xfs_buf.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include "xfs_linux.h"
  56. /*
  57. * File wide globals
  58. */
  59. STATIC kmem_cache_t *pagebuf_zone;
  60. STATIC kmem_shaker_t pagebuf_shake;
  61. STATIC int xfsbufd_wakeup(int, unsigned int);
  62. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  63. STATIC struct workqueue_struct *xfslogd_workqueue;
  64. struct workqueue_struct *xfsdatad_workqueue;
  65. /*
  66. * Pagebuf debugging
  67. */
  68. #ifdef PAGEBUF_TRACE
  69. void
  70. pagebuf_trace(
  71. xfs_buf_t *pb,
  72. char *id,
  73. void *data,
  74. void *ra)
  75. {
  76. ktrace_enter(pagebuf_trace_buf,
  77. pb, id,
  78. (void *)(unsigned long)pb->pb_flags,
  79. (void *)(unsigned long)pb->pb_hold.counter,
  80. (void *)(unsigned long)pb->pb_sema.count.counter,
  81. (void *)current,
  82. data, ra,
  83. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  84. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  85. (void *)(unsigned long)pb->pb_buffer_length,
  86. NULL, NULL, NULL, NULL, NULL);
  87. }
  88. ktrace_t *pagebuf_trace_buf;
  89. #define PAGEBUF_TRACE_SIZE 4096
  90. #define PB_TRACE(pb, id, data) \
  91. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  92. #else
  93. #define PB_TRACE(pb, id, data) do { } while (0)
  94. #endif
  95. #ifdef PAGEBUF_LOCK_TRACKING
  96. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  97. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  98. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  99. #else
  100. # define PB_SET_OWNER(pb) do { } while (0)
  101. # define PB_CLEAR_OWNER(pb) do { } while (0)
  102. # define PB_GET_OWNER(pb) do { } while (0)
  103. #endif
  104. /*
  105. * Pagebuf allocation / freeing.
  106. */
  107. #define pb_to_gfp(flags) \
  108. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  109. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  110. #define pb_to_km(flags) \
  111. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  112. #define pagebuf_allocate(flags) \
  113. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  114. #define pagebuf_deallocate(pb) \
  115. kmem_zone_free(pagebuf_zone, (pb));
  116. /*
  117. * Page Region interfaces.
  118. *
  119. * For pages in filesystems where the blocksize is smaller than the
  120. * pagesize, we use the page->private field (long) to hold a bitmap
  121. * of uptodate regions within the page.
  122. *
  123. * Each such region is "bytes per page / bits per long" bytes long.
  124. *
  125. * NBPPR == number-of-bytes-per-page-region
  126. * BTOPR == bytes-to-page-region (rounded up)
  127. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  128. */
  129. #if (BITS_PER_LONG == 32)
  130. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  131. #elif (BITS_PER_LONG == 64)
  132. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  133. #else
  134. #error BITS_PER_LONG must be 32 or 64
  135. #endif
  136. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  137. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  138. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  139. STATIC unsigned long
  140. page_region_mask(
  141. size_t offset,
  142. size_t length)
  143. {
  144. unsigned long mask;
  145. int first, final;
  146. first = BTOPR(offset);
  147. final = BTOPRT(offset + length - 1);
  148. first = min(first, final);
  149. mask = ~0UL;
  150. mask <<= BITS_PER_LONG - (final - first);
  151. mask >>= BITS_PER_LONG - (final);
  152. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  153. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  154. return mask;
  155. }
  156. STATIC inline void
  157. set_page_region(
  158. struct page *page,
  159. size_t offset,
  160. size_t length)
  161. {
  162. page->private |= page_region_mask(offset, length);
  163. if (page->private == ~0UL)
  164. SetPageUptodate(page);
  165. }
  166. STATIC inline int
  167. test_page_region(
  168. struct page *page,
  169. size_t offset,
  170. size_t length)
  171. {
  172. unsigned long mask = page_region_mask(offset, length);
  173. return (mask && (page->private & mask) == mask);
  174. }
  175. /*
  176. * Mapping of multi-page buffers into contiguous virtual space
  177. */
  178. typedef struct a_list {
  179. void *vm_addr;
  180. struct a_list *next;
  181. } a_list_t;
  182. STATIC a_list_t *as_free_head;
  183. STATIC int as_list_len;
  184. STATIC DEFINE_SPINLOCK(as_lock);
  185. /*
  186. * Try to batch vunmaps because they are costly.
