intel_display.c 267 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  353. {
  354. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  355. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  356. DRM_ERROR("DPIO idle wait timed out\n");
  357. return 0;
  358. }
  359. I915_WRITE(DPIO_REG, reg);
  360. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  361. DPIO_BYTE);
  362. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  363. DRM_ERROR("DPIO read wait timed out\n");
  364. return 0;
  365. }
  366. return I915_READ(DPIO_DATA);
  367. }
  368. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  369. {
  370. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  371. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  372. DRM_ERROR("DPIO idle wait timed out\n");
  373. return;
  374. }
  375. I915_WRITE(DPIO_DATA, val);
  376. I915_WRITE(DPIO_REG, reg);
  377. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  378. DPIO_BYTE);
  379. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  380. DRM_ERROR("DPIO write wait timed out\n");
  381. }
  382. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  383. int refclk)
  384. {
  385. struct drm_device *dev = crtc->dev;
  386. const intel_limit_t *limit;
  387. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  388. if (intel_is_dual_link_lvds(dev)) {
  389. if (refclk == 100000)
  390. limit = &intel_limits_ironlake_dual_lvds_100m;
  391. else
  392. limit = &intel_limits_ironlake_dual_lvds;
  393. } else {
  394. if (refclk == 100000)
  395. limit = &intel_limits_ironlake_single_lvds_100m;
  396. else
  397. limit = &intel_limits_ironlake_single_lvds;
  398. }
  399. } else
  400. limit = &intel_limits_ironlake_dac;
  401. return limit;
  402. }
  403. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  404. {
  405. struct drm_device *dev = crtc->dev;
  406. const intel_limit_t *limit;
  407. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  408. if (intel_is_dual_link_lvds(dev))
  409. limit = &intel_limits_g4x_dual_channel_lvds;
  410. else
  411. limit = &intel_limits_g4x_single_channel_lvds;
  412. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  413. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  414. limit = &intel_limits_g4x_hdmi;
  415. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  416. limit = &intel_limits_g4x_sdvo;
  417. } else /* The option is for other outputs */
  418. limit = &intel_limits_i9xx_sdvo;
  419. return limit;
  420. }
  421. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  422. {
  423. struct drm_device *dev = crtc->dev;
  424. const intel_limit_t *limit;
  425. if (HAS_PCH_SPLIT(dev))
  426. limit = intel_ironlake_limit(crtc, refclk);
  427. else if (IS_G4X(dev)) {
  428. limit = intel_g4x_limit(crtc);
  429. } else if (IS_PINEVIEW(dev)) {
  430. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  431. limit = &intel_limits_pineview_lvds;
  432. else
  433. limit = &intel_limits_pineview_sdvo;
  434. } else if (IS_VALLEYVIEW(dev)) {
  435. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  436. limit = &intel_limits_vlv_dac;
  437. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  438. limit = &intel_limits_vlv_hdmi;
  439. else
  440. limit = &intel_limits_vlv_dp;
  441. } else if (!IS_GEN2(dev)) {
  442. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  443. limit = &intel_limits_i9xx_lvds;
  444. else
  445. limit = &intel_limits_i9xx_sdvo;
  446. } else {
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  448. limit = &intel_limits_i8xx_lvds;
  449. else
  450. limit = &intel_limits_i8xx_dvo;
  451. }
  452. return limit;
  453. }
  454. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  455. static void pineview_clock(int refclk, intel_clock_t *clock)
  456. {
  457. clock->m = clock->m2 + 2;
  458. clock->p = clock->p1 * clock->p2;
  459. clock->vco = refclk * clock->m / clock->n;
  460. clock->dot = clock->vco / clock->p;
  461. }
  462. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  463. {
  464. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  465. }
  466. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  467. {
  468. if (IS_PINEVIEW(dev)) {
  469. pineview_clock(refclk, clock);
  470. return;
  471. }
  472. clock->m = i9xx_dpll_compute_m(clock);
  473. clock->p = clock->p1 * clock->p2;
  474. clock->vco = refclk * clock->m / (clock->n + 2);
  475. clock->dot = clock->vco / clock->p;
  476. }
  477. /**
  478. * Returns whether any output on the specified pipe is of the specified type
  479. */
  480. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  481. {
  482. struct drm_device *dev = crtc->dev;
  483. struct intel_encoder *encoder;
  484. for_each_encoder_on_crtc(dev, crtc, encoder)
  485. if (encoder->type == type)
  486. return true;
  487. return false;
  488. }
  489. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  490. /**
  491. * Returns whether the given set of divisors are valid for a given refclk with
  492. * the given connectors.
  493. */
  494. static bool intel_PLL_is_valid(struct drm_device *dev,
  495. const intel_limit_t *limit,
  496. const intel_clock_t *clock)
  497. {
  498. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  499. INTELPllInvalid("p1 out of range\n");
  500. if (clock->p < limit->p.min || limit->p.max < clock->p)
  501. INTELPllInvalid("p out of range\n");
  502. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  503. INTELPllInvalid("m2 out of range\n");
  504. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  505. INTELPllInvalid("m1 out of range\n");
  506. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  507. INTELPllInvalid("m1 <= m2\n");
  508. if (clock->m < limit->m.min || limit->m.max < clock->m)
  509. INTELPllInvalid("m out of range\n");
  510. if (clock->n < limit->n.min || limit->n.max < clock->n)
  511. INTELPllInvalid("n out of range\n");
  512. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  513. INTELPllInvalid("vco out of range\n");
  514. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  515. * connector, etc., rather than just a single range.
  516. */
  517. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  518. INTELPllInvalid("dot out of range\n");
  519. return true;
  520. }
  521. static bool
  522. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  523. int target, int refclk, intel_clock_t *match_clock,
  524. intel_clock_t *best_clock)
  525. {
  526. struct drm_device *dev = crtc->dev;
  527. intel_clock_t clock;
  528. int err = target;
  529. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  530. /*
  531. * For LVDS just rely on its current settings for dual-channel.
  532. * We haven't figured out how to reliably set up different
  533. * single/dual channel state, if we even can.
  534. */
  535. if (intel_is_dual_link_lvds(dev))
  536. clock.p2 = limit->p2.p2_fast;
  537. else
  538. clock.p2 = limit->p2.p2_slow;
  539. } else {
  540. if (target < limit->p2.dot_limit)
  541. clock.p2 = limit->p2.p2_slow;
  542. else
  543. clock.p2 = limit->p2.p2_fast;
  544. }
  545. memset(best_clock, 0, sizeof(*best_clock));
  546. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  547. clock.m1++) {
  548. for (clock.m2 = limit->m2.min;
  549. clock.m2 <= limit->m2.max; clock.m2++) {
  550. /* m1 is always 0 in Pineview */
  551. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  552. break;
  553. for (clock.n = limit->n.min;
  554. clock.n <= limit->n.max; clock.n++) {
  555. for (clock.p1 = limit->p1.min;
  556. clock.p1 <= limit->p1.max; clock.p1++) {
  557. int this_err;
  558. intel_clock(dev, refclk, &clock);
  559. if (!intel_PLL_is_valid(dev, limit,
  560. &clock))
  561. continue;
  562. if (match_clock &&
  563. clock.p != match_clock->p)
  564. continue;
  565. this_err = abs(clock.dot - target);
  566. if (this_err < err) {
  567. *best_clock = clock;
  568. err = this_err;
  569. }
  570. }
  571. }
  572. }
  573. }
  574. return (err != target);
  575. }
  576. static bool
  577. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  578. int target, int refclk, intel_clock_t *match_clock,
  579. intel_clock_t *best_clock)
  580. {
  581. struct drm_device *dev = crtc->dev;
  582. intel_clock_t clock;
  583. int max_n;
  584. bool found;
  585. /* approximately equals target * 0.00585 */
  586. int err_most = (target >> 8) + (target >> 9);
  587. found = false;
  588. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  589. if (intel_is_dual_link_lvds(dev))
  590. clock.p2 = limit->p2.p2_fast;
  591. else
  592. clock.p2 = limit->p2.p2_slow;
  593. } else {
  594. if (target < limit->p2.dot_limit)
  595. clock.p2 = limit->p2.p2_slow;
  596. else
  597. clock.p2 = limit->p2.p2_fast;
  598. }
  599. memset(best_clock, 0, sizeof(*best_clock));
  600. max_n = limit->n.max;
  601. /* based on hardware requirement, prefer smaller n to precision */
  602. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  603. /* based on hardware requirement, prefere larger m1,m2 */
  604. for (clock.m1 = limit->m1.max;
  605. clock.m1 >= limit->m1.min; clock.m1--) {
  606. for (clock.m2 = limit->m2.max;
  607. clock.m2 >= limit->m2.min; clock.m2--) {
  608. for (clock.p1 = limit->p1.max;
  609. clock.p1 >= limit->p1.min; clock.p1--) {
  610. int this_err;
  611. intel_clock(dev, refclk, &clock);
  612. if (!intel_PLL_is_valid(dev, limit,
  613. &clock))
  614. continue;
  615. this_err = abs(clock.dot - target);
  616. if (this_err < err_most) {
  617. *best_clock = clock;
  618. err_most = this_err;
  619. max_n = clock.n;
  620. found = true;
  621. }
  622. }
  623. }
  624. }
  625. }
  626. return found;
  627. }
  628. static bool
  629. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  630. int target, int refclk, intel_clock_t *match_clock,
  631. intel_clock_t *best_clock)
  632. {
  633. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  634. u32 m, n, fastclk;
  635. u32 updrate, minupdate, fracbits, p;
  636. unsigned long bestppm, ppm, absppm;
  637. int dotclk, flag;
  638. flag = 0;
  639. dotclk = target * 1000;
  640. bestppm = 1000000;
  641. ppm = absppm = 0;
  642. fastclk = dotclk / (2*100);
  643. updrate = 0;
  644. minupdate = 19200;
  645. fracbits = 1;
  646. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  647. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  648. /* based on hardware requirement, prefer smaller n to precision */
  649. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  650. updrate = refclk / n;
  651. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  652. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  653. if (p2 > 10)
  654. p2 = p2 - 1;
  655. p = p1 * p2;
  656. /* based on hardware requirement, prefer bigger m1,m2 values */
  657. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  658. m2 = (((2*(fastclk * p * n / m1 )) +
  659. refclk) / (2*refclk));
  660. m = m1 * m2;
  661. vco = updrate * m;
  662. if (vco >= limit->vco.min && vco < limit->vco.max) {
  663. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  664. absppm = (ppm > 0) ? ppm : (-ppm);
  665. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  666. bestppm = 0;
  667. flag = 1;
  668. }
  669. if (absppm < bestppm - 10) {
  670. bestppm = absppm;
  671. flag = 1;
  672. }
  673. if (flag) {
  674. bestn = n;
  675. bestm1 = m1;
  676. bestm2 = m2;
  677. bestp1 = p1;
  678. bestp2 = p2;
  679. flag = 0;
  680. }
  681. }
  682. }
  683. }
  684. }
  685. }
  686. best_clock->n = bestn;
  687. best_clock->m1 = bestm1;
  688. best_clock->m2 = bestm2;
  689. best_clock->p1 = bestp1;
  690. best_clock->p2 = bestp2;
  691. return true;
  692. }
  693. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  694. enum pipe pipe)
  695. {
  696. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  697. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  698. return intel_crtc->config.cpu_transcoder;
  699. }
  700. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  701. {
  702. struct drm_i915_private *dev_priv = dev->dev_private;
  703. u32 frame, frame_reg = PIPEFRAME(pipe);
  704. frame = I915_READ(frame_reg);
  705. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  706. DRM_DEBUG_KMS("vblank wait timed out\n");
  707. }
  708. /**
  709. * intel_wait_for_vblank - wait for vblank on a given pipe
  710. * @dev: drm device
  711. * @pipe: pipe to wait for
  712. *
  713. * Wait for vblank to occur on a given pipe. Needed for various bits of
  714. * mode setting code.
  715. */
  716. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  717. {
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. int pipestat_reg = PIPESTAT(pipe);
  720. if (INTEL_INFO(dev)->gen >= 5) {
  721. ironlake_wait_for_vblank(dev, pipe);
  722. return;
  723. }
  724. /* Clear existing vblank status. Note this will clear any other
  725. * sticky status fields as well.
  726. *
  727. * This races with i915_driver_irq_handler() with the result
  728. * that either function could miss a vblank event. Here it is not
  729. * fatal, as we will either wait upon the next vblank interrupt or
  730. * timeout. Generally speaking intel_wait_for_vblank() is only
  731. * called during modeset at which time the GPU should be idle and
  732. * should *not* be performing page flips and thus not waiting on
  733. * vblanks...
  734. * Currently, the result of us stealing a vblank from the irq
  735. * handler is that a single frame will be skipped during swapbuffers.
  736. */
  737. I915_WRITE(pipestat_reg,
  738. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  739. /* Wait for vblank interrupt bit to set */
  740. if (wait_for(I915_READ(pipestat_reg) &
  741. PIPE_VBLANK_INTERRUPT_STATUS,
  742. 50))
  743. DRM_DEBUG_KMS("vblank wait timed out\n");
  744. }
  745. /*
  746. * intel_wait_for_pipe_off - wait for pipe to turn off
  747. * @dev: drm device
  748. * @pipe: pipe to wait for
  749. *
  750. * After disabling a pipe, we can't wait for vblank in the usual way,
  751. * spinning on the vblank interrupt status bit, since we won't actually
  752. * see an interrupt when the pipe is disabled.
  753. *
  754. * On Gen4 and above:
  755. * wait for the pipe register state bit to turn off
  756. *
  757. * Otherwise:
  758. * wait for the display line value to settle (it usually
  759. * ends up stopping at the start of the next frame).
  760. *
  761. */
  762. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  763. {
  764. struct drm_i915_private *dev_priv = dev->dev_private;
  765. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  766. pipe);
  767. if (INTEL_INFO(dev)->gen >= 4) {
  768. int reg = PIPECONF(cpu_transcoder);
  769. /* Wait for the Pipe State to go off */
  770. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  771. 100))
  772. WARN(1, "pipe_off wait timed out\n");
  773. } else {
  774. u32 last_line, line_mask;
  775. int reg = PIPEDSL(pipe);
  776. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  777. if (IS_GEN2(dev))
  778. line_mask = DSL_LINEMASK_GEN2;
  779. else
  780. line_mask = DSL_LINEMASK_GEN3;
  781. /* Wait for the display line to settle */
  782. do {
  783. last_line = I915_READ(reg) & line_mask;
  784. mdelay(5);
  785. } while (((I915_READ(reg) & line_mask) != last_line) &&
  786. time_after(timeout, jiffies));
  787. if (time_after(jiffies, timeout))
  788. WARN(1, "pipe_off wait timed out\n");
  789. }
  790. }
  791. /*
  792. * ibx_digital_port_connected - is the specified port connected?
  793. * @dev_priv: i915 private structure
  794. * @port: the port to test
  795. *
  796. * Returns true if @port is connected, false otherwise.
  797. */
  798. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  799. struct intel_digital_port *port)
  800. {
  801. u32 bit;
  802. if (HAS_PCH_IBX(dev_priv->dev)) {
  803. switch(port->port) {
  804. case PORT_B:
  805. bit = SDE_PORTB_HOTPLUG;
  806. break;
  807. case PORT_C:
  808. bit = SDE_PORTC_HOTPLUG;
  809. break;
  810. case PORT_D:
  811. bit = SDE_PORTD_HOTPLUG;
  812. break;
  813. default:
  814. return true;
  815. }
  816. } else {
  817. switch(port->port) {
  818. case PORT_B:
  819. bit = SDE_PORTB_HOTPLUG_CPT;
  820. break;
  821. case PORT_C:
  822. bit = SDE_PORTC_HOTPLUG_CPT;
  823. break;
  824. case PORT_D:
  825. bit = SDE_PORTD_HOTPLUG_CPT;
  826. break;
  827. default:
  828. return true;
  829. }
  830. }
  831. return I915_READ(SDEISR) & bit;
  832. }
  833. static const char *state_string(bool enabled)
  834. {
  835. return enabled ? "on" : "off";
  836. }
  837. /* Only for pre-ILK configs */
  838. static void assert_pll(struct drm_i915_private *dev_priv,
  839. enum pipe pipe, bool state)
  840. {
  841. int reg;
  842. u32 val;
  843. bool cur_state;
  844. reg = DPLL(pipe);
  845. val = I915_READ(reg);
  846. cur_state = !!(val & DPLL_VCO_ENABLE);
  847. WARN(cur_state != state,
  848. "PLL state assertion failure (expected %s, current %s)\n",
  849. state_string(state), state_string(cur_state));
  850. }
  851. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  852. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  853. /* For ILK+ */
  854. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  855. struct intel_pch_pll *pll,
  856. struct intel_crtc *crtc,
  857. bool state)
  858. {
  859. u32 val;
  860. bool cur_state;
  861. if (HAS_PCH_LPT(dev_priv->dev)) {
  862. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  863. return;
  864. }
  865. if (WARN (!pll,
  866. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  867. return;
  868. val = I915_READ(pll->pll_reg);
  869. cur_state = !!(val & DPLL_VCO_ENABLE);
  870. WARN(cur_state != state,
  871. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  872. pll->pll_reg, state_string(state), state_string(cur_state), val);
  873. /* Make sure the selected PLL is correctly attached to the transcoder */
  874. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  875. u32 pch_dpll;
  876. pch_dpll = I915_READ(PCH_DPLL_SEL);
  877. cur_state = pll->pll_reg == _PCH_DPLL_B;
  878. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  879. "PLL[%d] not attached to this transcoder %c: %08x\n",
  880. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  881. cur_state = !!(val >> (4*crtc->pipe + 3));
  882. WARN(cur_state != state,
  883. "PLL[%d] not %s on this transcoder %c: %08x\n",
  884. pll->pll_reg == _PCH_DPLL_B,
  885. state_string(state),
  886. pipe_name(crtc->pipe),
  887. val);
  888. }
  889. }
  890. }
  891. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  892. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  893. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  894. enum pipe pipe, bool state)
  895. {
  896. int reg;
  897. u32 val;
  898. bool cur_state;
  899. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  900. pipe);
  901. if (HAS_DDI(dev_priv->dev)) {
  902. /* DDI does not have a specific FDI_TX register */
  903. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  904. val = I915_READ(reg);
  905. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  906. } else {
  907. reg = FDI_TX_CTL(pipe);
  908. val = I915_READ(reg);
  909. cur_state = !!(val & FDI_TX_ENABLE);
  910. }
  911. WARN(cur_state != state,
  912. "FDI TX state assertion failure (expected %s, current %s)\n",
  913. state_string(state), state_string(cur_state));
  914. }
  915. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  916. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  917. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  918. enum pipe pipe, bool state)
  919. {
  920. int reg;
  921. u32 val;
  922. bool cur_state;
  923. reg = FDI_RX_CTL(pipe);
  924. val = I915_READ(reg);
  925. cur_state = !!(val & FDI_RX_ENABLE);
  926. WARN(cur_state != state,
  927. "FDI RX state assertion failure (expected %s, current %s)\n",
  928. state_string(state), state_string(cur_state));
  929. }
  930. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  931. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  932. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  933. enum pipe pipe)
  934. {
  935. int reg;
  936. u32 val;
  937. /* ILK FDI PLL is always enabled */
  938. if (dev_priv->info->gen == 5)
  939. return;
  940. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  941. if (HAS_DDI(dev_priv->dev))
  942. return;
  943. reg = FDI_TX_CTL(pipe);
  944. val = I915_READ(reg);
  945. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  946. }
  947. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  948. enum pipe pipe)
  949. {
  950. int reg;
  951. u32 val;
  952. reg = FDI_RX_CTL(pipe);
  953. val = I915_READ(reg);
  954. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  955. }
  956. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  957. enum pipe pipe)
  958. {
  959. int pp_reg, lvds_reg;
  960. u32 val;
  961. enum pipe panel_pipe = PIPE_A;
  962. bool locked = true;
  963. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  964. pp_reg = PCH_PP_CONTROL;
  965. lvds_reg = PCH_LVDS;
  966. } else {
  967. pp_reg = PP_CONTROL;
  968. lvds_reg = LVDS;
  969. }
  970. val = I915_READ(pp_reg);
  971. if (!(val & PANEL_POWER_ON) ||
  972. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  973. locked = false;
  974. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  975. panel_pipe = PIPE_B;
  976. WARN(panel_pipe == pipe && locked,
  977. "panel assertion failure, pipe %c regs locked\n",
  978. pipe_name(pipe));
  979. }
  980. void assert_pipe(struct drm_i915_private *dev_priv,
  981. enum pipe pipe, bool state)
  982. {
  983. int reg;
  984. u32 val;
  985. bool cur_state;
  986. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  987. pipe);
  988. /* if we need the pipe A quirk it must be always on */
  989. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  990. state = true;
  991. if (!intel_display_power_enabled(dev_priv->dev,
  992. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  993. cur_state = false;
  994. } else {
  995. reg = PIPECONF(cpu_transcoder);
  996. val = I915_READ(reg);
  997. cur_state = !!(val & PIPECONF_ENABLE);
  998. }
  999. WARN(cur_state != state,
  1000. "pipe %c assertion failure (expected %s, current %s)\n",
  1001. pipe_name(pipe), state_string(state), state_string(cur_state));
  1002. }
  1003. static void assert_plane(struct drm_i915_private *dev_priv,
  1004. enum plane plane, bool state)
  1005. {
  1006. int reg;
  1007. u32 val;
  1008. bool cur_state;
  1009. reg = DSPCNTR(plane);
  1010. val = I915_READ(reg);
  1011. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1012. WARN(cur_state != state,
  1013. "plane %c assertion failure (expected %s, current %s)\n",
  1014. plane_name(plane), state_string(state), state_string(cur_state));
  1015. }
  1016. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1017. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1018. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1019. enum pipe pipe)
  1020. {
  1021. int reg, i;
  1022. u32 val;
  1023. int cur_pipe;
  1024. /* Planes are fixed to pipes on ILK+ */
  1025. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1026. reg = DSPCNTR(pipe);
  1027. val = I915_READ(reg);
  1028. WARN((val & DISPLAY_PLANE_ENABLE),
  1029. "plane %c assertion failure, should be disabled but not\n",
  1030. plane_name(pipe));
  1031. return;
  1032. }
  1033. /* Need to check both planes against the pipe */
  1034. for (i = 0; i < 2; i++) {
  1035. reg = DSPCNTR(i);
  1036. val = I915_READ(reg);
  1037. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1038. DISPPLANE_SEL_PIPE_SHIFT;
  1039. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1040. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1041. plane_name(i), pipe_name(pipe));
  1042. }
  1043. }
  1044. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg, i;
  1048. u32 val;
  1049. if (!IS_VALLEYVIEW(dev_priv->dev))
  1050. return;
  1051. /* Need to check both planes against the pipe */
  1052. for (i = 0; i < dev_priv->num_plane; i++) {
  1053. reg = SPCNTR(pipe, i);
  1054. val = I915_READ(reg);
  1055. WARN((val & SP_ENABLE),
  1056. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1057. sprite_name(pipe, i), pipe_name(pipe));
  1058. }
  1059. }
  1060. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1061. {
  1062. u32 val;
  1063. bool enabled;
  1064. if (HAS_PCH_LPT(dev_priv->dev)) {
  1065. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1066. return;
  1067. }
  1068. val = I915_READ(PCH_DREF_CONTROL);
  1069. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1070. DREF_SUPERSPREAD_SOURCE_MASK));
  1071. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1072. }
  1073. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe)
  1075. {
  1076. int reg;
  1077. u32 val;
  1078. bool enabled;
  1079. reg = PCH_TRANSCONF(pipe);
  1080. val = I915_READ(reg);
  1081. enabled = !!(val & TRANS_ENABLE);
  1082. WARN(enabled,
  1083. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1084. pipe_name(pipe));
  1085. }
  1086. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1087. enum pipe pipe, u32 port_sel, u32 val)
  1088. {
  1089. if ((val & DP_PORT_EN) == 0)
  1090. return false;
  1091. if (HAS_PCH_CPT(dev_priv->dev)) {
  1092. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1093. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1094. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1095. return false;
  1096. } else {
  1097. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1098. return false;
  1099. }
  1100. return true;
  1101. }
  1102. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1103. enum pipe pipe, u32 val)
  1104. {
  1105. if ((val & SDVO_ENABLE) == 0)
  1106. return false;
  1107. if (HAS_PCH_CPT(dev_priv->dev)) {
  1108. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1109. return false;
  1110. } else {
  1111. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1112. return false;
  1113. }
  1114. return true;
  1115. }
  1116. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1117. enum pipe pipe, u32 val)
  1118. {
  1119. if ((val & LVDS_PORT_EN) == 0)
  1120. return false;
  1121. if (HAS_PCH_CPT(dev_priv->dev)) {
  1122. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1123. return false;
  1124. } else {
  1125. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1126. return false;
  1127. }
  1128. return true;
  1129. }
  1130. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1131. enum pipe pipe, u32 val)
  1132. {
  1133. if ((val & ADPA_DAC_ENABLE) == 0)
  1134. return false;
  1135. if (HAS_PCH_CPT(dev_priv->dev)) {
  1136. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1137. return false;
  1138. } else {
  1139. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1140. return false;
  1141. }
  1142. return true;
  1143. }
  1144. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1145. enum pipe pipe, int reg, u32 port_sel)
  1146. {
  1147. u32 val = I915_READ(reg);
  1148. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1149. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1150. reg, pipe_name(pipe));
  1151. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1152. && (val & DP_PIPEB_SELECT),
  1153. "IBX PCH dp port still using transcoder B\n");
  1154. }
  1155. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe, int reg)
  1157. {
  1158. u32 val = I915_READ(reg);
  1159. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1160. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1161. reg, pipe_name(pipe));
  1162. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1163. && (val & SDVO_PIPE_B_SELECT),
  1164. "IBX PCH hdmi port still using transcoder B\n");
  1165. }
  1166. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1167. enum pipe pipe)
  1168. {
  1169. int reg;
  1170. u32 val;
  1171. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1172. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1173. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1174. reg = PCH_ADPA;
  1175. val = I915_READ(reg);
  1176. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1177. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1178. pipe_name(pipe));
  1179. reg = PCH_LVDS;
  1180. val = I915_READ(reg);
  1181. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1185. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1186. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1187. }
  1188. /**
  1189. * intel_enable_pll - enable a PLL
  1190. * @dev_priv: i915 private structure
  1191. * @pipe: pipe PLL to enable
  1192. *
  1193. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1194. * make sure the PLL reg is writable first though, since the panel write
  1195. * protect mechanism may be enabled.
  1196. *
  1197. * Note! This is for pre-ILK only.
  1198. *
  1199. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1200. */
  1201. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1202. {
  1203. int reg;
  1204. u32 val;
  1205. assert_pipe_disabled(dev_priv, pipe);
  1206. /* No really, not for ILK+ */
  1207. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1208. /* PLL is protected by panel, make sure we can write it */
  1209. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1210. assert_panel_unlocked(dev_priv, pipe);
  1211. reg = DPLL(pipe);
  1212. val = I915_READ(reg);
  1213. val |= DPLL_VCO_ENABLE;
  1214. /* We do this three times for luck */
  1215. I915_WRITE(reg, val);
  1216. POSTING_READ(reg);
  1217. udelay(150); /* wait for warmup */
  1218. I915_WRITE(reg, val);
  1219. POSTING_READ(reg);
  1220. udelay(150); /* wait for warmup */
  1221. I915_WRITE(reg, val);
  1222. POSTING_READ(reg);
  1223. udelay(150); /* wait for warmup */
  1224. }
  1225. /**
  1226. * intel_disable_pll - disable a PLL
  1227. * @dev_priv: i915 private structure
  1228. * @pipe: pipe PLL to disable
  1229. *
  1230. * Disable the PLL for @pipe, making sure the pipe is off first.
  1231. *
  1232. * Note! This is for pre-ILK only.
  1233. */
  1234. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1235. {
  1236. int reg;
  1237. u32 val;
  1238. /* Don't disable pipe A or pipe A PLLs if needed */
  1239. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1240. return;
  1241. /* Make sure the pipe isn't still relying on us */
  1242. assert_pipe_disabled(dev_priv, pipe);
  1243. reg = DPLL(pipe);
  1244. val = I915_READ(reg);
  1245. val &= ~DPLL_VCO_ENABLE;
  1246. I915_WRITE(reg, val);
  1247. POSTING_READ(reg);
  1248. }
  1249. /* SBI access */
  1250. static void
  1251. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1252. enum intel_sbi_destination destination)
  1253. {
  1254. u32 tmp;
  1255. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1256. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1257. 100)) {
  1258. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1259. return;
  1260. }
  1261. I915_WRITE(SBI_ADDR, (reg << 16));
  1262. I915_WRITE(SBI_DATA, value);
  1263. if (destination == SBI_ICLK)
  1264. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1265. else
  1266. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1267. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1268. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1269. 100)) {
  1270. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1271. return;
  1272. }
  1273. }
  1274. static u32
  1275. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1276. enum intel_sbi_destination destination)
  1277. {
  1278. u32 value = 0;
  1279. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1280. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1281. 100)) {
  1282. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1283. return 0;
  1284. }
  1285. I915_WRITE(SBI_ADDR, (reg << 16));
  1286. if (destination == SBI_ICLK)
  1287. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1288. else
  1289. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1290. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1291. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1292. 100)) {
  1293. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1294. return 0;
  1295. }
  1296. return I915_READ(SBI_DATA);
  1297. }
  1298. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1299. {
  1300. u32 port_mask;
  1301. if (!port)
  1302. port_mask = DPLL_PORTB_READY_MASK;
  1303. else
  1304. port_mask = DPLL_PORTC_READY_MASK;
  1305. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1306. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1307. 'B' + port, I915_READ(DPLL(0)));
  1308. }
  1309. /**
  1310. * ironlake_enable_pch_pll - enable PCH PLL
  1311. * @dev_priv: i915 private structure
  1312. * @pipe: pipe PLL to enable
  1313. *
  1314. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1315. * drives the transcoder clock.
  1316. */
  1317. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1318. {
  1319. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1320. struct intel_pch_pll *pll;
  1321. int reg;
  1322. u32 val;
  1323. /* PCH PLLs only available on ILK, SNB and IVB */
  1324. BUG_ON(dev_priv->info->gen < 5);
  1325. pll = intel_crtc->pch_pll;
  1326. if (pll == NULL)
  1327. return;
  1328. if (WARN_ON(pll->refcount == 0))
  1329. return;
  1330. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1331. pll->pll_reg, pll->active, pll->on,
  1332. intel_crtc->base.base.id);
  1333. /* PCH refclock must be enabled first */
  1334. assert_pch_refclk_enabled(dev_priv);
  1335. if (pll->active++ && pll->on) {
  1336. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1337. return;
  1338. }
  1339. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1340. reg = pll->pll_reg;
  1341. val = I915_READ(reg);
  1342. val |= DPLL_VCO_ENABLE;
  1343. I915_WRITE(reg, val);
  1344. POSTING_READ(reg);
  1345. udelay(200);
  1346. pll->on = true;
  1347. }
  1348. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1349. {
  1350. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1351. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1352. int reg;
  1353. u32 val;
  1354. /* PCH only available on ILK+ */
  1355. BUG_ON(dev_priv->info->gen < 5);
  1356. if (pll == NULL)
  1357. return;
  1358. if (WARN_ON(pll->refcount == 0))
  1359. return;
  1360. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1361. pll->pll_reg, pll->active, pll->on,
  1362. intel_crtc->base.base.id);
  1363. if (WARN_ON(pll->active == 0)) {
  1364. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1365. return;
  1366. }
  1367. if (--pll->active) {
  1368. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1369. return;
  1370. }
  1371. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1372. /* Make sure transcoder isn't still depending on us */
  1373. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1374. reg = pll->pll_reg;
  1375. val = I915_READ(reg);
  1376. val &= ~DPLL_VCO_ENABLE;
  1377. I915_WRITE(reg, val);
  1378. POSTING_READ(reg);
  1379. udelay(200);
  1380. pll->on = false;
  1381. }
  1382. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1383. enum pipe pipe)
  1384. {
  1385. struct drm_device *dev = dev_priv->dev;
  1386. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1387. uint32_t reg, val, pipeconf_val;
  1388. /* PCH only available on ILK+ */
  1389. BUG_ON(dev_priv->info->gen < 5);
  1390. /* Make sure PCH DPLL is enabled */
  1391. assert_pch_pll_enabled(dev_priv,
  1392. to_intel_crtc(crtc)->pch_pll,
  1393. to_intel_crtc(crtc));
  1394. /* FDI must be feeding us bits for PCH ports */
  1395. assert_fdi_tx_enabled(dev_priv, pipe);
  1396. assert_fdi_rx_enabled(dev_priv, pipe);
  1397. if (HAS_PCH_CPT(dev)) {
  1398. /* Workaround: Set the timing override bit before enabling the
  1399. * pch transcoder. */
  1400. reg = TRANS_CHICKEN2(pipe);
  1401. val = I915_READ(reg);
  1402. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1403. I915_WRITE(reg, val);
  1404. }
  1405. reg = PCH_TRANSCONF(pipe);
  1406. val = I915_READ(reg);
  1407. pipeconf_val = I915_READ(PIPECONF(pipe));
  1408. if (HAS_PCH_IBX(dev_priv->dev)) {
  1409. /*
  1410. * make the BPC in transcoder be consistent with
  1411. * that in pipeconf reg.
