racer chooses the
  187. * same nid as we do. Move nid forward in the mask even
  188. * if we just successfully allocated a hugepage so that
  189. * the next caller gets hugepages on the next node.
  190. */
  191. next_nid = next_node(hugetlb_next_nid, node_online_map);
  192. if (next_nid == MAX_NUMNODES)
  193. next_nid = first_node(node_online_map);
  194. hugetlb_next_nid = next_nid;
  195. } while (!page && hugetlb_next_nid != start_nid);
  196. return ret;
  197. }
  198. static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
  199. unsigned long address)
  200. {
  201. struct page *page;
  202. /* Check if the dynamic pool is enabled */
  203. if (!hugetlb_dynamic_pool)
  204. return NULL;
  205. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
  206. HUGETLB_PAGE_ORDER);
  207. if (page) {
  208. set_compound_page_dtor(page, free_huge_page);
  209. spin_lock(&hugetlb_lock);
  210. nr_huge_pages++;
  211. nr_huge_pages_node[page_to_nid(page)]++;
  212. surplus_huge_pages++;
  213. surplus_huge_pages_node[page_to_nid(page)]++;
  214. spin_unlock(&hugetlb_lock);
  215. }
  216. return page;
  217. }
  218. /*
  219. * Increase the hugetlb pool such that it can accomodate a reservation
  220. * of size 'delta'.
  221. */
  222. static int gather_surplus_pages(int delta)
  223. {
  224. struct list_head surplus_list;
  225. struct page *page, *tmp;
  226. int ret, i;
  227. int needed, allocated;
  228. needed = (resv_huge_pages + delta) - free_huge_pages;
  229. if (needed <= 0)
  230. return 0;
  231. allocated = 0;
  232. INIT_LIST_HEAD(&surplus_list);
  233. ret = -ENOMEM;
  234. retry:
  235. spin_unlock(&hugetlb_lock);
  236. for (i = 0; i < needed; i++) {
  237. page = alloc_buddy_huge_page(NULL, 0);
  238. if (!page) {
  239. /*
  240. * We were not able to allocate enough pages to
  241. * satisfy the entire reservation so we free what
  242. * we've allocated so far.
  243. */
  244. spin_lock(&hugetlb_lock);
  245. needed = 0;
  246. goto free;
  247. }
  248. list_add(&page->lru, &surplus_list);
  249. }
  250. allocated += needed;
  251. /*
  252. * After retaking hugetlb_lock, we need to recalculate 'needed'
  253. * because either resv_huge_pages or free_huge_pages may have changed.
  254. */
  255. spin_lock(&hugetlb_lock);
  256. needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
  257. if (needed > 0)
  258. goto retry;
  259. /*
  260. * The surplus_list now contains _at_least_ the number of extra pages
  261. * needed to accomodate the reservation. Add the appropriate number
  262. * of pages to the hugetlb pool and free the extras back to the buddy
  263. * allocator.
  264. */
  265. needed += allocated;
  266. ret = 0;
  267. free:
  268. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  269. list_del(&page->lru);
  270. if ((--needed) >= 0)
  271. enqueue_huge_page(page);
  272. else {
  273. /*
  274. * Decrement the refcount and free the page using its
  275. * destructor. This must be done with hugetlb_lock
  276. * unlocked which is safe because free_huge_page takes
  277. * hugetlb_lock before deciding how to free the page.
  278. */
  279. spin_unlock(&hugetlb_lock);
  280. put_page(page);
  281. spin_lock(&hugetlb_lock);
  282. }
  283. }
  284. return ret;
  285. }
  286. /*
  287. * When releasing a hugetlb pool reservation, any surplus pages that were
  288. * allocated to satisfy the reservation must be explicitly freed if they were
  289. * never used.