  187. */
  188. STATIC void
  189. free_address(
  190. void *addr)
  191. {
  192. a_list_t *aentry;
  193. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  194. if (likely(aentry)) {
  195. spin_lock(&as_lock);
  196. aentry->next = as_free_head;
  197. aentry->vm_addr = addr;
  198. as_free_head = aentry;
  199. as_list_len++;
  200. spin_unlock(&as_lock);
  201. } else {
  202. vunmap(addr);
  203. }
  204. }
  205. STATIC void
  206. purge_addresses(void)
  207. {
  208. a_list_t *aentry, *old;
  209. if (as_free_head == NULL)
  210. return;
  211. spin_lock(&as_lock);
  212. aentry = as_free_head;
  213. as_free_head = NULL;
  214. as_list_len = 0;
  215. spin_unlock(&as_lock);
  216. while ((old = aentry) != NULL) {
  217. vunmap(aentry->vm_addr);
  218. aentry = aentry->next;
  219. kfree(old);
  220. }
  221. }
  222. /*
  223. * Internal pagebuf object manipulation
  224. */
  225. STATIC void
  226. _pagebuf_initialize(
  227. xfs_buf_t *pb,
  228. xfs_buftarg_t *target,
  229. loff_t range_base,
  230. size_t range_length,
  231. page_buf_flags_t flags)
  232. {
  233. /*
  234. * We don't want certain flags to appear in pb->pb_flags.
  235. */
  236. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  237. memset(pb, 0, sizeof(xfs_buf_t));
  238. atomic_set(&pb->pb_hold, 1);
  239. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  240. INIT_LIST_HEAD(&pb->pb_list);
  241. INIT_LIST_HEAD(&pb->pb_hash_list);
  242. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  243. PB_SET_OWNER(pb);
  244. pb->pb_target = target;
  245. pb->pb_file_offset = range_base;
  246. /*
  247. * Set buffer_length and count_desired to the same value initially.
  248. * I/O routines should use count_desired, which will be the same in
  249. * most cases but may be reset (e.g. XFS recovery).
  250. */
  251. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  252. pb->pb_flags = flags | PBF_NONE;
  253. pb->pb_bn = XFS_BUF_DADDR_NULL;
  254. atomic_set(&pb->pb_pin_count, 0);
  255. init_waitqueue_head(&pb->pb_waiters);
  256. XFS_STATS_INC(pb_create);
  257. PB_TRACE(pb, "initialize", target);
  258. }
  259. /*
  260. * Allocate a page array capable of holding a specified number
  261. * of pages, and point the page buf at it.
  262. */
  263. STATIC int
  264. _pagebuf_get_pages(
  265. xfs_buf_t *pb,
  266. int page_count,
  267. page_buf_flags_t flags)
  268. {
  269. /* Make sure that we have a page list */
  270. if (pb->pb_pages == NULL) {
  271. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  272. pb->pb_page_count = page_count;
  273. if (page_count <= PB_PAGES) {
  274. pb->pb_pages = pb->pb_page_array;
  275. } else {
  276. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  277. page_count, pb_to_km(flags));
  278. if (pb->pb_pages == NULL)
  279. return -ENOMEM;
  280. }
  281. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  282. }
  283. return 0;
  284. }
  285. /*
  286. * Frees pb_pages if it was malloced.
  287. */
  288. STATIC void
  289. _pagebuf_free_pages(
  290. xfs_buf_t *bp)
  291. {
  292. if (bp->pb_pages != bp->pb_page_array) {
  293. kmem_free(bp->pb_pages,
  294. bp->pb_page_count * sizeof(struct page *));
  295. }
  296. }
  297. /*
  298. * Releases the specified buffer.
  299. *
  300. * The modification state of any associated pages is left unchanged.
  301. * The buffer most not be on any hash - use pagebuf_rele instead for
  302. * hashed and refcounted buffers
  303. */
  304. void
  305. pagebuf_free(
  306. xfs_buf_t *bp)
  307. {
  308. PB_TRACE(bp, "free", 0);
  309. ASSERT(list_empty(&bp->pb_hash_list));
  310. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  311. uint i;
  312. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  313. free_address(bp->pb_addr - bp->pb_offset);
  314. for (i = 0; i < bp->pb_page_count; i++)
  315. page_cache_release(bp->pb_pages[i]);
  316. _pagebuf_free_pages(bp);
  317. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  318. /*
  319. * XXX(hch): bp->pb_count_desired might be incorrect (see
  320. * pagebuf_associate_memory for details), but fortunately
  321. * the Linux version of kmem_free ignores the len argument..