  1412. */
  1413. val &= ~PIPECONF_BPC_MASK;
  1414. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1415. }
  1416. val &= ~TRANS_INTERLACE_MASK;
  1417. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1418. if (HAS_PCH_IBX(dev_priv->dev) &&
  1419. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1420. val |= TRANS_LEGACY_INTERLACED_ILK;
  1421. else
  1422. val |= TRANS_INTERLACED;
  1423. else
  1424. val |= TRANS_PROGRESSIVE;
  1425. I915_WRITE(reg, val | TRANS_ENABLE);
  1426. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1427. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1428. }
  1429. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1430. enum transcoder cpu_transcoder)
  1431. {
  1432. u32 val, pipeconf_val;
  1433. /* PCH only available on ILK+ */
  1434. BUG_ON(dev_priv->info->gen < 5);
  1435. /* FDI must be feeding us bits for PCH ports */
  1436. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1437. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1438. /* Workaround: set timing override bit. */
  1439. val = I915_READ(_TRANSA_CHICKEN2);
  1440. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1441. I915_WRITE(_TRANSA_CHICKEN2, val);
  1442. val = TRANS_ENABLE;
  1443. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1444. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1445. PIPECONF_INTERLACED_ILK)
  1446. val |= TRANS_INTERLACED;
  1447. else
  1448. val |= TRANS_PROGRESSIVE;
  1449. I915_WRITE(LPT_TRANSCONF, val);
  1450. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1451. DRM_ERROR("Failed to enable PCH transcoder\n");
  1452. }
  1453. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1454. enum pipe pipe)
  1455. {
  1456. struct drm_device *dev = dev_priv->dev;
  1457. uint32_t reg, val;
  1458. /* FDI relies on the transcoder */
  1459. assert_fdi_tx_disabled(dev_priv, pipe);
  1460. assert_fdi_rx_disabled(dev_priv, pipe);
  1461. /* Ports must be off as well */
  1462. assert_pch_ports_disabled(dev_priv, pipe);
  1463. reg = PCH_TRANSCONF(pipe);
  1464. val = I915_READ(reg);
  1465. val &= ~TRANS_ENABLE;
  1466. I915_WRITE(reg, val);
  1467. /* wait for PCH transcoder off, transcoder state */
  1468. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1469. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1470. if (!HAS_PCH_IBX(dev)) {
  1471. /* Workaround: Clear the timing override chicken bit again. */
  1472. reg = TRANS_CHICKEN2(pipe);
  1473. val = I915_READ(reg);
  1474. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1475. I915_WRITE(reg, val);
  1476. }
  1477. }
  1478. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1479. {
  1480. u32 val;
  1481. val = I915_READ(LPT_TRANSCONF);
  1482. val &= ~TRANS_ENABLE;
  1483. I915_WRITE(LPT_TRANSCONF, val);
  1484. /* wait for PCH transcoder off, transcoder state */
  1485. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1486. DRM_ERROR("Failed to disable PCH transcoder\n");
  1487. /* Workaround: clear timing override bit. */
  1488. val = I915_READ(_TRANSA_CHICKEN2);
  1489. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1490. I915_WRITE(_TRANSA_CHICKEN2, val);
  1491. }
  1492. /**
  1493. * intel_enable_pipe - enable a pipe, asserting requirements
  1494. * @dev_priv: i915 private structure
  1495. * @pipe: pipe to enable
  1496. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1497. *
  1498. * Enable @pipe, making sure that various hardware specific requirements
  1499. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1500. *
  1501. * @pipe should be %PIPE_A or %PIPE_B.
  1502. *
  1503. * Will wait until the pipe is actually running (i.e. first vblank) before
  1504. * returning.
  1505. */
  1506. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1507. bool pch_port)
  1508. {
  1509. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1510. pipe);
  1511. enum pipe pch_transcoder;
  1512. int reg;
  1513. u32 val;
  1514. assert_planes_disabled(dev_priv, pipe);
  1515. assert_sprites_disabled(dev_priv, pipe);
  1516. if (HAS_PCH_LPT(dev_priv->dev))
  1517. pch_transcoder = TRANSCODER_A;
  1518. else
  1519. pch_transcoder = pipe;
  1520. /*
  1521. * A pipe without a PLL won't actually be able to drive bits from
  1522. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1523. * need the check.
  1524. */
  1525. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1526. assert_pll_enabled(dev_priv, pipe);
  1527. else {
  1528. if (pch_port) {
  1529. /* if driving the PCH, we need FDI enabled */
  1530. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1531. assert_fdi_tx_pll_enabled(dev_priv,
  1532. (enum pipe) cpu_transcoder);
  1533. }
  1534. /* FIXME: assert CPU port conditions for SNB+ */
  1535. }
  1536. reg = PIPECONF(cpu_transcoder);
  1537. val = I915_READ(reg);
  1538. if (val & PIPECONF_ENABLE)
  1539. return;
  1540. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1541. intel_wait_for_vblank(dev_priv->dev, pipe);
  1542. }
  1543. /**
  1544. * intel_disable_pipe - disable a pipe, asserting requirements
  1545. * @dev_priv: i915 private structure
  1546. * @pipe: pipe to disable
  1547. *
  1548. * Disable @pipe, making sure that various hardware specific requirements
  1549. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1550. *
  1551. * @pipe should be %PIPE_A or %PIPE_B.
  1552. *
  1553. * Will wait until the pipe has shut down before returning.
  1554. */
  1555. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1556. enum pipe pipe)
  1557. {
  1558. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1559. pipe);
  1560. int reg;
  1561. u32 val;
  1562. /*
  1563. * Make sure planes won't keep trying to pump pixels to us,
  1564. * or we might hang the display.
  1565. */
  1566. assert_planes_disabled(dev_priv, pipe);
  1567. assert_sprites_disabled(dev_priv, pipe);
  1568. /* Don't disable pipe A or pipe A PLLs if needed */
  1569. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1570. return;
  1571. reg = PIPECONF(cpu_transcoder);
  1572. val = I915_READ(reg);
  1573. if ((val & PIPECONF_ENABLE) == 0)
  1574. return;
  1575. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1576. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1577. }
  1578. /*
  1579. * Plane regs are double buffered, going from enabled->disabled needs a
  1580. * trigger in order to latch. The display address reg provides this.
  1581. */
  1582. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1583. enum plane plane)
  1584. {
  1585. if (dev_priv->info->gen >= 4)
  1586. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1587. else
  1588. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1589. }
  1590. /**
  1591. * intel_enable_plane - enable a display plane on a given pipe
  1592. * @dev_priv: i915 private structure
  1593. * @plane: plane to enable
  1594. * @pipe: pipe being fed
  1595. *
  1596. * Enable @plane on @pipe, making sure that @pipe is running first.
  1597. */
  1598. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1599. enum plane plane, enum pipe pipe)
  1600. {
  1601. int reg;
  1602. u32 val;
  1603. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1604. assert_pipe_enabled(dev_priv, pipe);
  1605. reg = DSPCNTR(plane);
  1606. val = I915_READ(reg);
  1607. if (val & DISPLAY_PLANE_ENABLE)
  1608. return;
  1609. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1610. intel_flush_display_plane(dev_priv, plane);
  1611. intel_wait_for_vblank(dev_priv->dev, pipe);
  1612. }
  1613. /**
  1614. * intel_disable_plane - disable a display plane
  1615. * @dev_priv: i915 private structure
  1616. * @plane: plane to disable
  1617. * @pipe: pipe consuming the data
  1618. *
  1619. * Disable @plane; should be an independent operation.
  1620. */
  1621. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1622. enum plane plane, enum pipe pipe)
  1623. {
  1624. int reg;
  1625. u32 val;
  1626. reg = DSPCNTR(plane);
  1627. val = I915_READ(reg);
  1628. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1629. return;
  1630. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1631. intel_flush_display_plane(dev_priv, plane);
  1632. intel_wait_for_vblank(dev_priv->dev, pipe);
  1633. }
  1634. static bool need_vtd_wa(struct drm_device *dev)
  1635. {
  1636. #ifdef CONFIG_INTEL_IOMMU
  1637. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1638. return true;
  1639. #endif
  1640. return false;
  1641. }
  1642. int
  1643. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1644. struct drm_i915_gem_object *obj,
  1645. struct intel_ring_buffer *pipelined)
  1646. {
  1647. struct drm_i915_private *dev_priv = dev->dev_private;
  1648. u32 alignment;
  1649. int ret;
  1650. switch (obj->tiling_mode) {
  1651. case I915_TILING_NONE:
  1652. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1653. alignment = 128 * 1024;
  1654. else if (INTEL_INFO(dev)->gen >= 4)
  1655. alignment = 4 * 1024;
  1656. else
  1657. alignment = 64 * 1024;
  1658. break;
  1659. case I915_TILING_X:
  1660. /* pin() will align the object as required by fence */
  1661. alignment = 0;
  1662. break;
  1663. case I915_TILING_Y:
  1664. /* Despite that we check this in framebuffer_init userspace can
  1665. * screw us over and change the tiling after the fact. Only
  1666. * pinned buffers can't change their tiling. */
  1667. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1668. return -EINVAL;
  1669. default:
  1670. BUG();
  1671. }
  1672. /* Note that the w/a also requires 64 PTE of padding following the
  1673. * bo. We currently fill all unused PTE with the shadow page and so
  1674. * we should always have valid PTE following the scanout preventing
  1675. * the VT-d warning.
  1676. */
  1677. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1678. alignment = 256 * 1024;
  1679. dev_priv->mm.interruptible = false;
  1680. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1681. if (ret)
  1682. goto err_interruptible;
  1683. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1684. * fence, whereas 965+ only requires a fence if using
  1685. * framebuffer compression. For simplicity, we always install
  1686. * a fence as the cost is not that onerous.
  1687. */
  1688. ret = i915_gem_object_get_fence(obj);
  1689. if (ret)
  1690. goto err_unpin;
  1691. i915_gem_object_pin_fence(obj);
  1692. dev_priv->mm.interruptible = true;
  1693. return 0;
  1694. err_unpin:
  1695. i915_gem_object_unpin(obj);
  1696. err_interruptible:
  1697. dev_priv->mm.interruptible = true;
  1698. return ret;
  1699. }
  1700. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1701. {
  1702. i915_gem_object_unpin_fence(obj);
  1703. i915_gem_object_unpin(obj);
  1704. }
  1705. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1706. * is assumed to be a power-of-two. */
  1707. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1708. unsigned int tiling_mode,
  1709. unsigned int cpp,
  1710. unsigned int pitch)
  1711. {
  1712. if (tiling_mode != I915_TILING_NONE) {
  1713. unsigned int tile_rows, tiles;
  1714. tile_rows = *y / 8;
  1715. *y %= 8;
  1716. tiles = *x / (512/cpp);
  1717. *x %= 512/cpp;
  1718. return tile_rows * pitch * 8 + tiles * 4096;
  1719. } else {
  1720. unsigned int offset;
  1721. offset = *y * pitch + *x * cpp;
  1722. *y = 0;
  1723. *x = (offset & 4095) / cpp;
  1724. return offset & -4096;
  1725. }
  1726. }
  1727. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1728. int x, int y)
  1729. {
  1730. struct drm_device *dev = crtc->dev;
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1733. struct intel_framebuffer *intel_fb;
  1734. struct drm_i915_gem_object *obj;
  1735. int plane = intel_crtc->plane;
  1736. unsigned long linear_offset;
  1737. u32 dspcntr;
  1738. u32 reg;
  1739. switch (plane) {
  1740. case 0:
  1741. case 1:
  1742. break;
  1743. default:
  1744. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1745. return -EINVAL;
  1746. }
  1747. intel_fb = to_intel_framebuffer(fb);
  1748. obj = intel_fb->obj;
  1749. reg = DSPCNTR(plane);
  1750. dspcntr = I915_READ(reg);
  1751. /* Mask out pixel format bits in case we change it */
  1752. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1753. switch (fb->pixel_format) {
  1754. case DRM_FORMAT_C8:
  1755. dspcntr |= DISPPLANE_8BPP;
  1756. break;
  1757. case DRM_FORMAT_XRGB1555:
  1758. case DRM_FORMAT_ARGB1555:
  1759. dspcntr |= DISPPLANE_BGRX555;
  1760. break;
  1761. case DRM_FORMAT_RGB565:
  1762. dspcntr |= DISPPLANE_BGRX565;
  1763. break;
  1764. case DRM_FORMAT_XRGB8888:
  1765. case DRM_FORMAT_ARGB8888:
  1766. dspcntr |= DISPPLANE_BGRX888;
  1767. break;
  1768. case DRM_FORMAT_XBGR8888:
  1769. case DRM_FORMAT_ABGR8888:
  1770. dspcntr |= DISPPLANE_RGBX888;
  1771. break;
  1772. case DRM_FORMAT_XRGB2101010:
  1773. case DRM_FORMAT_ARGB2101010:
  1774. dspcntr |= DISPPLANE_BGRX101010;
  1775. break;
  1776. case DRM_FORMAT_XBGR2101010:
  1777. case DRM_FORMAT_ABGR2101010:
  1778. dspcntr |= DISPPLANE_RGBX101010;
  1779. break;
  1780. default:
  1781. BUG();
  1782. }
  1783. if (INTEL_INFO(dev)->gen >= 4) {
  1784. if (obj->tiling_mode != I915_TILING_NONE)
  1785. dspcntr |= DISPPLANE_TILED;
  1786. else
  1787. dspcntr &= ~DISPPLANE_TILED;
  1788. }
  1789. I915_WRITE(reg, dspcntr);
  1790. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1791. if (INTEL_INFO(dev)->gen >= 4) {
  1792. intel_crtc->dspaddr_offset =
  1793. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1794. fb->bits_per_pixel / 8,
  1795. fb->pitches[0]);
  1796. linear_offset -= intel_crtc->dspaddr_offset;
  1797. } else {
  1798. intel_crtc->dspaddr_offset = linear_offset;
  1799. }
  1800. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1801. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1802. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1803. if (INTEL_INFO(dev)->gen >= 4) {
  1804. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1805. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1806. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1807. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1808. } else
  1809. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1810. POSTING_READ(reg);
  1811. return 0;
  1812. }
  1813. static int ironlake_update_plane(struct drm_crtc *crtc,
  1814. struct drm_framebuffer *fb, int x, int y)
  1815. {
  1816. struct drm_device *dev = crtc->dev;
  1817. struct drm_i915_private *dev_priv = dev->dev_private;
  1818. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1819. struct intel_framebuffer *intel_fb;
  1820. struct drm_i915_gem_object *obj;
  1821. int plane = intel_crtc->plane;
  1822. unsigned long linear_offset;
  1823. u32 dspcntr;
  1824. u32 reg;
  1825. switch (plane) {
  1826. case 0:
  1827. case 1:
  1828. case 2:
  1829. break;
  1830. default:
  1831. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1832. return -EINVAL;
  1833. }
  1834. intel_fb = to_intel_framebuffer(fb);
  1835. obj = intel_fb->obj;
  1836. reg = DSPCNTR(plane);
  1837. dspcntr = I915_READ(reg);
  1838. /* Mask out pixel format bits in case we change it */
  1839. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1840. switch (fb->pixel_format) {
  1841. case DRM_FORMAT_C8:
  1842. dspcntr |= DISPPLANE_8BPP;
  1843. break;
  1844. case DRM_FORMAT_RGB565:
  1845. dspcntr |= DISPPLANE_BGRX565;
  1846. break;
  1847. case DRM_FORMAT_XRGB8888:
  1848. case DRM_FORMAT_ARGB8888:
  1849. dspcntr |= DISPPLANE_BGRX888;
  1850. break;
  1851. case DRM_FORMAT_XBGR8888:
  1852. case DRM_FORMAT_ABGR8888:
  1853. dspcntr |= DISPPLANE_RGBX888;
  1854. break;
  1855. case DRM_FORMAT_XRGB2101010:
  1856. case DRM_FORMAT_ARGB2101010:
  1857. dspcntr |= DISPPLANE_BGRX101010;
  1858. break;
  1859. case DRM_FORMAT_XBGR2101010:
  1860. case DRM_FORMAT_ABGR2101010:
  1861. dspcntr |= DISPPLANE_RGBX101010;
  1862. break;
  1863. default:
  1864. BUG();
  1865. }
  1866. if (obj->tiling_mode != I915_TILING_NONE)
  1867. dspcntr |= DISPPLANE_TILED;
  1868. else
  1869. dspcntr &= ~DISPPLANE_TILED;
  1870. /* must disable */
  1871. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1872. I915_WRITE(reg, dspcntr);
  1873. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1874. intel_crtc->dspaddr_offset =
  1875. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1876. fb->bits_per_pixel / 8,
  1877. fb->pitches[0]);
  1878. linear_offset -= intel_crtc->dspaddr_offset;
  1879. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1880. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1881. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1882. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1883. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1884. if (IS_HASWELL(dev)) {
  1885. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1886. } else {
  1887. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1888. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1889. }
  1890. POSTING_READ(reg);
  1891. return 0;
  1892. }
  1893. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1894. static int
  1895. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1896. int x, int y, enum mode_set_atomic state)
  1897. {
  1898. struct drm_device *dev = crtc->dev;
  1899. struct drm_i915_private *dev_priv = dev->dev_private;
  1900. if (dev_priv->display.disable_fbc)
  1901. dev_priv->display.disable_fbc(dev);
  1902. intel_increase_pllclock(crtc);
  1903. return dev_priv->display.update_plane(crtc, fb, x, y);
  1904. }
  1905. void intel_display_handle_reset(struct drm_device *dev)
  1906. {
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. struct drm_crtc *crtc;
  1909. /*
  1910. * Flips in the rings have been nuked by the reset,
  1911. * so complete all pending flips so that user space
  1912. * will get its events and not get stuck.
  1913. *
  1914. * Also update the base address of all primary
  1915. * planes to the the last fb to make sure we're
  1916. * showing the correct fb after a reset.
  1917. *
  1918. * Need to make two loops over the crtcs so that we
  1919. * don't try to grab a crtc mutex before the
  1920. * pending_flip_queue really got woken up.
  1921. */
  1922. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1923. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1924. enum plane plane = intel_crtc->plane;
  1925. intel_prepare_page_flip(dev, plane);
  1926. intel_finish_page_flip_plane(dev, plane);
  1927. }
  1928. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1929. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1930. mutex_lock(&crtc->mutex);
  1931. if (intel_crtc->active)
  1932. dev_priv->display.update_plane(crtc, crtc->fb,
  1933. crtc->x, crtc->y);
  1934. mutex_unlock(&crtc->mutex);
  1935. }
  1936. }
  1937. static int
  1938. intel_finish_fb(struct drm_framebuffer *old_fb)
  1939. {
  1940. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1941. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1942. bool was_interruptible = dev_priv->mm.interruptible;
  1943. int ret;
  1944. /* Big Hammer, we also need to ensure that any pending
  1945. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1946. * current scanout is retired before unpinning the old
  1947. * framebuffer.
  1948. *
  1949. * This should only fail upon a hung GPU, in which case we
  1950. * can safely continue.
  1951. */
  1952. dev_priv->mm.interruptible = false;
  1953. ret = i915_gem_object_finish_gpu(obj);
  1954. dev_priv->mm.interruptible = was_interruptible;
  1955. return ret;
  1956. }
  1957. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1958. {
  1959. struct drm_device *dev = crtc->dev;
  1960. struct drm_i915_master_private *master_priv;
  1961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1962. if (!dev->primary->master)
  1963. return;
  1964. master_priv = dev->primary->master->driver_priv;
  1965. if (!master_priv->sarea_priv)
  1966. return;
  1967. switch (intel_crtc->pipe) {
  1968. case 0:
  1969. master_priv->sarea_priv->pipeA_x = x;
  1970. master_priv->sarea_priv->pipeA_y = y;
  1971. break;
  1972. case 1:
  1973. master_priv->sarea_priv->pipeB_x = x;
  1974. master_priv->sarea_priv->pipeB_y = y;
  1975. break;
  1976. default:
  1977. break;
  1978. }
  1979. }
  1980. static int
  1981. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1982. struct drm_framebuffer *fb)
  1983. {
  1984. struct drm_device *dev = crtc->dev;
  1985. struct drm_i915_private *dev_priv = dev->dev_private;
  1986. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1987. struct drm_framebuffer *old_fb;
  1988. int ret;
  1989. /* no fb bound */
  1990. if (!fb) {
  1991. DRM_ERROR("No FB bound\n");
  1992. return 0;
  1993. }
  1994. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1995. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1996. plane_name(intel_crtc->plane),
  1997. INTEL_INFO(dev)->num_pipes);
  1998. return -EINVAL;
  1999. }
  2000. mutex_lock(&dev->struct_mutex);
  2001. ret = intel_pin_and_fence_fb_obj(dev,
  2002. to_intel_framebuffer(fb)->obj,
  2003. NULL);
  2004. if (ret != 0) {
  2005. mutex_unlock(&dev->struct_mutex);
  2006. DRM_ERROR("pin & fence failed\n");
  2007. return ret;
  2008. }
  2009. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2010. if (ret) {
  2011. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2012. mutex_unlock(&dev->struct_mutex);
  2013. DRM_ERROR("failed to update base address\n");
  2014. return ret;
  2015. }
  2016. old_fb = crtc->fb;
  2017. crtc->fb = fb;
  2018. crtc->x = x;
  2019. crtc->y = y;
  2020. if (old_fb) {
  2021. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2022. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2023. }
  2024. intel_update_fbc(dev);
  2025. mutex_unlock(&dev->struct_mutex);
  2026. intel_crtc_update_sarea_pos(crtc, x, y);
  2027. return 0;
  2028. }
  2029. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2030. {
  2031. struct drm_device *dev = crtc->dev;
  2032. struct drm_i915_private *dev_priv = dev->dev_private;
  2033. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2034. int pipe = intel_crtc->pipe;
  2035. u32 reg, temp;
  2036. /* enable normal train */
  2037. reg = FDI_TX_CTL(pipe);
  2038. temp = I915_READ(reg);
  2039. if (IS_IVYBRIDGE(dev)) {
  2040. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2041. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2042. } else {
  2043. temp &= ~FDI_LINK_TRAIN_NONE;
  2044. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2045. }
  2046. I915_WRITE(reg, temp);
  2047. reg = FDI_RX_CTL(pipe);
  2048. temp = I915_READ(reg);
  2049. if (HAS_PCH_CPT(dev)) {
  2050. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2051. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2052. } else {
  2053. temp &= ~FDI_LINK_TRAIN_NONE;
  2054. temp |= FDI_LINK_TRAIN_NONE;
  2055. }
  2056. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2057. /* wait one idle pattern time */
  2058. POSTING_READ(reg);
  2059. udelay(1000);
  2060. /* IVB wants error correction enabled */
  2061. if (IS_IVYBRIDGE(dev))
  2062. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2063. FDI_FE_ERRC_ENABLE);
  2064. }
  2065. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2066. {
  2067. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2068. }
  2069. static void ivb_modeset_global_resources(struct drm_device *dev)
  2070. {
  2071. struct drm_i915_private *dev_priv = dev->dev_private;
  2072. struct intel_crtc *pipe_B_crtc =
  2073. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2074. struct intel_crtc *pipe_C_crtc =
  2075. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2076. uint32_t temp;
  2077. /*
  2078. * When everything is off disable fdi C so that we could enable fdi B
  2079. * with all lanes. Note that we don't care about enabled pipes without
  2080. * an enabled pch encoder.
  2081. */
  2082. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2083. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2084. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2085. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2086. temp = I915_READ(SOUTH_CHICKEN1);
  2087. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2088. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2089. I915_WRITE(SOUTH_CHICKEN1, temp);
  2090. }
  2091. }
  2092. /* The FDI link training functions for ILK/Ibexpeak. */
  2093. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2094. {
  2095. struct drm_device *dev = crtc->dev;
  2096. struct drm_i915_private *dev_priv = dev->dev_private;
  2097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2098. int pipe = intel_crtc->pipe;
  2099. int plane = intel_crtc->plane;
  2100. u32 reg, temp, tries;
  2101. /* FDI needs bits from pipe & plane first */
  2102. assert_pipe_enabled(dev_priv, pipe);
  2103. assert_plane_enabled(dev_priv, plane);
  2104. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2105. for train result */
  2106. reg = FDI_RX_IMR(pipe);
  2107. temp = I915_READ(reg);
  2108. temp &= ~FDI_RX_SYMBOL_LOCK;
  2109. temp &= ~FDI_RX_BIT_LOCK;
  2110. I915_WRITE(reg, temp);
  2111. I915_READ(reg);
  2112. udelay(150);
  2113. /* enable CPU FDI TX and PCH FDI RX */
  2114. reg = FDI_TX_CTL(pipe);
  2115. temp = I915_READ(reg);
  2116. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2117. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2118. temp &= ~FDI_LINK_TRAIN_NONE;
  2119. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2120. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2121. reg = FDI_RX_CTL(pipe);
  2122. temp = I915_READ(reg);
  2123. temp &= ~FDI_LINK_TRAIN_NONE;
  2124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2125. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2126. POSTING_READ(reg);
  2127. udelay(150);
  2128. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2129. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2130. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2131. FDI_RX_PHASE_SYNC_POINTER_EN);
  2132. reg = FDI_RX_IIR(pipe);
  2133. for (tries = 0; tries < 5; tries++) {
  2134. temp = I915_READ(reg);
  2135. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2136. if ((temp & FDI_RX_BIT_LOCK)) {
  2137. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2138. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2139. break;
  2140. }
  2141. }
  2142. if (tries == 5)
  2143. DRM_ERROR("FDI train 1 fail!\n");
  2144. /* Train 2 */
  2145. reg = FDI_TX_CTL(pipe);
  2146. temp = I915_READ(reg);
  2147. temp &= ~FDI_LINK_TRAIN_NONE;
  2148. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2149. I915_WRITE(reg, temp);
  2150. reg = FDI_RX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2154. I915_WRITE(reg, temp);
  2155. POSTING_READ(reg);
  2156. udelay(150);
  2157. reg = FDI_RX_IIR(pipe);
  2158. for (tries = 0; tries < 5; tries++) {
  2159. temp = I915_READ(reg);
  2160. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2161. if (temp & FDI_RX_SYMBOL_LOCK) {
  2162. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2163. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2164. break;
  2165. }
  2166. }
  2167. if (tries == 5)
  2168. DRM_ERROR("FDI train 2 fail!\n");
  2169. DRM_DEBUG_KMS("FDI train done\n");
  2170. }
  2171. static const int snb_b_fdi_train_param[] = {
  2172. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2173. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2174. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2175. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2176. };
  2177. /* The FDI link training functions for SNB/Cougarpoint. */
  2178. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2179. {
  2180. struct drm_device *dev = crtc->dev;
  2181. struct drm_i915_private *dev_priv = dev->dev_private;
  2182. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2183. int pipe = intel_crtc->pipe;
  2184. u32 reg, temp, i, retry;
  2185. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2186. for train result */
  2187. reg = FDI_RX_IMR(pipe);
  2188. temp = I915_READ(reg);
  2189. temp &= ~FDI_RX_SYMBOL_LOCK;
  2190. temp &= ~FDI_RX_BIT_LOCK;
  2191. I915_WRITE(reg, temp);
  2192. POSTING_READ(reg);
  2193. udelay(150);
  2194. /* enable CPU FDI TX and PCH FDI RX */
  2195. reg = FDI_TX_CTL(pipe);
  2196. temp = I915_READ(reg);
  2197. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2198. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2199. temp &= ~FDI_LINK_TRAIN_NONE;
  2200. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2201. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2202. /* SNB-B */
  2203. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2204. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2205. I915_WRITE(FDI_RX_MISC(pipe),
  2206. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2207. reg = FDI_RX_CTL(pipe);
  2208. temp = I915_READ(reg);
  2209. if (HAS_PCH_CPT(dev)) {
  2210. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2211. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2212. } else {
  2213. temp &= ~FDI_LINK_TRAIN_NONE;
  2214. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2215. }
  2216. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2217. POSTING_READ(reg);
  2218. udelay(150);
  2219. for (i = 0; i < 4; i++) {
  2220. reg = FDI_TX_CTL(pipe);
  2221. temp = I915_READ(reg);
  2222. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2223. temp |= snb_b_fdi_train_param[i];
  2224. I915_WRITE(reg, temp);
  2225. POSTING_READ(reg);
  2226. udelay(500);
  2227. for (retry = 0; retry < 5; retry++) {
  2228. reg = FDI_RX_IIR(pipe);
  2229. temp = I915_READ(reg);
  2230. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2231. if (temp & FDI_RX_BIT_LOCK) {
  2232. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2233. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2234. break;
  2235. }
  2236. udelay(50);
  2237. }
  2238. if (retry < 5)
  2239. break;
  2240. }
  2241. if (i == 4)
  2242. DRM_ERROR("FDI train 1 fail!\n");
  2243. /* Train 2 */
  2244. reg = FDI_TX_CTL(pipe);
  2245. temp = I915_READ(reg);
  2246. temp &= ~FDI_LINK_TRAIN_NONE;
  2247. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2248. if (IS_GEN6(dev)) {
  2249. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2250. /* SNB-B */
  2251. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2252. }
  2253. I915_WRITE(reg, temp);
  2254. reg = FDI_RX_CTL(pipe);
  2255. temp = I915_READ(reg);
  2256. if (HAS_PCH_CPT(dev)) {
  2257. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2258. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2259. } else {
  2260. temp &= ~FDI_LINK_TRAIN_NONE;
  2261. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2262. }
  2263. I915_WRITE(reg, temp);
  2264. POSTING_READ(reg);
  2265. udelay(150);
  2266. for (i = 0; i < 4; i++) {
  2267. reg = FDI_TX_CTL(pipe);
  2268. temp = I915_READ(reg);
  2269. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2270. temp |= snb_b_fdi_train_param[i];
  2271. I915_WRITE(reg, temp);
  2272. POSTING_READ(reg);
  2273. udelay(500);
  2274. for (retry = 0; retry < 5; retry++) {
  2275. reg = FDI_RX_IIR(pipe);
  2276. temp = I915_READ(reg);
  2277. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2278. if (temp & FDI_RX_SYMBOL_LOCK) {
  2279. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2280. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2281. break;
  2282. }
  2283. udelay(50);
  2284. }
  2285. if (retry < 5)
  2286. break;
  2287. }
  2288. if (i == 4)
  2289. DRM_ERROR("FDI train 2 fail!\n");
  2290. DRM_DEBUG_KMS("FDI train done.\n");
  2291. }
  2292. /* Manual link training for Ivy Bridge A0 parts */
  2293. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2294. {
  2295. struct drm_device *dev = crtc->dev;
  2296. struct drm_i915_private *dev_priv = dev->dev_private;
  2297. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2298. int pipe = intel_crtc->pipe;
  2299. u32 reg, temp, i;
  2300. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2301. for train result */
  2302. reg = FDI_RX_IMR(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_RX_SYMBOL_LOCK;
  2305. temp &= ~FDI_RX_BIT_LOCK;
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(150);
  2309. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2310. I915_READ(FDI_RX_IIR(pipe)));
  2311. /* enable CPU FDI TX and PCH FDI RX */
  2312. reg = FDI_TX_CTL(pipe);
  2313. temp = I915_READ(reg);
  2314. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2315. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2316. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2317. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2318. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2319. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2320. temp |= FDI_COMPOSITE_SYNC;
  2321. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2322. I915_WRITE(FDI_RX_MISC(pipe),
  2323. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2324. reg = FDI_RX_CTL(pipe);
  2325. temp = I915_READ(reg);
  2326. temp &= ~FDI_LINK_TRAIN_AUTO;
  2327. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2328. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2329. temp |= FDI_COMPOSITE_SYNC;
  2330. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2331. POSTING_READ(reg);
  2332. udelay(150);
  2333. for (i = 0; i < 4; i++) {
  2334. reg = FDI_TX_CTL(pipe);
  2335. temp = I915_READ(reg);
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= snb_b_fdi_train_param[i];
  2338. I915_WRITE(reg, temp);
  2339. POSTING_READ(reg);
  2340. udelay(500);
  2341. reg = FDI_RX_IIR(pipe);
  2342. temp = I915_READ(reg);
  2343. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2344. if (temp & FDI_RX_BIT_LOCK ||
  2345. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2346. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2347. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2348. break;
  2349. }
  2350. }
  2351. if (i == 4)
  2352. DRM_ERROR("FDI train 1 fail!\n");
  2353. /* Train 2 */
  2354. reg = FDI_TX_CTL(pipe);
  2355. temp = I915_READ(reg);
  2356. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2357. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2358. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2359. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2360. I915_WRITE(reg, temp);
  2361. reg = FDI_RX_CTL(pipe);
  2362. temp = I915_READ(reg);
  2363. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2364. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2365. I915_WRITE(reg, temp);
  2366. POSTING_READ(reg);
  2367. udelay(150);
  2368. for (i = 0; i < 4; i++) {
  2369. reg = FDI_TX_CTL(pipe);
  2370. temp = I915_READ(reg);
  2371. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2372. temp |= snb_b_fdi_train_param[i];
  2373. I915_WRITE(reg, temp);
  2374. POSTING_READ(reg);
  2375. udelay(500);
  2376. reg = FDI_RX_IIR(pipe);
  2377. temp = I915_READ(reg);
  2378. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2379. if (temp & FDI_RX_SYMBOL_LOCK) {
  2380. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2381. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2382. break;
  2383. }
  2384. }
  2385. if (i == 4)
  2386. DRM_ERROR("FDI train 2 fail!\n");
  2387. DRM_DEBUG_KMS("FDI train done.\n");
  2388. }
  2389. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2390. {
  2391. struct drm_device *dev = intel_crtc->base.dev;
  2392. struct drm_i915_private *dev_priv = dev->dev_private;
  2393. int pipe = intel_crtc->pipe;
  2394. u32 reg, temp;
  2395. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2396. reg = FDI_RX_CTL(pipe);
  2397. temp = I915_READ(reg);
  2398. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2399. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2400. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2401. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2402. POSTING_READ(reg);
  2403. udelay(200);
  2404. /* Switch from Rawclk to PCDclk */
  2405. temp = I915_READ(reg);
  2406. I915_WRITE(reg, temp | FDI_PCDCLK);
  2407. POSTING_READ(reg);
  2408. udelay(200);
  2409. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2410. reg = FDI_TX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2413. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2414. POSTING_READ(reg);
  2415. udelay(100);
  2416. }
  2417. }
  2418. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2419. {
  2420. struct drm_device *dev = intel_crtc->base.dev;
  2421. struct drm_i915_private *dev_priv = dev->dev_private;
  2422. int pipe = intel_crtc->pipe;
  2423. u32 reg, temp;
  2424. /* Switch from PCDclk to Rawclk */
  2425. reg = FDI_RX_CTL(pipe);
  2426. temp = I915_READ(reg);
  2427. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2428. /* Disable CPU FDI TX PLL */
  2429. reg = FDI_TX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2432. POSTING_READ(reg);
  2433. udelay(100);
  2434. reg = FDI_RX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2437. /* Wait for the clocks to turn off. */
  2438. POSTING_READ(reg);
  2439. udelay(100);
  2440. }
  2441. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2442. {
  2443. struct drm_device *dev = crtc->dev;
  2444. struct drm_i915_private *dev_priv = dev->dev_private;
  2445. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2446. int pipe = intel_crtc->pipe;
  2447. u32 reg, temp;
  2448. /* disable CPU FDI tx and PCH FDI rx */
  2449. reg = FDI_TX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2452. POSTING_READ(reg);
  2453. reg = FDI_RX_CTL(pipe);
  2454. temp = I915_READ(reg);
  2455. temp &= ~(0x7 << 16);
  2456. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2457. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2458. POSTING_READ(reg);
  2459. udelay(100);
  2460. /* Ironlake workaround, disable clock pointer after downing FDI */
  2461. if (HAS_PCH_IBX(dev)) {
  2462. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2463. }
  2464. /* still set train pattern 1 */
  2465. reg = FDI_TX_CTL(pipe);
  2466. temp = I915_READ(reg);
  2467. temp &= ~FDI_LINK_TRAIN_NONE;
  2468. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2469. I915_WRITE(reg, temp);
  2470. reg = FDI_RX_CTL(pipe);
  2471. temp = I915_READ(reg);
  2472. if (HAS_PCH_CPT(dev)) {
  2473. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2474. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2475. } else {
  2476. temp &= ~FDI_LINK_TRAIN_NONE;
  2477. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2478. }
  2479. /* BPC in FDI rx is consistent with that in PIPECONF */
  2480. temp &= ~(0x07 << 16);
  2481. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2482. I915_WRITE(reg, temp);
  2483. POSTING_READ(reg);
  2484. udelay(100);
  2485. }
  2486. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2487. {
  2488. struct drm_device *dev = crtc->dev;
  2489. struct drm_i915_private *dev_priv = dev->dev_private;
  2490. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2491. unsigned long flags;
  2492. bool pending;
  2493. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2494. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2495. return false;
  2496. spin_lock_irqsave(&dev->event_lock, flags);
  2497. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2498. spin_unlock_irqrestore(&dev->event_lock, flags);
  2499. return pending;
  2500. }
  2501. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2502. {
  2503. struct drm_device *dev = crtc->dev;
  2504. struct drm_i915_private *dev_priv = dev->dev_private;
  2505. if (crtc->fb == NULL)
  2506. return;
  2507. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2508. wait_event(dev_priv->pending_flip_queue,
  2509. !intel_crtc_has_pending_flip(crtc));
  2510. mutex_lock(&dev->struct_mutex);
  2511. intel_finish_fb(crtc->fb);
  2512. mutex_unlock(&dev->struct_mutex);
  2513. }
  2514. /* Program iCLKIP clock to the desired frequency */
  2515. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2516. {
  2517. struct drm_device *dev = crtc->dev;
  2518. struct drm_i915_private *dev_priv = dev->dev_private;
  2519. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2520. u32 temp;
  2521. mutex_lock(&dev_priv->dpio_lock);
  2522. /* It is necessary to ungate the pixclk gate prior to programming
  2523. * the divisors, and gate it back when it is done.