  290. */
  291. void return_unused_surplus_pages(unsigned long unused_resv_pages)
  292. {
  293. static int nid = -1;
  294. struct page *page;
  295. unsigned long nr_pages;
  296. nr_pages = min(unused_resv_pages, surplus_huge_pages);
  297. while (nr_pages) {
  298. nid = next_node(nid, node_online_map);
  299. if (nid == MAX_NUMNODES)
  300. nid = first_node(node_online_map);
  301. if (!surplus_huge_pages_node[nid])
  302. continue;
  303. if (!list_empty(&hugepage_freelists[nid])) {
  304. page = list_entry(hugepage_freelists[nid].next,
  305. struct page, lru);
  306. list_del(&page->lru);
  307. update_and_free_page(page);
  308. free_huge_pages--;
  309. free_huge_pages_node[nid]--;
  310. surplus_huge_pages--;
  311. surplus_huge_pages_node[nid]--;
  312. nr_pages--;
  313. }
  314. }
  315. }
  316. static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
  317. unsigned long addr)
  318. {
  319. struct page *page;
  320. spin_lock(&hugetlb_lock);
  321. page = dequeue_huge_page(vma, addr);
  322. spin_unlock(&hugetlb_lock);
  323. return page;
  324. }
  325. static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
  326. unsigned long addr)
  327. {
  328. struct page *page = NULL;
  329. spin_lock(&hugetlb_lock);
  330. if (free_huge_pages > resv_huge_pages)
  331. page = dequeue_huge_page(vma, addr);
  332. spin_unlock(&hugetlb_lock);
  333. if (!page)
  334. page = alloc_buddy_huge_page(vma, addr);
  335. return page;
  336. }
  337. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  338. unsigned long addr)
  339. {
  340. struct page *page;
  341. struct address_space *mapping = vma->vm_file->f_mapping;
  342. if (hugetlb_get_quota(mapping))
  343. return ERR_PTR(-VM_FAULT_SIGBUS);
  344. if (vma->vm_flags & VM_MAYSHARE)
  345. page = alloc_huge_page_shared(vma, addr);
  346. else
  347. page = alloc_huge_page_private(vma, addr);
  348. if (page) {
  349. set_page_refcounted(page);
  350. set_page_private(page, (unsigned long) mapping);
  351. return page;
  352. } else
  353. return ERR_PTR(-VM_FAULT_OOM);
  354. }
  355. static int __init hugetlb_init(void)
  356. {
  357. unsigned long i;
  358. if (HPAGE_SHIFT == 0)
  359. return 0;
  360. for (i = 0; i < MAX_NUMNODES; ++i)
  361. INIT_LIST_HEAD(&hugepage_freelists[i]);
  362. hugetlb_next_nid = first_node(node_online_map);
  363. for (i = 0; i < max_huge_pages; ++i) {
  364. if (!alloc_fresh_huge_page())
  365. break;
  366. }
  367. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  368. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  369. return 0;
  370. }
  371. module_init(hugetlb_init);
  372. static int __init hugetlb_setup(char *s)
  373. {
  374. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  375. max_huge_pages = 0;
  376. return 1;
  377. }
  378. __setup("hugepages=", hugetlb_setup);
  379. static unsigned int cpuset_mems_nr(unsigned int *array)
  380. {
  381. int node;
  382. unsigned int nr = 0;
  383. for_each_node_mask(node, cpuset_current_mems_allowed)
  384. nr += array[node];
  385. return nr;
  386. }
  387. #ifdef CONFIG_SYSCTL
  388. #ifdef CONFIG_HIGHMEM
  389. static void try_to_free_low(unsigned long count)
  390. {
  391. int i;
  392. for (i = 0; i < MAX_NUMNODES; ++i) {
  393. struct page *page, *next;
  394. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  395. if (count >= nr_huge_pages)
  396. return;
  397. if (PageHighMem(page))
  398. continue;
  399. list_del(&page->lru);
  400. update_and_free_page(page);
  401. free_huge_pages--;
  402. free_huge_pages_node[page_to_nid(page)]--;
  403. }
  404. }
  405. }
  406. #else
  407. static inline void try_to_free_low(unsigned long count)
  408. {
  409. }
  410. #endif
  411. #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
  412. static unsigned long set_max_huge_pages(unsigned long count)
  413. {
  414. unsigned long min_count, ret;
  415. /*
  416. * Increase the pool size
  417. * First take pages out of surplus state. Then make up the
  418. * remaining difference by allocating fresh huge pages.