  322. */
  323. kmem_free(bp->pb_addr, bp->pb_count_desired);
  324. _pagebuf_free_pages(bp);
  325. }
  326. pagebuf_deallocate(bp);
  327. }
  328. /*
  329. * Finds all pages for buffer in question and builds it's page list.
  330. */
  331. STATIC int
  332. _pagebuf_lookup_pages(
  333. xfs_buf_t *bp,
  334. uint flags)
  335. {
  336. struct address_space *mapping = bp->pb_target->pbr_mapping;
  337. size_t blocksize = bp->pb_target->pbr_bsize;
  338. size_t size = bp->pb_count_desired;
  339. size_t nbytes, offset;
  340. int gfp_mask = pb_to_gfp(flags);
  341. unsigned short page_count, i;
  342. pgoff_t first;
  343. loff_t end;
  344. int error;
  345. end = bp->pb_file_offset + bp->pb_buffer_length;
  346. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  347. error = _pagebuf_get_pages(bp, page_count, flags);
  348. if (unlikely(error))
  349. return error;
  350. bp->pb_flags |= _PBF_PAGE_CACHE;
  351. offset = bp->pb_offset;
  352. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  353. for (i = 0; i < bp->pb_page_count; i++) {
  354. struct page *page;
  355. uint retries = 0;
  356. retry:
  357. page = find_or_create_page(mapping, first + i, gfp_mask);
  358. if (unlikely(page == NULL)) {
  359. if (flags & PBF_READ_AHEAD) {
  360. bp->pb_page_count = i;
  361. for (i = 0; i < bp->pb_page_count; i++)
  362. unlock_page(bp->pb_pages[i]);
  363. return -ENOMEM;
  364. }
  365. /*
  366. * This could deadlock.
  367. *
  368. * But until all the XFS lowlevel code is revamped to
  369. * handle buffer allocation failures we can't do much.
  370. */
  371. if (!(++retries % 100))
  372. printk(KERN_ERR
  373. "XFS: possible memory allocation "
  374. "deadlock in %s (mode:0x%x)\n",
  375. __FUNCTION__, gfp_mask);
  376. XFS_STATS_INC(pb_page_retries);
  377. xfsbufd_wakeup(0, gfp_mask);
  378. blk_congestion_wait(WRITE, HZ/50);
  379. goto retry;
  380. }
  381. XFS_STATS_INC(pb_page_found);
  382. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  383. size -= nbytes;
  384. if (!PageUptodate(page)) {
  385. page_count--;
  386. if (blocksize >= PAGE_CACHE_SIZE) {
  387. if (flags & PBF_READ)
  388. bp->pb_locked = 1;
  389. } else if (!PagePrivate(page)) {
  390. if (test_page_region(page, offset, nbytes))
  391. page_count++;
  392. }
  393. }
  394. bp->pb_pages[i] = page;
  395. offset = 0;
  396. }
  397. if (!bp->pb_locked) {
  398. for (i = 0; i < bp->pb_page_count; i++)
  399. unlock_page(bp->pb_pages[i]);
  400. }
  401. if (page_count) {
  402. /* if we have any uptodate pages, mark that in the buffer */
  403. bp->pb_flags &= ~PBF_NONE;
  404. /* if some pages aren't uptodate, mark that in the buffer */
  405. if (page_count != bp->pb_page_count)
  406. bp->pb_flags |= PBF_PARTIAL;
  407. }
  408. PB_TRACE(bp, "lookup_pages", (long)page_count);
  409. return error;
  410. }
  411. /*
  412. * Map buffer into kernel address-space if nessecary.
