lm80.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698
  1. /*
  2. * lm80.c - From lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. * and Philip Edelbrock <phil@netroedge.com>
  6. *
  7. * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/init.h>
  25. #include <linux/slab.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/i2c.h>
  28. #include <linux/hwmon.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
  34. 0x2e, 0x2f, I2C_CLIENT_END };
  35. /* Many LM80 constants specified below */
  36. /* The LM80 registers */
  37. #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
  38. #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
  39. #define LM80_REG_IN(nr) (0x20 + (nr))
  40. #define LM80_REG_FAN1 0x28
  41. #define LM80_REG_FAN2 0x29
  42. #define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
  43. #define LM80_REG_TEMP 0x27
  44. #define LM80_REG_TEMP_HOT_MAX 0x38
  45. #define LM80_REG_TEMP_HOT_HYST 0x39
  46. #define LM80_REG_TEMP_OS_MAX 0x3a
  47. #define LM80_REG_TEMP_OS_HYST 0x3b
  48. #define LM80_REG_CONFIG 0x00
  49. #define LM80_REG_ALARM1 0x01
  50. #define LM80_REG_ALARM2 0x02
  51. #define LM80_REG_MASK1 0x03
  52. #define LM80_REG_MASK2 0x04
  53. #define LM80_REG_FANDIV 0x05
  54. #define LM80_REG_RES 0x06
  55. /* Conversions. Rounding and limit checking is only done on the TO_REG
  56. variants. Note that you should be a bit careful with which arguments
  57. these macros are called: arguments may be evaluated more than once.
  58. Fixing this is just not worth it. */
  59. #define IN_TO_REG(val) (SENSORS_LIMIT(((val) + 5) / 10, 0, 255))
  60. #define IN_FROM_REG(val) ((val) * 10)
  61. static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
  62. {
  63. if (rpm == 0)
  64. return 255;
  65. rpm = SENSORS_LIMIT(rpm, 1, 1000000);
  66. return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
  67. }
  68. #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
  69. (val) == 255 ? 0 : 1350000/((div) * (val)))
  70. static inline long TEMP_FROM_REG(u16 temp)
  71. {
  72. long res;
  73. temp >>= 4;
  74. if (temp < 0x0800)
  75. res = 625 * (long) temp;
  76. else
  77. res = ((long) temp - 0x01000) * 625;
  78. return res / 10;
  79. }
  80. #define TEMP_LIMIT_FROM_REG(val) (((val) > 0x80 ? \
  81. (val) - 0x100 : (val)) * 1000)
  82. #define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT((val) < 0 ? \
  83. ((val) - 500) / 1000 : ((val) + 500) / 1000, 0, 255)
  84. #define DIV_FROM_REG(val) (1 << (val))
  85. /*
  86. * Client data (each client gets its own)
  87. */
  88. struct lm80_data {
  89. struct device *hwmon_dev;
  90. struct mutex update_lock;
  91. char valid; /* !=0 if following fields are valid */
  92. unsigned long last_updated; /* In jiffies */
  93. u8 in[7]; /* Register value */
  94. u8 in_max[7]; /* Register value */
  95. u8 in_min[7]; /* Register value */
  96. u8 fan[2]; /* Register value */
  97. u8 fan_min[2]; /* Register value */
  98. u8 fan_div[2]; /* Register encoding, shifted right */
  99. u16 temp; /* Register values, shifted right */
  100. u8 temp_hot_max; /* Register value */
  101. u8 temp_hot_hyst; /* Register value */
  102. u8 temp_os_max; /* Register value */
  103. u8 temp_os_hyst; /* Register value */
  104. u16 alarms; /* Register encoding, combined */
  105. };
  106. /*
  107. * Functions declaration
  108. */
  109. static int lm80_probe(struct i2c_client *client,
  110. const struct i2c_device_id *id);
  111. static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info);
  112. static void lm80_init_client(struct i2c_client *client);
  113. static int lm80_remove(struct i2c_client *client);
  114. static struct lm80_data *lm80_update_device(struct device *dev);
  115. static int lm80_read_value(struct i2c_client *client, u8 reg);
  116. static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
  117. /*
  118. * Driver data (common to all clients)
  119. */
  120. static const struct i2c_device_id lm80_id[] = {
  121. { "lm80", 0 },
  122. { }
  123. };
  124. MODULE_DEVICE_TABLE(i2c, lm80_id);
  125. static struct i2c_driver lm80_driver = {
  126. .class = I2C_CLASS_HWMON,
  127. .driver = {
  128. .name = "lm80",
  129. },
  130. .probe = lm80_probe,
  131. .remove = lm80_remove,
  132. .id_table = lm80_id,
  133. .detect = lm80_detect,
  134. .address_list = normal_i2c,
  135. };
  136. /*
  137. * Sysfs stuff
  138. */
  139. #define show_in(suffix, value) \
  140. static ssize_t show_in_##suffix(struct device *dev, \
  141. struct device_attribute *attr, char *buf) \
  142. { \
  143. int nr = to_sensor_dev_attr(attr)->index; \
  144. struct lm80_data *data = lm80_update_device(dev); \