  419. */
  420. spin_lock(&hugetlb_lock);
  421. while (surplus_huge_pages && count > persistent_huge_pages) {
  422. if (!adjust_pool_surplus(-1))
  423. break;
  424. }
  425. while (count > persistent_huge_pages) {
  426. int ret;
  427. /*
  428. * If this allocation races such that we no longer need the
  429. * page, free_huge_page will handle it by freeing the page
  430. * and reducing the surplus.
  431. */
  432. spin_unlock(&hugetlb_lock);
  433. ret = alloc_fresh_huge_page();
  434. spin_lock(&hugetlb_lock);
  435. if (!ret)
  436. goto out;
  437. }
  438. /*
  439. * Decrease the pool size
  440. * First return free pages to the buddy allocator (being careful
  441. * to keep enough around to satisfy reservations). Then place
  442. * pages into surplus state as needed so the pool will shrink
  443. * to the desired size as pages become free.
  444. */
  445. min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
  446. min_count = max(count, min_count);
  447. try_to_free_low(min_count);
  448. while (min_count < persistent_huge_pages) {
  449. struct page *page = dequeue_huge_page(NULL, 0);
  450. if (!page)
  451. break;
  452. update_and_free_page(page);
  453. }
  454. while (count < persistent_huge_pages) {
  455. if (!adjust_pool_surplus(1))
  456. break;
  457. }
  458. out:
  459. ret = persistent_huge_pages;
  460. spin_unlock(&hugetlb_lock);
  461. return ret;
  462. }
  463. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  464. struct file *file, void __user *buffer,
  465. size_t *length, loff_t *ppos)
  466. {
  467. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  468. max_huge_pages = set_max_huge_pages(max_huge_pages);
  469. return 0;
  470. }
  471. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  472. struct file *file, void __user *buffer,
  473. size_t *length, loff_t *ppos)
  474. {
  475. proc_dointvec(table, write, file, buffer, length, ppos);
  476. if (hugepages_treat_as_movable)
  477. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  478. else
  479. htlb_alloc_mask = GFP_HIGHUSER;
  480. return 0;
  481. }
  482. #endif /* CONFIG_SYSCTL */
  483. int hugetlb_report_meminfo(char *buf)
  484. {
  485. return sprintf(buf,
  486. "HugePages_Total: %5lu\n"
  487. "HugePages_Free: %5lu\n"
  488. "HugePages_Rsvd: %5lu\n"
  489. "HugePages_Surp: %5lu\n"
  490. "Hugepagesize: %5lu kB\n",
  491. nr_huge_pages,
  492. free_huge_pages,
  493. resv_huge_pages,
  494. surplus_huge_pages,
  495. HPAGE_SIZE/1024);
  496. }
  497. int hugetlb_report_node_meminfo(int nid, char *buf)
  498. {
  499. return sprintf(buf,
  500. "Node %d HugePages_Total: %5u\n"
  501. "Node %d HugePages_Free: %5u\n",
  502. nid, nr_huge_pages_node[nid],
  503. nid, free_huge_pages_node[nid]);
  504. }
  505. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  506. unsigned long hugetlb_total_pages(void)
  507. {
  508. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  509. }
  510. /*
  511. * We cannot handle pagefaults against hugetlb pages at all. They cause
  512. * handle_mm_fault() to try to instantiate regular-sized pages in the
  513. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  514. * this far.