  2524. */
  2525. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2526. /* Disable SSCCTL */
  2527. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2528. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2529. SBI_SSCCTL_DISABLE,
  2530. SBI_ICLK);
  2531. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2532. if (crtc->mode.clock == 20000) {
  2533. auxdiv = 1;
  2534. divsel = 0x41;
  2535. phaseinc = 0x20;
  2536. } else {
  2537. /* The iCLK virtual clock root frequency is in MHz,
  2538. * but the crtc->mode.clock in in KHz. To get the divisors,
  2539. * it is necessary to divide one by another, so we
  2540. * convert the virtual clock precision to KHz here for higher
  2541. * precision.
  2542. */
  2543. u32 iclk_virtual_root_freq = 172800 * 1000;
  2544. u32 iclk_pi_range = 64;
  2545. u32 desired_divisor, msb_divisor_value, pi_value;
  2546. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2547. msb_divisor_value = desired_divisor / iclk_pi_range;
  2548. pi_value = desired_divisor % iclk_pi_range;
  2549. auxdiv = 0;
  2550. divsel = msb_divisor_value - 2;
  2551. phaseinc = pi_value;
  2552. }
  2553. /* This should not happen with any sane values */
  2554. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2555. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2556. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2557. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2558. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2559. crtc->mode.clock,
  2560. auxdiv,
  2561. divsel,
  2562. phasedir,
  2563. phaseinc);
  2564. /* Program SSCDIVINTPHASE6 */
  2565. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2566. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2567. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2568. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2569. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2570. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2571. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2572. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2573. /* Program SSCAUXDIV */
  2574. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2575. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2576. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2577. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2578. /* Enable modulator and associated divider */
  2579. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2580. temp &= ~SBI_SSCCTL_DISABLE;
  2581. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2582. /* Wait for initialization time */
  2583. udelay(24);
  2584. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2585. mutex_unlock(&dev_priv->dpio_lock);
  2586. }
  2587. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2588. enum pipe pch_transcoder)
  2589. {
  2590. struct drm_device *dev = crtc->base.dev;
  2591. struct drm_i915_private *dev_priv = dev->dev_private;
  2592. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2593. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2594. I915_READ(HTOTAL(cpu_transcoder)));
  2595. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2596. I915_READ(HBLANK(cpu_transcoder)));
  2597. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2598. I915_READ(HSYNC(cpu_transcoder)));
  2599. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2600. I915_READ(VTOTAL(cpu_transcoder)));
  2601. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2602. I915_READ(VBLANK(cpu_transcoder)));
  2603. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2604. I915_READ(VSYNC(cpu_transcoder)));
  2605. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2606. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2607. }
  2608. /*
  2609. * Enable PCH resources required for PCH ports:
  2610. * - PCH PLLs
  2611. * - FDI training & RX/TX
  2612. * - update transcoder timings
  2613. * - DP transcoding bits
  2614. * - transcoder
  2615. */
  2616. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2617. {
  2618. struct drm_device *dev = crtc->dev;
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2621. int pipe = intel_crtc->pipe;
  2622. u32 reg, temp;
  2623. assert_pch_transcoder_disabled(dev_priv, pipe);
  2624. /* Write the TU size bits before fdi link training, so that error
  2625. * detection works. */
  2626. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2627. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2628. /* For PCH output, training FDI link */
  2629. dev_priv->display.fdi_link_train(crtc);
  2630. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2631. * transcoder, and we actually should do this to not upset any PCH
  2632. * transcoder that already use the clock when we share it.
  2633. *
  2634. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2635. * unconditionally resets the pll - we need that to have the right LVDS
  2636. * enable sequence. */
  2637. ironlake_enable_pch_pll(intel_crtc);
  2638. if (HAS_PCH_CPT(dev)) {
  2639. u32 sel;
  2640. temp = I915_READ(PCH_DPLL_SEL);
  2641. switch (pipe) {
  2642. default:
  2643. case 0:
  2644. temp |= TRANSA_DPLL_ENABLE;
  2645. sel = TRANSA_DPLLB_SEL;
  2646. break;
  2647. case 1:
  2648. temp |= TRANSB_DPLL_ENABLE;
  2649. sel = TRANSB_DPLLB_SEL;
  2650. break;
  2651. case 2:
  2652. temp |= TRANSC_DPLL_ENABLE;
  2653. sel = TRANSC_DPLLB_SEL;
  2654. break;
  2655. }
  2656. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2657. temp |= sel;
  2658. else
  2659. temp &= ~sel;
  2660. I915_WRITE(PCH_DPLL_SEL, temp);
  2661. }
  2662. /* set transcoder timing, panel must allow it */
  2663. assert_panel_unlocked(dev_priv, pipe);
  2664. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2665. intel_fdi_normal_train(crtc);
  2666. /* For PCH DP, enable TRANS_DP_CTL */
  2667. if (HAS_PCH_CPT(dev) &&
  2668. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2669. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2670. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2671. reg = TRANS_DP_CTL(pipe);
  2672. temp = I915_READ(reg);
  2673. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2674. TRANS_DP_SYNC_MASK |
  2675. TRANS_DP_BPC_MASK);
  2676. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2677. TRANS_DP_ENH_FRAMING);
  2678. temp |= bpc << 9; /* same format but at 11:9 */
  2679. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2680. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2681. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2682. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2683. switch (intel_trans_dp_port_sel(crtc)) {
  2684. case PCH_DP_B:
  2685. temp |= TRANS_DP_PORT_SEL_B;
  2686. break;
  2687. case PCH_DP_C:
  2688. temp |= TRANS_DP_PORT_SEL_C;
  2689. break;
  2690. case PCH_DP_D:
  2691. temp |= TRANS_DP_PORT_SEL_D;
  2692. break;
  2693. default:
  2694. BUG();
  2695. }
  2696. I915_WRITE(reg, temp);
  2697. }
  2698. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2699. }
  2700. static void lpt_pch_enable(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2705. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2706. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2707. lpt_program_iclkip(crtc);
  2708. /* Set transcoder timing. */
  2709. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2710. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2711. }
  2712. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2713. {
  2714. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2715. if (pll == NULL)
  2716. return;
  2717. if (pll->refcount == 0) {
  2718. WARN(1, "bad PCH PLL refcount\n");
  2719. return;
  2720. }
  2721. --pll->refcount;
  2722. intel_crtc->pch_pll = NULL;
  2723. }
  2724. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2725. {
  2726. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2727. struct intel_pch_pll *pll;
  2728. int i;
  2729. pll = intel_crtc->pch_pll;
  2730. if (pll) {
  2731. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2732. intel_crtc->base.base.id, pll->pll_reg);
  2733. goto prepare;
  2734. }
  2735. if (HAS_PCH_IBX(dev_priv->dev)) {
  2736. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2737. i = intel_crtc->pipe;
  2738. pll = &dev_priv->pch_plls[i];
  2739. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2740. intel_crtc->base.base.id, pll->pll_reg);
  2741. goto found;
  2742. }
  2743. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2744. pll = &dev_priv->pch_plls[i];
  2745. /* Only want to check enabled timings first */
  2746. if (pll->refcount == 0)
  2747. continue;
  2748. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2749. fp == I915_READ(pll->fp0_reg)) {
  2750. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2751. intel_crtc->base.base.id,
  2752. pll->pll_reg, pll->refcount, pll->active);
  2753. goto found;
  2754. }
  2755. }
  2756. /* Ok no matching timings, maybe there's a free one? */
  2757. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2758. pll = &dev_priv->pch_plls[i];
  2759. if (pll->refcount == 0) {
  2760. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2761. intel_crtc->base.base.id, pll->pll_reg);
  2762. goto found;
  2763. }
  2764. }
  2765. return NULL;
  2766. found:
  2767. intel_crtc->pch_pll = pll;
  2768. pll->refcount++;
  2769. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2770. prepare: /* separate function? */
  2771. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2772. /* Wait for the clocks to stabilize before rewriting the regs */
  2773. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2774. POSTING_READ(pll->pll_reg);
  2775. udelay(150);
  2776. I915_WRITE(pll->fp0_reg, fp);
  2777. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2778. pll->on = false;
  2779. return pll;
  2780. }
  2781. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2782. {
  2783. struct drm_i915_private *dev_priv = dev->dev_private;
  2784. int dslreg = PIPEDSL(pipe);
  2785. u32 temp;
  2786. temp = I915_READ(dslreg);
  2787. udelay(500);
  2788. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2789. if (wait_for(I915_READ(dslreg) != temp, 5))
  2790. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2791. }
  2792. }
  2793. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2794. {
  2795. struct drm_device *dev = crtc->base.dev;
  2796. struct drm_i915_private *dev_priv = dev->dev_private;
  2797. int pipe = crtc->pipe;
  2798. if (crtc->config.pch_pfit.size) {
  2799. /* Force use of hard-coded filter coefficients
  2800. * as some pre-programmed values are broken,
  2801. * e.g. x201.
  2802. */
  2803. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2804. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2805. PF_PIPE_SEL_IVB(pipe));
  2806. else
  2807. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2808. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2809. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2810. }
  2811. }
  2812. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2813. {
  2814. struct drm_device *dev = crtc->dev;
  2815. struct drm_i915_private *dev_priv = dev->dev_private;
  2816. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2817. struct intel_encoder *encoder;
  2818. int pipe = intel_crtc->pipe;
  2819. int plane = intel_crtc->plane;
  2820. u32 temp;
  2821. WARN_ON(!crtc->enabled);
  2822. if (intel_crtc->active)
  2823. return;
  2824. intel_crtc->active = true;
  2825. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2826. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2827. intel_update_watermarks(dev);
  2828. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2829. temp = I915_READ(PCH_LVDS);
  2830. if ((temp & LVDS_PORT_EN) == 0)
  2831. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2832. }
  2833. if (intel_crtc->config.has_pch_encoder) {
  2834. /* Note: FDI PLL enabling _must_ be done before we enable the
  2835. * cpu pipes, hence this is separate from all the other fdi/pch
  2836. * enabling. */
  2837. ironlake_fdi_pll_enable(intel_crtc);
  2838. } else {
  2839. assert_fdi_tx_disabled(dev_priv, pipe);
  2840. assert_fdi_rx_disabled(dev_priv, pipe);
  2841. }
  2842. for_each_encoder_on_crtc(dev, crtc, encoder)
  2843. if (encoder->pre_enable)
  2844. encoder->pre_enable(encoder);
  2845. /* Enable panel fitting for LVDS */
  2846. ironlake_pfit_enable(intel_crtc);
  2847. /*
  2848. * On ILK+ LUT must be loaded before the pipe is running but with
  2849. * clocks enabled
  2850. */
  2851. intel_crtc_load_lut(crtc);
  2852. intel_enable_pipe(dev_priv, pipe,
  2853. intel_crtc->config.has_pch_encoder);
  2854. intel_enable_plane(dev_priv, plane, pipe);
  2855. if (intel_crtc->config.has_pch_encoder)
  2856. ironlake_pch_enable(crtc);
  2857. mutex_lock(&dev->struct_mutex);
  2858. intel_update_fbc(dev);
  2859. mutex_unlock(&dev->struct_mutex);
  2860. intel_crtc_update_cursor(crtc, true);
  2861. for_each_encoder_on_crtc(dev, crtc, encoder)
  2862. encoder->enable(encoder);
  2863. if (HAS_PCH_CPT(dev))
  2864. cpt_verify_modeset(dev, intel_crtc->pipe);
  2865. /*
  2866. * There seems to be a race in PCH platform hw (at least on some
  2867. * outputs) where an enabled pipe still completes any pageflip right
  2868. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2869. * as the first vblank happend, everything works as expected. Hence just
  2870. * wait for one vblank before returning to avoid strange things
  2871. * happening.
  2872. */
  2873. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2874. }
  2875. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2876. {
  2877. struct drm_device *dev = crtc->dev;
  2878. struct drm_i915_private *dev_priv = dev->dev_private;
  2879. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2880. struct intel_encoder *encoder;
  2881. int pipe = intel_crtc->pipe;
  2882. int plane = intel_crtc->plane;
  2883. WARN_ON(!crtc->enabled);
  2884. if (intel_crtc->active)
  2885. return;
  2886. intel_crtc->active = true;
  2887. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2888. if (intel_crtc->config.has_pch_encoder)
  2889. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2890. intel_update_watermarks(dev);
  2891. if (intel_crtc->config.has_pch_encoder)
  2892. dev_priv->display.fdi_link_train(crtc);
  2893. for_each_encoder_on_crtc(dev, crtc, encoder)
  2894. if (encoder->pre_enable)
  2895. encoder->pre_enable(encoder);
  2896. intel_ddi_enable_pipe_clock(intel_crtc);
  2897. /* Enable panel fitting for eDP */
  2898. ironlake_pfit_enable(intel_crtc);
  2899. /*
  2900. * On ILK+ LUT must be loaded before the pipe is running but with
  2901. * clocks enabled
  2902. */
  2903. intel_crtc_load_lut(crtc);
  2904. intel_ddi_set_pipe_settings(crtc);
  2905. intel_ddi_enable_transcoder_func(crtc);
  2906. intel_enable_pipe(dev_priv, pipe,
  2907. intel_crtc->config.has_pch_encoder);
  2908. intel_enable_plane(dev_priv, plane, pipe);
  2909. if (intel_crtc->config.has_pch_encoder)
  2910. lpt_pch_enable(crtc);
  2911. mutex_lock(&dev->struct_mutex);
  2912. intel_update_fbc(dev);
  2913. mutex_unlock(&dev->struct_mutex);
  2914. intel_crtc_update_cursor(crtc, true);
  2915. for_each_encoder_on_crtc(dev, crtc, encoder)
  2916. encoder->enable(encoder);
  2917. /*
  2918. * There seems to be a race in PCH platform hw (at least on some
  2919. * outputs) where an enabled pipe still completes any pageflip right
  2920. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2921. * as the first vblank happend, everything works as expected. Hence just
  2922. * wait for one vblank before returning to avoid strange things
  2923. * happening.
  2924. */
  2925. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2926. }
  2927. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2928. {
  2929. struct drm_device *dev = crtc->dev;
  2930. struct drm_i915_private *dev_priv = dev->dev_private;
  2931. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2932. struct intel_encoder *encoder;
  2933. int pipe = intel_crtc->pipe;
  2934. int plane = intel_crtc->plane;
  2935. u32 reg, temp;
  2936. if (!intel_crtc->active)
  2937. return;
  2938. for_each_encoder_on_crtc(dev, crtc, encoder)
  2939. encoder->disable(encoder);
  2940. intel_crtc_wait_for_pending_flips(crtc);
  2941. drm_vblank_off(dev, pipe);
  2942. intel_crtc_update_cursor(crtc, false);
  2943. intel_disable_plane(dev_priv, plane, pipe);
  2944. if (dev_priv->cfb_plane == plane)
  2945. intel_disable_fbc(dev);
  2946. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2947. intel_disable_pipe(dev_priv, pipe);
  2948. /* Disable PF */
  2949. I915_WRITE(PF_CTL(pipe), 0);
  2950. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2951. for_each_encoder_on_crtc(dev, crtc, encoder)
  2952. if (encoder->post_disable)
  2953. encoder->post_disable(encoder);
  2954. ironlake_fdi_disable(crtc);
  2955. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2956. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2957. if (HAS_PCH_CPT(dev)) {
  2958. /* disable TRANS_DP_CTL */
  2959. reg = TRANS_DP_CTL(pipe);
  2960. temp = I915_READ(reg);
  2961. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2962. temp |= TRANS_DP_PORT_SEL_NONE;
  2963. I915_WRITE(reg, temp);
  2964. /* disable DPLL_SEL */
  2965. temp = I915_READ(PCH_DPLL_SEL);
  2966. switch (pipe) {
  2967. case 0:
  2968. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2969. break;
  2970. case 1:
  2971. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2972. break;
  2973. case 2:
  2974. /* C shares PLL A or B */
  2975. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2976. break;
  2977. default:
  2978. BUG(); /* wtf */
  2979. }
  2980. I915_WRITE(PCH_DPLL_SEL, temp);
  2981. }
  2982. /* disable PCH DPLL */
  2983. intel_disable_pch_pll(intel_crtc);
  2984. ironlake_fdi_pll_disable(intel_crtc);
  2985. intel_crtc->active = false;
  2986. intel_update_watermarks(dev);
  2987. mutex_lock(&dev->struct_mutex);
  2988. intel_update_fbc(dev);
  2989. mutex_unlock(&dev->struct_mutex);
  2990. }
  2991. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2992. {
  2993. struct drm_device *dev = crtc->dev;
  2994. struct drm_i915_private *dev_priv = dev->dev_private;
  2995. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2996. struct intel_encoder *encoder;
  2997. int pipe = intel_crtc->pipe;
  2998. int plane = intel_crtc->plane;
  2999. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3000. if (!intel_crtc->active)
  3001. return;
  3002. for_each_encoder_on_crtc(dev, crtc, encoder)
  3003. encoder->disable(encoder);
  3004. intel_crtc_wait_for_pending_flips(crtc);
  3005. drm_vblank_off(dev, pipe);
  3006. intel_crtc_update_cursor(crtc, false);
  3007. /* FBC must be disabled before disabling the plane on HSW. */
  3008. if (dev_priv->cfb_plane == plane)
  3009. intel_disable_fbc(dev);
  3010. intel_disable_plane(dev_priv, plane, pipe);
  3011. if (intel_crtc->config.has_pch_encoder)
  3012. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3013. intel_disable_pipe(dev_priv, pipe);
  3014. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3015. /* XXX: Once we have proper panel fitter state tracking implemented with
  3016. * hardware state read/check support we should switch to only disable
  3017. * the panel fitter when we know it's used. */
  3018. if (intel_display_power_enabled(dev,
  3019. POWER_DOMAIN_PIPE_PANEL_FITTER(pipe))) {
  3020. I915_WRITE(PF_CTL(pipe), 0);
  3021. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3022. }
  3023. intel_ddi_disable_pipe_clock(intel_crtc);
  3024. for_each_encoder_on_crtc(dev, crtc, encoder)
  3025. if (encoder->post_disable)
  3026. encoder->post_disable(encoder);
  3027. if (intel_crtc->config.has_pch_encoder) {
  3028. lpt_disable_pch_transcoder(dev_priv);
  3029. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3030. intel_ddi_fdi_disable(crtc);
  3031. }
  3032. intel_crtc->active = false;
  3033. intel_update_watermarks(dev);
  3034. mutex_lock(&dev->struct_mutex);
  3035. intel_update_fbc(dev);
  3036. mutex_unlock(&dev->struct_mutex);
  3037. }
  3038. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3039. {
  3040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3041. intel_put_pch_pll(intel_crtc);
  3042. }
  3043. static void haswell_crtc_off(struct drm_crtc *crtc)
  3044. {
  3045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3046. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3047. * start using it. */
  3048. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3049. intel_ddi_put_crtc_pll(crtc);
  3050. }
  3051. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3052. {
  3053. if (!enable && intel_crtc->overlay) {
  3054. struct drm_device *dev = intel_crtc->base.dev;
  3055. struct drm_i915_private *dev_priv = dev->dev_private;
  3056. mutex_lock(&dev->struct_mutex);
  3057. dev_priv->mm.interruptible = false;
  3058. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3059. dev_priv->mm.interruptible = true;
  3060. mutex_unlock(&dev->struct_mutex);
  3061. }
  3062. /* Let userspace switch the overlay on again. In most cases userspace
  3063. * has to recompute where to put it anyway.
  3064. */
  3065. }
  3066. /**
  3067. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3068. * cursor plane briefly if not already running after enabling the display
  3069. * plane.
  3070. * This workaround avoids occasional blank screens when self refresh is
  3071. * enabled.
  3072. */
  3073. static void
  3074. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3075. {
  3076. u32 cntl = I915_READ(CURCNTR(pipe));
  3077. if ((cntl & CURSOR_MODE) == 0) {
  3078. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3079. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3080. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3081. intel_wait_for_vblank(dev_priv->dev, pipe);
  3082. I915_WRITE(CURCNTR(pipe), cntl);
  3083. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3084. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3085. }
  3086. }
  3087. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3088. {
  3089. struct drm_device *dev = crtc->base.dev;
  3090. struct drm_i915_private *dev_priv = dev->dev_private;
  3091. struct intel_crtc_config *pipe_config = &crtc->config;
  3092. if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3093. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
  3094. return;
  3095. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3096. assert_pipe_disabled(dev_priv, crtc->pipe);
  3097. /*
  3098. * Enable automatic panel scaling so that non-native modes
  3099. * fill the screen. The panel fitter should only be
  3100. * adjusted whilst the pipe is disabled, according to
  3101. * register description and PRM.
  3102. */
  3103. DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
  3104. pipe_config->gmch_pfit.control,
  3105. pipe_config->gmch_pfit.pgm_ratios);
  3106. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3107. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3108. /* Border color in case we don't scale up to the full screen. Black by
  3109. * default, change to something else for debugging. */
  3110. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3111. }
  3112. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3117. struct intel_encoder *encoder;
  3118. int pipe = intel_crtc->pipe;
  3119. int plane = intel_crtc->plane;
  3120. WARN_ON(!crtc->enabled);
  3121. if (intel_crtc->active)
  3122. return;
  3123. intel_crtc->active = true;
  3124. intel_update_watermarks(dev);
  3125. mutex_lock(&dev_priv->dpio_lock);
  3126. for_each_encoder_on_crtc(dev, crtc, encoder)
  3127. if (encoder->pre_pll_enable)
  3128. encoder->pre_pll_enable(encoder);
  3129. intel_enable_pll(dev_priv, pipe);
  3130. for_each_encoder_on_crtc(dev, crtc, encoder)
  3131. if (encoder->pre_enable)
  3132. encoder->pre_enable(encoder);
  3133. /* VLV wants encoder enabling _before_ the pipe is up. */
  3134. for_each_encoder_on_crtc(dev, crtc, encoder)
  3135. encoder->enable(encoder);
  3136. /* Enable panel fitting for eDP */
  3137. i9xx_pfit_enable(intel_crtc);
  3138. intel_enable_pipe(dev_priv, pipe, false);
  3139. intel_enable_plane(dev_priv, plane, pipe);
  3140. intel_crtc_load_lut(crtc);
  3141. intel_update_fbc(dev);
  3142. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3143. intel_crtc_dpms_overlay(intel_crtc, true);
  3144. intel_crtc_update_cursor(crtc, true);
  3145. mutex_unlock(&dev_priv->dpio_lock);
  3146. }
  3147. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3148. {
  3149. struct drm_device *dev = crtc->dev;
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3152. struct intel_encoder *encoder;
  3153. int pipe = intel_crtc->pipe;
  3154. int plane = intel_crtc->plane;
  3155. WARN_ON(!crtc->enabled);
  3156. if (intel_crtc->active)
  3157. return;
  3158. intel_crtc->active = true;
  3159. intel_update_watermarks(dev);
  3160. intel_enable_pll(dev_priv, pipe);
  3161. for_each_encoder_on_crtc(dev, crtc, encoder)
  3162. if (encoder->pre_enable)
  3163. encoder->pre_enable(encoder);
  3164. /* Enable panel fitting for LVDS */
  3165. i9xx_pfit_enable(intel_crtc);
  3166. intel_enable_pipe(dev_priv, pipe, false);
  3167. intel_enable_plane(dev_priv, plane, pipe);
  3168. if (IS_G4X(dev))
  3169. g4x_fixup_plane(dev_priv, pipe);
  3170. intel_crtc_load_lut(crtc);
  3171. intel_update_fbc(dev);
  3172. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3173. intel_crtc_dpms_overlay(intel_crtc, true);
  3174. intel_crtc_update_cursor(crtc, true);
  3175. for_each_encoder_on_crtc(dev, crtc, encoder)
  3176. encoder->enable(encoder);
  3177. }
  3178. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3179. {
  3180. struct drm_device *dev = crtc->base.dev;
  3181. struct drm_i915_private *dev_priv = dev->dev_private;
  3182. enum pipe pipe;
  3183. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3184. assert_pipe_disabled(dev_priv, crtc->pipe);
  3185. if (INTEL_INFO(dev)->gen >= 4)
  3186. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3187. else
  3188. pipe = PIPE_B;
  3189. if (pipe == crtc->pipe) {
  3190. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3191. I915_WRITE(PFIT_CONTROL, 0);
  3192. }
  3193. }
  3194. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3195. {
  3196. struct drm_device *dev = crtc->dev;
  3197. struct drm_i915_private *dev_priv = dev->dev_private;
  3198. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3199. struct intel_encoder *encoder;
  3200. int pipe = intel_crtc->pipe;
  3201. int plane = intel_crtc->plane;
  3202. if (!intel_crtc->active)
  3203. return;
  3204. for_each_encoder_on_crtc(dev, crtc, encoder)
  3205. encoder->disable(encoder);
  3206. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3207. intel_crtc_wait_for_pending_flips(crtc);
  3208. drm_vblank_off(dev, pipe);
  3209. intel_crtc_dpms_overlay(intel_crtc, false);
  3210. intel_crtc_update_cursor(crtc, false);
  3211. if (dev_priv->cfb_plane == plane)
  3212. intel_disable_fbc(dev);
  3213. intel_disable_plane(dev_priv, plane, pipe);
  3214. intel_disable_pipe(dev_priv, pipe);
  3215. i9xx_pfit_disable(intel_crtc);
  3216. for_each_encoder_on_crtc(dev, crtc, encoder)
  3217. if (encoder->post_disable)
  3218. encoder->post_disable(encoder);
  3219. intel_disable_pll(dev_priv, pipe);
  3220. intel_crtc->active = false;
  3221. intel_update_fbc(dev);
  3222. intel_update_watermarks(dev);
  3223. }
  3224. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3225. {
  3226. }
  3227. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3228. bool enabled)
  3229. {
  3230. struct drm_device *dev = crtc->dev;
  3231. struct drm_i915_master_private *master_priv;
  3232. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3233. int pipe = intel_crtc->pipe;
  3234. if (!dev->primary->master)
  3235. return;
  3236. master_priv = dev->primary->master->driver_priv;
  3237. if (!master_priv->sarea_priv)
  3238. return;
  3239. switch (pipe) {
  3240. case 0:
  3241. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3242. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3243. break;
  3244. case 1:
  3245. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3246. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3247. break;
  3248. default:
  3249. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3250. break;
  3251. }
  3252. }
  3253. /**
  3254. * Sets the power management mode of the pipe and plane.