  145. if (IS_ERR(data)) \
  146. return PTR_ERR(data); \
  147. return sprintf(buf, "%d\n", IN_FROM_REG(data->value[nr])); \
  148. }
  149. show_in(min, in_min)
  150. show_in(max, in_max)
  151. show_in(input, in)
  152. #define set_in(suffix, value, reg) \
  153. static ssize_t set_in_##suffix(struct device *dev, \
  154. struct device_attribute *attr, const char *buf, size_t count) \
  155. { \
  156. int nr = to_sensor_dev_attr(attr)->index; \
  157. struct i2c_client *client = to_i2c_client(dev); \
  158. struct lm80_data *data = i2c_get_clientdata(client); \
  159. long val = simple_strtol(buf, NULL, 10); \
  160. \
  161. mutex_lock(&data->update_lock);\
  162. data->value[nr] = IN_TO_REG(val); \
  163. lm80_write_value(client, reg(nr), data->value[nr]); \
  164. mutex_unlock(&data->update_lock);\
  165. return count; \
  166. }
  167. set_in(min, in_min, LM80_REG_IN_MIN)
  168. set_in(max, in_max, LM80_REG_IN_MAX)
  169. #define show_fan(suffix, value) \
  170. static ssize_t show_fan_##suffix(struct device *dev, \
  171. struct device_attribute *attr, char *buf) \
  172. { \
  173. int nr = to_sensor_dev_attr(attr)->index; \
  174. struct lm80_data *data = lm80_update_device(dev); \
  175. if (IS_ERR(data)) \
  176. return PTR_ERR(data); \
  177. return sprintf(buf, "%d\n", FAN_FROM_REG(data->value[nr], \
  178. DIV_FROM_REG(data->fan_div[nr]))); \
  179. }
  180. show_fan(min, fan_min)
  181. show_fan(input, fan)
  182. static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
  183. char *buf)
  184. {
  185. int nr = to_sensor_dev_attr(attr)->index;
  186. struct lm80_data *data = lm80_update_device(dev);
  187. if (IS_ERR(data))
  188. return PTR_ERR(data);
  189. return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
  190. }
  191. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  192. const char *buf, size_t count)
  193. {
  194. int nr = to_sensor_dev_attr(attr)->index;
  195. struct i2c_client *client = to_i2c_client(dev);
  196. struct lm80_data *data = i2c_get_clientdata(client);
  197. long val = simple_strtoul(buf, NULL, 10);
  198. mutex_lock(&data->update_lock);
  199. data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
  200. lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
  201. mutex_unlock(&data->update_lock);
  202. return count;
  203. }
  204. /* Note: we save and restore the fan minimum here, because its value is
  205. determined in part by the fan divisor. This follows the principle of
  206. least surprise; the user doesn't expect the fan minimum to change just
  207. because the divisor changed. */
  208. static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
  209. const char *buf, size_t count)
  210. {
  211. int nr = to_sensor_dev_attr(attr)->index;
  212. struct i2c_client *client = to_i2c_client(dev);
  213. struct lm80_data *data = i2c_get_clientdata(client);
  214. unsigned long min, val = simple_strtoul(buf, NULL, 10);
  215. u8 reg;
  216. /* Save fan_min */
  217. mutex_lock(&data->update_lock);
  218. min = FAN_FROM_REG(data->fan_min[nr],
  219. DIV_FROM_REG(data->fan_div[nr]));
  220. switch (val) {
  221. case 1:
  222. data->fan_div[nr] = 0;
  223. break;
  224. case 2:
  225. data->fan_div[nr] = 1;
  226. break;
  227. case 4:
  228. data->fan_div[nr] = 2;
  229. break;
  230. case 8:
  231. data->fan_div[nr] = 3;
  232. break;
  233. default:
  234. dev_err(&client->dev, "fan_div value %ld not "
  235. "supported. Choose one of 1, 2, 4 or 8!\n", val);
  236. mutex_unlock(&data->update_lock);
  237. return -EINVAL;
  238. }
  239. reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
  240. | (data->fan_div[nr] << (2 * (nr + 1)));
  241. lm80_write_value(client, LM80_REG_FANDIV, reg);
  242. /* Restore fan_min */
  243. data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
  244. lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
  245. mutex_unlock(&data->update_lock);
  246. return count;
  247. }
  248. static ssize_t show_temp_input1(struct device *dev,
  249. struct device_attribute *attr, char *buf)
  250. {
  251. struct lm80_data *data = lm80_update_device(dev);
  252. if (IS_ERR(data))
  253. return PTR_ERR(data);
  254. return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
  255. }
  256. #define show_temp(suffix, value) \
  257. static ssize_t show_temp_##suffix(struct device *dev, \
  258. struct device_attribute *attr, char *buf) \
  259. { \
  260. struct lm80_data *data = lm80_update_device(dev); \
  261. if (IS_ERR(data)) \
  262. return PTR_ERR(data); \
  263. return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
  264. }