  515. */
  516. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  517. {
  518. BUG();
  519. return 0;
  520. }
  521. struct vm_operations_struct hugetlb_vm_ops = {
  522. .fault = hugetlb_vm_op_fault,
  523. };
  524. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  525. int writable)
  526. {
  527. pte_t entry;
  528. if (writable) {
  529. entry =
  530. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  531. } else {
  532. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  533. }
  534. entry = pte_mkyoung(entry);
  535. entry = pte_mkhuge(entry);
  536. return entry;
  537. }
  538. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  539. unsigned long address, pte_t *ptep)
  540. {
  541. pte_t entry;
  542. entry = pte_mkwrite(pte_mkdirty(*ptep));
  543. if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
  544. update_mmu_cache(vma, address, entry);
  545. }
  546. }
  547. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  548. struct vm_area_struct *vma)
  549. {
  550. pte_t *src_pte, *dst_pte, entry;
  551. struct page *ptepage;
  552. unsigned long addr;
  553. int cow;
  554. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  555. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  556. src_pte = huge_pte_offset(src, addr);
  557. if (!src_pte)
  558. continue;
  559. dst_pte = huge_pte_alloc(dst, addr);
  560. if (!dst_pte)
  561. goto nomem;
  562. spin_lock(&dst->page_table_lock);
  563. spin_lock(&src->page_table_lock);
  564. if (!pte_none(*src_pte)) {
  565. if (cow)
  566. ptep_set_wrprotect(src, addr, src_pte);
  567. entry = *src_pte;
  568. ptepage = pte_page(entry);
  569. get_page(ptepage);
  570. set_huge_pte_at(dst, addr, dst_pte, entry);
  571. }
  572. spin_unlock(&src->page_table_lock);
  573. spin_unlock(&dst->page_table_lock);
  574. }
  575. return 0;
  576. nomem:
  577. return -ENOMEM;
  578. }
  579. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  580. unsigned long end)
  581. {
  582. struct mm_struct *mm = vma->vm_mm;
  583. unsigned long address;
  584. pte_t *ptep;
  585. pte_t pte;
  586. struct page *page;
  587. struct page *tmp;
  588. /*
  589. * A page gathering list, protected by per file i_mmap_lock. The
  590. * lock is used to avoid list corruption from multiple unmapping
  591. * of the same page since we are using page->lru.
  592. */
  593. LIST_HEAD(page_list);
  594. WARN_ON(!is_vm_hugetlb_page(vma));
  595. BUG_ON(start & ~HPAGE_MASK);
  596. BUG_ON(end & ~HPAGE_MASK);
  597. spin_lock(&mm->page_table_lock);
  598. for (address = start; address < end; address += HPAGE_SIZE) {
  599. ptep = huge_pte_offset(mm, address);
  600. if (!ptep)
  601. continue;
  602. if (huge_pmd_unshare(mm, &address, ptep))
  603. continue;
  604. pte = huge_ptep_get_and_clear(mm, address, ptep);
  605. if (pte_none(pte))
  606. continue;
  607. page = pte_page(pte);
  608. if (pte_dirty(pte))
  609. set_page_dirty(page);
  610. list_add(&page->lru, &page_list);
  611. }
  612. spin_unlock(&mm->page_table_lock);
  613. flush_tlb_range(vma, start, end);
  614. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  615. list_del(&page->lru);
  616. put_page(page);
  617. }
  618. }
  619. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  620. unsigned long end)
  621. {
  622. /*
  623. * It is undesirable to test vma->vm_file as it should be non-null
  624. * for valid hugetlb area. However, vm_file will be NULL in the error
  625. * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
  626. * do_mmap_pgoff() nullifies vma->vm_file before calling this function
  627. * to clean up. Since no pte has actually been setup, it is safe to
  628. * do nothing in this case.