  3255. */
  3256. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3257. {
  3258. struct drm_device *dev = crtc->dev;
  3259. struct drm_i915_private *dev_priv = dev->dev_private;
  3260. struct intel_encoder *intel_encoder;
  3261. bool enable = false;
  3262. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3263. enable |= intel_encoder->connectors_active;
  3264. if (enable)
  3265. dev_priv->display.crtc_enable(crtc);
  3266. else
  3267. dev_priv->display.crtc_disable(crtc);
  3268. intel_crtc_update_sarea(crtc, enable);
  3269. }
  3270. static void intel_crtc_disable(struct drm_crtc *crtc)
  3271. {
  3272. struct drm_device *dev = crtc->dev;
  3273. struct drm_connector *connector;
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3276. /* crtc should still be enabled when we disable it. */
  3277. WARN_ON(!crtc->enabled);
  3278. dev_priv->display.crtc_disable(crtc);
  3279. intel_crtc->eld_vld = false;
  3280. intel_crtc_update_sarea(crtc, false);
  3281. dev_priv->display.off(crtc);
  3282. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3283. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3284. if (crtc->fb) {
  3285. mutex_lock(&dev->struct_mutex);
  3286. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3287. mutex_unlock(&dev->struct_mutex);
  3288. crtc->fb = NULL;
  3289. }
  3290. /* Update computed state. */
  3291. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3292. if (!connector->encoder || !connector->encoder->crtc)
  3293. continue;
  3294. if (connector->encoder->crtc != crtc)
  3295. continue;
  3296. connector->dpms = DRM_MODE_DPMS_OFF;
  3297. to_intel_encoder(connector->encoder)->connectors_active = false;
  3298. }
  3299. }
  3300. void intel_modeset_disable(struct drm_device *dev)
  3301. {
  3302. struct drm_crtc *crtc;
  3303. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3304. if (crtc->enabled)
  3305. intel_crtc_disable(crtc);
  3306. }
  3307. }
  3308. void intel_encoder_destroy(struct drm_encoder *encoder)
  3309. {
  3310. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3311. drm_encoder_cleanup(encoder);
  3312. kfree(intel_encoder);
  3313. }
  3314. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3315. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3316. * state of the entire output pipe. */
  3317. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3318. {
  3319. if (mode == DRM_MODE_DPMS_ON) {
  3320. encoder->connectors_active = true;
  3321. intel_crtc_update_dpms(encoder->base.crtc);
  3322. } else {
  3323. encoder->connectors_active = false;
  3324. intel_crtc_update_dpms(encoder->base.crtc);
  3325. }
  3326. }
  3327. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3328. * internal consistency). */
  3329. static void intel_connector_check_state(struct intel_connector *connector)
  3330. {
  3331. if (connector->get_hw_state(connector)) {
  3332. struct intel_encoder *encoder = connector->encoder;
  3333. struct drm_crtc *crtc;
  3334. bool encoder_enabled;
  3335. enum pipe pipe;
  3336. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3337. connector->base.base.id,
  3338. drm_get_connector_name(&connector->base));
  3339. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3340. "wrong connector dpms state\n");
  3341. WARN(connector->base.encoder != &encoder->base,
  3342. "active connector not linked to encoder\n");
  3343. WARN(!encoder->connectors_active,
  3344. "encoder->connectors_active not set\n");
  3345. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3346. WARN(!encoder_enabled, "encoder not enabled\n");
  3347. if (WARN_ON(!encoder->base.crtc))
  3348. return;
  3349. crtc = encoder->base.crtc;
  3350. WARN(!crtc->enabled, "crtc not enabled\n");
  3351. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3352. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3353. "encoder active on the wrong pipe\n");
  3354. }
  3355. }
  3356. /* Even simpler default implementation, if there's really no special case to
  3357. * consider. */
  3358. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3359. {
  3360. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3361. /* All the simple cases only support two dpms states. */
  3362. if (mode != DRM_MODE_DPMS_ON)
  3363. mode = DRM_MODE_DPMS_OFF;
  3364. if (mode == connector->dpms)
  3365. return;
  3366. connector->dpms = mode;
  3367. /* Only need to change hw state when actually enabled */
  3368. if (encoder->base.crtc)
  3369. intel_encoder_dpms(encoder, mode);
  3370. else
  3371. WARN_ON(encoder->connectors_active != false);
  3372. intel_modeset_check_state(connector->dev);
  3373. }
  3374. /* Simple connector->get_hw_state implementation for encoders that support only
  3375. * one connector and no cloning and hence the encoder state determines the state
  3376. * of the connector. */
  3377. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3378. {
  3379. enum pipe pipe = 0;
  3380. struct intel_encoder *encoder = connector->encoder;
  3381. return encoder->get_hw_state(encoder, &pipe);
  3382. }
  3383. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3384. struct intel_crtc_config *pipe_config)
  3385. {
  3386. struct drm_i915_private *dev_priv = dev->dev_private;
  3387. struct intel_crtc *pipe_B_crtc =
  3388. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3389. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3390. pipe_name(pipe), pipe_config->fdi_lanes);
  3391. if (pipe_config->fdi_lanes > 4) {
  3392. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3393. pipe_name(pipe), pipe_config->fdi_lanes);
  3394. return false;
  3395. }
  3396. if (IS_HASWELL(dev)) {
  3397. if (pipe_config->fdi_lanes > 2) {
  3398. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3399. pipe_config->fdi_lanes);
  3400. return false;
  3401. } else {
  3402. return true;
  3403. }
  3404. }
  3405. if (INTEL_INFO(dev)->num_pipes == 2)
  3406. return true;
  3407. /* Ivybridge 3 pipe is really complicated */
  3408. switch (pipe) {
  3409. case PIPE_A:
  3410. return true;
  3411. case PIPE_B:
  3412. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3413. pipe_config->fdi_lanes > 2) {
  3414. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3415. pipe_name(pipe), pipe_config->fdi_lanes);
  3416. return false;
  3417. }
  3418. return true;
  3419. case PIPE_C:
  3420. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3421. pipe_B_crtc->config.fdi_lanes <= 2) {
  3422. if (pipe_config->fdi_lanes > 2) {
  3423. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3424. pipe_name(pipe), pipe_config->fdi_lanes);
  3425. return false;
  3426. }
  3427. } else {
  3428. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3429. return false;
  3430. }
  3431. return true;
  3432. default:
  3433. BUG();
  3434. }
  3435. }
  3436. #define RETRY 1
  3437. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3438. struct intel_crtc_config *pipe_config)
  3439. {
  3440. struct drm_device *dev = intel_crtc->base.dev;
  3441. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3442. int target_clock, lane, link_bw;
  3443. bool setup_ok, needs_recompute = false;
  3444. retry:
  3445. /* FDI is a binary signal running at ~2.7GHz, encoding
  3446. * each output octet as 10 bits. The actual frequency
  3447. * is stored as a divider into a 100MHz clock, and the
  3448. * mode pixel clock is stored in units of 1KHz.
  3449. * Hence the bw of each lane in terms of the mode signal
  3450. * is:
  3451. */
  3452. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3453. if (pipe_config->pixel_target_clock)
  3454. target_clock = pipe_config->pixel_target_clock;
  3455. else
  3456. target_clock = adjusted_mode->clock;
  3457. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3458. pipe_config->pipe_bpp);
  3459. pipe_config->fdi_lanes = lane;
  3460. if (pipe_config->pixel_multiplier > 1)
  3461. link_bw *= pipe_config->pixel_multiplier;
  3462. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3463. link_bw, &pipe_config->fdi_m_n);
  3464. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3465. intel_crtc->pipe, pipe_config);
  3466. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3467. pipe_config->pipe_bpp -= 2*3;
  3468. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3469. pipe_config->pipe_bpp);
  3470. needs_recompute = true;
  3471. pipe_config->bw_constrained = true;
  3472. goto retry;
  3473. }
  3474. if (needs_recompute)
  3475. return RETRY;
  3476. return setup_ok ? 0 : -EINVAL;
  3477. }
  3478. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3479. struct intel_crtc_config *pipe_config)
  3480. {
  3481. struct drm_device *dev = crtc->dev;
  3482. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3483. if (HAS_PCH_SPLIT(dev)) {
  3484. /* FDI link clock is fixed at 2.7G */
  3485. if (pipe_config->requested_mode.clock * 3
  3486. > IRONLAKE_FDI_FREQ * 4)
  3487. return -EINVAL;
  3488. }
  3489. /* All interlaced capable intel hw wants timings in frames. Note though
  3490. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3491. * timings, so we need to be careful not to clobber these.*/
  3492. if (!pipe_config->timings_set)
  3493. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3494. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3495. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3496. */
  3497. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3498. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3499. return -EINVAL;
  3500. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3501. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3502. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3503. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3504. * for lvds. */
  3505. pipe_config->pipe_bpp = 8*3;
  3506. }
  3507. if (pipe_config->has_pch_encoder)
  3508. return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
  3509. return 0;
  3510. }
  3511. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3512. {
  3513. return 400000; /* FIXME */
  3514. }
  3515. static int i945_get_display_clock_speed(struct drm_device *dev)
  3516. {
  3517. return 400000;
  3518. }
  3519. static int i915_get_display_clock_speed(struct drm_device *dev)
  3520. {
  3521. return 333000;
  3522. }
  3523. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3524. {
  3525. return 200000;
  3526. }
  3527. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3528. {
  3529. u16 gcfgc = 0;
  3530. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3531. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3532. return 133000;
  3533. else {
  3534. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3535. case GC_DISPLAY_CLOCK_333_MHZ:
  3536. return 333000;
  3537. default:
  3538. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3539. return 190000;
  3540. }
  3541. }
  3542. }
  3543. static int i865_get_display_clock_speed(struct drm_device *dev)
  3544. {
  3545. return 266000;
  3546. }
  3547. static int i855_get_display_clock_speed(struct drm_device *dev)
  3548. {
  3549. u16 hpllcc = 0;
  3550. /* Assume that the hardware is in the high speed state. This
  3551. * should be the default.
  3552. */
  3553. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3554. case GC_CLOCK_133_200:
  3555. case GC_CLOCK_100_200:
  3556. return 200000;
  3557. case GC_CLOCK_166_250:
  3558. return 250000;
  3559. case GC_CLOCK_100_133:
  3560. return 133000;
  3561. }
  3562. /* Shouldn't happen */
  3563. return 0;
  3564. }
  3565. static int i830_get_display_clock_speed(struct drm_device *dev)
  3566. {
  3567. return 133000;
  3568. }
  3569. static void
  3570. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3571. {
  3572. while (*num > 0xffffff || *den > 0xffffff) {
  3573. *num >>= 1;
  3574. *den >>= 1;
  3575. }
  3576. }
  3577. void
  3578. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3579. int pixel_clock, int link_clock,
  3580. struct intel_link_m_n *m_n)
  3581. {
  3582. m_n->tu = 64;
  3583. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3584. m_n->gmch_n = link_clock * nlanes * 8;
  3585. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3586. m_n->link_m = pixel_clock;
  3587. m_n->link_n = link_clock;
  3588. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3589. }
  3590. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3591. {
  3592. if (i915_panel_use_ssc >= 0)
  3593. return i915_panel_use_ssc != 0;
  3594. return dev_priv->vbt.lvds_use_ssc
  3595. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3596. }
  3597. static int vlv_get_refclk(struct drm_crtc *crtc)
  3598. {
  3599. struct drm_device *dev = crtc->dev;
  3600. struct drm_i915_private *dev_priv = dev->dev_private;
  3601. int refclk = 27000; /* for DP & HDMI */
  3602. return 100000; /* only one validated so far */
  3603. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3604. refclk = 96000;
  3605. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3606. if (intel_panel_use_ssc(dev_priv))
  3607. refclk = 100000;
  3608. else
  3609. refclk = 96000;
  3610. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3611. refclk = 100000;
  3612. }
  3613. return refclk;
  3614. }
  3615. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3616. {
  3617. struct drm_device *dev = crtc->dev;
  3618. struct drm_i915_private *dev_priv = dev->dev_private;
  3619. int refclk;
  3620. if (IS_VALLEYVIEW(dev)) {
  3621. refclk = vlv_get_refclk(crtc);
  3622. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3623. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3624. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3625. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3626. refclk / 1000);
  3627. } else if (!IS_GEN2(dev)) {
  3628. refclk = 96000;
  3629. } else {
  3630. refclk = 48000;
  3631. }
  3632. return refclk;
  3633. }
  3634. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3635. {
  3636. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3637. }
  3638. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3639. {
  3640. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3641. }
  3642. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3643. intel_clock_t *reduced_clock)
  3644. {
  3645. struct drm_device *dev = crtc->base.dev;
  3646. struct drm_i915_private *dev_priv = dev->dev_private;
  3647. int pipe = crtc->pipe;
  3648. u32 fp, fp2 = 0;
  3649. if (IS_PINEVIEW(dev)) {
  3650. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3651. if (reduced_clock)
  3652. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3653. } else {
  3654. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3655. if (reduced_clock)
  3656. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3657. }
  3658. I915_WRITE(FP0(pipe), fp);
  3659. crtc->lowfreq_avail = false;
  3660. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3661. reduced_clock && i915_powersave) {
  3662. I915_WRITE(FP1(pipe), fp2);
  3663. crtc->lowfreq_avail = true;
  3664. } else {
  3665. I915_WRITE(FP1(pipe), fp);
  3666. }
  3667. }
  3668. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3669. {
  3670. u32 reg_val;
  3671. /*
  3672. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3673. * and set it to a reasonable value instead.
  3674. */
  3675. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3676. reg_val &= 0xffffff00;
  3677. reg_val |= 0x00000030;
  3678. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3679. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3680. reg_val &= 0x8cffffff;
  3681. reg_val = 0x8c000000;
  3682. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3683. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3684. reg_val &= 0xffffff00;
  3685. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3686. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3687. reg_val &= 0x00ffffff;
  3688. reg_val |= 0xb0000000;
  3689. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3690. }
  3691. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3692. struct intel_link_m_n *m_n)
  3693. {
  3694. struct drm_device *dev = crtc->base.dev;
  3695. struct drm_i915_private *dev_priv = dev->dev_private;
  3696. int pipe = crtc->pipe;
  3697. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3698. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3699. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3700. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3701. }
  3702. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3703. struct intel_link_m_n *m_n)
  3704. {
  3705. struct drm_device *dev = crtc->base.dev;
  3706. struct drm_i915_private *dev_priv = dev->dev_private;
  3707. int pipe = crtc->pipe;
  3708. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3709. if (INTEL_INFO(dev)->gen >= 5) {
  3710. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3711. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3712. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3713. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3714. } else {
  3715. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3716. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3717. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3718. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3719. }
  3720. }
  3721. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3722. {
  3723. if (crtc->config.has_pch_encoder)
  3724. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3725. else
  3726. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3727. }
  3728. static void vlv_update_pll(struct intel_crtc *crtc)
  3729. {
  3730. struct drm_device *dev = crtc->base.dev;
  3731. struct drm_i915_private *dev_priv = dev->dev_private;
  3732. struct drm_display_mode *adjusted_mode =
  3733. &crtc->config.adjusted_mode;
  3734. struct intel_encoder *encoder;
  3735. int pipe = crtc->pipe;
  3736. u32 dpll, mdiv;
  3737. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3738. bool is_hdmi;
  3739. u32 coreclk, reg_val, dpll_md;
  3740. mutex_lock(&dev_priv->dpio_lock);
  3741. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3742. bestn = crtc->config.dpll.n;
  3743. bestm1 = crtc->config.dpll.m1;
  3744. bestm2 = crtc->config.dpll.m2;
  3745. bestp1 = crtc->config.dpll.p1;
  3746. bestp2 = crtc->config.dpll.p2;
  3747. /* See eDP HDMI DPIO driver vbios notes doc */
  3748. /* PLL B needs special handling */
  3749. if (pipe)
  3750. vlv_pllb_recal_opamp(dev_priv);
  3751. /* Set up Tx target for periodic Rcomp update */
  3752. intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3753. /* Disable target IRef on PLL */
  3754. reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3755. reg_val &= 0x00ffffff;
  3756. intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3757. /* Disable fast lock */
  3758. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3759. /* Set idtafcrecal before PLL is enabled */
  3760. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3761. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3762. mdiv |= ((bestn << DPIO_N_SHIFT));
  3763. mdiv |= (1 << DPIO_K_SHIFT);
  3764. /*
  3765. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3766. * but we don't support that).
  3767. * Note: don't use the DAC post divider as it seems unstable.
  3768. */
  3769. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3770. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3771. mdiv |= DPIO_ENABLE_CALIBRATION;
  3772. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3773. /* Set HBR and RBR LPF coefficients */
  3774. if (adjusted_mode->clock == 162000 ||
  3775. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3776. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3777. 0x005f0021);
  3778. else
  3779. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3780. 0x00d0000f);
  3781. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3782. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3783. /* Use SSC source */
  3784. if (!pipe)
  3785. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3786. 0x0df40000);
  3787. else
  3788. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3789. 0x0df70000);
  3790. } else { /* HDMI or VGA */
  3791. /* Use bend source */
  3792. if (!pipe)
  3793. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3794. 0x0df70000);
  3795. else
  3796. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3797. 0x0df40000);
  3798. }
  3799. coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3800. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3801. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3802. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3803. coreclk |= 0x01000000;
  3804. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3805. intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3806. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3807. if (encoder->pre_pll_enable)
  3808. encoder->pre_pll_enable(encoder);
  3809. /* Enable DPIO clock input */
  3810. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3811. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3812. if (pipe)
  3813. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3814. dpll |= DPLL_VCO_ENABLE;
  3815. I915_WRITE(DPLL(pipe), dpll);
  3816. POSTING_READ(DPLL(pipe));
  3817. udelay(150);
  3818. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3819. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3820. dpll_md = 0;
  3821. if (crtc->config.pixel_multiplier > 1) {
  3822. dpll_md = (crtc->config.pixel_multiplier - 1)
  3823. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3824. }
  3825. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3826. POSTING_READ(DPLL_MD(pipe));
  3827. if (crtc->config.has_dp_encoder)
  3828. intel_dp_set_m_n(crtc);
  3829. mutex_unlock(&dev_priv->dpio_lock);
  3830. }
  3831. static void i9xx_update_pll(struct intel_crtc *crtc,
  3832. intel_clock_t *reduced_clock,
  3833. int num_connectors)
  3834. {
  3835. struct drm_device *dev = crtc->base.dev;
  3836. struct drm_i915_private *dev_priv = dev->dev_private;
  3837. struct intel_encoder *encoder;
  3838. int pipe = crtc->pipe;
  3839. u32 dpll;
  3840. bool is_sdvo;
  3841. struct dpll *clock = &crtc->config.dpll;
  3842. i9xx_update_pll_dividers(crtc, reduced_clock);
  3843. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3844. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3845. dpll = DPLL_VGA_MODE_DIS;
  3846. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3847. dpll |= DPLLB_MODE_LVDS;
  3848. else
  3849. dpll |= DPLLB_MODE_DAC_SERIAL;
  3850. if ((crtc->config.pixel_multiplier > 1) &&
  3851. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3852. dpll |= (crtc->config.pixel_multiplier - 1)
  3853. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3854. }
  3855. if (is_sdvo)
  3856. dpll |= DPLL_DVO_HIGH_SPEED;
  3857. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3858. dpll |= DPLL_DVO_HIGH_SPEED;
  3859. /* compute bitmask from p1 value */
  3860. if (IS_PINEVIEW(dev))
  3861. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3862. else {
  3863. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3864. if (IS_G4X(dev) && reduced_clock)
  3865. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3866. }
  3867. switch (clock->p2) {
  3868. case 5:
  3869. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3870. break;
  3871. case 7:
  3872. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3873. break;
  3874. case 10:
  3875. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3876. break;
  3877. case 14:
  3878. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3879. break;
  3880. }
  3881. if (INTEL_INFO(dev)->gen >= 4)
  3882. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3883. if (crtc->config.sdvo_tv_clock)
  3884. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3885. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3886. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3887. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3888. else
  3889. dpll |= PLL_REF_INPUT_DREFCLK;
  3890. dpll |= DPLL_VCO_ENABLE;
  3891. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3892. POSTING_READ(DPLL(pipe));
  3893. udelay(150);
  3894. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3895. if (encoder->pre_pll_enable)
  3896. encoder->pre_pll_enable(encoder);
  3897. if (crtc->config.has_dp_encoder)
  3898. intel_dp_set_m_n(crtc);
  3899. I915_WRITE(DPLL(pipe), dpll);
  3900. /* Wait for the clocks to stabilize. */
  3901. POSTING_READ(DPLL(pipe));
  3902. udelay(150);
  3903. if (INTEL_INFO(dev)->gen >= 4) {
  3904. u32 dpll_md = 0;
  3905. if (crtc->config.pixel_multiplier > 1) {
  3906. dpll_md = (crtc->config.pixel_multiplier - 1)
  3907. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3908. }
  3909. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3910. } else {
  3911. /* The pixel multiplier can only be updated once the
  3912. * DPLL is enabled and the clocks are stable.
  3913. *
  3914. * So write it again.
  3915. */
  3916. I915_WRITE(DPLL(pipe), dpll);
  3917. }
  3918. }
  3919. static void i8xx_update_pll(struct intel_crtc *crtc,
  3920. struct drm_display_mode *adjusted_mode,
  3921. intel_clock_t *reduced_clock,
  3922. int num_connectors)
  3923. {
  3924. struct drm_device *dev = crtc->base.dev;
  3925. struct drm_i915_private *dev_priv = dev->dev_private;
  3926. struct intel_encoder *encoder;
  3927. int pipe = crtc->pipe;
  3928. u32 dpll;
  3929. struct dpll *clock = &crtc->config.dpll;
  3930. i9xx_update_pll_dividers(crtc, reduced_clock);
  3931. dpll = DPLL_VGA_MODE_DIS;
  3932. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3933. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3934. } else {
  3935. if (clock->p1 == 2)
  3936. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3937. else
  3938. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3939. if (clock->p2 == 4)
  3940. dpll |= PLL_P2_DIVIDE_BY_4;
  3941. }
  3942. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3943. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3944. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3945. else
  3946. dpll |= PLL_REF_INPUT_DREFCLK;
  3947. dpll |= DPLL_VCO_ENABLE;
  3948. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3949. POSTING_READ(DPLL(pipe));
  3950. udelay(150);
  3951. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3952. if (encoder->pre_pll_enable)
  3953. encoder->pre_pll_enable(encoder);
  3954. I915_WRITE(DPLL(pipe), dpll);
  3955. /* Wait for the clocks to stabilize. */
  3956. POSTING_READ(DPLL(pipe));
  3957. udelay(150);
  3958. /* The pixel multiplier can only be updated once the
  3959. * DPLL is enabled and the clocks are stable.
  3960. *
  3961. * So write it again.
  3962. */
  3963. I915_WRITE(DPLL(pipe), dpll);
  3964. }
  3965. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3966. struct drm_display_mode *mode,
  3967. struct drm_display_mode *adjusted_mode)
  3968. {
  3969. struct drm_device *dev = intel_crtc->base.dev;
  3970. struct drm_i915_private *dev_priv = dev->dev_private;
  3971. enum pipe pipe = intel_crtc->pipe;
  3972. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3973. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3974. /* We need to be careful not to changed the adjusted mode, for otherwise
  3975. * the hw state checker will get angry at the mismatch. */
  3976. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3977. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3978. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3979. /* the chip adds 2 halflines automatically */
  3980. crtc_vtotal -= 1;
  3981. crtc_vblank_end -= 1;
  3982. vsyncshift = adjusted_mode->crtc_hsync_start
  3983. - adjusted_mode->crtc_htotal / 2;
  3984. } else {
  3985. vsyncshift = 0;
  3986. }
  3987. if (INTEL_INFO(dev)->gen > 3)
  3988. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3989. I915_WRITE(HTOTAL(cpu_transcoder),
  3990. (adjusted_mode->crtc_hdisplay - 1) |
  3991. ((adjusted_mode->crtc_htotal - 1) << 16));
  3992. I915_WRITE(HBLANK(cpu_transcoder),
  3993. (adjusted_mode->crtc_hblank_start - 1) |
  3994. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3995. I915_WRITE(HSYNC(cpu_transcoder),
  3996. (adjusted_mode->crtc_hsync_start - 1) |
  3997. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3998. I915_WRITE(VTOTAL(cpu_transcoder),
  3999. (adjusted_mode->crtc_vdisplay - 1) |
  4000. ((crtc_vtotal - 1) << 16));
  4001. I915_WRITE(VBLANK(cpu_transcoder),
  4002. (adjusted_mode->crtc_vblank_start - 1) |
  4003. ((crtc_vblank_end - 1) << 16));
  4004. I915_WRITE(VSYNC(cpu_transcoder),
  4005. (adjusted_mode->crtc_vsync_start - 1) |
  4006. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4007. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4008. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4009. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4010. * bits. */
  4011. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4012. (pipe == PIPE_B || pipe == PIPE_C))
  4013. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4014. /* pipesrc controls the size that is scaled from, which should
  4015. * always be the user's requested size.
  4016. */
  4017. I915_WRITE(PIPESRC(pipe),
  4018. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4019. }
  4020. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4021. struct intel_crtc_config *pipe_config)
  4022. {
  4023. struct drm_device *dev = crtc->base.dev;
  4024. struct drm_i915_private *dev_priv = dev->dev_private;
  4025. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4026. uint32_t tmp;
  4027. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4028. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4029. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4030. tmp = I915_READ(HBLANK(cpu_transcoder));
  4031. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4032. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4033. tmp = I915_READ(HSYNC(cpu_transcoder));
  4034. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4035. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4036. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4037. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4038. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4039. tmp = I915_READ(VBLANK(cpu_transcoder));
  4040. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4041. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4042. tmp = I915_READ(VSYNC(cpu_transcoder));
  4043. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4044. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4045. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4046. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4047. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4048. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4049. }
  4050. tmp = I915_READ(PIPESRC(crtc->pipe));
  4051. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4052. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4053. }
  4054. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4055. {
  4056. struct drm_device *dev = intel_crtc->base.dev;
  4057. struct drm_i915_private *dev_priv = dev->dev_private;
  4058. uint32_t pipeconf;
  4059. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4060. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4061. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4062. * core speed.
  4063. *
  4064. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4065. * pipe == 0 check?
  4066. */
  4067. if (intel_crtc->config.requested_mode.clock >
  4068. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4069. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4070. else
  4071. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4072. }
  4073. /* only g4x and later have fancy bpc/dither controls */
  4074. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4075. pipeconf &= ~(PIPECONF_BPC_MASK |
  4076. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4077. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4078. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4079. pipeconf |= PIPECONF_DITHER_EN |
  4080. PIPECONF_DITHER_TYPE_SP;
  4081. switch (intel_crtc->config.pipe_bpp) {
  4082. case 18:
  4083. pipeconf |= PIPECONF_6BPC;
  4084. break;
  4085. case 24:
  4086. pipeconf |= PIPECONF_8BPC;
  4087. break;
  4088. case 30:
  4089. pipeconf |= PIPECONF_10BPC;
  4090. break;
  4091. default:
  4092. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4093. BUG();
  4094. }
  4095. }
  4096. if (HAS_PIPE_CXSR(dev)) {
  4097. if (intel_crtc->lowfreq_avail) {
  4098. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4099. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4100. } else {
  4101. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4102. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4103. }
  4104. }
  4105. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4106. if (!IS_GEN2(dev) &&
  4107. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4108. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4109. else
  4110. pipeconf |= PIPECONF_PROGRESSIVE;
  4111. if (IS_VALLEYVIEW(dev)) {
  4112. if (intel_crtc->config.limited_color_range)
  4113. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4114. else
  4115. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4116. }
  4117. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4118. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4119. }
  4120. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4121. int x, int y,
  4122. struct drm_framebuffer *fb)
  4123. {
  4124. struct drm_device *dev = crtc->dev;
  4125. struct drm_i915_private *dev_priv = dev->dev_private;
  4126. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4127. struct drm_display_mode *adjusted_mode =
  4128. &intel_crtc->config.adjusted_mode;
  4129. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4130. int pipe = intel_crtc->pipe;
  4131. int plane = intel_crtc->plane;
  4132. int refclk, num_connectors = 0;
  4133. intel_clock_t clock, reduced_clock;
  4134. u32 dspcntr;
  4135. bool ok, has_reduced_clock = false;
  4136. bool is_lvds = false;
  4137. struct intel_encoder *encoder;
  4138. const intel_limit_t *limit;
  4139. int ret;
  4140. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4141. switch (encoder->type) {
  4142. case INTEL_OUTPUT_LVDS:
  4143. is_lvds = true;
  4144. break;
  4145. }
  4146. num_connectors++;
  4147. }
  4148. refclk = i9xx_get_refclk(crtc, num_connectors);
  4149. /*
  4150. * Returns a set of divisors for the desired target clock with the given
  4151. * refclk, or FALSE. The returned values represent the clock equation:
  4152. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4153. */
  4154. limit = intel_limit(crtc, refclk);
  4155. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4156. &clock);
  4157. if (!ok) {
  4158. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4159. return -EINVAL;
  4160. }
  4161. /* Ensure that the cursor is valid for the new mode before changing... */
  4162. intel_crtc_update_cursor(crtc, true);
  4163. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4164. /*
  4165. * Ensure we match the reduced clock's P to the target clock.
  4166. * If the clocks don't match, we can't switch the display clock
  4167. * by using the FP0/FP1. In such case we will disable the LVDS
  4168. * downclock feature.
  4169. */
  4170. has_reduced_clock = limit->find_pll(limit, crtc,
  4171. dev_priv->lvds_downclock,
  4172. refclk,
  4173. &clock,
  4174. &reduced_clock);
  4175. }
  4176. /* Compat-code for transition, will disappear. */
  4177. if (!intel_crtc->config.clock_set) {
  4178. intel_crtc->config.dpll.n = clock.n;
  4179. intel_crtc->config.dpll.m1 = clock.m1;
  4180. intel_crtc->config.dpll.m2 = clock.m2;
  4181. intel_crtc->config.dpll.p1 = clock.p1;
  4182. intel_crtc->config.dpll.p2 = clock.p2;
  4183. }
  4184. if (IS_GEN2(dev))
  4185. i8xx_update_pll(intel_crtc, adjusted_mode,
  4186. has_reduced_clock ? &reduced_clock : NULL,
  4187. num_connectors);
  4188. else if (IS_VALLEYVIEW(dev))
  4189. vlv_update_pll(intel_crtc);
  4190. else
  4191. i9xx_update_pll(intel_crtc,
  4192. has_reduced_clock ? &reduced_clock : NULL,
  4193. num_connectors);
  4194. /* Set up the display plane register */
  4195. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4196. if (!IS_VALLEYVIEW(dev)) {
  4197. if (pipe == 0)
  4198. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4199. else
  4200. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4201. }
  4202. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4203. drm_mode_debug_printmodeline(mode);
  4204. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4205. /* pipesrc and dspsize control the size that is scaled from,
  4206. * which should always be the user's requested size.
  4207. */
  4208. I915_WRITE(DSPSIZE(plane),
  4209. ((mode->vdisplay - 1) << 16) |
  4210. (mode->hdisplay - 1));
  4211. I915_WRITE(DSPPOS(plane), 0);
  4212. i9xx_set_pipeconf(intel_crtc);
  4213. I915_WRITE(DSPCNTR(plane), dspcntr);
  4214. POSTING_READ(DSPCNTR(plane));
  4215. ret = intel_pipe_set_base(crtc, x, y, fb);
  4216. intel_update_watermarks(dev);
  4217. return ret;
  4218. }
  4219. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4220. struct intel_crtc_config *pipe_config)
  4221. {
  4222. struct drm_device *dev = crtc->base.dev;
  4223. struct drm_i915_private *dev_priv = dev->dev_private;
  4224. uint32_t tmp;
  4225. tmp = I915_READ(PFIT_CONTROL);
  4226. if (INTEL_INFO(dev)->gen < 4) {
  4227. if (crtc->pipe != PIPE_B)
  4228. return;
  4229. /* gen2/3 store dither state in pfit control, needs to match */
  4230. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4231. } else {
  4232. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4233. return;
  4234. }
  4235. if (!(tmp & PFIT_ENABLE))
  4236. return;
  4237. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4238. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4239. if (INTEL_INFO(dev)->gen < 5)
  4240. pipe_config->gmch_pfit.lvds_border_bits =
  4241. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4242. }
  4243. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4244. struct intel_crtc_config *pipe_config)
  4245. {
  4246. struct drm_device *dev = crtc->base.dev;
  4247. struct drm_i915_private *dev_priv = dev->dev_private;
  4248. uint32_t tmp;
  4249. tmp = I915_READ(PIPECONF(crtc->pipe));
  4250. if (!(tmp & PIPECONF_ENABLE))
  4251. return false;
  4252. intel_get_pipe_timings(crtc, pipe_config);
  4253. i9xx_get_pfit_config(crtc, pipe_config);
  4254. return true;
  4255. }
  4256. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4257. {
  4258. struct drm_i915_private *dev_priv = dev->dev_private;
  4259. struct drm_mode_config *mode_config = &dev->mode_config;
  4260. struct intel_encoder *encoder;
  4261. u32 val, final;
  4262. bool has_lvds = false;
  4263. bool has_cpu_edp = false;
  4264. bool has_panel = false;
  4265. bool has_ck505 = false;
  4266. bool can_ssc = false;
  4267. /* We need to take the global config into account */
  4268. list_for_each_entry(encoder, &mode_config->encoder_list,
  4269. base.head) {
  4270. switch (encoder->type) {
  4271. case INTEL_OUTPUT_LVDS:
  4272. has_panel = true;
  4273. has_lvds = true;
  4274. break;
  4275. case INTEL_OUTPUT_EDP:
  4276. has_panel = true;
  4277. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4278. has_cpu_edp = true;
  4279. break;
  4280. }
  4281. }
  4282. if (HAS_PCH_IBX(dev)) {
  4283. has_ck505 = dev_priv->vbt.display_clock_mode;
  4284. can_ssc = has_ck505;
  4285. } else {
  4286. has_ck505 = false;
  4287. can_ssc = true;
  4288. }
  4289. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4290. has_panel, has_lvds, has_ck505);
  4291. /* Ironlake: try to setup display ref clock before DPLL
  4292. * enabling. This is only under driver's control after
  4293. * PCH B stepping, previous chipset stepping should be
  4294. * ignoring this setting.
  4295. */
  4296. val = I915_READ(PCH_DREF_CONTROL);
  4297. /* As we must carefully and slowly disable/enable each source in turn,
  4298. * compute the final state we want first and check if we need to
  4299. * make any changes at all.