  265. show_temp(hot_max, temp_hot_max);
  266. show_temp(hot_hyst, temp_hot_hyst);
  267. show_temp(os_max, temp_os_max);
  268. show_temp(os_hyst, temp_os_hyst);
  269. #define set_temp(suffix, value, reg) \
  270. static ssize_t set_temp_##suffix(struct device *dev, \
  271. struct device_attribute *attr, const char *buf, size_t count) \
  272. { \
  273. struct i2c_client *client = to_i2c_client(dev); \
  274. struct lm80_data *data = i2c_get_clientdata(client); \
  275. long val = simple_strtoul(buf, NULL, 10); \
  276. \
  277. mutex_lock(&data->update_lock); \
  278. data->value = TEMP_LIMIT_TO_REG(val); \
  279. lm80_write_value(client, reg, data->value); \
  280. mutex_unlock(&data->update_lock); \
  281. return count; \
  282. }
  283. set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
  284. set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
  285. set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
  286. set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);
  287. static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
  288. char *buf)
  289. {
  290. struct lm80_data *data = lm80_update_device(dev);
  291. if (IS_ERR(data))
  292. return PTR_ERR(data);
  293. return sprintf(buf, "%u\n", data->alarms);
  294. }
  295. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  296. char *buf)
  297. {
  298. int bitnr = to_sensor_dev_attr(attr)->index;
  299. struct lm80_data *data = lm80_update_device(dev);
  300. if (IS_ERR(data))
  301. return PTR_ERR(data);
  302. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  303. }
  304. static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO,
  305. show_in_min, set_in_min, 0);
  306. static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
  307. show_in_min, set_in_min, 1);
  308. static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
  309. show_in_min, set_in_min, 2);
  310. static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
  311. show_in_min, set_in_min, 3);
  312. static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
  313. show_in_min, set_in_min, 4);
  314. static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
  315. show_in_min, set_in_min, 5);
  316. static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
  317. show_in_min, set_in_min, 6);
  318. static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO,
  319. show_in_max, set_in_max, 0);
  320. static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
  321. show_in_max, set_in_max, 1);
  322. static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
  323. show_in_max, set_in_max, 2);
  324. static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
  325. show_in_max, set_in_max, 3);
  326. static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
  327. show_in_max, set_in_max, 4);
  328. static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
  329. show_in_max, set_in_max, 5);
  330. static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
  331. show_in_max, set_in_max, 6);
  332. static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in_input, NULL, 0);
  333. static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in_input, NULL, 1);
  334. static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in_input, NULL, 2);
  335. static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in_input, NULL, 3);
  336. static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in_input, NULL, 4);
  337. static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in_input, NULL, 5);
  338. static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in_input, NULL, 6);
  339. static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
  340. show_fan_min, set_fan_min, 0);
  341. static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
  342. show_fan_min, set_fan_min, 1);
  343. static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0);
  344. static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1);
  345. static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
  346. show_fan_div, set_fan_div, 0);
  347. static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
  348. show_fan_div, set_fan_div, 1);
  349. static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
  350. static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
  351. set_temp_hot_max);
  352. static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
  353. set_temp_hot_hyst);
  354. static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
  355. set_temp_os_max);
  356. static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
  357. set_temp_os_hyst);