  629. */
  630. if (vma->vm_file) {
  631. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  632. __unmap_hugepage_range(vma, start, end);
  633. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  634. }
  635. }
  636. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  637. unsigned long address, pte_t *ptep, pte_t pte)
  638. {
  639. struct page *old_page, *new_page;
  640. int avoidcopy;
  641. old_page = pte_page(pte);
  642. /* If no-one else is actually using this page, avoid the copy
  643. * and just make the page writable */
  644. avoidcopy = (page_count(old_page) == 1);
  645. if (avoidcopy) {
  646. set_huge_ptep_writable(vma, address, ptep);
  647. return 0;
  648. }
  649. page_cache_get(old_page);
  650. new_page = alloc_huge_page(vma, address);
  651. if (IS_ERR(new_page)) {
  652. page_cache_release(old_page);
  653. return -PTR_ERR(new_page);
  654. }
  655. spin_unlock(&mm->page_table_lock);
  656. copy_huge_page(new_page, old_page, address, vma);
  657. spin_lock(&mm->page_table_lock);
  658. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  659. if (likely(pte_same(*ptep, pte))) {
  660. /* Break COW */
  661. set_huge_pte_at(mm, address, ptep,
  662. make_huge_pte(vma, new_page, 1));
  663. /* Make the old page be freed below */
  664. new_page = old_page;
  665. }
  666. page_cache_release(new_page);
  667. page_cache_release(old_page);
  668. return 0;
  669. }
  670. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  671. unsigned long address, pte_t *ptep, int write_access)
  672. {
  673. int ret = VM_FAULT_SIGBUS;
  674. unsigned long idx;
  675. unsigned long size;
  676. struct page *page;
  677. struct address_space *mapping;
  678. pte_t new_pte;
  679. mapping = vma->vm_file->f_mapping;
  680. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  681. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  682. /*
  683. * Use page lock to guard against racing truncation
  684. * before we get page_table_lock.
  685. */
  686. retry:
  687. page = find_lock_page(mapping, idx);
  688. if (!page) {
  689. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  690. if (idx >= size)
  691. goto out;
  692. page = alloc_huge_page(vma, address);
  693. if (IS_ERR(page)) {
  694. ret = -PTR_ERR(page);
  695. goto out;
  696. }
  697. clear_huge_page(page, address);
  698. if (vma->vm_flags & VM_SHARED) {
  699. int err;
  700. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  701. if (err) {
  702. put_page(page);
  703. if (err == -EEXIST)
  704. goto retry;
  705. goto out;
  706. }
  707. } else
  708. lock_page(page);
  709. }
  710. spin_lock(&mm->page_table_lock);
  711. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  712. if (idx >= size)
  713. goto backout;
  714. ret = 0;
  715. if (!pte_none(*ptep))
  716. goto backout;
  717. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  718. && (vma->vm_flags & VM_SHARED)));
  719. set_huge_pte_at(mm, address, ptep, new_pte);
  720. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  721. /* Optimization, do the COW without a second fault */
  722. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  723. }
  724. spin_unlock(&mm->page_table_lock);
  725. unlock_page(page);
  726. out:
  727. return ret;
  728. backout:
  729. spin_unlock(&mm->page_table_lock);
  730. unlock_page(page);
  731. put_page(page);
  732. goto out;
  733. }
  734. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  735. unsigned long address, int write_access)
  736. {
  737. pte_t *ptep;
  738. pte_t entry;
  739. int ret;
  740. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  741. ptep = huge_pte_alloc(mm, address);
  742. if (!ptep)
  743. return VM_FAULT_OOM;
  744. /*
  745. * Serialize hugepage allocation and instantiation, so that we don't
  746. * get spurious allocation failures if two CPUs race to instantiate
  747. * the same page in the page cache.
  748. */
  749. mutex_lock(&hugetlb_instantiation_mutex);
  750. entry = *ptep;
  751. if (pte_none(entry)) {
  752. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  753. mutex_unlock(&hugetlb_instantiation_mutex);
  754. return ret;
  755. }
  756. ret = 0;
  757. spin_lock(&mm->page_table_lock);
  758. /* Check for a racing update before calling hugetlb_cow */
  759. if (likely(pte_same(entry, *ptep)))
  760. if (write_access && !pte_write(entry))
  761. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  762. spin_unlock(&mm->page_table_lock);
  763. mutex_unlock(&hugetlb_instantiation_mutex);
  764. return ret;
  765. }
  766. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  767. struct page **pages, struct vm_area_struct **vmas,
  768. unsigned long *position, int *length, int i,
  769. int write)
  770. {
  771. unsigned long pfn_offset;
  772. unsigned long vaddr = *position;
  773. int remainder = *length;
  774. spin_lock(&mm->page_table_lock);
  775. while (vaddr < vma->vm_end && remainder) {
  776. pte_t *pte;
  777. struct page *page;
  778. /*
  779. * Some archs (sparc64, sh*) have multiple pte_ts to
  780. * each hugepage. We have to make * sure we get the
  781. * first, for the page indexing below to work.