  4300. */
  4301. final = val;
  4302. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4303. if (has_ck505)
  4304. final |= DREF_NONSPREAD_CK505_ENABLE;
  4305. else
  4306. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4307. final &= ~DREF_SSC_SOURCE_MASK;
  4308. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4309. final &= ~DREF_SSC1_ENABLE;
  4310. if (has_panel) {
  4311. final |= DREF_SSC_SOURCE_ENABLE;
  4312. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4313. final |= DREF_SSC1_ENABLE;
  4314. if (has_cpu_edp) {
  4315. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4316. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4317. else
  4318. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4319. } else
  4320. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4321. } else {
  4322. final |= DREF_SSC_SOURCE_DISABLE;
  4323. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4324. }
  4325. if (final == val)
  4326. return;
  4327. /* Always enable nonspread source */
  4328. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4329. if (has_ck505)
  4330. val |= DREF_NONSPREAD_CK505_ENABLE;
  4331. else
  4332. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4333. if (has_panel) {
  4334. val &= ~DREF_SSC_SOURCE_MASK;
  4335. val |= DREF_SSC_SOURCE_ENABLE;
  4336. /* SSC must be turned on before enabling the CPU output */
  4337. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4338. DRM_DEBUG_KMS("Using SSC on panel\n");
  4339. val |= DREF_SSC1_ENABLE;
  4340. } else
  4341. val &= ~DREF_SSC1_ENABLE;
  4342. /* Get SSC going before enabling the outputs */
  4343. I915_WRITE(PCH_DREF_CONTROL, val);
  4344. POSTING_READ(PCH_DREF_CONTROL);
  4345. udelay(200);
  4346. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4347. /* Enable CPU source on CPU attached eDP */
  4348. if (has_cpu_edp) {
  4349. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4350. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4351. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4352. }
  4353. else
  4354. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4355. } else
  4356. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4357. I915_WRITE(PCH_DREF_CONTROL, val);
  4358. POSTING_READ(PCH_DREF_CONTROL);
  4359. udelay(200);
  4360. } else {
  4361. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4362. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4363. /* Turn off CPU output */
  4364. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4365. I915_WRITE(PCH_DREF_CONTROL, val);
  4366. POSTING_READ(PCH_DREF_CONTROL);
  4367. udelay(200);
  4368. /* Turn off the SSC source */
  4369. val &= ~DREF_SSC_SOURCE_MASK;
  4370. val |= DREF_SSC_SOURCE_DISABLE;
  4371. /* Turn off SSC1 */
  4372. val &= ~DREF_SSC1_ENABLE;
  4373. I915_WRITE(PCH_DREF_CONTROL, val);
  4374. POSTING_READ(PCH_DREF_CONTROL);
  4375. udelay(200);
  4376. }
  4377. BUG_ON(val != final);
  4378. }
  4379. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4380. static void lpt_init_pch_refclk(struct drm_device *dev)
  4381. {
  4382. struct drm_i915_private *dev_priv = dev->dev_private;
  4383. struct drm_mode_config *mode_config = &dev->mode_config;
  4384. struct intel_encoder *encoder;
  4385. bool has_vga = false;
  4386. bool is_sdv = false;
  4387. u32 tmp;
  4388. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4389. switch (encoder->type) {
  4390. case INTEL_OUTPUT_ANALOG:
  4391. has_vga = true;
  4392. break;
  4393. }
  4394. }
  4395. if (!has_vga)
  4396. return;
  4397. mutex_lock(&dev_priv->dpio_lock);
  4398. /* XXX: Rip out SDV support once Haswell ships for real. */
  4399. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4400. is_sdv = true;
  4401. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4402. tmp &= ~SBI_SSCCTL_DISABLE;
  4403. tmp |= SBI_SSCCTL_PATHALT;
  4404. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4405. udelay(24);
  4406. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4407. tmp &= ~SBI_SSCCTL_PATHALT;
  4408. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4409. if (!is_sdv) {
  4410. tmp = I915_READ(SOUTH_CHICKEN2);
  4411. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4412. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4413. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4414. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4415. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4416. tmp = I915_READ(SOUTH_CHICKEN2);
  4417. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4418. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4419. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4420. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4421. 100))
  4422. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4423. }
  4424. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4425. tmp &= ~(0xFF << 24);
  4426. tmp |= (0x12 << 24);
  4427. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4428. if (is_sdv) {
  4429. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4430. tmp |= 0x7FFF;
  4431. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4432. }
  4433. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4434. tmp |= (1 << 11);
  4435. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4436. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4437. tmp |= (1 << 11);
  4438. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4439. if (is_sdv) {
  4440. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4441. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4442. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4443. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4444. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4445. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4446. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4447. tmp |= (0x3F << 8);
  4448. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4449. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4450. tmp |= (0x3F << 8);
  4451. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4452. }
  4453. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4454. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4455. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4456. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4457. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4458. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4459. if (!is_sdv) {
  4460. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4461. tmp &= ~(7 << 13);
  4462. tmp |= (5 << 13);
  4463. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4464. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4465. tmp &= ~(7 << 13);
  4466. tmp |= (5 << 13);
  4467. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4468. }
  4469. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4470. tmp &= ~0xFF;
  4471. tmp |= 0x1C;
  4472. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4473. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4474. tmp &= ~0xFF;
  4475. tmp |= 0x1C;
  4476. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4477. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4478. tmp &= ~(0xFF << 16);
  4479. tmp |= (0x1C << 16);
  4480. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4481. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4482. tmp &= ~(0xFF << 16);
  4483. tmp |= (0x1C << 16);
  4484. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4485. if (!is_sdv) {
  4486. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4487. tmp |= (1 << 27);
  4488. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4489. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4490. tmp |= (1 << 27);
  4491. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4492. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4493. tmp &= ~(0xF << 28);
  4494. tmp |= (4 << 28);
  4495. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4496. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4497. tmp &= ~(0xF << 28);
  4498. tmp |= (4 << 28);
  4499. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4500. }
  4501. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4502. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4503. tmp |= SBI_DBUFF0_ENABLE;
  4504. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4505. mutex_unlock(&dev_priv->dpio_lock);
  4506. }
  4507. /*
  4508. * Initialize reference clocks when the driver loads
  4509. */
  4510. void intel_init_pch_refclk(struct drm_device *dev)
  4511. {
  4512. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4513. ironlake_init_pch_refclk(dev);
  4514. else if (HAS_PCH_LPT(dev))
  4515. lpt_init_pch_refclk(dev);
  4516. }
  4517. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4518. {
  4519. struct drm_device *dev = crtc->dev;
  4520. struct drm_i915_private *dev_priv = dev->dev_private;
  4521. struct intel_encoder *encoder;
  4522. int num_connectors = 0;
  4523. bool is_lvds = false;
  4524. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4525. switch (encoder->type) {
  4526. case INTEL_OUTPUT_LVDS:
  4527. is_lvds = true;
  4528. break;
  4529. }
  4530. num_connectors++;
  4531. }
  4532. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4533. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4534. dev_priv->vbt.lvds_ssc_freq);
  4535. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4536. }
  4537. return 120000;
  4538. }
  4539. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4540. {
  4541. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4542. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4543. int pipe = intel_crtc->pipe;
  4544. uint32_t val;
  4545. val = I915_READ(PIPECONF(pipe));
  4546. val &= ~PIPECONF_BPC_MASK;
  4547. switch (intel_crtc->config.pipe_bpp) {
  4548. case 18:
  4549. val |= PIPECONF_6BPC;
  4550. break;
  4551. case 24:
  4552. val |= PIPECONF_8BPC;
  4553. break;
  4554. case 30:
  4555. val |= PIPECONF_10BPC;
  4556. break;
  4557. case 36:
  4558. val |= PIPECONF_12BPC;
  4559. break;
  4560. default:
  4561. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4562. BUG();
  4563. }
  4564. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4565. if (intel_crtc->config.dither)
  4566. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4567. val &= ~PIPECONF_INTERLACE_MASK;
  4568. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4569. val |= PIPECONF_INTERLACED_ILK;
  4570. else
  4571. val |= PIPECONF_PROGRESSIVE;
  4572. if (intel_crtc->config.limited_color_range)
  4573. val |= PIPECONF_COLOR_RANGE_SELECT;
  4574. else
  4575. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4576. I915_WRITE(PIPECONF(pipe), val);
  4577. POSTING_READ(PIPECONF(pipe));
  4578. }
  4579. /*
  4580. * Set up the pipe CSC unit.
  4581. *
  4582. * Currently only full range RGB to limited range RGB conversion
  4583. * is supported, but eventually this should handle various
  4584. * RGB<->YCbCr scenarios as well.
  4585. */
  4586. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4587. {
  4588. struct drm_device *dev = crtc->dev;
  4589. struct drm_i915_private *dev_priv = dev->dev_private;
  4590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4591. int pipe = intel_crtc->pipe;
  4592. uint16_t coeff = 0x7800; /* 1.0 */
  4593. /*
  4594. * TODO: Check what kind of values actually come out of the pipe
  4595. * with these coeff/postoff values and adjust to get the best
  4596. * accuracy. Perhaps we even need to take the bpc value into
  4597. * consideration.
  4598. */
  4599. if (intel_crtc->config.limited_color_range)
  4600. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4601. /*
  4602. * GY/GU and RY/RU should be the other way around according
  4603. * to BSpec, but reality doesn't agree. Just set them up in
  4604. * a way that results in the correct picture.
  4605. */
  4606. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4607. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4608. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4609. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4610. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4611. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4612. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4613. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4614. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4615. if (INTEL_INFO(dev)->gen > 6) {
  4616. uint16_t postoff = 0;
  4617. if (intel_crtc->config.limited_color_range)
  4618. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4619. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4620. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4621. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4622. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4623. } else {
  4624. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4625. if (intel_crtc->config.limited_color_range)
  4626. mode |= CSC_BLACK_SCREEN_OFFSET;
  4627. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4628. }
  4629. }
  4630. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4631. {
  4632. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4633. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4634. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4635. uint32_t val;
  4636. val = I915_READ(PIPECONF(cpu_transcoder));
  4637. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4638. if (intel_crtc->config.dither)
  4639. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4640. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4641. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4642. val |= PIPECONF_INTERLACED_ILK;
  4643. else
  4644. val |= PIPECONF_PROGRESSIVE;
  4645. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4646. POSTING_READ(PIPECONF(cpu_transcoder));
  4647. }
  4648. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4649. struct drm_display_mode *adjusted_mode,
  4650. intel_clock_t *clock,
  4651. bool *has_reduced_clock,
  4652. intel_clock_t *reduced_clock)
  4653. {
  4654. struct drm_device *dev = crtc->dev;
  4655. struct drm_i915_private *dev_priv = dev->dev_private;
  4656. struct intel_encoder *intel_encoder;
  4657. int refclk;
  4658. const intel_limit_t *limit;
  4659. bool ret, is_lvds = false;
  4660. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4661. switch (intel_encoder->type) {
  4662. case INTEL_OUTPUT_LVDS:
  4663. is_lvds = true;
  4664. break;
  4665. }
  4666. }
  4667. refclk = ironlake_get_refclk(crtc);
  4668. /*
  4669. * Returns a set of divisors for the desired target clock with the given
  4670. * refclk, or FALSE. The returned values represent the clock equation:
  4671. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4672. */
  4673. limit = intel_limit(crtc, refclk);
  4674. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4675. clock);
  4676. if (!ret)
  4677. return false;
  4678. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4679. /*
  4680. * Ensure we match the reduced clock's P to the target clock.
  4681. * If the clocks don't match, we can't switch the display clock
  4682. * by using the FP0/FP1. In such case we will disable the LVDS
  4683. * downclock feature.
  4684. */
  4685. *has_reduced_clock = limit->find_pll(limit, crtc,
  4686. dev_priv->lvds_downclock,
  4687. refclk,
  4688. clock,
  4689. reduced_clock);
  4690. }
  4691. return true;
  4692. }
  4693. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4694. {
  4695. struct drm_i915_private *dev_priv = dev->dev_private;
  4696. uint32_t temp;
  4697. temp = I915_READ(SOUTH_CHICKEN1);
  4698. if (temp & FDI_BC_BIFURCATION_SELECT)
  4699. return;
  4700. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4701. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4702. temp |= FDI_BC_BIFURCATION_SELECT;
  4703. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4704. I915_WRITE(SOUTH_CHICKEN1, temp);
  4705. POSTING_READ(SOUTH_CHICKEN1);
  4706. }
  4707. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4708. {
  4709. struct drm_device *dev = intel_crtc->base.dev;
  4710. struct drm_i915_private *dev_priv = dev->dev_private;
  4711. switch (intel_crtc->pipe) {
  4712. case PIPE_A:
  4713. break;
  4714. case PIPE_B:
  4715. if (intel_crtc->config.fdi_lanes > 2)
  4716. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4717. else
  4718. cpt_enable_fdi_bc_bifurcation(dev);
  4719. break;
  4720. case PIPE_C:
  4721. cpt_enable_fdi_bc_bifurcation(dev);
  4722. break;
  4723. default:
  4724. BUG();
  4725. }
  4726. }
  4727. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4728. {
  4729. /*
  4730. * Account for spread spectrum to avoid
  4731. * oversubscribing the link. Max center spread
  4732. * is 2.5%; use 5% for safety's sake.
  4733. */
  4734. u32 bps = target_clock * bpp * 21 / 20;
  4735. return bps / (link_bw * 8) + 1;
  4736. }
  4737. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4738. {
  4739. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4740. }
  4741. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4742. u32 *fp,
  4743. intel_clock_t *reduced_clock, u32 *fp2)
  4744. {
  4745. struct drm_crtc *crtc = &intel_crtc->base;
  4746. struct drm_device *dev = crtc->dev;
  4747. struct drm_i915_private *dev_priv = dev->dev_private;
  4748. struct intel_encoder *intel_encoder;
  4749. uint32_t dpll;
  4750. int factor, num_connectors = 0;
  4751. bool is_lvds = false, is_sdvo = false;
  4752. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4753. switch (intel_encoder->type) {
  4754. case INTEL_OUTPUT_LVDS:
  4755. is_lvds = true;
  4756. break;
  4757. case INTEL_OUTPUT_SDVO:
  4758. case INTEL_OUTPUT_HDMI:
  4759. is_sdvo = true;
  4760. break;
  4761. }
  4762. num_connectors++;
  4763. }
  4764. /* Enable autotuning of the PLL clock (if permissible) */
  4765. factor = 21;
  4766. if (is_lvds) {
  4767. if ((intel_panel_use_ssc(dev_priv) &&
  4768. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4769. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4770. factor = 25;
  4771. } else if (intel_crtc->config.sdvo_tv_clock)
  4772. factor = 20;
  4773. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4774. *fp |= FP_CB_TUNE;
  4775. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4776. *fp2 |= FP_CB_TUNE;
  4777. dpll = 0;
  4778. if (is_lvds)
  4779. dpll |= DPLLB_MODE_LVDS;
  4780. else
  4781. dpll |= DPLLB_MODE_DAC_SERIAL;
  4782. if (intel_crtc->config.pixel_multiplier > 1) {
  4783. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4784. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4785. }
  4786. if (is_sdvo)
  4787. dpll |= DPLL_DVO_HIGH_SPEED;
  4788. if (intel_crtc->config.has_dp_encoder)
  4789. dpll |= DPLL_DVO_HIGH_SPEED;
  4790. /* compute bitmask from p1 value */
  4791. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4792. /* also FPA1 */
  4793. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4794. switch (intel_crtc->config.dpll.p2) {
  4795. case 5:
  4796. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4797. break;
  4798. case 7:
  4799. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4800. break;
  4801. case 10:
  4802. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4803. break;
  4804. case 14:
  4805. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4806. break;
  4807. }
  4808. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4809. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4810. else
  4811. dpll |= PLL_REF_INPUT_DREFCLK;
  4812. return dpll;
  4813. }
  4814. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4815. int x, int y,
  4816. struct drm_framebuffer *fb)
  4817. {
  4818. struct drm_device *dev = crtc->dev;
  4819. struct drm_i915_private *dev_priv = dev->dev_private;
  4820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4821. struct drm_display_mode *adjusted_mode =
  4822. &intel_crtc->config.adjusted_mode;
  4823. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4824. int pipe = intel_crtc->pipe;
  4825. int plane = intel_crtc->plane;
  4826. int num_connectors = 0;
  4827. intel_clock_t clock, reduced_clock;
  4828. u32 dpll = 0, fp = 0, fp2 = 0;
  4829. bool ok, has_reduced_clock = false;
  4830. bool is_lvds = false;
  4831. struct intel_encoder *encoder;
  4832. int ret;
  4833. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4834. switch (encoder->type) {
  4835. case INTEL_OUTPUT_LVDS:
  4836. is_lvds = true;
  4837. break;
  4838. }
  4839. num_connectors++;
  4840. }
  4841. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4842. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4843. intel_crtc->config.cpu_transcoder = pipe;
  4844. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4845. &has_reduced_clock, &reduced_clock);
  4846. if (!ok) {
  4847. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4848. return -EINVAL;
  4849. }
  4850. /* Compat-code for transition, will disappear. */
  4851. if (!intel_crtc->config.clock_set) {
  4852. intel_crtc->config.dpll.n = clock.n;
  4853. intel_crtc->config.dpll.m1 = clock.m1;
  4854. intel_crtc->config.dpll.m2 = clock.m2;
  4855. intel_crtc->config.dpll.p1 = clock.p1;
  4856. intel_crtc->config.dpll.p2 = clock.p2;
  4857. }
  4858. /* Ensure that the cursor is valid for the new mode before changing... */
  4859. intel_crtc_update_cursor(crtc, true);
  4860. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4861. drm_mode_debug_printmodeline(mode);
  4862. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4863. if (intel_crtc->config.has_pch_encoder) {
  4864. struct intel_pch_pll *pll;
  4865. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4866. if (has_reduced_clock)
  4867. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4868. dpll = ironlake_compute_dpll(intel_crtc,
  4869. &fp, &reduced_clock,
  4870. has_reduced_clock ? &fp2 : NULL);
  4871. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4872. if (pll == NULL) {
  4873. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4874. pipe_name(pipe));
  4875. return -EINVAL;
  4876. }
  4877. } else
  4878. intel_put_pch_pll(intel_crtc);
  4879. if (intel_crtc->config.has_dp_encoder)
  4880. intel_dp_set_m_n(intel_crtc);
  4881. for_each_encoder_on_crtc(dev, crtc, encoder)
  4882. if (encoder->pre_pll_enable)
  4883. encoder->pre_pll_enable(encoder);
  4884. if (intel_crtc->pch_pll) {
  4885. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4886. /* Wait for the clocks to stabilize. */
  4887. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4888. udelay(150);
  4889. /* The pixel multiplier can only be updated once the
  4890. * DPLL is enabled and the clocks are stable.
  4891. *
  4892. * So write it again.
  4893. */
  4894. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4895. }
  4896. intel_crtc->lowfreq_avail = false;
  4897. if (intel_crtc->pch_pll) {
  4898. if (is_lvds && has_reduced_clock && i915_powersave) {
  4899. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4900. intel_crtc->lowfreq_avail = true;
  4901. } else {
  4902. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4903. }
  4904. }
  4905. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4906. if (intel_crtc->config.has_pch_encoder) {
  4907. intel_cpu_transcoder_set_m_n(intel_crtc,
  4908. &intel_crtc->config.fdi_m_n);
  4909. }
  4910. if (IS_IVYBRIDGE(dev))
  4911. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4912. ironlake_set_pipeconf(crtc);
  4913. /* Set up the display plane register */
  4914. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4915. POSTING_READ(DSPCNTR(plane));
  4916. ret = intel_pipe_set_base(crtc, x, y, fb);
  4917. intel_update_watermarks(dev);
  4918. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4919. return ret;
  4920. }
  4921. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4922. struct intel_crtc_config *pipe_config)
  4923. {
  4924. struct drm_device *dev = crtc->base.dev;
  4925. struct drm_i915_private *dev_priv = dev->dev_private;
  4926. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4927. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4928. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4929. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4930. & ~TU_SIZE_MASK;
  4931. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4932. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4933. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4934. }
  4935. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4936. struct intel_crtc_config *pipe_config)
  4937. {
  4938. struct drm_device *dev = crtc->base.dev;
  4939. struct drm_i915_private *dev_priv = dev->dev_private;
  4940. uint32_t tmp;
  4941. tmp = I915_READ(PF_CTL(crtc->pipe));
  4942. if (tmp & PF_ENABLE) {
  4943. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4944. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4945. }
  4946. }
  4947. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4948. struct intel_crtc_config *pipe_config)
  4949. {
  4950. struct drm_device *dev = crtc->base.dev;
  4951. struct drm_i915_private *dev_priv = dev->dev_private;
  4952. uint32_t tmp;
  4953. tmp = I915_READ(PIPECONF(crtc->pipe));
  4954. if (!(tmp & PIPECONF_ENABLE))
  4955. return false;
  4956. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4957. pipe_config->has_pch_encoder = true;
  4958. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4959. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4960. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4961. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4962. }
  4963. intel_get_pipe_timings(crtc, pipe_config);
  4964. ironlake_get_pfit_config(crtc, pipe_config);
  4965. return true;
  4966. }
  4967. static void haswell_modeset_global_resources(struct drm_device *dev)
  4968. {
  4969. bool enable = false;
  4970. struct intel_crtc *crtc;
  4971. struct intel_encoder *encoder;
  4972. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4973. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4974. enable = true;
  4975. /* XXX: Should check for edp transcoder here, but thanks to init
  4976. * sequence that's not yet available. Just in case desktop eDP
  4977. * on PORT D is possible on haswell, too. */
  4978. /* Even the eDP panel fitter is outside the always-on well. */
  4979. if (crtc->config.pch_pfit.size && crtc->base.enabled)
  4980. enable = true;
  4981. }
  4982. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4983. base.head) {
  4984. if (encoder->type != INTEL_OUTPUT_EDP &&
  4985. encoder->connectors_active)
  4986. enable = true;
  4987. }
  4988. intel_set_power_well(dev, enable);
  4989. }
  4990. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4991. int x, int y,
  4992. struct drm_framebuffer *fb)
  4993. {
  4994. struct drm_device *dev = crtc->dev;
  4995. struct drm_i915_private *dev_priv = dev->dev_private;
  4996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4997. struct drm_display_mode *adjusted_mode =
  4998. &intel_crtc->config.adjusted_mode;
  4999. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5000. int pipe = intel_crtc->pipe;
  5001. int plane = intel_crtc->plane;
  5002. int num_connectors = 0;
  5003. bool is_cpu_edp = false;
  5004. struct intel_encoder *encoder;
  5005. int ret;
  5006. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5007. switch (encoder->type) {
  5008. case INTEL_OUTPUT_EDP:
  5009. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  5010. is_cpu_edp = true;
  5011. break;
  5012. }
  5013. num_connectors++;
  5014. }
  5015. if (is_cpu_edp)
  5016. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  5017. else
  5018. intel_crtc->config.cpu_transcoder = pipe;
  5019. /* We are not sure yet this won't happen. */
  5020. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  5021. INTEL_PCH_TYPE(dev));
  5022. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  5023. num_connectors, pipe_name(pipe));
  5024. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  5025. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  5026. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  5027. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  5028. return -EINVAL;
  5029. /* Ensure that the cursor is valid for the new mode before changing... */
  5030. intel_crtc_update_cursor(crtc, true);
  5031. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  5032. drm_mode_debug_printmodeline(mode);
  5033. if (intel_crtc->config.has_dp_encoder)
  5034. intel_dp_set_m_n(intel_crtc);
  5035. intel_crtc->lowfreq_avail = false;
  5036. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  5037. if (intel_crtc->config.has_pch_encoder) {
  5038. intel_cpu_transcoder_set_m_n(intel_crtc,
  5039. &intel_crtc->config.fdi_m_n);
  5040. }
  5041. haswell_set_pipeconf(crtc);
  5042. intel_set_pipe_csc(crtc);
  5043. /* Set up the display plane register */
  5044. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5045. POSTING_READ(DSPCNTR(plane));
  5046. ret = intel_pipe_set_base(crtc, x, y, fb);
  5047. intel_update_watermarks(dev);
  5048. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  5049. return ret;
  5050. }
  5051. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5052. struct intel_crtc_config *pipe_config)
  5053. {
  5054. struct drm_device *dev = crtc->base.dev;
  5055. struct drm_i915_private *dev_priv = dev->dev_private;
  5056. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  5057. enum intel_display_power_domain pfit_domain;
  5058. uint32_t tmp;
  5059. if (!intel_display_power_enabled(dev,
  5060. POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
  5061. return false;
  5062. tmp = I915_READ(PIPECONF(cpu_transcoder));
  5063. if (!(tmp & PIPECONF_ENABLE))
  5064. return false;
  5065. /*
  5066. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5067. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5068. * the PCH transcoder is on.
  5069. */
  5070. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  5071. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5072. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5073. pipe_config->has_pch_encoder = true;
  5074. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5075. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5076. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5077. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5078. }
  5079. intel_get_pipe_timings(crtc, pipe_config);
  5080. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5081. if (intel_display_power_enabled(dev, pfit_domain))
  5082. ironlake_get_pfit_config(crtc, pipe_config);
  5083. return true;
  5084. }
  5085. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5086. int x, int y,
  5087. struct drm_framebuffer *fb)
  5088. {
  5089. struct drm_device *dev = crtc->dev;
  5090. struct drm_i915_private *dev_priv = dev->dev_private;
  5091. struct drm_encoder_helper_funcs *encoder_funcs;
  5092. struct intel_encoder *encoder;
  5093. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5094. struct drm_display_mode *adjusted_mode =
  5095. &intel_crtc->config.adjusted_mode;
  5096. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5097. int pipe = intel_crtc->pipe;
  5098. int ret;
  5099. drm_vblank_pre_modeset(dev, pipe);
  5100. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5101. drm_vblank_post_modeset(dev, pipe);
  5102. if (ret != 0)
  5103. return ret;
  5104. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5105. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5106. encoder->base.base.id,
  5107. drm_get_encoder_name(&encoder->base),
  5108. mode->base.id, mode->name);
  5109. if (encoder->mode_set) {
  5110. encoder->mode_set(encoder);
  5111. } else {
  5112. encoder_funcs = encoder->base.helper_private;
  5113. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5114. }
  5115. }
  5116. return 0;
  5117. }
  5118. static bool intel_eld_uptodate(struct drm_connector *connector,
  5119. int reg_eldv, uint32_t bits_eldv,
  5120. int reg_elda, uint32_t bits_elda,
  5121. int reg_edid)
  5122. {
  5123. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5124. uint8_t *eld = connector->eld;
  5125. uint32_t i;
  5126. i = I915_READ(reg_eldv);
  5127. i &= bits_eldv;
  5128. if (!eld[0])
  5129. return !i;
  5130. if (!i)
  5131. return false;
  5132. i = I915_READ(reg_elda);
  5133. i &= ~bits_elda;
  5134. I915_WRITE(reg_elda, i);
  5135. for (i = 0; i < eld[2]; i++)
  5136. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5137. return false;
  5138. return true;
  5139. }
  5140. static void g4x_write_eld(struct drm_connector *connector,
  5141. struct drm_crtc *crtc)
  5142. {
  5143. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5144. uint8_t *eld = connector->eld;
  5145. uint32_t eldv;
  5146. uint32_t len;
  5147. uint32_t i;
  5148. i = I915_READ(G4X_AUD_VID_DID);
  5149. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5150. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5151. else
  5152. eldv = G4X_ELDV_DEVCTG;
  5153. if (intel_eld_uptodate(connector,
  5154. G4X_AUD_CNTL_ST, eldv,
  5155. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5156. G4X_HDMIW_HDMIEDID))
  5157. return;
  5158. i = I915_READ(G4X_AUD_CNTL_ST);
  5159. i &= ~(eldv | G4X_ELD_ADDR);
  5160. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5161. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5162. if (!eld[0])
  5163. return;
  5164. len = min_t(uint8_t, eld[2], len);
  5165. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5166. for (i = 0; i < len; i++)
  5167. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5168. i = I915_READ(G4X_AUD_CNTL_ST);
  5169. i |= eldv;
  5170. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5171. }
  5172. static void haswell_write_eld(struct drm_connector *connector,
  5173. struct drm_crtc *crtc)
  5174. {
  5175. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5176. uint8_t *eld = connector->eld;
  5177. struct drm_device *dev = crtc->dev;
  5178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5179. uint32_t eldv;
  5180. uint32_t i;
  5181. int len;
  5182. int pipe = to_intel_crtc(crtc)->pipe;
  5183. int tmp;
  5184. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5185. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5186. int aud_config = HSW_AUD_CFG(pipe);
  5187. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5188. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5189. /* Audio output enable */
  5190. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5191. tmp = I915_READ(aud_cntrl_st2);
  5192. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5193. I915_WRITE(aud_cntrl_st2, tmp);
  5194. /* Wait for 1 vertical blank */
  5195. intel_wait_for_vblank(dev, pipe);
  5196. /* Set ELD valid state */
  5197. tmp = I915_READ(aud_cntrl_st2);
  5198. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5199. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5200. I915_WRITE(aud_cntrl_st2, tmp);
  5201. tmp = I915_READ(aud_cntrl_st2);
  5202. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5203. /* Enable HDMI mode */
  5204. tmp = I915_READ(aud_config);
  5205. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5206. /* clear N_programing_enable and N_value_index */
  5207. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5208. I915_WRITE(aud_config, tmp);
  5209. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5210. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5211. intel_crtc->eld_vld = true;
  5212. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5213. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5214. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5215. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5216. } else
  5217. I915_WRITE(aud_config, 0);
  5218. if (intel_eld_uptodate(connector,
  5219. aud_cntrl_st2, eldv,
  5220. aud_cntl_st, IBX_ELD_ADDRESS,
  5221. hdmiw_hdmiedid))
  5222. return;
  5223. i = I915_READ(aud_cntrl_st2);
  5224. i &= ~eldv;
  5225. I915_WRITE(aud_cntrl_st2, i);
  5226. if (!eld[0])
  5227. return;
  5228. i = I915_READ(aud_cntl_st);
  5229. i &= ~IBX_ELD_ADDRESS;
  5230. I915_WRITE(aud_cntl_st, i);
  5231. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5232. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5233. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5234. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5235. for (i = 0; i < len; i++)
  5236. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5237. i = I915_READ(aud_cntrl_st2);
  5238. i |= eldv;
  5239. I915_WRITE(aud_cntrl_st2, i);
  5240. }
  5241. static void ironlake_write_eld(struct drm_connector *connector,
  5242. struct drm_crtc *crtc)
  5243. {
  5244. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5245. uint8_t *eld = connector->eld;
  5246. uint32_t eldv;
  5247. uint32_t i;
  5248. int len;
  5249. int hdmiw_hdmiedid;
  5250. int aud_config;
  5251. int aud_cntl_st;
  5252. int aud_cntrl_st2;
  5253. int pipe = to_intel_crtc(crtc)->pipe;
  5254. if (HAS_PCH_IBX(connector->dev)) {
  5255. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5256. aud_config = IBX_AUD_CFG(pipe);
  5257. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5258. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5259. } else {
  5260. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5261. aud_config = CPT_AUD_CFG(pipe);
  5262. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5263. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5264. }
  5265. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5266. i = I915_READ(aud_cntl_st);
  5267. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5268. if (!i) {
  5269. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5270. /* operate blindly on all ports */
  5271. eldv = IBX_ELD_VALIDB;
  5272. eldv |= IBX_ELD_VALIDB << 4;
  5273. eldv |= IBX_ELD_VALIDB << 8;
  5274. } else {
  5275. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5276. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5277. }
  5278. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5279. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5280. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5281. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5282. } else
  5283. I915_WRITE(aud_config, 0);
  5284. if (intel_eld_uptodate(connector,
  5285. aud_cntrl_st2, eldv,
  5286. aud_cntl_st, IBX_ELD_ADDRESS,
  5287. hdmiw_hdmiedid))
  5288. return;
  5289. i = I915_READ(aud_cntrl_st2);
  5290. i &= ~eldv;
  5291. I915_WRITE(aud_cntrl_st2, i);
  5292. if (!eld[0])
  5293. return;
  5294. i = I915_READ(aud_cntl_st);
  5295. i &= ~IBX_ELD_ADDRESS;
  5296. I915_WRITE(aud_cntl_st, i);
  5297. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5298. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5299. for (i = 0; i < len; i++)
  5300. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5301. i = I915_READ(aud_cntrl_st2);
  5302. i |= eldv;
  5303. I915_WRITE(aud_cntrl_st2, i);
  5304. }
  5305. void intel_write_eld(struct drm_encoder *encoder,
  5306. struct drm_display_mode *mode)
  5307. {
  5308. struct drm_crtc *crtc = encoder->crtc;
  5309. struct drm_connector *connector;
  5310. struct drm_device *dev = encoder->dev;
  5311. struct drm_i915_private *dev_priv = dev->dev_private;
  5312. connector = drm_select_eld(encoder, mode);
  5313. if (!connector)
  5314. return;
  5315. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5316. connector->base.id,
  5317. drm_get_connector_name(connector),
  5318. connector->encoder->base.id,
  5319. drm_get_encoder_name(connector->encoder));
  5320. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5321. if (dev_priv->display.write_eld)
  5322. dev_priv->display.write_eld(connector, crtc);
  5323. }
  5324. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5325. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5326. {
  5327. struct drm_device *dev = crtc->dev;
  5328. struct drm_i915_private *dev_priv = dev->dev_private;
  5329. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5330. int palreg = PALETTE(intel_crtc->pipe);
  5331. int i;
  5332. /* The clocks have to be on to load the palette. */
  5333. if (!crtc->enabled || !intel_crtc->active)
  5334. return;
  5335. /* use legacy palette for Ironlake */
  5336. if (HAS_PCH_SPLIT(dev))
  5337. palreg = LGC_PALETTE(intel_crtc->pipe);
  5338. for (i = 0; i < 256; i++) {
  5339. I915_WRITE(palreg + 4 * i,
  5340. (intel_crtc->lut_r[i] << 16) |
  5341. (intel_crtc->lut_g[i] << 8) |
  5342. intel_crtc->lut_b[i]);
  5343. }
  5344. }
  5345. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5346. {
  5347. struct drm_device *dev = crtc->dev;
  5348. struct drm_i915_private *dev_priv = dev->dev_private;
  5349. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5350. bool visible = base != 0;
  5351. u32 cntl;
  5352. if (intel_crtc->cursor_visible == visible)
  5353. return;
  5354. cntl = I915_READ(_CURACNTR);
  5355. if (visible) {
  5356. /* On these chipsets we can only modify the base whilst
  5357. * the cursor is disabled.