  413. */
  414. STATIC int
  415. _pagebuf_map_pages(
  416. xfs_buf_t *bp,
  417. uint flags)
  418. {
  419. /* A single page buffer is always mappable */
  420. if (bp->pb_page_count == 1) {
  421. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  422. bp->pb_flags |= PBF_MAPPED;
  423. } else if (flags & PBF_MAPPED) {
  424. if (as_list_len > 64)
  425. purge_addresses();
  426. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  427. VM_MAP, PAGE_KERNEL);
  428. if (unlikely(bp->pb_addr == NULL))
  429. return -ENOMEM;
  430. bp->pb_addr += bp->pb_offset;
  431. bp->pb_flags |= PBF_MAPPED;
  432. }
  433. return 0;
  434. }
  435. /*
  436. * Finding and Reading Buffers
  437. */
  438. /*
  439. * _pagebuf_find
  440. *
  441. * Looks up, and creates if absent, a lockable buffer for
  442. * a given range of an inode. The buffer is returned
  443. * locked. If other overlapping buffers exist, they are
  444. * released before the new buffer is created and locked,
  445. * which may imply that this call will block until those buffers
  446. * are unlocked. No I/O is implied by this call.
  447. */
  448. xfs_buf_t *
  449. _pagebuf_find(
  450. xfs_buftarg_t *btp, /* block device target */
  451. loff_t ioff, /* starting offset of range */
  452. size_t isize, /* length of range */
  453. page_buf_flags_t flags, /* PBF_TRYLOCK */
  454. xfs_buf_t *new_pb)/* newly allocated buffer */
  455. {
  456. loff_t range_base;
  457. size_t range_length;
  458. xfs_bufhash_t *hash;
  459. xfs_buf_t *pb, *n;
  460. range_base = (ioff << BBSHIFT);
  461. range_length = (isize << BBSHIFT);
  462. /* Check for IOs smaller than the sector size / not sector aligned */
  463. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  464. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  465. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  466. spin_lock(&hash->bh_lock);
  467. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  468. ASSERT(btp == pb->pb_target);
  469. if (pb->pb_file_offset == range_base &&
  470. pb->pb_buffer_length == range_length) {
  471. /*
  472. * If we look at something bring it to the
  473. * front of the list for next time.
  474. */
  475. atomic_inc(&pb->pb_hold);
  476. list_move(&pb->pb_hash_list, &hash->bh_list);
  477. goto found;
  478. }
  479. }
  480. /* No match found */
  481. if (new_pb) {
  482. _pagebuf_initialize(new_pb, btp, range_base,
  483. range_length, flags);
  484. new_pb->pb_hash = hash;
  485. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  486. } else {
  487. XFS_STATS_INC(pb_miss_locked);
  488. }
  489. spin_unlock(&hash->bh_lock);
  490. return new_pb;
  491. found:
  492. spin_unlock(&hash->bh_lock);
  493. /* Attempt to get the semaphore without sleeping,
  494. * if this does not work then we need to drop the
  495. * spinlock and do a hard attempt on the semaphore.
  496. */
  497. if (down_trylock(&pb->pb_sema)) {
  498. if (!(flags & PBF_TRYLOCK)) {
  499. /* wait for buffer ownership */
  500. PB_TRACE(pb, "get_lock", 0);
  501. pagebuf_lock(pb);
  502. XFS_STATS_INC(pb_get_locked_waited);
  503. } else {
  504. /* We asked for a trylock and failed, no need
  505. * to look at file offset and length here, we
  506. * know that this pagebuf at least overlaps our
  507. * pagebuf and is locked, therefore our buffer
  508. * either does not exist, or is this buffer
  509. */
  510. pagebuf_rele(pb);
  511. XFS_STATS_INC(pb_busy_locked);
  512. return (NULL);
  513. }
  514. } else {
  515. /* trylock worked */
  516. PB_SET_OWNER(pb);
  517. }
  518. if (pb->pb_flags & PBF_STALE) {
  519. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  520. pb->pb_flags &= PBF_MAPPED;
  521. }
  522. PB_TRACE(pb, "got_lock", 0);
  523. XFS_STATS_INC(pb_get_locked);
  524. return (pb);
  525. }
  526. /*
  527. * xfs_buf_get_flags assembles a buffer covering the specified range.
  528. *
  529. * Storage in memory for all portions of the buffer will be allocated,
  530. * although backing storage may not be.