  782. */
  783. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  784. if (!pte || pte_none(*pte)) {
  785. int ret;
  786. spin_unlock(&mm->page_table_lock);
  787. ret = hugetlb_fault(mm, vma, vaddr, write);
  788. spin_lock(&mm->page_table_lock);
  789. if (!(ret & VM_FAULT_ERROR))
  790. continue;
  791. remainder = 0;
  792. if (!i)
  793. i = -EFAULT;
  794. break;
  795. }
  796. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  797. page = pte_page(*pte);
  798. same_page:
  799. if (pages) {
  800. get_page(page);
  801. pages[i] = page + pfn_offset;
  802. }
  803. if (vmas)
  804. vmas[i] = vma;
  805. vaddr += PAGE_SIZE;
  806. ++pfn_offset;
  807. --remainder;
  808. ++i;
  809. if (vaddr < vma->vm_end && remainder &&
  810. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  811. /*
  812. * We use pfn_offset to avoid touching the pageframes
  813. * of this compound page.
  814. */
  815. goto same_page;
  816. }
  817. }
  818. spin_unlock(&mm->page_table_lock);
  819. *length = remainder;
  820. *position = vaddr;
  821. return i;
  822. }
  823. void hugetlb_change_protection(struct vm_area_struct *vma,
  824. unsigned long address, unsigned long end, pgprot_t newprot)
  825. {
  826. struct mm_struct *mm = vma->vm_mm;
  827. unsigned long start = address;
  828. pte_t *ptep;
  829. pte_t pte;
  830. BUG_ON(address >= end);
  831. flush_cache_range(vma, address, end);
  832. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  833. spin_lock(&mm->page_table_lock);
  834. for (; address < end; address += HPAGE_SIZE) {
  835. ptep = huge_pte_offset(mm, address);
  836. if (!ptep)
  837. continue;
  838. if (huge_pmd_unshare(mm, &address, ptep))
  839. continue;
  840. if (!pte_none(*ptep)) {
  841. pte = huge_ptep_get_and_clear(mm, address, ptep);
  842. pte = pte_mkhuge(pte_modify(pte, newprot));
  843. set_huge_pte_at(mm, address, ptep, pte);
  844. }
  845. }
  846. spin_unlock(&mm->page_table_lock);
  847. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  848. flush_tlb_range(vma, start, end);
  849. }
  850. struct file_region {
  851. struct list_head link;
  852. long from;
  853. long to;
  854. };
  855. static long region_add(struct list_head *head, long f, long t)
  856. {
  857. struct file_region *rg, *nrg, *trg;
  858. /* Locate the region we are either in or before. */
  859. list_for_each_entry(rg, head, link)
  860. if (f <= rg->to)
  861. break;
  862. /* Round our left edge to the current segment if it encloses us. */
  863. if (f > rg->from)
  864. f = rg->from;
  865. /* Check for and consume any regions we now overlap with. */
  866. nrg = rg;
  867. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  868. if (&rg->link == head)
  869. break;
  870. if (rg->from > t)
  871. break;
  872. /* If this area reaches higher then extend our area to
  873. * include it completely. If this is not the first area
  874. * which we intend to reuse, free it. */
  875. if (rg->to > t)
  876. t = rg->to;
  877. if (rg != nrg) {
  878. list_del(&rg->link);
  879. kfree(rg);
  880. }
  881. }
  882. nrg->from = f;
  883. nrg->to = t;
  884. return 0;
  885. }
  886. static long region_chg(struct list_head *head, long f, long t)
  887. {
  888. struct file_region *rg, *nrg;
  889. long chg = 0;
  890. /* Locate the region we are before or in. */
  891. list_for_each_entry(rg, head, link)
  892. if (f <= rg->to)
  893. break;
  894. /* If we are below the current region then a new region is required.