  5358. */
  5359. I915_WRITE(_CURABASE, base);
  5360. cntl &= ~(CURSOR_FORMAT_MASK);
  5361. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5362. cntl |= CURSOR_ENABLE |
  5363. CURSOR_GAMMA_ENABLE |
  5364. CURSOR_FORMAT_ARGB;
  5365. } else
  5366. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5367. I915_WRITE(_CURACNTR, cntl);
  5368. intel_crtc->cursor_visible = visible;
  5369. }
  5370. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5371. {
  5372. struct drm_device *dev = crtc->dev;
  5373. struct drm_i915_private *dev_priv = dev->dev_private;
  5374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5375. int pipe = intel_crtc->pipe;
  5376. bool visible = base != 0;
  5377. if (intel_crtc->cursor_visible != visible) {
  5378. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5379. if (base) {
  5380. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5381. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5382. cntl |= pipe << 28; /* Connect to correct pipe */
  5383. } else {
  5384. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5385. cntl |= CURSOR_MODE_DISABLE;
  5386. }
  5387. I915_WRITE(CURCNTR(pipe), cntl);
  5388. intel_crtc->cursor_visible = visible;
  5389. }
  5390. /* and commit changes on next vblank */
  5391. I915_WRITE(CURBASE(pipe), base);
  5392. }
  5393. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5394. {
  5395. struct drm_device *dev = crtc->dev;
  5396. struct drm_i915_private *dev_priv = dev->dev_private;
  5397. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5398. int pipe = intel_crtc->pipe;
  5399. bool visible = base != 0;
  5400. if (intel_crtc->cursor_visible != visible) {
  5401. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5402. if (base) {
  5403. cntl &= ~CURSOR_MODE;
  5404. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5405. } else {
  5406. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5407. cntl |= CURSOR_MODE_DISABLE;
  5408. }
  5409. if (IS_HASWELL(dev))
  5410. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5411. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5412. intel_crtc->cursor_visible = visible;
  5413. }
  5414. /* and commit changes on next vblank */
  5415. I915_WRITE(CURBASE_IVB(pipe), base);
  5416. }
  5417. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5418. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5419. bool on)
  5420. {
  5421. struct drm_device *dev = crtc->dev;
  5422. struct drm_i915_private *dev_priv = dev->dev_private;
  5423. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5424. int pipe = intel_crtc->pipe;
  5425. int x = intel_crtc->cursor_x;
  5426. int y = intel_crtc->cursor_y;
  5427. u32 base, pos;
  5428. bool visible;
  5429. pos = 0;
  5430. if (on && crtc->enabled && crtc->fb) {
  5431. base = intel_crtc->cursor_addr;
  5432. if (x > (int) crtc->fb->width)
  5433. base = 0;
  5434. if (y > (int) crtc->fb->height)
  5435. base = 0;
  5436. } else
  5437. base = 0;
  5438. if (x < 0) {
  5439. if (x + intel_crtc->cursor_width < 0)
  5440. base = 0;
  5441. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5442. x = -x;
  5443. }
  5444. pos |= x << CURSOR_X_SHIFT;
  5445. if (y < 0) {
  5446. if (y + intel_crtc->cursor_height < 0)
  5447. base = 0;
  5448. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5449. y = -y;
  5450. }
  5451. pos |= y << CURSOR_Y_SHIFT;
  5452. visible = base != 0;
  5453. if (!visible && !intel_crtc->cursor_visible)
  5454. return;
  5455. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5456. I915_WRITE(CURPOS_IVB(pipe), pos);
  5457. ivb_update_cursor(crtc, base);
  5458. } else {
  5459. I915_WRITE(CURPOS(pipe), pos);
  5460. if (IS_845G(dev) || IS_I865G(dev))
  5461. i845_update_cursor(crtc, base);
  5462. else
  5463. i9xx_update_cursor(crtc, base);
  5464. }
  5465. }
  5466. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5467. struct drm_file *file,
  5468. uint32_t handle,
  5469. uint32_t width, uint32_t height)
  5470. {
  5471. struct drm_device *dev = crtc->dev;
  5472. struct drm_i915_private *dev_priv = dev->dev_private;
  5473. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5474. struct drm_i915_gem_object *obj;
  5475. uint32_t addr;
  5476. int ret;
  5477. /* if we want to turn off the cursor ignore width and height */
  5478. if (!handle) {
  5479. DRM_DEBUG_KMS("cursor off\n");
  5480. addr = 0;
  5481. obj = NULL;
  5482. mutex_lock(&dev->struct_mutex);
  5483. goto finish;
  5484. }
  5485. /* Currently we only support 64x64 cursors */
  5486. if (width != 64 || height != 64) {
  5487. DRM_ERROR("we currently only support 64x64 cursors\n");
  5488. return -EINVAL;
  5489. }
  5490. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5491. if (&obj->base == NULL)
  5492. return -ENOENT;
  5493. if (obj->base.size < width * height * 4) {
  5494. DRM_ERROR("buffer is to small\n");
  5495. ret = -ENOMEM;
  5496. goto fail;
  5497. }
  5498. /* we only need to pin inside GTT if cursor is non-phy */
  5499. mutex_lock(&dev->struct_mutex);
  5500. if (!dev_priv->info->cursor_needs_physical) {
  5501. unsigned alignment;
  5502. if (obj->tiling_mode) {
  5503. DRM_ERROR("cursor cannot be tiled\n");
  5504. ret = -EINVAL;
  5505. goto fail_locked;
  5506. }
  5507. /* Note that the w/a also requires 2 PTE of padding following
  5508. * the bo. We currently fill all unused PTE with the shadow
  5509. * page and so we should always have valid PTE following the
  5510. * cursor preventing the VT-d warning.
  5511. */
  5512. alignment = 0;
  5513. if (need_vtd_wa(dev))
  5514. alignment = 64*1024;
  5515. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5516. if (ret) {
  5517. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5518. goto fail_locked;
  5519. }
  5520. ret = i915_gem_object_put_fence(obj);
  5521. if (ret) {
  5522. DRM_ERROR("failed to release fence for cursor");
  5523. goto fail_unpin;
  5524. }
  5525. addr = obj->gtt_offset;
  5526. } else {
  5527. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5528. ret = i915_gem_attach_phys_object(dev, obj,
  5529. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5530. align);
  5531. if (ret) {
  5532. DRM_ERROR("failed to attach phys object\n");
  5533. goto fail_locked;
  5534. }
  5535. addr = obj->phys_obj->handle->busaddr;
  5536. }
  5537. if (IS_GEN2(dev))
  5538. I915_WRITE(CURSIZE, (height << 12) | width);
  5539. finish:
  5540. if (intel_crtc->cursor_bo) {
  5541. if (dev_priv->info->cursor_needs_physical) {
  5542. if (intel_crtc->cursor_bo != obj)
  5543. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5544. } else
  5545. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5546. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5547. }
  5548. mutex_unlock(&dev->struct_mutex);
  5549. intel_crtc->cursor_addr = addr;
  5550. intel_crtc->cursor_bo = obj;
  5551. intel_crtc->cursor_width = width;
  5552. intel_crtc->cursor_height = height;
  5553. intel_crtc_update_cursor(crtc, true);
  5554. return 0;
  5555. fail_unpin:
  5556. i915_gem_object_unpin(obj);
  5557. fail_locked:
  5558. mutex_unlock(&dev->struct_mutex);
  5559. fail:
  5560. drm_gem_object_unreference_unlocked(&obj->base);
  5561. return ret;
  5562. }
  5563. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5564. {
  5565. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5566. intel_crtc->cursor_x = x;
  5567. intel_crtc->cursor_y = y;
  5568. intel_crtc_update_cursor(crtc, true);
  5569. return 0;
  5570. }
  5571. /** Sets the color ramps on behalf of RandR */
  5572. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5573. u16 blue, int regno)
  5574. {
  5575. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5576. intel_crtc->lut_r[regno] = red >> 8;
  5577. intel_crtc->lut_g[regno] = green >> 8;
  5578. intel_crtc->lut_b[regno] = blue >> 8;
  5579. }
  5580. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5581. u16 *blue, int regno)
  5582. {
  5583. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5584. *red = intel_crtc->lut_r[regno] << 8;
  5585. *green = intel_crtc->lut_g[regno] << 8;
  5586. *blue = intel_crtc->lut_b[regno] << 8;
  5587. }
  5588. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5589. u16 *blue, uint32_t start, uint32_t size)
  5590. {
  5591. int end = (start + size > 256) ? 256 : start + size, i;
  5592. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5593. for (i = start; i < end; i++) {
  5594. intel_crtc->lut_r[i] = red[i] >> 8;
  5595. intel_crtc->lut_g[i] = green[i] >> 8;
  5596. intel_crtc->lut_b[i] = blue[i] >> 8;
  5597. }
  5598. intel_crtc_load_lut(crtc);
  5599. }
  5600. /* VESA 640x480x72Hz mode to set on the pipe */
  5601. static struct drm_display_mode load_detect_mode = {
  5602. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5603. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5604. };
  5605. static struct drm_framebuffer *
  5606. intel_framebuffer_create(struct drm_device *dev,
  5607. struct drm_mode_fb_cmd2 *mode_cmd,
  5608. struct drm_i915_gem_object *obj)
  5609. {
  5610. struct intel_framebuffer *intel_fb;
  5611. int ret;
  5612. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5613. if (!intel_fb) {
  5614. drm_gem_object_unreference_unlocked(&obj->base);
  5615. return ERR_PTR(-ENOMEM);
  5616. }
  5617. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5618. if (ret) {
  5619. drm_gem_object_unreference_unlocked(&obj->base);
  5620. kfree(intel_fb);
  5621. return ERR_PTR(ret);
  5622. }
  5623. return &intel_fb->base;
  5624. }
  5625. static u32
  5626. intel_framebuffer_pitch_for_width(int width, int bpp)
  5627. {
  5628. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5629. return ALIGN(pitch, 64);
  5630. }
  5631. static u32
  5632. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5633. {
  5634. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5635. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5636. }
  5637. static struct drm_framebuffer *
  5638. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5639. struct drm_display_mode *mode,
  5640. int depth, int bpp)
  5641. {
  5642. struct drm_i915_gem_object *obj;
  5643. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5644. obj = i915_gem_alloc_object(dev,
  5645. intel_framebuffer_size_for_mode(mode, bpp));
  5646. if (obj == NULL)
  5647. return ERR_PTR(-ENOMEM);
  5648. mode_cmd.width = mode->hdisplay;
  5649. mode_cmd.height = mode->vdisplay;
  5650. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5651. bpp);
  5652. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5653. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5654. }
  5655. static struct drm_framebuffer *
  5656. mode_fits_in_fbdev(struct drm_device *dev,
  5657. struct drm_display_mode *mode)
  5658. {
  5659. struct drm_i915_private *dev_priv = dev->dev_private;
  5660. struct drm_i915_gem_object *obj;
  5661. struct drm_framebuffer *fb;
  5662. if (dev_priv->fbdev == NULL)
  5663. return NULL;
  5664. obj = dev_priv->fbdev->ifb.obj;
  5665. if (obj == NULL)
  5666. return NULL;
  5667. fb = &dev_priv->fbdev->ifb.base;
  5668. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5669. fb->bits_per_pixel))
  5670. return NULL;
  5671. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5672. return NULL;
  5673. return fb;
  5674. }
  5675. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5676. struct drm_display_mode *mode,
  5677. struct intel_load_detect_pipe *old)
  5678. {
  5679. struct intel_crtc *intel_crtc;
  5680. struct intel_encoder *intel_encoder =
  5681. intel_attached_encoder(connector);
  5682. struct drm_crtc *possible_crtc;
  5683. struct drm_encoder *encoder = &intel_encoder->base;
  5684. struct drm_crtc *crtc = NULL;
  5685. struct drm_device *dev = encoder->dev;
  5686. struct drm_framebuffer *fb;
  5687. int i = -1;
  5688. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5689. connector->base.id, drm_get_connector_name(connector),
  5690. encoder->base.id, drm_get_encoder_name(encoder));
  5691. /*
  5692. * Algorithm gets a little messy:
  5693. *
  5694. * - if the connector already has an assigned crtc, use it (but make
  5695. * sure it's on first)
  5696. *
  5697. * - try to find the first unused crtc that can drive this connector,
  5698. * and use that if we find one
  5699. */
  5700. /* See if we already have a CRTC for this connector */
  5701. if (encoder->crtc) {
  5702. crtc = encoder->crtc;
  5703. mutex_lock(&crtc->mutex);
  5704. old->dpms_mode = connector->dpms;
  5705. old->load_detect_temp = false;
  5706. /* Make sure the crtc and connector are running */
  5707. if (connector->dpms != DRM_MODE_DPMS_ON)
  5708. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5709. return true;
  5710. }
  5711. /* Find an unused one (if possible) */
  5712. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5713. i++;
  5714. if (!(encoder->possible_crtcs & (1 << i)))
  5715. continue;
  5716. if (!possible_crtc->enabled) {
  5717. crtc = possible_crtc;
  5718. break;
  5719. }
  5720. }
  5721. /*
  5722. * If we didn't find an unused CRTC, don't use any.
  5723. */
  5724. if (!crtc) {
  5725. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5726. return false;
  5727. }
  5728. mutex_lock(&crtc->mutex);
  5729. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5730. to_intel_connector(connector)->new_encoder = intel_encoder;
  5731. intel_crtc = to_intel_crtc(crtc);
  5732. old->dpms_mode = connector->dpms;
  5733. old->load_detect_temp = true;
  5734. old->release_fb = NULL;
  5735. if (!mode)
  5736. mode = &load_detect_mode;
  5737. /* We need a framebuffer large enough to accommodate all accesses
  5738. * that the plane may generate whilst we perform load detection.
  5739. * We can not rely on the fbcon either being present (we get called
  5740. * during its initialisation to detect all boot displays, or it may
  5741. * not even exist) or that it is large enough to satisfy the
  5742. * requested mode.
  5743. */
  5744. fb = mode_fits_in_fbdev(dev, mode);
  5745. if (fb == NULL) {
  5746. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5747. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5748. old->release_fb = fb;
  5749. } else
  5750. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5751. if (IS_ERR(fb)) {
  5752. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5753. mutex_unlock(&crtc->mutex);
  5754. return false;
  5755. }
  5756. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5757. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5758. if (old->release_fb)
  5759. old->release_fb->funcs->destroy(old->release_fb);
  5760. mutex_unlock(&crtc->mutex);
  5761. return false;
  5762. }
  5763. /* let the connector get through one full cycle before testing */
  5764. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5765. return true;
  5766. }
  5767. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5768. struct intel_load_detect_pipe *old)
  5769. {
  5770. struct intel_encoder *intel_encoder =
  5771. intel_attached_encoder(connector);
  5772. struct drm_encoder *encoder = &intel_encoder->base;
  5773. struct drm_crtc *crtc = encoder->crtc;
  5774. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5775. connector->base.id, drm_get_connector_name(connector),
  5776. encoder->base.id, drm_get_encoder_name(encoder));
  5777. if (old->load_detect_temp) {
  5778. to_intel_connector(connector)->new_encoder = NULL;
  5779. intel_encoder->new_crtc = NULL;
  5780. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5781. if (old->release_fb) {
  5782. drm_framebuffer_unregister_private(old->release_fb);
  5783. drm_framebuffer_unreference(old->release_fb);
  5784. }
  5785. mutex_unlock(&crtc->mutex);
  5786. return;
  5787. }
  5788. /* Switch crtc and encoder back off if necessary */
  5789. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5790. connector->funcs->dpms(connector, old->dpms_mode);
  5791. mutex_unlock(&crtc->mutex);
  5792. }
  5793. /* Returns the clock of the currently programmed mode of the given pipe. */
  5794. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5795. {
  5796. struct drm_i915_private *dev_priv = dev->dev_private;
  5797. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5798. int pipe = intel_crtc->pipe;
  5799. u32 dpll = I915_READ(DPLL(pipe));
  5800. u32 fp;
  5801. intel_clock_t clock;
  5802. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5803. fp = I915_READ(FP0(pipe));
  5804. else
  5805. fp = I915_READ(FP1(pipe));
  5806. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5807. if (IS_PINEVIEW(dev)) {
  5808. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5809. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5810. } else {
  5811. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5812. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5813. }
  5814. if (!IS_GEN2(dev)) {
  5815. if (IS_PINEVIEW(dev))
  5816. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5817. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5818. else
  5819. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5820. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5821. switch (dpll & DPLL_MODE_MASK) {
  5822. case DPLLB_MODE_DAC_SERIAL:
  5823. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5824. 5 : 10;
  5825. break;
  5826. case DPLLB_MODE_LVDS:
  5827. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5828. 7 : 14;
  5829. break;
  5830. default:
  5831. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5832. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5833. return 0;
  5834. }
  5835. /* XXX: Handle the 100Mhz refclk */
  5836. intel_clock(dev, 96000, &clock);
  5837. } else {
  5838. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5839. if (is_lvds) {
  5840. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5841. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5842. clock.p2 = 14;
  5843. if ((dpll & PLL_REF_INPUT_MASK) ==
  5844. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5845. /* XXX: might not be 66MHz */
  5846. intel_clock(dev, 66000, &clock);
  5847. } else
  5848. intel_clock(dev, 48000, &clock);
  5849. } else {
  5850. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5851. clock.p1 = 2;
  5852. else {
  5853. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5854. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5855. }
  5856. if (dpll & PLL_P2_DIVIDE_BY_4)
  5857. clock.p2 = 4;
  5858. else
  5859. clock.p2 = 2;
  5860. intel_clock(dev, 48000, &clock);
  5861. }
  5862. }
  5863. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5864. * i830PllIsValid() because it relies on the xf86_config connector
  5865. * configuration being accurate, which it isn't necessarily.
  5866. */
  5867. return clock.dot;
  5868. }
  5869. /** Returns the currently programmed mode of the given pipe. */
  5870. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5871. struct drm_crtc *crtc)
  5872. {
  5873. struct drm_i915_private *dev_priv = dev->dev_private;
  5874. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5875. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5876. struct drm_display_mode *mode;
  5877. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5878. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5879. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5880. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5881. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5882. if (!mode)
  5883. return NULL;
  5884. mode->clock = intel_crtc_clock_get(dev, crtc);
  5885. mode->hdisplay = (htot & 0xffff) + 1;
  5886. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5887. mode->hsync_start = (hsync & 0xffff) + 1;
  5888. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5889. mode->vdisplay = (vtot & 0xffff) + 1;
  5890. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5891. mode->vsync_start = (vsync & 0xffff) + 1;
  5892. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5893. drm_mode_set_name(mode);
  5894. return mode;
  5895. }
  5896. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5897. {
  5898. struct drm_device *dev = crtc->dev;
  5899. drm_i915_private_t *dev_priv = dev->dev_private;
  5900. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5901. int pipe = intel_crtc->pipe;
  5902. int dpll_reg = DPLL(pipe);
  5903. int dpll;
  5904. if (HAS_PCH_SPLIT(dev))
  5905. return;
  5906. if (!dev_priv->lvds_downclock_avail)
  5907. return;
  5908. dpll = I915_READ(dpll_reg);
  5909. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5910. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5911. assert_panel_unlocked(dev_priv, pipe);
  5912. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5913. I915_WRITE(dpll_reg, dpll);
  5914. intel_wait_for_vblank(dev, pipe);
  5915. dpll = I915_READ(dpll_reg);
  5916. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5917. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5918. }
  5919. }
  5920. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5921. {
  5922. struct drm_device *dev = crtc->dev;
  5923. drm_i915_private_t *dev_priv = dev->dev_private;
  5924. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5925. if (HAS_PCH_SPLIT(dev))
  5926. return;
  5927. if (!dev_priv->lvds_downclock_avail)
  5928. return;
  5929. /*
  5930. * Since this is called by a timer, we should never get here in
  5931. * the manual case.
  5932. */
  5933. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5934. int pipe = intel_crtc->pipe;
  5935. int dpll_reg = DPLL(pipe);
  5936. int dpll;
  5937. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5938. assert_panel_unlocked(dev_priv, pipe);
  5939. dpll = I915_READ(dpll_reg);
  5940. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5941. I915_WRITE(dpll_reg, dpll);
  5942. intel_wait_for_vblank(dev, pipe);
  5943. dpll = I915_READ(dpll_reg);
  5944. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5945. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5946. }
  5947. }
  5948. void intel_mark_busy(struct drm_device *dev)
  5949. {
  5950. i915_update_gfx_val(dev->dev_private);
  5951. }
  5952. void intel_mark_idle(struct drm_device *dev)
  5953. {
  5954. struct drm_crtc *crtc;
  5955. if (!i915_powersave)
  5956. return;
  5957. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5958. if (!crtc->fb)
  5959. continue;
  5960. intel_decrease_pllclock(crtc);
  5961. }
  5962. }
  5963. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5964. {
  5965. struct drm_device *dev = obj->base.dev;
  5966. struct drm_crtc *crtc;
  5967. if (!i915_powersave)
  5968. return;
  5969. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5970. if (!crtc->fb)
  5971. continue;
  5972. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5973. intel_increase_pllclock(crtc);
  5974. }
  5975. }
  5976. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5977. {
  5978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5979. struct drm_device *dev = crtc->dev;
  5980. struct intel_unpin_work *work;
  5981. unsigned long flags;
  5982. spin_lock_irqsave(&dev->event_lock, flags);
  5983. work = intel_crtc->unpin_work;
  5984. intel_crtc->unpin_work = NULL;
  5985. spin_unlock_irqrestore(&dev->event_lock, flags);
  5986. if (work) {
  5987. cancel_work_sync(&work->work);
  5988. kfree(work);
  5989. }
  5990. drm_crtc_cleanup(crtc);
  5991. kfree(intel_crtc);
  5992. }
  5993. static void intel_unpin_work_fn(struct work_struct *__work)
  5994. {
  5995. struct intel_unpin_work *work =
  5996. container_of(__work, struct intel_unpin_work, work);
  5997. struct drm_device *dev = work->crtc->dev;
  5998. mutex_lock(&dev->struct_mutex);
  5999. intel_unpin_fb_obj(work->old_fb_obj);
  6000. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6001. drm_gem_object_unreference(&work->old_fb_obj->base);
  6002. intel_update_fbc(dev);
  6003. mutex_unlock(&dev->struct_mutex);
  6004. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6005. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6006. kfree(work);
  6007. }
  6008. static void do_intel_finish_page_flip(struct drm_device *dev,
  6009. struct drm_crtc *crtc)
  6010. {
  6011. drm_i915_private_t *dev_priv = dev->dev_private;
  6012. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6013. struct intel_unpin_work *work;
  6014. unsigned long flags;
  6015. /* Ignore early vblank irqs */
  6016. if (intel_crtc == NULL)
  6017. return;
  6018. spin_lock_irqsave(&dev->event_lock, flags);
  6019. work = intel_crtc->unpin_work;
  6020. /* Ensure we don't miss a work->pending update ... */
  6021. smp_rmb();
  6022. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6023. spin_unlock_irqrestore(&dev->event_lock, flags);
  6024. return;
  6025. }
  6026. /* and that the unpin work is consistent wrt ->pending. */
  6027. smp_rmb();
  6028. intel_crtc->unpin_work = NULL;
  6029. if (work->event)
  6030. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6031. drm_vblank_put(dev, intel_crtc->pipe);
  6032. spin_unlock_irqrestore(&dev->event_lock, flags);
  6033. wake_up_all(&dev_priv->pending_flip_queue);
  6034. queue_work(dev_priv->wq, &work->work);
  6035. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6036. }
  6037. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6038. {
  6039. drm_i915_private_t *dev_priv = dev->dev_private;
  6040. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6041. do_intel_finish_page_flip(dev, crtc);
  6042. }
  6043. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6044. {
  6045. drm_i915_private_t *dev_priv = dev->dev_private;
  6046. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6047. do_intel_finish_page_flip(dev, crtc);
  6048. }
  6049. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6050. {
  6051. drm_i915_private_t *dev_priv = dev->dev_private;
  6052. struct intel_crtc *intel_crtc =
  6053. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6054. unsigned long flags;
  6055. /* NB: An MMIO update of the plane base pointer will also
  6056. * generate a page-flip completion irq, i.e. every modeset
  6057. * is also accompanied by a spurious intel_prepare_page_flip().
  6058. */
  6059. spin_lock_irqsave(&dev->event_lock, flags);
  6060. if (intel_crtc->unpin_work)
  6061. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6062. spin_unlock_irqrestore(&dev->event_lock, flags);
  6063. }
  6064. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6065. {
  6066. /* Ensure that the work item is consistent when activating it ... */
  6067. smp_wmb();
  6068. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6069. /* and that it is marked active as soon as the irq could fire. */
  6070. smp_wmb();
  6071. }
  6072. static int intel_gen2_queue_flip(struct drm_device *dev,
  6073. struct drm_crtc *crtc,
  6074. struct drm_framebuffer *fb,
  6075. struct drm_i915_gem_object *obj)
  6076. {
  6077. struct drm_i915_private *dev_priv = dev->dev_private;
  6078. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6079. u32 flip_mask;
  6080. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6081. int ret;
  6082. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6083. if (ret)
  6084. goto err;
  6085. ret = intel_ring_begin(ring, 6);
  6086. if (ret)
  6087. goto err_unpin;
  6088. /* Can't queue multiple flips, so wait for the previous
  6089. * one to finish before executing the next.
  6090. */
  6091. if (intel_crtc->plane)
  6092. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6093. else
  6094. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6095. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6096. intel_ring_emit(ring, MI_NOOP);
  6097. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6098. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6099. intel_ring_emit(ring, fb->pitches[0]);
  6100. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6101. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6102. intel_mark_page_flip_active(intel_crtc);
  6103. intel_ring_advance(ring);
  6104. return 0;
  6105. err_unpin:
  6106. intel_unpin_fb_obj(obj);
  6107. err:
  6108. return ret;
  6109. }
  6110. static int intel_gen3_queue_flip(struct drm_device *dev,
  6111. struct drm_crtc *crtc,
  6112. struct drm_framebuffer *fb,
  6113. struct drm_i915_gem_object *obj)
  6114. {
  6115. struct drm_i915_private *dev_priv = dev->dev_private;
  6116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6117. u32 flip_mask;
  6118. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6119. int ret;
  6120. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6121. if (ret)
  6122. goto err;
  6123. ret = intel_ring_begin(ring, 6);
  6124. if (ret)
  6125. goto err_unpin;
  6126. if (intel_crtc->plane)
  6127. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6128. else
  6129. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6130. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6131. intel_ring_emit(ring, MI_NOOP);
  6132. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6133. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6134. intel_ring_emit(ring, fb->pitches[0]);
  6135. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6136. intel_ring_emit(ring, MI_NOOP);
  6137. intel_mark_page_flip_active(intel_crtc);
  6138. intel_ring_advance(ring);
  6139. return 0;
  6140. err_unpin:
  6141. intel_unpin_fb_obj(obj);
  6142. err:
  6143. return ret;
  6144. }
  6145. static int intel_gen4_queue_flip(struct drm_device *dev,
  6146. struct drm_crtc *crtc,
  6147. struct drm_framebuffer *fb,
  6148. struct drm_i915_gem_object *obj)
  6149. {
  6150. struct drm_i915_private *dev_priv = dev->dev_private;
  6151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6152. uint32_t pf, pipesrc;
  6153. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6154. int ret;
  6155. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6156. if (ret)
  6157. goto err;
  6158. ret = intel_ring_begin(ring, 4);
  6159. if (ret)
  6160. goto err_unpin;
  6161. /* i965+ uses the linear or tiled offsets from the
  6162. * Display Registers (which do not change across a page-flip)
  6163. * so we need only reprogram the base address.
  6164. */
  6165. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6166. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6167. intel_ring_emit(ring, fb->pitches[0]);
  6168. intel_ring_emit(ring,
  6169. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6170. obj->tiling_mode);
  6171. /* XXX Enabling the panel-fitter across page-flip is so far
  6172. * untested on non-native modes, so ignore it for now.
  6173. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6174. */
  6175. pf = 0;
  6176. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6177. intel_ring_emit(ring, pf | pipesrc);
  6178. intel_mark_page_flip_active(intel_crtc);
  6179. intel_ring_advance(ring);
  6180. return 0;
  6181. err_unpin:
  6182. intel_unpin_fb_obj(obj);
  6183. err:
  6184. return ret;
  6185. }
  6186. static int intel_gen6_queue_flip(struct drm_device *dev,
  6187. struct drm_crtc *crtc,
  6188. struct drm_framebuffer *fb,
  6189. struct drm_i915_gem_object *obj)
  6190. {
  6191. struct drm_i915_private *dev_priv = dev->dev_private;
  6192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6193. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6194. uint32_t pf, pipesrc;
  6195. int ret;
  6196. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6197. if (ret)
  6198. goto err;
  6199. ret = intel_ring_begin(ring, 4);
  6200. if (ret)
  6201. goto err_unpin;
  6202. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6203. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6204. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6205. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6206. /* Contrary to the suggestions in the documentation,
  6207. * "Enable Panel Fitter" does not seem to be required when page
  6208. * flipping with a non-native mode, and worse causes a normal
  6209. * modeset to fail.
  6210. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6211. */
  6212. pf = 0;
  6213. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6214. intel_ring_emit(ring, pf | pipesrc);
  6215. intel_mark_page_flip_active(intel_crtc);
  6216. intel_ring_advance(ring);
  6217. return 0;
  6218. err_unpin:
  6219. intel_unpin_fb_obj(obj);
  6220. err:
  6221. return ret;
  6222. }
  6223. /*
  6224. * On gen7 we currently use the blit ring because (in early silicon at least)
  6225. * the render ring doesn't give us interrpts for page flip completion, which
  6226. * means clients will hang after the first flip is queued. Fortunately the
  6227. * blit ring generates interrupts properly, so use it instead.
  6228. */
  6229. static int intel_gen7_queue_flip(struct drm_device *dev,
  6230. struct drm_crtc *crtc,
  6231. struct drm_framebuffer *fb,
  6232. struct drm_i915_gem_object *obj)
  6233. {
  6234. struct drm_i915_private *dev_priv = dev->dev_private;
  6235. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6236. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6237. uint32_t plane_bit = 0;
  6238. int ret;
  6239. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6240. if (ret)
  6241. goto err;
  6242. switch(intel_crtc->plane) {
  6243. case PLANE_A:
  6244. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6245. break;
  6246. case PLANE_B:
  6247. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6248. break;
  6249. case PLANE_C:
  6250. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6251. break;
  6252. default:
  6253. WARN_ONCE(1, "unknown plane in flip command\n");
  6254. ret = -ENODEV;
  6255. goto err_unpin;
  6256. }
  6257. ret = intel_ring_begin(ring, 4);
  6258. if (ret)
  6259. goto err_unpin;
  6260. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6261. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6262. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6263. intel_ring_emit(ring, (MI_NOOP));
  6264. intel_mark_page_flip_active(intel_crtc);
  6265. intel_ring_advance(ring);
  6266. return 0;
  6267. err_unpin:
  6268. intel_unpin_fb_obj(obj);
  6269. err:
  6270. return ret;
  6271. }
  6272. static int intel_default_queue_flip(struct drm_device *dev,
  6273. struct drm_crtc *crtc,
  6274. struct drm_framebuffer *fb,
  6275. struct drm_i915_gem_object *obj)
  6276. {
  6277. return -ENODEV;
  6278. }
  6279. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6280. struct drm_framebuffer *fb,
  6281. struct drm_pending_vblank_event *event)
  6282. {
  6283. struct drm_device *dev = crtc->dev;
  6284. struct drm_i915_private *dev_priv = dev->dev_private;
  6285. struct drm_framebuffer *old_fb = crtc->fb;
  6286. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6288. struct intel_unpin_work *work;
  6289. unsigned long flags;
  6290. int ret;
  6291. /* Can't change pixel format via MI display flips. */
  6292. if (fb->pixel_format != crtc->fb->pixel_format)
  6293. return -EINVAL;
  6294. /*
  6295. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6296. * Note that pitch changes could also affect these register.