  358. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  359. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  360. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  361. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  362. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  363. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
  364. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
  365. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
  366. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  367. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  368. static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
  369. static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
  370. /*
  371. * Real code
  372. */
  373. static struct attribute *lm80_attributes[] = {
  374. &sensor_dev_attr_in0_min.dev_attr.attr,
  375. &sensor_dev_attr_in1_min.dev_attr.attr,
  376. &sensor_dev_attr_in2_min.dev_attr.attr,
  377. &sensor_dev_attr_in3_min.dev_attr.attr,
  378. &sensor_dev_attr_in4_min.dev_attr.attr,
  379. &sensor_dev_attr_in5_min.dev_attr.attr,
  380. &sensor_dev_attr_in6_min.dev_attr.attr,
  381. &sensor_dev_attr_in0_max.dev_attr.attr,
  382. &sensor_dev_attr_in1_max.dev_attr.attr,
  383. &sensor_dev_attr_in2_max.dev_attr.attr,
  384. &sensor_dev_attr_in3_max.dev_attr.attr,
  385. &sensor_dev_attr_in4_max.dev_attr.attr,
  386. &sensor_dev_attr_in5_max.dev_attr.attr,
  387. &sensor_dev_attr_in6_max.dev_attr.attr,
  388. &sensor_dev_attr_in0_input.dev_attr.attr,
  389. &sensor_dev_attr_in1_input.dev_attr.attr,
  390. &sensor_dev_attr_in2_input.dev_attr.attr,
  391. &sensor_dev_attr_in3_input.dev_attr.attr,
  392. &sensor_dev_attr_in4_input.dev_attr.attr,
  393. &sensor_dev_attr_in5_input.dev_attr.attr,
  394. &sensor_dev_attr_in6_input.dev_attr.attr,
  395. &sensor_dev_attr_fan1_min.dev_attr.attr,
  396. &sensor_dev_attr_fan2_min.dev_attr.attr,
  397. &sensor_dev_attr_fan1_input.dev_attr.attr,
  398. &sensor_dev_attr_fan2_input.dev_attr.attr,
  399. &sensor_dev_attr_fan1_div.dev_attr.attr,
  400. &sensor_dev_attr_fan2_div.dev_attr.attr,
  401. &dev_attr_temp1_input.attr,
  402. &dev_attr_temp1_max.attr,
  403. &dev_attr_temp1_max_hyst.attr,
  404. &dev_attr_temp1_crit.attr,
  405. &dev_attr_temp1_crit_hyst.attr,
  406. &dev_attr_alarms.attr,
  407. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  408. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  409. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  410. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  411. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  412. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  413. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  414. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  415. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  416. &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
  417. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  418. NULL
  419. };
  420. static const struct attribute_group lm80_group = {
  421. .attrs = lm80_attributes,
  422. };
  423. /* Return 0 if detection is successful, -ENODEV otherwise */
  424. static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
  425. {
  426. struct i2c_adapter *adapter = client->adapter;
  427. int i, cur;
  428. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  429. return -ENODEV;
  430. /* Now, we do the remaining detection. It is lousy. */
  431. if (lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
  432. return -ENODEV;
  433. for (i = 0x2a; i <= 0x3d; i++) {
  434. cur = i2c_smbus_read_byte_data(client, i);
  435. if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
  436. || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
  437. || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
  438. return -ENODEV;
  439. }
  440. strlcpy(info->type, "lm80", I2C_NAME_SIZE);
  441. return 0;
  442. }
  443. static int lm80_probe(struct i2c_client *client,
  444. const struct i2c_device_id *id)
  445. {
  446. struct lm80_data *data;
  447. int err;
  448. data = kzalloc(sizeof(struct lm80_data), GFP_KERNEL);
  449. if (!data) {
  450. err = -ENOMEM;
  451. goto exit;
  452. }
  453. i2c_set_clientdata(client, data);
  454. mutex_init(&data->update_lock);
  455. /* Initialize the LM80 chip */
  456. lm80_init_client(client);
  457. /* A few vars need to be filled upon startup */
  458. data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
  459. data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
  460. /* Register sysfs hooks */
  461. err = sysfs_create_group(&client->dev.kobj, &lm80_group);
  462. if (err)
  463. goto error_free;
  464. data->hwmon_dev = hwmon_device_register(&client->dev);