  895. * Subtle, allocate a new region at the position but make it zero
  896. * size such that we can guarantee to record the reservation. */
  897. if (&rg->link == head || t < rg->from) {
  898. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  899. if (!nrg)
  900. return -ENOMEM;
  901. nrg->from = f;
  902. nrg->to = f;
  903. INIT_LIST_HEAD(&nrg->link);
  904. list_add(&nrg->link, rg->link.prev);
  905. return t - f;
  906. }
  907. /* Round our left edge to the current segment if it encloses us. */
  908. if (f > rg->from)
  909. f = rg->from;
  910. chg = t - f;
  911. /* Check for and consume any regions we now overlap with. */
  912. list_for_each_entry(rg, rg->link.prev, link) {
  913. if (&rg->link == head)
  914. break;
  915. if (rg->from > t)
  916. return chg;
  917. /* We overlap with this area, if it extends futher than
  918. * us then we must extend ourselves. Account for its
  919. * existing reservation. */
  920. if (rg->to > t) {
  921. chg += rg->to - t;
  922. t = rg->to;
  923. }
  924. chg -= rg->to - rg->from;
  925. }
  926. return chg;
  927. }
  928. static long region_truncate(struct list_head *head, long end)
  929. {
  930. struct file_region *rg, *trg;
  931. long chg = 0;
  932. /* Locate the region we are either in or before. */
  933. list_for_each_entry(rg, head, link)
  934. if (end <= rg->to)
  935. break;
  936. if (&rg->link == head)
  937. return 0;
  938. /* If we are in the middle of a region then adjust it. */
  939. if (end > rg->from) {
  940. chg = rg->to - end;
  941. rg->to = end;
  942. rg = list_entry(rg->link.next, typeof(*rg), link);
  943. }
  944. /* Drop any remaining regions. */
  945. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  946. if (&rg->link == head)
  947. break;
  948. chg += rg->to - rg->from;
  949. list_del(&rg->link);
  950. kfree(rg);
  951. }
  952. return chg;
  953. }
  954. static int hugetlb_acct_memory(long delta)
  955. {
  956. int ret = -ENOMEM;
  957. spin_lock(&hugetlb_lock);
  958. /*
  959. * When cpuset is configured, it breaks the strict hugetlb page
  960. * reservation as the accounting is done on a global variable. Such
  961. * reservation is completely rubbish in the presence of cpuset because
  962. * the reservation is not checked against page availability for the
  963. * current cpuset. Application can still potentially OOM'ed by kernel
  964. * with lack of free htlb page in cpuset that the task is in.
  965. * Attempt to enforce strict accounting with cpuset is almost
  966. * impossible (or too ugly) because cpuset is too fluid that
  967. * task or memory node can be dynamically moved between cpusets.
  968. *
  969. * The change of semantics for shared hugetlb mapping with cpuset is
  970. * undesirable. However, in order to preserve some of the semantics,
  971. * we fall back to check against current free page availability as
  972. * a best attempt and hopefully to minimize the impact of changing
  973. * semantics that cpuset has.
  974. */
  975. if (delta > 0) {
  976. if (gather_surplus_pages(delta) < 0)
  977. goto out;
  978. if (delta > cpuset_mems_nr(free_huge_pages_node))
  979. goto out;
  980. }
  981. ret = 0;
  982. resv_huge_pages += delta;
  983. if (delta < 0)
  984. return_unused_surplus_pages((unsigned long) -delta);
  985. out:
  986. spin_unlock(&hugetlb_lock);
  987. return ret;
  988. }
  989. int hugetlb_reserve_pages(struct inode *inode, long from, long to)
  990. {
  991. long ret, chg;
  992. chg = region_chg(&inode->i_mapping->private_list, from, to);
  993. if (chg < 0)
  994. return chg;
  995. ret = hugetlb_acct_memory(chg);
  996. if (ret < 0)
  997. return ret;
  998. region_add(&inode->i_mapping->private_list, from, to);
  999. return 0;
  1000. }
  1001. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  1002. {
  1003. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  1004. hugetlb_acct_memory(freed - chg);
  1005. }