  6297. */
  6298. if (INTEL_INFO(dev)->gen > 3 &&
  6299. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6300. fb->pitches[0] != crtc->fb->pitches[0]))
  6301. return -EINVAL;
  6302. work = kzalloc(sizeof *work, GFP_KERNEL);
  6303. if (work == NULL)
  6304. return -ENOMEM;
  6305. work->event = event;
  6306. work->crtc = crtc;
  6307. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6308. INIT_WORK(&work->work, intel_unpin_work_fn);
  6309. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6310. if (ret)
  6311. goto free_work;
  6312. /* We borrow the event spin lock for protecting unpin_work */
  6313. spin_lock_irqsave(&dev->event_lock, flags);
  6314. if (intel_crtc->unpin_work) {
  6315. spin_unlock_irqrestore(&dev->event_lock, flags);
  6316. kfree(work);
  6317. drm_vblank_put(dev, intel_crtc->pipe);
  6318. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6319. return -EBUSY;
  6320. }
  6321. intel_crtc->unpin_work = work;
  6322. spin_unlock_irqrestore(&dev->event_lock, flags);
  6323. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6324. flush_workqueue(dev_priv->wq);
  6325. ret = i915_mutex_lock_interruptible(dev);
  6326. if (ret)
  6327. goto cleanup;
  6328. /* Reference the objects for the scheduled work. */
  6329. drm_gem_object_reference(&work->old_fb_obj->base);
  6330. drm_gem_object_reference(&obj->base);
  6331. crtc->fb = fb;
  6332. work->pending_flip_obj = obj;
  6333. work->enable_stall_check = true;
  6334. atomic_inc(&intel_crtc->unpin_work_count);
  6335. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6336. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6337. if (ret)
  6338. goto cleanup_pending;
  6339. intel_disable_fbc(dev);
  6340. intel_mark_fb_busy(obj);
  6341. mutex_unlock(&dev->struct_mutex);
  6342. trace_i915_flip_request(intel_crtc->plane, obj);
  6343. return 0;
  6344. cleanup_pending:
  6345. atomic_dec(&intel_crtc->unpin_work_count);
  6346. crtc->fb = old_fb;
  6347. drm_gem_object_unreference(&work->old_fb_obj->base);
  6348. drm_gem_object_unreference(&obj->base);
  6349. mutex_unlock(&dev->struct_mutex);
  6350. cleanup:
  6351. spin_lock_irqsave(&dev->event_lock, flags);
  6352. intel_crtc->unpin_work = NULL;
  6353. spin_unlock_irqrestore(&dev->event_lock, flags);
  6354. drm_vblank_put(dev, intel_crtc->pipe);
  6355. free_work:
  6356. kfree(work);
  6357. return ret;
  6358. }
  6359. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6360. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6361. .load_lut = intel_crtc_load_lut,
  6362. };
  6363. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6364. {
  6365. struct intel_encoder *other_encoder;
  6366. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6367. if (WARN_ON(!crtc))
  6368. return false;
  6369. list_for_each_entry(other_encoder,
  6370. &crtc->dev->mode_config.encoder_list,
  6371. base.head) {
  6372. if (&other_encoder->new_crtc->base != crtc ||
  6373. encoder == other_encoder)
  6374. continue;
  6375. else
  6376. return true;
  6377. }
  6378. return false;
  6379. }
  6380. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6381. struct drm_crtc *crtc)
  6382. {
  6383. struct drm_device *dev;
  6384. struct drm_crtc *tmp;
  6385. int crtc_mask = 1;
  6386. WARN(!crtc, "checking null crtc?\n");
  6387. dev = crtc->dev;
  6388. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6389. if (tmp == crtc)
  6390. break;
  6391. crtc_mask <<= 1;
  6392. }
  6393. if (encoder->possible_crtcs & crtc_mask)
  6394. return true;
  6395. return false;
  6396. }
  6397. /**
  6398. * intel_modeset_update_staged_output_state
  6399. *
  6400. * Updates the staged output configuration state, e.g. after we've read out the
  6401. * current hw state.
  6402. */
  6403. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6404. {
  6405. struct intel_encoder *encoder;
  6406. struct intel_connector *connector;
  6407. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6408. base.head) {
  6409. connector->new_encoder =
  6410. to_intel_encoder(connector->base.encoder);
  6411. }
  6412. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6413. base.head) {
  6414. encoder->new_crtc =
  6415. to_intel_crtc(encoder->base.crtc);
  6416. }
  6417. }
  6418. /**
  6419. * intel_modeset_commit_output_state
  6420. *
  6421. * This function copies the stage display pipe configuration to the real one.
  6422. */
  6423. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6424. {
  6425. struct intel_encoder *encoder;
  6426. struct intel_connector *connector;
  6427. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6428. base.head) {
  6429. connector->base.encoder = &connector->new_encoder->base;
  6430. }
  6431. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6432. base.head) {
  6433. encoder->base.crtc = &encoder->new_crtc->base;
  6434. }
  6435. }
  6436. static int
  6437. pipe_config_set_bpp(struct drm_crtc *crtc,
  6438. struct drm_framebuffer *fb,
  6439. struct intel_crtc_config *pipe_config)
  6440. {
  6441. struct drm_device *dev = crtc->dev;
  6442. struct drm_connector *connector;
  6443. int bpp;
  6444. switch (fb->pixel_format) {
  6445. case DRM_FORMAT_C8:
  6446. bpp = 8*3; /* since we go through a colormap */
  6447. break;
  6448. case DRM_FORMAT_XRGB1555:
  6449. case DRM_FORMAT_ARGB1555:
  6450. /* checked in intel_framebuffer_init already */
  6451. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6452. return -EINVAL;
  6453. case DRM_FORMAT_RGB565:
  6454. bpp = 6*3; /* min is 18bpp */
  6455. break;
  6456. case DRM_FORMAT_XBGR8888:
  6457. case DRM_FORMAT_ABGR8888:
  6458. /* checked in intel_framebuffer_init already */
  6459. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6460. return -EINVAL;
  6461. case DRM_FORMAT_XRGB8888:
  6462. case DRM_FORMAT_ARGB8888:
  6463. bpp = 8*3;
  6464. break;
  6465. case DRM_FORMAT_XRGB2101010:
  6466. case DRM_FORMAT_ARGB2101010:
  6467. case DRM_FORMAT_XBGR2101010:
  6468. case DRM_FORMAT_ABGR2101010:
  6469. /* checked in intel_framebuffer_init already */
  6470. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6471. return -EINVAL;
  6472. bpp = 10*3;
  6473. break;
  6474. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6475. default:
  6476. DRM_DEBUG_KMS("unsupported depth\n");
  6477. return -EINVAL;
  6478. }
  6479. pipe_config->pipe_bpp = bpp;
  6480. /* Clamp display bpp to EDID value */
  6481. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6482. head) {
  6483. if (connector->encoder && connector->encoder->crtc != crtc)
  6484. continue;
  6485. /* Don't use an invalid EDID bpc value */
  6486. if (connector->display_info.bpc &&
  6487. connector->display_info.bpc * 3 < bpp) {
  6488. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6489. bpp, connector->display_info.bpc*3);
  6490. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6491. }
  6492. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6493. if (connector->display_info.bpc == 0 && bpp > 24) {
  6494. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6495. bpp);
  6496. pipe_config->pipe_bpp = 24;
  6497. }
  6498. }
  6499. return bpp;
  6500. }
  6501. static struct intel_crtc_config *
  6502. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6503. struct drm_framebuffer *fb,
  6504. struct drm_display_mode *mode)
  6505. {
  6506. struct drm_device *dev = crtc->dev;
  6507. struct drm_encoder_helper_funcs *encoder_funcs;
  6508. struct intel_encoder *encoder;
  6509. struct intel_crtc_config *pipe_config;
  6510. int plane_bpp, ret = -EINVAL;
  6511. bool retry = true;
  6512. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6513. if (!pipe_config)
  6514. return ERR_PTR(-ENOMEM);
  6515. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6516. drm_mode_copy(&pipe_config->requested_mode, mode);
  6517. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6518. if (plane_bpp < 0)
  6519. goto fail;
  6520. encoder_retry:
  6521. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6522. * adjust it according to limitations or connector properties, and also
  6523. * a chance to reject the mode entirely.
  6524. */
  6525. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6526. base.head) {
  6527. if (&encoder->new_crtc->base != crtc)
  6528. continue;
  6529. if (encoder->compute_config) {
  6530. if (!(encoder->compute_config(encoder, pipe_config))) {
  6531. DRM_DEBUG_KMS("Encoder config failure\n");
  6532. goto fail;
  6533. }
  6534. continue;
  6535. }
  6536. encoder_funcs = encoder->base.helper_private;
  6537. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6538. &pipe_config->requested_mode,
  6539. &pipe_config->adjusted_mode))) {
  6540. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6541. goto fail;
  6542. }
  6543. }
  6544. ret = intel_crtc_compute_config(crtc, pipe_config);
  6545. if (ret < 0) {
  6546. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6547. goto fail;
  6548. }
  6549. if (ret == RETRY) {
  6550. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6551. ret = -EINVAL;
  6552. goto fail;
  6553. }
  6554. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6555. retry = false;
  6556. goto encoder_retry;
  6557. }
  6558. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6559. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6560. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6561. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6562. return pipe_config;
  6563. fail:
  6564. kfree(pipe_config);
  6565. return ERR_PTR(ret);
  6566. }
  6567. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6568. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6569. static void
  6570. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6571. unsigned *prepare_pipes, unsigned *disable_pipes)
  6572. {
  6573. struct intel_crtc *intel_crtc;
  6574. struct drm_device *dev = crtc->dev;
  6575. struct intel_encoder *encoder;
  6576. struct intel_connector *connector;
  6577. struct drm_crtc *tmp_crtc;
  6578. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6579. /* Check which crtcs have changed outputs connected to them, these need
  6580. * to be part of the prepare_pipes mask. We don't (yet) support global
  6581. * modeset across multiple crtcs, so modeset_pipes will only have one
  6582. * bit set at most. */
  6583. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6584. base.head) {
  6585. if (connector->base.encoder == &connector->new_encoder->base)
  6586. continue;
  6587. if (connector->base.encoder) {
  6588. tmp_crtc = connector->base.encoder->crtc;
  6589. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6590. }
  6591. if (connector->new_encoder)
  6592. *prepare_pipes |=
  6593. 1 << connector->new_encoder->new_crtc->pipe;
  6594. }
  6595. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6596. base.head) {
  6597. if (encoder->base.crtc == &encoder->new_crtc->base)
  6598. continue;
  6599. if (encoder->base.crtc) {
  6600. tmp_crtc = encoder->base.crtc;
  6601. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6602. }
  6603. if (encoder->new_crtc)
  6604. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6605. }
  6606. /* Check for any pipes that will be fully disabled ... */
  6607. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6608. base.head) {
  6609. bool used = false;
  6610. /* Don't try to disable disabled crtcs. */
  6611. if (!intel_crtc->base.enabled)
  6612. continue;
  6613. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6614. base.head) {
  6615. if (encoder->new_crtc == intel_crtc)
  6616. used = true;
  6617. }
  6618. if (!used)
  6619. *disable_pipes |= 1 << intel_crtc->pipe;
  6620. }
  6621. /* set_mode is also used to update properties on life display pipes. */
  6622. intel_crtc = to_intel_crtc(crtc);
  6623. if (crtc->enabled)
  6624. *prepare_pipes |= 1 << intel_crtc->pipe;
  6625. /*
  6626. * For simplicity do a full modeset on any pipe where the output routing
  6627. * changed. We could be more clever, but that would require us to be
  6628. * more careful with calling the relevant encoder->mode_set functions.
  6629. */
  6630. if (*prepare_pipes)
  6631. *modeset_pipes = *prepare_pipes;
  6632. /* ... and mask these out. */
  6633. *modeset_pipes &= ~(*disable_pipes);
  6634. *prepare_pipes &= ~(*disable_pipes);
  6635. /*
  6636. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6637. * obies this rule, but the modeset restore mode of
  6638. * intel_modeset_setup_hw_state does not.
  6639. */
  6640. *modeset_pipes &= 1 << intel_crtc->pipe;
  6641. *prepare_pipes &= 1 << intel_crtc->pipe;
  6642. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6643. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6644. }
  6645. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6646. {
  6647. struct drm_encoder *encoder;
  6648. struct drm_device *dev = crtc->dev;
  6649. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6650. if (encoder->crtc == crtc)
  6651. return true;
  6652. return false;
  6653. }
  6654. static void
  6655. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6656. {
  6657. struct intel_encoder *intel_encoder;
  6658. struct intel_crtc *intel_crtc;
  6659. struct drm_connector *connector;
  6660. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6661. base.head) {
  6662. if (!intel_encoder->base.crtc)
  6663. continue;
  6664. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6665. if (prepare_pipes & (1 << intel_crtc->pipe))
  6666. intel_encoder->connectors_active = false;
  6667. }
  6668. intel_modeset_commit_output_state(dev);
  6669. /* Update computed state. */
  6670. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6671. base.head) {
  6672. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6673. }
  6674. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6675. if (!connector->encoder || !connector->encoder->crtc)
  6676. continue;
  6677. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6678. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6679. struct drm_property *dpms_property =
  6680. dev->mode_config.dpms_property;
  6681. connector->dpms = DRM_MODE_DPMS_ON;
  6682. drm_object_property_set_value(&connector->base,
  6683. dpms_property,
  6684. DRM_MODE_DPMS_ON);
  6685. intel_encoder = to_intel_encoder(connector->encoder);
  6686. intel_encoder->connectors_active = true;
  6687. }
  6688. }
  6689. }
  6690. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6691. list_for_each_entry((intel_crtc), \
  6692. &(dev)->mode_config.crtc_list, \
  6693. base.head) \
  6694. if (mask & (1 <<(intel_crtc)->pipe))
  6695. static bool
  6696. intel_pipe_config_compare(struct drm_device *dev,
  6697. struct intel_crtc_config *current_config,
  6698. struct intel_crtc_config *pipe_config)
  6699. {
  6700. #define PIPE_CONF_CHECK_I(name) \
  6701. if (current_config->name != pipe_config->name) { \
  6702. DRM_ERROR("mismatch in " #name " " \
  6703. "(expected %i, found %i)\n", \
  6704. current_config->name, \
  6705. pipe_config->name); \
  6706. return false; \
  6707. }
  6708. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6709. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6710. DRM_ERROR("mismatch in " #name " " \
  6711. "(expected %i, found %i)\n", \
  6712. current_config->name & (mask), \
  6713. pipe_config->name & (mask)); \
  6714. return false; \
  6715. }
  6716. PIPE_CONF_CHECK_I(has_pch_encoder);
  6717. PIPE_CONF_CHECK_I(fdi_lanes);
  6718. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6719. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6720. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6721. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6722. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6723. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6724. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6725. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6726. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6727. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6728. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6729. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6730. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6731. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6732. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6733. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6734. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6735. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6736. DRM_MODE_FLAG_INTERLACE);
  6737. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6738. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6739. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6740. /* pfit ratios are autocomputed by the hw on gen4+ */
  6741. if (INTEL_INFO(dev)->gen < 4)
  6742. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6743. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6744. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6745. PIPE_CONF_CHECK_I(pch_pfit.size);
  6746. #undef PIPE_CONF_CHECK_I
  6747. #undef PIPE_CONF_CHECK_FLAGS
  6748. return true;
  6749. }
  6750. void
  6751. intel_modeset_check_state(struct drm_device *dev)
  6752. {
  6753. drm_i915_private_t *dev_priv = dev->dev_private;
  6754. struct intel_crtc *crtc;
  6755. struct intel_encoder *encoder;
  6756. struct intel_connector *connector;
  6757. struct intel_crtc_config pipe_config;
  6758. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6759. base.head) {
  6760. /* This also checks the encoder/connector hw state with the
  6761. * ->get_hw_state callbacks. */
  6762. intel_connector_check_state(connector);
  6763. WARN(&connector->new_encoder->base != connector->base.encoder,
  6764. "connector's staged encoder doesn't match current encoder\n");
  6765. }
  6766. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6767. base.head) {
  6768. bool enabled = false;
  6769. bool active = false;
  6770. enum pipe pipe, tracked_pipe;
  6771. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6772. encoder->base.base.id,
  6773. drm_get_encoder_name(&encoder->base));
  6774. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6775. "encoder's stage crtc doesn't match current crtc\n");
  6776. WARN(encoder->connectors_active && !encoder->base.crtc,
  6777. "encoder's active_connectors set, but no crtc\n");
  6778. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6779. base.head) {
  6780. if (connector->base.encoder != &encoder->base)
  6781. continue;
  6782. enabled = true;
  6783. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6784. active = true;
  6785. }
  6786. WARN(!!encoder->base.crtc != enabled,
  6787. "encoder's enabled state mismatch "
  6788. "(expected %i, found %i)\n",
  6789. !!encoder->base.crtc, enabled);
  6790. WARN(active && !encoder->base.crtc,
  6791. "active encoder with no crtc\n");
  6792. WARN(encoder->connectors_active != active,
  6793. "encoder's computed active state doesn't match tracked active state "
  6794. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6795. active = encoder->get_hw_state(encoder, &pipe);
  6796. WARN(active != encoder->connectors_active,
  6797. "encoder's hw state doesn't match sw tracking "
  6798. "(expected %i, found %i)\n",
  6799. encoder->connectors_active, active);
  6800. if (!encoder->base.crtc)
  6801. continue;
  6802. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6803. WARN(active && pipe != tracked_pipe,
  6804. "active encoder's pipe doesn't match"
  6805. "(expected %i, found %i)\n",
  6806. tracked_pipe, pipe);
  6807. }
  6808. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6809. base.head) {
  6810. bool enabled = false;
  6811. bool active = false;
  6812. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6813. crtc->base.base.id);
  6814. WARN(crtc->active && !crtc->base.enabled,
  6815. "active crtc, but not enabled in sw tracking\n");
  6816. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6817. base.head) {
  6818. if (encoder->base.crtc != &crtc->base)
  6819. continue;
  6820. enabled = true;
  6821. if (encoder->connectors_active)
  6822. active = true;
  6823. }
  6824. WARN(active != crtc->active,
  6825. "crtc's computed active state doesn't match tracked active state "
  6826. "(expected %i, found %i)\n", active, crtc->active);
  6827. WARN(enabled != crtc->base.enabled,
  6828. "crtc's computed enabled state doesn't match tracked enabled state "
  6829. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6830. memset(&pipe_config, 0, sizeof(pipe_config));
  6831. pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
  6832. active = dev_priv->display.get_pipe_config(crtc,
  6833. &pipe_config);
  6834. WARN(crtc->active != active,
  6835. "crtc active state doesn't match with hw state "
  6836. "(expected %i, found %i)\n", crtc->active, active);
  6837. WARN(active &&
  6838. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config),
  6839. "pipe state doesn't match!\n");
  6840. }
  6841. }
  6842. static int __intel_set_mode(struct drm_crtc *crtc,
  6843. struct drm_display_mode *mode,
  6844. int x, int y, struct drm_framebuffer *fb)
  6845. {
  6846. struct drm_device *dev = crtc->dev;
  6847. drm_i915_private_t *dev_priv = dev->dev_private;
  6848. struct drm_display_mode *saved_mode, *saved_hwmode;
  6849. struct intel_crtc_config *pipe_config = NULL;
  6850. struct intel_crtc *intel_crtc;
  6851. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6852. int ret = 0;
  6853. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6854. if (!saved_mode)
  6855. return -ENOMEM;
  6856. saved_hwmode = saved_mode + 1;
  6857. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6858. &prepare_pipes, &disable_pipes);
  6859. *saved_hwmode = crtc->hwmode;
  6860. *saved_mode = crtc->mode;
  6861. /* Hack: Because we don't (yet) support global modeset on multiple
  6862. * crtcs, we don't keep track of the new mode for more than one crtc.
  6863. * Hence simply check whether any bit is set in modeset_pipes in all the
  6864. * pieces of code that are not yet converted to deal with mutliple crtcs
  6865. * changing their mode at the same time. */
  6866. if (modeset_pipes) {
  6867. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6868. if (IS_ERR(pipe_config)) {
  6869. ret = PTR_ERR(pipe_config);
  6870. pipe_config = NULL;
  6871. goto out;
  6872. }
  6873. }
  6874. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6875. intel_crtc_disable(&intel_crtc->base);
  6876. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6877. if (intel_crtc->base.enabled)
  6878. dev_priv->display.crtc_disable(&intel_crtc->base);
  6879. }
  6880. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6881. * to set it here already despite that we pass it down the callchain.
  6882. */
  6883. if (modeset_pipes) {
  6884. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6885. crtc->mode = *mode;
  6886. /* mode_set/enable/disable functions rely on a correct pipe
  6887. * config. */
  6888. to_intel_crtc(crtc)->config = *pipe_config;
  6889. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6890. }
  6891. /* Only after disabling all output pipelines that will be changed can we
  6892. * update the the output configuration. */
  6893. intel_modeset_update_state(dev, prepare_pipes);
  6894. if (dev_priv->display.modeset_global_resources)
  6895. dev_priv->display.modeset_global_resources(dev);
  6896. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6897. * on the DPLL.
  6898. */
  6899. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6900. ret = intel_crtc_mode_set(&intel_crtc->base,
  6901. x, y, fb);
  6902. if (ret)
  6903. goto done;
  6904. }
  6905. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6906. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6907. dev_priv->display.crtc_enable(&intel_crtc->base);
  6908. if (modeset_pipes) {
  6909. /* Store real post-adjustment hardware mode. */
  6910. crtc->hwmode = pipe_config->adjusted_mode;
  6911. /* Calculate and store various constants which
  6912. * are later needed by vblank and swap-completion
  6913. * timestamping. They are derived from true hwmode.
  6914. */
  6915. drm_calc_timestamping_constants(crtc);
  6916. }
  6917. /* FIXME: add subpixel order */
  6918. done:
  6919. if (ret && crtc->enabled) {
  6920. crtc->hwmode = *saved_hwmode;
  6921. crtc->mode = *saved_mode;
  6922. }
  6923. out:
  6924. kfree(pipe_config);
  6925. kfree(saved_mode);
  6926. return ret;
  6927. }
  6928. int intel_set_mode(struct drm_crtc *crtc,
  6929. struct drm_display_mode *mode,
  6930. int x, int y, struct drm_framebuffer *fb)
  6931. {
  6932. int ret;
  6933. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6934. if (ret == 0)
  6935. intel_modeset_check_state(crtc->dev);
  6936. return ret;
  6937. }
  6938. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6939. {
  6940. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6941. }
  6942. #undef for_each_intel_crtc_masked
  6943. static void intel_set_config_free(struct intel_set_config *config)
  6944. {
  6945. if (!config)
  6946. return;
  6947. kfree(config->save_connector_encoders);
  6948. kfree(config->save_encoder_crtcs);
  6949. kfree(config);
  6950. }
  6951. static int intel_set_config_save_state(struct drm_device *dev,
  6952. struct intel_set_config *config)
  6953. {
  6954. struct drm_encoder *encoder;
  6955. struct drm_connector *connector;
  6956. int count;
  6957. config->save_encoder_crtcs =
  6958. kcalloc(dev->mode_config.num_encoder,
  6959. sizeof(struct drm_crtc *), GFP_KERNEL);
  6960. if (!config->save_encoder_crtcs)
  6961. return -ENOMEM;
  6962. config->save_connector_encoders =
  6963. kcalloc(dev->mode_config.num_connector,
  6964. sizeof(struct drm_encoder *), GFP_KERNEL);
  6965. if (!config->save_connector_encoders)
  6966. return -ENOMEM;
  6967. /* Copy data. Note that driver private data is not affected.
  6968. * Should anything bad happen only the expected state is
  6969. * restored, not the drivers personal bookkeeping.
  6970. */
  6971. count = 0;
  6972. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6973. config->save_encoder_crtcs[count++] = encoder->crtc;
  6974. }
  6975. count = 0;
  6976. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6977. config->save_connector_encoders[count++] = connector->encoder;
  6978. }
  6979. return 0;
  6980. }
  6981. static void intel_set_config_restore_state(struct drm_device *dev,
  6982. struct intel_set_config *config)
  6983. {
  6984. struct intel_encoder *encoder;
  6985. struct intel_connector *connector;
  6986. int count;
  6987. count = 0;
  6988. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6989. encoder->new_crtc =
  6990. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6991. }
  6992. count = 0;
  6993. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6994. connector->new_encoder =
  6995. to_intel_encoder(config->save_connector_encoders[count++]);
  6996. }
  6997. }
  6998. static void
  6999. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7000. struct intel_set_config *config)
  7001. {
  7002. /* We should be able to check here if the fb has the same properties
  7003. * and then just flip_or_move it */
  7004. if (set->crtc->fb != set->fb) {
  7005. /* If we have no fb then treat it as a full mode set */
  7006. if (set->crtc->fb == NULL) {
  7007. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7008. config->mode_changed = true;
  7009. } else if (set->fb == NULL) {
  7010. config->mode_changed = true;
  7011. } else if (set->fb->pixel_format !=
  7012. set->crtc->fb->pixel_format) {
  7013. config->mode_changed = true;
  7014. } else
  7015. config->fb_changed = true;
  7016. }
  7017. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7018. config->fb_changed = true;
  7019. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7020. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7021. drm_mode_debug_printmodeline(&set->crtc->mode);
  7022. drm_mode_debug_printmodeline(set->mode);
  7023. config->mode_changed = true;
  7024. }
  7025. }
  7026. static int
  7027. intel_modeset_stage_output_state(struct drm_device *dev,
  7028. struct drm_mode_set *set,
  7029. struct intel_set_config *config)
  7030. {
  7031. struct drm_crtc *new_crtc;
  7032. struct intel_connector *connector;
  7033. struct intel_encoder *encoder;
  7034. int count, ro;
  7035. /* The upper layers ensure that we either disable a crtc or have a list
  7036. * of connectors. For paranoia, double-check this. */
  7037. WARN_ON(!set->fb && (set->num_connectors != 0));
  7038. WARN_ON(set->fb && (set->num_connectors == 0));
  7039. count = 0;
  7040. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7041. base.head) {
  7042. /* Otherwise traverse passed in connector list and get encoders
  7043. * for them. */
  7044. for (ro = 0; ro < set->num_connectors; ro++) {
  7045. if (set->connectors[ro] == &connector->base) {
  7046. connector->new_encoder = connector->encoder;
  7047. break;
  7048. }
  7049. }
  7050. /* If we disable the crtc, disable all its connectors. Also, if
  7051. * the connector is on the changing crtc but not on the new
  7052. * connector list, disable it. */
  7053. if ((!set->fb || ro == set->num_connectors) &&
  7054. connector->base.encoder &&
  7055. connector->base.encoder->crtc == set->crtc) {
  7056. connector->new_encoder = NULL;
  7057. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7058. connector->base.base.id,
  7059. drm_get_connector_name(&connector->base));
  7060. }
  7061. if (&connector->new_encoder->base != connector->base.encoder) {
  7062. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7063. config->mode_changed = true;
  7064. }
  7065. }
  7066. /* connector->new_encoder is now updated for all connectors. */
  7067. /* Update crtc of enabled connectors. */
  7068. count = 0;
  7069. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7070. base.head) {
  7071. if (!connector->new_encoder)
  7072. continue;
  7073. new_crtc = connector->new_encoder->base.crtc;
  7074. for (ro = 0; ro < set->num_connectors; ro++) {
  7075. if (set->connectors[ro] == &connector->base)
  7076. new_crtc = set->crtc;
  7077. }
  7078. /* Make sure the new CRTC will work with the encoder */
  7079. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7080. new_crtc)) {
  7081. return -EINVAL;
  7082. }
  7083. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7084. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7085. connector->base.base.id,
  7086. drm_get_connector_name(&connector->base),
  7087. new_crtc->base.id);
  7088. }
  7089. /* Check for any encoders that needs to be disabled. */
  7090. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7091. base.head) {
  7092. list_for_each_entry(connector,
  7093. &dev->mode_config.connector_list,
  7094. base.head) {
  7095. if (connector->new_encoder == encoder) {
  7096. WARN_ON(!connector->new_encoder->new_crtc);
  7097. goto next_encoder;
  7098. }
  7099. }
  7100. encoder->new_crtc = NULL;
  7101. next_encoder:
  7102. /* Only now check for crtc changes so we don't miss encoders
  7103. * that will be disabled. */
  7104. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7105. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7106. config->mode_changed = true;
  7107. }
  7108. }
  7109. /* Now we've also updated encoder->new_crtc for all encoders. */
  7110. return 0;
  7111. }
  7112. static int intel_crtc_set_config(struct drm_mode_set *set)
  7113. {
  7114. struct drm_device *dev;
  7115. struct drm_mode_set save_set;
  7116. struct intel_set_config *config;
  7117. int ret;
  7118. BUG_ON(!set);
  7119. BUG_ON(!set->crtc);
  7120. BUG_ON(!set->crtc->helper_private);
  7121. /* Enforce sane interface api - has been abused by the fb helper. */
  7122. BUG_ON(!set->mode && set->fb);
  7123. BUG_ON(set->fb && set->num_connectors == 0);
  7124. if (set->fb) {
  7125. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7126. set->crtc->base.id, set->fb->base.id,
  7127. (int)set->num_connectors, set->x, set->y);
  7128. } else {
  7129. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7130. }
  7131. dev = set->crtc->dev;
  7132. ret = -ENOMEM;
  7133. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7134. if (!config)
  7135. goto out_config;
  7136. ret = intel_set_config_save_state(dev, config);
  7137. if (ret)
  7138. goto out_config;
  7139. save_set.crtc = set->crtc;
  7140. save_set.mode = &set->crtc->mode;
  7141. save_set.x = set->crtc->x;
  7142. save_set.y = set->crtc->y;
  7143. save_set.fb = set->crtc->fb;
  7144. /* Compute whether we need a full modeset, only an fb base update or no
  7145. * change at all. In the future we might also check whether only the
  7146. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7147. * such cases. */
  7148. intel_set_config_compute_mode_changes(set, config);
  7149. ret = intel_modeset_stage_output_state(dev, set, config);
  7150. if (ret)
  7151. goto fail;
  7152. if (config->mode_changed) {
  7153. if (set->mode) {
  7154. DRM_DEBUG_KMS("attempting to set mode from"
  7155. " userspace\n");
  7156. drm_mode_debug_printmodeline(set->mode);
  7157. }
  7158. ret = intel_set_mode(set->crtc, set->mode,
  7159. set->x, set->y, set->fb);
  7160. if (ret) {
  7161. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7162. set->crtc->base.id, ret);
  7163. goto fail;
  7164. }
  7165. } else if (config->fb_changed) {
  7166. intel_crtc_wait_for_pending_flips(set->crtc);
  7167. ret = intel_pipe_set_base(set->crtc,
  7168. set->x, set->y, set->fb);
  7169. }
  7170. intel_set_config_free(config);
  7171. return 0;
  7172. fail:
  7173. intel_set_config_restore_state(dev, config);
  7174. /* Try to restore the config */
  7175. if (config->mode_changed &&
  7176. intel_set_mode(save_set.crtc, save_set.mode,
  7177. save_set.x, save_set.y, save_set.fb))
  7178. DRM_ERROR("failed to restore config after modeset failure\n");
  7179. out_config:
  7180. intel_set_config_free(config);
  7181. return ret;
  7182. }
  7183. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7184. .cursor_set = intel_crtc_cursor_set,
  7185. .cursor_move = intel_crtc_cursor_move,
  7186. .gamma_set = intel_crtc_gamma_set,
  7187. .set_config = intel_crtc_set_config,
  7188. .destroy = intel_crtc_destroy,
  7189. .page_flip = intel_crtc_page_flip,
  7190. };
  7191. static void intel_cpu_pll_init(struct drm_device *dev)
  7192. {
  7193. if (HAS_DDI(dev))
  7194. intel_ddi_pll_init(dev);
  7195. }
  7196. static void intel_pch_pll_init(struct drm_device *dev)
  7197. {
  7198. drm_i915_private_t *dev_priv = dev->dev_private;
  7199. int i;
  7200. if (dev_priv->num_pch_pll == 0) {
  7201. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7202. return;
  7203. }
  7204. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7205. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7206. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7207. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7208. }
  7209. }
  7210. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7211. {
  7212. drm_i915_private_t *dev_priv = dev->dev_private;
  7213. struct intel_crtc *intel_crtc;
  7214. int i;
  7215. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7216. if (intel_crtc == NULL)
  7217. return;
  7218. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7219. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7220. for (i = 0; i < 256; i++) {
  7221. intel_crtc->lut_r[i] = i;
  7222. intel_crtc->lut_g[i] = i;
  7223. intel_crtc->lut_b[i] = i;
  7224. }
  7225. /* Swap pipes & planes for FBC on pre-965 */
  7226. intel_crtc->pipe = pipe;
  7227. intel_crtc->plane = pipe;
  7228. intel_crtc->config.cpu_transcoder = pipe;
  7229. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7230. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7231. intel_crtc->plane = !pipe;
  7232. }
  7233. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7234. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7235. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7236. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7237. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7238. }
  7239. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7240. struct drm_file *file)
  7241. {
  7242. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7243. struct drm_mode_object *drmmode_obj;
  7244. struct intel_crtc *crtc;
  7245. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7246. return -ENODEV;
  7247. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7248. DRM_MODE_OBJECT_CRTC);
  7249. if (!drmmode_obj) {
  7250. DRM_ERROR("no such CRTC id\n");
  7251. return -EINVAL;
  7252. }
  7253. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7254. pipe_from_crtc_id->pipe = crtc->pipe;
  7255. return 0;
  7256. }
  7257. static int intel_encoder_clones(struct intel_encoder *encoder)
  7258. {
  7259. struct drm_device *dev = encoder->base.dev;
  7260. struct intel_encoder *source_encoder;
  7261. int index_mask = 0;
  7262. int entry = 0;
  7263. list_for_each_entry(source_encoder,
  7264. &dev->mode_config.encoder_list, base.head) {
  7265. if (encoder == source_encoder)
  7266. index_mask |= (1 << entry);
  7267. /* Intel hw has only one MUX where enocoders could be cloned. */
  7268. if (encoder->cloneable && source_encoder->cloneable)
  7269. index_mask |= (1 << entry);
  7270. entry++;
  7271. }
  7272. return index_mask;
  7273. }
  7274. static bool has_edp_a(struct drm_device *dev)
  7275. {
  7276. struct drm_i915_private *dev_priv = dev->dev_private;
  7277. if (!IS_MOBILE(dev))
  7278. return false;
  7279. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7280. return false;
  7281. if (IS_GEN5(dev) &&
  7282. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7283. return false;
  7284. return true;