  465. if (IS_ERR(data->hwmon_dev)) {
  466. err = PTR_ERR(data->hwmon_dev);
  467. goto error_remove;
  468. }
  469. return 0;
  470. error_remove:
  471. sysfs_remove_group(&client->dev.kobj, &lm80_group);
  472. error_free:
  473. kfree(data);
  474. exit:
  475. return err;
  476. }
  477. static int lm80_remove(struct i2c_client *client)
  478. {
  479. struct lm80_data *data = i2c_get_clientdata(client);
  480. hwmon_device_unregister(data->hwmon_dev);
  481. sysfs_remove_group(&client->dev.kobj, &lm80_group);
  482. kfree(data);
  483. return 0;
  484. }
  485. static int lm80_read_value(struct i2c_client *client, u8 reg)
  486. {
  487. return i2c_smbus_read_byte_data(client, reg);
  488. }
  489. static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
  490. {
  491. return i2c_smbus_write_byte_data(client, reg, value);
  492. }
  493. /* Called when we have found a new LM80. */
  494. static void lm80_init_client(struct i2c_client *client)
  495. {
  496. /* Reset all except Watchdog values and last conversion values
  497. This sets fan-divs to 2, among others. This makes most other
  498. initializations unnecessary */
  499. lm80_write_value(client, LM80_REG_CONFIG, 0x80);
  500. /* Set 11-bit temperature resolution */
  501. lm80_write_value(client, LM80_REG_RES, 0x08);
  502. /* Start monitoring */
  503. lm80_write_value(client, LM80_REG_CONFIG, 0x01);
  504. }
  505. static struct lm80_data *lm80_update_device(struct device *dev)
  506. {
  507. struct i2c_client *client = to_i2c_client(dev);
  508. struct lm80_data *data = i2c_get_clientdata(client);
  509. int i;
  510. int rv;
  511. int prev_rv;
  512. struct lm80_data *ret = data;
  513. mutex_lock(&data->update_lock);
  514. if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
  515. dev_dbg(&client->dev, "Starting lm80 update\n");
  516. for (i = 0; i <= 6; i++) {
  517. rv = lm80_read_value(client, LM80_REG_IN(i));
  518. if (rv < 0)
  519. goto abort;
  520. data->in[i] = rv;
  521. rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
  522. if (rv < 0)
  523. goto abort;
  524. data->in_min[i] = rv;
  525. rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
  526. if (rv < 0)
  527. goto abort;
  528. data->in_max[i] = rv;
  529. }
  530. rv = lm80_read_value(client, LM80_REG_FAN1);
  531. if (rv < 0)
  532. goto abort;
  533. data->fan[0] = rv;
  534. rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
  535. if (rv < 0)
  536. goto abort;
  537. data->fan_min[0] = rv;
  538. rv = lm80_read_value(client, LM80_REG_FAN2);
  539. if (rv < 0)
  540. goto abort;
  541. data->fan[1] = rv;
  542. rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
  543. if (rv < 0)
  544. goto abort;
  545. data->fan_min[1] = rv;
  546. prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
  547. if (rv < 0)
  548. goto abort;
  549. rv = lm80_read_value(client, LM80_REG_RES);
  550. if (rv < 0)
  551. goto abort;
  552. data->temp = (prev_rv << 8) | (rv & 0xf0);
  553. rv = lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
  554. if (rv < 0)
  555. goto abort;
  556. data->temp_os_max = rv;
  557. rv = lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
  558. if (rv < 0)
  559. goto abort;
  560. data->temp_os_hyst = rv;
  561. rv = lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
  562. if (rv < 0)
  563. goto abort;
  564. data->temp_hot_max = rv;
  565. rv = lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
  566. if (rv < 0)
  567. goto abort;
  568. data->temp_hot_hyst = rv;
  569. rv = lm80_read_value(client, LM80_REG_FANDIV);
  570. if (rv < 0)
  571. goto abort;
  572. data->fan_div[0] = (rv >> 2) & 0x03;
  573. data->fan_div[1] = (rv >> 4) & 0x03;
  574. prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
  575. if (rv < 0)
  576. goto abort;
  577. rv = lm80_read_value(client, LM80_REG_ALARM2);
  578. if (rv < 0)
  579. goto abort;
  580. data->alarms = prev_rv + (rv << 8);
  581. data->last_updated = jiffies;
  582. data->valid = 1;
  583. }
  584. goto done;
  585. abort:
  586. ret = ERR_PTR(rv);
  587. data->valid = 0;
  588. done:
  589. mutex_unlock(&data->update_lock);
  590. return ret;
  591. }
  592. static int __init sensors_lm80_init(void)
  593. {
  594. return i2c_add_driver(&lm80_driver);
  595. }
  596. static void __exit sensors_lm80_exit(void)
  597. {
  598. i2c_del_driver(&lm80_driver);
  599. }
  600. MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
  601. "Philip Edelbrock <phil@netroedge.com>");
  602. MODULE_DESCRIPTION("LM80 driver");
  603. MODULE_LICENSE("GPL");
  604. module_init(sensors_lm80_init);
  605. module_exit(sensors_lm80_exit);