  7285. }
  7286. static void intel_setup_outputs(struct drm_device *dev)
  7287. {
  7288. struct drm_i915_private *dev_priv = dev->dev_private;
  7289. struct intel_encoder *encoder;
  7290. bool dpd_is_edp = false;
  7291. bool has_lvds;
  7292. has_lvds = intel_lvds_init(dev);
  7293. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7294. /* disable the panel fitter on everything but LVDS */
  7295. I915_WRITE(PFIT_CONTROL, 0);
  7296. }
  7297. if (!IS_ULT(dev))
  7298. intel_crt_init(dev);
  7299. if (HAS_DDI(dev)) {
  7300. int found;
  7301. /* Haswell uses DDI functions to detect digital outputs */
  7302. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7303. /* DDI A only supports eDP */
  7304. if (found)
  7305. intel_ddi_init(dev, PORT_A);
  7306. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7307. * register */
  7308. found = I915_READ(SFUSE_STRAP);
  7309. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7310. intel_ddi_init(dev, PORT_B);
  7311. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7312. intel_ddi_init(dev, PORT_C);
  7313. if (found & SFUSE_STRAP_DDID_DETECTED)
  7314. intel_ddi_init(dev, PORT_D);
  7315. } else if (HAS_PCH_SPLIT(dev)) {
  7316. int found;
  7317. dpd_is_edp = intel_dpd_is_edp(dev);
  7318. if (has_edp_a(dev))
  7319. intel_dp_init(dev, DP_A, PORT_A);
  7320. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7321. /* PCH SDVOB multiplex with HDMIB */
  7322. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7323. if (!found)
  7324. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7325. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7326. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7327. }
  7328. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7329. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7330. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7331. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7332. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7333. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7334. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7335. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7336. } else if (IS_VALLEYVIEW(dev)) {
  7337. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7338. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7339. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7340. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7341. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7342. PORT_B);
  7343. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7344. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7345. }
  7346. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7347. bool found = false;
  7348. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7349. DRM_DEBUG_KMS("probing SDVOB\n");
  7350. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7351. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7352. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7353. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7354. }
  7355. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7356. intel_dp_init(dev, DP_B, PORT_B);
  7357. }
  7358. /* Before G4X SDVOC doesn't have its own detect register */
  7359. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7360. DRM_DEBUG_KMS("probing SDVOC\n");
  7361. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7362. }
  7363. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7364. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7365. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7366. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7367. }
  7368. if (SUPPORTS_INTEGRATED_DP(dev))
  7369. intel_dp_init(dev, DP_C, PORT_C);
  7370. }
  7371. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7372. (I915_READ(DP_D) & DP_DETECTED))
  7373. intel_dp_init(dev, DP_D, PORT_D);
  7374. } else if (IS_GEN2(dev))
  7375. intel_dvo_init(dev);
  7376. if (SUPPORTS_TV(dev))
  7377. intel_tv_init(dev);
  7378. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7379. encoder->base.possible_crtcs = encoder->crtc_mask;
  7380. encoder->base.possible_clones =
  7381. intel_encoder_clones(encoder);
  7382. }
  7383. intel_init_pch_refclk(dev);
  7384. drm_helper_move_panel_connectors_to_head(dev);
  7385. }
  7386. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7387. {
  7388. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7389. drm_framebuffer_cleanup(fb);
  7390. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7391. kfree(intel_fb);
  7392. }
  7393. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7394. struct drm_file *file,
  7395. unsigned int *handle)
  7396. {
  7397. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7398. struct drm_i915_gem_object *obj = intel_fb->obj;
  7399. return drm_gem_handle_create(file, &obj->base, handle);
  7400. }
  7401. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7402. .destroy = intel_user_framebuffer_destroy,
  7403. .create_handle = intel_user_framebuffer_create_handle,
  7404. };
  7405. int intel_framebuffer_init(struct drm_device *dev,
  7406. struct intel_framebuffer *intel_fb,
  7407. struct drm_mode_fb_cmd2 *mode_cmd,
  7408. struct drm_i915_gem_object *obj)
  7409. {
  7410. int ret;
  7411. if (obj->tiling_mode == I915_TILING_Y) {
  7412. DRM_DEBUG("hardware does not support tiling Y\n");
  7413. return -EINVAL;
  7414. }
  7415. if (mode_cmd->pitches[0] & 63) {
  7416. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7417. mode_cmd->pitches[0]);
  7418. return -EINVAL;
  7419. }
  7420. /* FIXME <= Gen4 stride limits are bit unclear */
  7421. if (mode_cmd->pitches[0] > 32768) {
  7422. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7423. mode_cmd->pitches[0]);
  7424. return -EINVAL;
  7425. }
  7426. if (obj->tiling_mode != I915_TILING_NONE &&
  7427. mode_cmd->pitches[0] != obj->stride) {
  7428. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7429. mode_cmd->pitches[0], obj->stride);
  7430. return -EINVAL;
  7431. }
  7432. /* Reject formats not supported by any plane early. */
  7433. switch (mode_cmd->pixel_format) {
  7434. case DRM_FORMAT_C8:
  7435. case DRM_FORMAT_RGB565:
  7436. case DRM_FORMAT_XRGB8888:
  7437. case DRM_FORMAT_ARGB8888:
  7438. break;
  7439. case DRM_FORMAT_XRGB1555:
  7440. case DRM_FORMAT_ARGB1555:
  7441. if (INTEL_INFO(dev)->gen > 3) {
  7442. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7443. return -EINVAL;
  7444. }
  7445. break;
  7446. case DRM_FORMAT_XBGR8888:
  7447. case DRM_FORMAT_ABGR8888:
  7448. case DRM_FORMAT_XRGB2101010:
  7449. case DRM_FORMAT_ARGB2101010:
  7450. case DRM_FORMAT_XBGR2101010:
  7451. case DRM_FORMAT_ABGR2101010:
  7452. if (INTEL_INFO(dev)->gen < 4) {
  7453. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7454. return -EINVAL;
  7455. }
  7456. break;
  7457. case DRM_FORMAT_YUYV:
  7458. case DRM_FORMAT_UYVY:
  7459. case DRM_FORMAT_YVYU:
  7460. case DRM_FORMAT_VYUY:
  7461. if (INTEL_INFO(dev)->gen < 5) {
  7462. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7463. return -EINVAL;
  7464. }
  7465. break;
  7466. default:
  7467. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7468. return -EINVAL;
  7469. }
  7470. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7471. if (mode_cmd->offsets[0] != 0)
  7472. return -EINVAL;
  7473. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7474. intel_fb->obj = obj;
  7475. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7476. if (ret) {
  7477. DRM_ERROR("framebuffer init failed %d\n", ret);
  7478. return ret;
  7479. }
  7480. return 0;
  7481. }
  7482. static struct drm_framebuffer *
  7483. intel_user_framebuffer_create(struct drm_device *dev,
  7484. struct drm_file *filp,
  7485. struct drm_mode_fb_cmd2 *mode_cmd)
  7486. {
  7487. struct drm_i915_gem_object *obj;
  7488. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7489. mode_cmd->handles[0]));
  7490. if (&obj->base == NULL)
  7491. return ERR_PTR(-ENOENT);
  7492. return intel_framebuffer_create(dev, mode_cmd, obj);
  7493. }
  7494. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7495. .fb_create = intel_user_framebuffer_create,
  7496. .output_poll_changed = intel_fb_output_poll_changed,
  7497. };
  7498. /* Set up chip specific display functions */
  7499. static void intel_init_display(struct drm_device *dev)
  7500. {
  7501. struct drm_i915_private *dev_priv = dev->dev_private;
  7502. if (HAS_DDI(dev)) {
  7503. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7504. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7505. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7506. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7507. dev_priv->display.off = haswell_crtc_off;
  7508. dev_priv->display.update_plane = ironlake_update_plane;
  7509. } else if (HAS_PCH_SPLIT(dev)) {
  7510. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7511. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7512. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7513. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7514. dev_priv->display.off = ironlake_crtc_off;
  7515. dev_priv->display.update_plane = ironlake_update_plane;
  7516. } else if (IS_VALLEYVIEW(dev)) {
  7517. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7518. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7519. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7520. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7521. dev_priv->display.off = i9xx_crtc_off;
  7522. dev_priv->display.update_plane = i9xx_update_plane;
  7523. } else {
  7524. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7525. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7526. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7527. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7528. dev_priv->display.off = i9xx_crtc_off;
  7529. dev_priv->display.update_plane = i9xx_update_plane;
  7530. }
  7531. /* Returns the core display clock speed */
  7532. if (IS_VALLEYVIEW(dev))
  7533. dev_priv->display.get_display_clock_speed =
  7534. valleyview_get_display_clock_speed;
  7535. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7536. dev_priv->display.get_display_clock_speed =
  7537. i945_get_display_clock_speed;
  7538. else if (IS_I915G(dev))
  7539. dev_priv->display.get_display_clock_speed =
  7540. i915_get_display_clock_speed;
  7541. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7542. dev_priv->display.get_display_clock_speed =
  7543. i9xx_misc_get_display_clock_speed;
  7544. else if (IS_I915GM(dev))
  7545. dev_priv->display.get_display_clock_speed =
  7546. i915gm_get_display_clock_speed;
  7547. else if (IS_I865G(dev))
  7548. dev_priv->display.get_display_clock_speed =
  7549. i865_get_display_clock_speed;
  7550. else if (IS_I85X(dev))
  7551. dev_priv->display.get_display_clock_speed =
  7552. i855_get_display_clock_speed;
  7553. else /* 852, 830 */
  7554. dev_priv->display.get_display_clock_speed =
  7555. i830_get_display_clock_speed;
  7556. if (HAS_PCH_SPLIT(dev)) {
  7557. if (IS_GEN5(dev)) {
  7558. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7559. dev_priv->display.write_eld = ironlake_write_eld;
  7560. } else if (IS_GEN6(dev)) {
  7561. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7562. dev_priv->display.write_eld = ironlake_write_eld;
  7563. } else if (IS_IVYBRIDGE(dev)) {
  7564. /* FIXME: detect B0+ stepping and use auto training */
  7565. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7566. dev_priv->display.write_eld = ironlake_write_eld;
  7567. dev_priv->display.modeset_global_resources =
  7568. ivb_modeset_global_resources;
  7569. } else if (IS_HASWELL(dev)) {
  7570. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7571. dev_priv->display.write_eld = haswell_write_eld;
  7572. dev_priv->display.modeset_global_resources =
  7573. haswell_modeset_global_resources;
  7574. }
  7575. } else if (IS_G4X(dev)) {
  7576. dev_priv->display.write_eld = g4x_write_eld;
  7577. }
  7578. /* Default just returns -ENODEV to indicate unsupported */
  7579. dev_priv->display.queue_flip = intel_default_queue_flip;
  7580. switch (INTEL_INFO(dev)->gen) {
  7581. case 2:
  7582. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7583. break;
  7584. case 3:
  7585. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7586. break;
  7587. case 4:
  7588. case 5:
  7589. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7590. break;
  7591. case 6:
  7592. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7593. break;
  7594. case 7:
  7595. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7596. break;
  7597. }
  7598. }
  7599. /*
  7600. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7601. * resume, or other times. This quirk makes sure that's the case for
  7602. * affected systems.
  7603. */
  7604. static void quirk_pipea_force(struct drm_device *dev)
  7605. {
  7606. struct drm_i915_private *dev_priv = dev->dev_private;
  7607. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7608. DRM_INFO("applying pipe a force quirk\n");
  7609. }
  7610. /*
  7611. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7612. */
  7613. static void quirk_ssc_force_disable(struct drm_device *dev)
  7614. {
  7615. struct drm_i915_private *dev_priv = dev->dev_private;
  7616. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7617. DRM_INFO("applying lvds SSC disable quirk\n");
  7618. }
  7619. /*
  7620. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7621. * brightness value
  7622. */
  7623. static void quirk_invert_brightness(struct drm_device *dev)
  7624. {
  7625. struct drm_i915_private *dev_priv = dev->dev_private;
  7626. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7627. DRM_INFO("applying inverted panel brightness quirk\n");
  7628. }
  7629. struct intel_quirk {
  7630. int device;
  7631. int subsystem_vendor;
  7632. int subsystem_device;
  7633. void (*hook)(struct drm_device *dev);
  7634. };
  7635. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7636. struct intel_dmi_quirk {
  7637. void (*hook)(struct drm_device *dev);
  7638. const struct dmi_system_id (*dmi_id_list)[];
  7639. };
  7640. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7641. {
  7642. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7643. return 1;
  7644. }
  7645. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7646. {
  7647. .dmi_id_list = &(const struct dmi_system_id[]) {
  7648. {
  7649. .callback = intel_dmi_reverse_brightness,
  7650. .ident = "NCR Corporation",
  7651. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7652. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7653. },
  7654. },
  7655. { } /* terminating entry */
  7656. },
  7657. .hook = quirk_invert_brightness,
  7658. },
  7659. };
  7660. static struct intel_quirk intel_quirks[] = {
  7661. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7662. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7663. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7664. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7665. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7666. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7667. /* 830/845 need to leave pipe A & dpll A up */
  7668. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7669. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7670. /* Lenovo U160 cannot use SSC on LVDS */
  7671. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7672. /* Sony Vaio Y cannot use SSC on LVDS */
  7673. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7674. /* Acer Aspire 5734Z must invert backlight brightness */
  7675. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7676. /* Acer/eMachines G725 */
  7677. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7678. /* Acer/eMachines e725 */
  7679. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7680. /* Acer/Packard Bell NCL20 */
  7681. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7682. /* Acer Aspire 4736Z */
  7683. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7684. };
  7685. static void intel_init_quirks(struct drm_device *dev)
  7686. {
  7687. struct pci_dev *d = dev->pdev;
  7688. int i;
  7689. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7690. struct intel_quirk *q = &intel_quirks[i];
  7691. if (d->device == q->device &&
  7692. (d->subsystem_vendor == q->subsystem_vendor ||
  7693. q->subsystem_vendor == PCI_ANY_ID) &&
  7694. (d->subsystem_device == q->subsystem_device ||
  7695. q->subsystem_device == PCI_ANY_ID))
  7696. q->hook(dev);
  7697. }
  7698. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7699. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7700. intel_dmi_quirks[i].hook(dev);
  7701. }
  7702. }
  7703. /* Disable the VGA plane that we never use */
  7704. static void i915_disable_vga(struct drm_device *dev)
  7705. {
  7706. struct drm_i915_private *dev_priv = dev->dev_private;
  7707. u8 sr1;
  7708. u32 vga_reg = i915_vgacntrl_reg(dev);
  7709. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7710. outb(SR01, VGA_SR_INDEX);
  7711. sr1 = inb(VGA_SR_DATA);
  7712. outb(sr1 | 1<<5, VGA_SR_DATA);
  7713. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7714. udelay(300);
  7715. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7716. POSTING_READ(vga_reg);
  7717. }
  7718. void intel_modeset_init_hw(struct drm_device *dev)
  7719. {
  7720. intel_init_power_well(dev);
  7721. intel_prepare_ddi(dev);
  7722. intel_init_clock_gating(dev);
  7723. mutex_lock(&dev->struct_mutex);
  7724. intel_enable_gt_powersave(dev);
  7725. mutex_unlock(&dev->struct_mutex);
  7726. }
  7727. void intel_modeset_suspend_hw(struct drm_device *dev)
  7728. {
  7729. intel_suspend_hw(dev);
  7730. }
  7731. void intel_modeset_init(struct drm_device *dev)
  7732. {
  7733. struct drm_i915_private *dev_priv = dev->dev_private;
  7734. int i, j, ret;
  7735. drm_mode_config_init(dev);
  7736. dev->mode_config.min_width = 0;
  7737. dev->mode_config.min_height = 0;
  7738. dev->mode_config.preferred_depth = 24;
  7739. dev->mode_config.prefer_shadow = 1;
  7740. dev->mode_config.funcs = &intel_mode_funcs;
  7741. intel_init_quirks(dev);
  7742. intel_init_pm(dev);
  7743. if (INTEL_INFO(dev)->num_pipes == 0)
  7744. return;
  7745. intel_init_display(dev);
  7746. if (IS_GEN2(dev)) {
  7747. dev->mode_config.max_width = 2048;
  7748. dev->mode_config.max_height = 2048;
  7749. } else if (IS_GEN3(dev)) {
  7750. dev->mode_config.max_width = 4096;
  7751. dev->mode_config.max_height = 4096;
  7752. } else {
  7753. dev->mode_config.max_width = 8192;
  7754. dev->mode_config.max_height = 8192;
  7755. }
  7756. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7757. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7758. INTEL_INFO(dev)->num_pipes,
  7759. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7760. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7761. intel_crtc_init(dev, i);
  7762. for (j = 0; j < dev_priv->num_plane; j++) {
  7763. ret = intel_plane_init(dev, i, j);
  7764. if (ret)
  7765. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7766. pipe_name(i), sprite_name(i, j), ret);
  7767. }
  7768. }
  7769. intel_cpu_pll_init(dev);
  7770. intel_pch_pll_init(dev);
  7771. /* Just disable it once at startup */
  7772. i915_disable_vga(dev);
  7773. intel_setup_outputs(dev);
  7774. /* Just in case the BIOS is doing something questionable. */
  7775. intel_disable_fbc(dev);
  7776. }
  7777. static void
  7778. intel_connector_break_all_links(struct intel_connector *connector)
  7779. {
  7780. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7781. connector->base.encoder = NULL;
  7782. connector->encoder->connectors_active = false;
  7783. connector->encoder->base.crtc = NULL;
  7784. }
  7785. static void intel_enable_pipe_a(struct drm_device *dev)
  7786. {
  7787. struct intel_connector *connector;
  7788. struct drm_connector *crt = NULL;
  7789. struct intel_load_detect_pipe load_detect_temp;
  7790. /* We can't just switch on the pipe A, we need to set things up with a
  7791. * proper mode and output configuration. As a gross hack, enable pipe A
  7792. * by enabling the load detect pipe once. */
  7793. list_for_each_entry(connector,
  7794. &dev->mode_config.connector_list,
  7795. base.head) {
  7796. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7797. crt = &connector->base;
  7798. break;
  7799. }
  7800. }
  7801. if (!crt)
  7802. return;
  7803. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7804. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7805. }
  7806. static bool
  7807. intel_check_plane_mapping(struct intel_crtc *crtc)
  7808. {
  7809. struct drm_device *dev = crtc->base.dev;
  7810. struct drm_i915_private *dev_priv = dev->dev_private;
  7811. u32 reg, val;
  7812. if (INTEL_INFO(dev)->num_pipes == 1)
  7813. return true;
  7814. reg = DSPCNTR(!crtc->plane);
  7815. val = I915_READ(reg);
  7816. if ((val & DISPLAY_PLANE_ENABLE) &&
  7817. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7818. return false;
  7819. return true;
  7820. }
  7821. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7822. {
  7823. struct drm_device *dev = crtc->base.dev;
  7824. struct drm_i915_private *dev_priv = dev->dev_private;
  7825. u32 reg;
  7826. /* Clear any frame start delays used for debugging left by the BIOS */
  7827. reg = PIPECONF(crtc->config.cpu_transcoder);
  7828. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7829. /* We need to sanitize the plane -> pipe mapping first because this will
  7830. * disable the crtc (and hence change the state) if it is wrong. Note
  7831. * that gen4+ has a fixed plane -> pipe mapping. */
  7832. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7833. struct intel_connector *connector;
  7834. bool plane;
  7835. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7836. crtc->base.base.id);
  7837. /* Pipe has the wrong plane attached and the plane is active.
  7838. * Temporarily change the plane mapping and disable everything
  7839. * ... */
  7840. plane = crtc->plane;
  7841. crtc->plane = !plane;
  7842. dev_priv->display.crtc_disable(&crtc->base);
  7843. crtc->plane = plane;
  7844. /* ... and break all links. */
  7845. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7846. base.head) {
  7847. if (connector->encoder->base.crtc != &crtc->base)
  7848. continue;
  7849. intel_connector_break_all_links(connector);
  7850. }
  7851. WARN_ON(crtc->active);
  7852. crtc->base.enabled = false;
  7853. }
  7854. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7855. crtc->pipe == PIPE_A && !crtc->active) {
  7856. /* BIOS forgot to enable pipe A, this mostly happens after
  7857. * resume. Force-enable the pipe to fix this, the update_dpms
  7858. * call below we restore the pipe to the right state, but leave
  7859. * the required bits on. */
  7860. intel_enable_pipe_a(dev);
  7861. }
  7862. /* Adjust the state of the output pipe according to whether we
  7863. * have active connectors/encoders. */
  7864. intel_crtc_update_dpms(&crtc->base);
  7865. if (crtc->active != crtc->base.enabled) {
  7866. struct intel_encoder *encoder;
  7867. /* This can happen either due to bugs in the get_hw_state
  7868. * functions or because the pipe is force-enabled due to the
  7869. * pipe A quirk. */
  7870. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7871. crtc->base.base.id,
  7872. crtc->base.enabled ? "enabled" : "disabled",
  7873. crtc->active ? "enabled" : "disabled");
  7874. crtc->base.enabled = crtc->active;
  7875. /* Because we only establish the connector -> encoder ->
  7876. * crtc links if something is active, this means the
  7877. * crtc is now deactivated. Break the links. connector
  7878. * -> encoder links are only establish when things are
  7879. * actually up, hence no need to break them. */
  7880. WARN_ON(crtc->active);
  7881. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7882. WARN_ON(encoder->connectors_active);
  7883. encoder->base.crtc = NULL;
  7884. }
  7885. }
  7886. }
  7887. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7888. {
  7889. struct intel_connector *connector;
  7890. struct drm_device *dev = encoder->base.dev;
  7891. /* We need to check both for a crtc link (meaning that the
  7892. * encoder is active and trying to read from a pipe) and the
  7893. * pipe itself being active. */
  7894. bool has_active_crtc = encoder->base.crtc &&
  7895. to_intel_crtc(encoder->base.crtc)->active;
  7896. if (encoder->connectors_active && !has_active_crtc) {
  7897. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7898. encoder->base.base.id,
  7899. drm_get_encoder_name(&encoder->base));
  7900. /* Connector is active, but has no active pipe. This is
  7901. * fallout from our resume register restoring. Disable
  7902. * the encoder manually again. */
  7903. if (encoder->base.crtc) {
  7904. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7905. encoder->base.base.id,
  7906. drm_get_encoder_name(&encoder->base));
  7907. encoder->disable(encoder);
  7908. }
  7909. /* Inconsistent output/port/pipe state happens presumably due to
  7910. * a bug in one of the get_hw_state functions. Or someplace else
  7911. * in our code, like the register restore mess on resume. Clamp
  7912. * things to off as a safer default. */
  7913. list_for_each_entry(connector,
  7914. &dev->mode_config.connector_list,
  7915. base.head) {
  7916. if (connector->encoder != encoder)
  7917. continue;
  7918. intel_connector_break_all_links(connector);
  7919. }
  7920. }
  7921. /* Enabled encoders without active connectors will be fixed in
  7922. * the crtc fixup. */
  7923. }
  7924. void i915_redisable_vga(struct drm_device *dev)
  7925. {
  7926. struct drm_i915_private *dev_priv = dev->dev_private;
  7927. u32 vga_reg = i915_vgacntrl_reg(dev);
  7928. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7929. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7930. i915_disable_vga(dev);
  7931. }
  7932. }
  7933. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7934. * and i915 state tracking structures. */
  7935. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7936. bool force_restore)
  7937. {
  7938. struct drm_i915_private *dev_priv = dev->dev_private;
  7939. enum pipe pipe;
  7940. u32 tmp;
  7941. struct drm_plane *plane;
  7942. struct intel_crtc *crtc;
  7943. struct intel_encoder *encoder;
  7944. struct intel_connector *connector;
  7945. if (HAS_DDI(dev)) {
  7946. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7947. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7948. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7949. case TRANS_DDI_EDP_INPUT_A_ON:
  7950. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7951. pipe = PIPE_A;
  7952. break;
  7953. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7954. pipe = PIPE_B;
  7955. break;
  7956. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7957. pipe = PIPE_C;
  7958. break;
  7959. default:
  7960. /* A bogus value has been programmed, disable
  7961. * the transcoder */
  7962. WARN(1, "Bogus eDP source %08x\n", tmp);
  7963. intel_ddi_disable_transcoder_func(dev_priv,
  7964. TRANSCODER_EDP);
  7965. goto setup_pipes;
  7966. }
  7967. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7968. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7969. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7970. pipe_name(pipe));
  7971. }
  7972. }
  7973. setup_pipes:
  7974. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7975. base.head) {
  7976. enum transcoder tmp = crtc->config.cpu_transcoder;
  7977. memset(&crtc->config, 0, sizeof(crtc->config));
  7978. crtc->config.cpu_transcoder = tmp;
  7979. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7980. &crtc->config);
  7981. crtc->base.enabled = crtc->active;
  7982. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7983. crtc->base.base.id,
  7984. crtc->active ? "enabled" : "disabled");
  7985. }
  7986. if (HAS_DDI(dev))
  7987. intel_ddi_setup_hw_pll_state(dev);
  7988. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7989. base.head) {
  7990. pipe = 0;
  7991. if (encoder->get_hw_state(encoder, &pipe)) {
  7992. encoder->base.crtc =
  7993. dev_priv->pipe_to_crtc_mapping[pipe];
  7994. } else {
  7995. encoder->base.crtc = NULL;
  7996. }
  7997. encoder->connectors_active = false;
  7998. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7999. encoder->base.base.id,
  8000. drm_get_encoder_name(&encoder->base),
  8001. encoder->base.crtc ? "enabled" : "disabled",
  8002. pipe);
  8003. }
  8004. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8005. base.head) {
  8006. if (connector->get_hw_state(connector)) {
  8007. connector->base.dpms = DRM_MODE_DPMS_ON;
  8008. connector->encoder->connectors_active = true;
  8009. connector->base.encoder = &connector->encoder->base;
  8010. } else {
  8011. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8012. connector->base.encoder = NULL;
  8013. }
  8014. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8015. connector->base.base.id,
  8016. drm_get_connector_name(&connector->base),
  8017. connector->base.encoder ? "enabled" : "disabled");
  8018. }
  8019. /* HW state is read out, now we need to sanitize this mess. */
  8020. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8021. base.head) {
  8022. intel_sanitize_encoder(encoder);
  8023. }
  8024. for_each_pipe(pipe) {
  8025. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8026. intel_sanitize_crtc(crtc);
  8027. }
  8028. if (force_restore) {
  8029. /*
  8030. * We need to use raw interfaces for restoring state to avoid
  8031. * checking (bogus) intermediate states.
  8032. */
  8033. for_each_pipe(pipe) {
  8034. struct drm_crtc *crtc =
  8035. dev_priv->pipe_to_crtc_mapping[pipe];
  8036. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8037. crtc->fb);
  8038. }
  8039. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8040. intel_plane_restore(plane);
  8041. i915_redisable_vga(dev);
  8042. } else {
  8043. intel_modeset_update_staged_output_state(dev);
  8044. }
  8045. intel_modeset_check_state(dev);
  8046. drm_mode_config_reset(dev);
  8047. }
  8048. void intel_modeset_gem_init(struct drm_device *dev)
  8049. {
  8050. intel_modeset_init_hw(dev);
  8051. intel_setup_overlay(dev);
  8052. intel_modeset_setup_hw_state(dev, false);
  8053. }
  8054. void intel_modeset_cleanup(struct drm_device *dev)
  8055. {
  8056. struct drm_i915_private *dev_priv = dev->dev_private;
  8057. struct drm_crtc *crtc;
  8058. struct intel_crtc *intel_crtc;
  8059. /*
  8060. * Interrupts and polling as the first thing to avoid creating havoc.
  8061. * Too much stuff here (turning of rps, connectors, ...) would
  8062. * experience fancy races otherwise.
  8063. */
  8064. drm_irq_uninstall(dev);
  8065. cancel_work_sync(&dev_priv->hotplug_work);
  8066. /*
  8067. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8068. * poll handlers. Hence disable polling after hpd handling is shut down.
  8069. */
  8070. drm_kms_helper_poll_fini(dev);
  8071. mutex_lock(&dev->struct_mutex);
  8072. intel_unregister_dsm_handler();
  8073. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8074. /* Skip inactive CRTCs */
  8075. if (!crtc->fb)
  8076. continue;
  8077. intel_crtc = to_intel_crtc(crtc);
  8078. intel_increase_pllclock(crtc);
  8079. }
  8080. intel_disable_fbc(dev);
  8081. intel_disable_gt_powersave(dev);
  8082. ironlake_teardown_rc6(dev);
  8083. mutex_unlock(&dev->struct_mutex);
  8084. /* flush any delayed tasks or pending work */
  8085. flush_scheduled_work();
  8086. /* destroy backlight, if any, before the connectors */
  8087. intel_panel_destroy_backlight(dev);
  8088. drm_mode_config_cleanup(dev);
  8089. intel_cleanup_overlay(dev);
  8090. }
  8091. /*
  8092. * Return which encoder is currently attached for connector.
  8093. */
  8094. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8095. {
  8096. return &intel_attached_encoder(connector)->base;
  8097. }
  8098. void intel_connector_attach_encoder(struct intel_connector *connector,
  8099. struct intel_encoder *encoder)
  8100. {
  8101. connector->encoder = encoder;
  8102. drm_mode_connector_attach_encoder(&connector->base,
  8103. &encoder->base);
  8104. }
  8105. /*
  8106. * set vga decode state - true == enable VGA decode
  8107. */
  8108. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8109. {
  8110. struct drm_i915_private *dev_priv = dev->dev_private;
  8111. u16 gmch_ctrl;
  8112. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8113. if (state)
  8114. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8115. else
  8116. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8117. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8118. return 0;
  8119. }
  8120. #ifdef CONFIG_DEBUG_FS
  8121. #include <linux/seq_file.h>
  8122. struct intel_display_error_state {
  8123. u32 power_well_driver;
  8124. struct intel_cursor_error_state {
  8125. u32 control;
  8126. u32 position;
  8127. u32 base;
  8128. u32 size;
  8129. } cursor[I915_MAX_PIPES];
  8130. struct intel_pipe_error_state {
  8131. enum transcoder cpu_transcoder;
  8132. u32 conf;
  8133. u32 source;
  8134. u32 htotal;
  8135. u32 hblank;
  8136. u32 hsync;
  8137. u32 vtotal;
  8138. u32 vblank;
  8139. u32 vsync;
  8140. } pipe[I915_MAX_PIPES];
  8141. struct intel_plane_error_state {
  8142. u32 control;
  8143. u32 stride;
  8144. u32 size;
  8145. u32 pos;
  8146. u32 addr;
  8147. u32 surface;
  8148. u32 tile_offset;
  8149. } plane[I915_MAX_PIPES];
  8150. };
  8151. struct intel_display_error_state *
  8152. intel_display_capture_error_state(struct drm_device *dev)
  8153. {
  8154. drm_i915_private_t *dev_priv = dev->dev_private;
  8155. struct intel_display_error_state *error;
  8156. enum transcoder cpu_transcoder;
  8157. int i;
  8158. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8159. if (error == NULL)
  8160. return NULL;
  8161. if (HAS_POWER_WELL(dev))
  8162. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8163. for_each_pipe(i) {
  8164. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8165. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8166. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8167. error->cursor[i].control = I915_READ(CURCNTR(i));
  8168. error->cursor[i].position = I915_READ(CURPOS(i));
  8169. error->cursor[i].base = I915_READ(CURBASE(i));
  8170. } else {
  8171. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8172. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8173. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8174. }
  8175. error->plane[i].control = I915_READ(DSPCNTR(i));
  8176. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8177. if (INTEL_INFO(dev)->gen <= 3) {
  8178. error->plane[i].size = I915_READ(DSPSIZE(i));
  8179. error->plane[i].pos = I915_READ(DSPPOS(i));
  8180. }
  8181. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8182. error->plane[i].addr = I915_READ(DSPADDR(i));
  8183. if (INTEL_INFO(dev)->gen >= 4) {
  8184. error->plane[i].surface = I915_READ(DSPSURF(i));
  8185. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8186. }
  8187. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8188. error->pipe[i].source = I915_READ(PIPESRC(i));
  8189. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8190. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8191. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8192. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8193. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8194. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8195. }
  8196. /* In the code above we read the registers without checking if the power
  8197. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8198. * prevent the next I915_WRITE from detecting it and printing an error
  8199. * message. */
  8200. if (HAS_POWER_WELL(dev))
  8201. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8202. return error;
  8203. }
  8204. void
  8205. intel_display_print_error_state(struct seq_file *m,
  8206. struct drm_device *dev,
  8207. struct intel_display_error_state *error)
  8208. {
  8209. int i;
  8210. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8211. if (HAS_POWER_WELL(dev))
  8212. seq_printf(m, "PWR_WELL_CTL2: %08x\n",
  8213. error->power_well_driver);
  8214. for_each_pipe(i) {
  8215. seq_printf(m, "Pipe [%d]:\n", i);
  8216. seq_printf(m, " CPU transcoder: %c\n",
  8217. transcoder_name(error->pipe[i].cpu_transcoder));
  8218. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8219. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8220. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8221. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8222. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8223. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8224. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8225. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8226. seq_printf(m, "Plane [%d]:\n", i);
  8227. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8228. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8229. if (INTEL_INFO(dev)->gen <= 3) {
  8230. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8231. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8232. }
  8233. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8234. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8235. if (INTEL_INFO(dev)->gen >= 4) {
  8236. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8237. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8238. }
  8239. seq_printf(m, "Cursor [%d]:\n", i);
  8240. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8241. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8242. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8243. }
  8244. }
  8245. #endif