  531. */
  532. xfs_buf_t *
  533. xfs_buf_get_flags( /* allocate a buffer */
  534. xfs_buftarg_t *target,/* target for buffer */
  535. loff_t ioff, /* starting offset of range */
  536. size_t isize, /* length of range */
  537. page_buf_flags_t flags) /* PBF_TRYLOCK */
  538. {
  539. xfs_buf_t *pb, *new_pb;
  540. int error = 0, i;
  541. new_pb = pagebuf_allocate(flags);
  542. if (unlikely(!new_pb))
  543. return NULL;
  544. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  545. if (pb == new_pb) {
  546. error = _pagebuf_lookup_pages(pb, flags);
  547. if (error)
  548. goto no_buffer;
  549. } else {
  550. pagebuf_deallocate(new_pb);
  551. if (unlikely(pb == NULL))
  552. return NULL;
  553. }
  554. for (i = 0; i < pb->pb_page_count; i++)
  555. mark_page_accessed(pb->pb_pages[i]);
  556. if (!(pb->pb_flags & PBF_MAPPED)) {
  557. error = _pagebuf_map_pages(pb, flags);
  558. if (unlikely(error)) {
  559. printk(KERN_WARNING "%s: failed to map pages\n",
  560. __FUNCTION__);
  561. goto no_buffer;
  562. }
  563. }
  564. XFS_STATS_INC(pb_get);
  565. /*
  566. * Always fill in the block number now, the mapped cases can do
  567. * their own overlay of this later.
  568. */
  569. pb->pb_bn = ioff;
  570. pb->pb_count_desired = pb->pb_buffer_length;
  571. PB_TRACE(pb, "get", (unsigned long)flags);
  572. return pb;
  573. no_buffer:
  574. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  575. pagebuf_unlock(pb);
  576. pagebuf_rele(pb);
  577. return NULL;
  578. }
  579. xfs_buf_t *
  580. xfs_buf_read_flags(
  581. xfs_buftarg_t *target,
  582. loff_t ioff,
  583. size_t isize,
  584. page_buf_flags_t flags)
  585. {
  586. xfs_buf_t *pb;
  587. flags |= PBF_READ;
  588. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  589. if (pb) {
  590. if (PBF_NOT_DONE(pb)) {
  591. PB_TRACE(pb, "read", (unsigned long)flags);
  592. XFS_STATS_INC(pb_get_read);
  593. pagebuf_iostart(pb, flags);
  594. } else if (flags & PBF_ASYNC) {
  595. PB_TRACE(pb, "read_async", (unsigned long)flags);
  596. /*
  597. * Read ahead call which is already satisfied,
  598. * drop the buffer
  599. */
  600. goto no_buffer;
  601. } else {
  602. PB_TRACE(pb, "read_done", (unsigned long)flags);
  603. /* We do not want read in the flags */
  604. pb->pb_flags &= ~PBF_READ;
  605. }
  606. }
  607. return pb;
  608. no_buffer:
  609. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  610. pagebuf_unlock(pb);
  611. pagebuf_rele(pb);
  612. return NULL;
  613. }
  614. /*
  615. * If we are not low on memory then do the readahead in a deadlock
  616. * safe manner.
  617. */
  618. void
  619. pagebuf_readahead(
  620. xfs_buftarg_t *target,
  621. loff_t ioff,
  622. size_t isize,
  623. page_buf_flags_t flags)
  624. {
  625. struct backing_dev_info *bdi;
  626. bdi = target->pbr_mapping->backing_dev_info;
  627. if (bdi_read_congested(bdi))
  628. return;
  629. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  630. xfs_buf_read_flags(target, ioff, isize, flags);
  631. }
  632. xfs_buf_t *
  633. pagebuf_get_empty(
  634. size_t len,
  635. xfs_buftarg_t *target)
  636. {
  637. xfs_buf_t *pb;
  638. pb = pagebuf_allocate(0);
  639. if (pb)
  640. _pagebuf_initialize(pb, target, 0, len, 0);
  641. return pb;
  642. }
  643. static inline struct page *
  644. mem_to_page(
  645. void *addr)
  646. {
  647. if (((unsigned long)addr < VMALLOC_START) ||
  648. ((unsigned long)addr >= VMALLOC_END)) {
  649. return virt_to_page(addr);
  650. } else {
  651. return vmalloc_to_page(addr);
  652. }
  653. }
  654. int
  655. pagebuf_associate_memory(
  656. xfs_buf_t *pb,
  657. void *mem,
  658. size_t len)
  659. {
  660. int rval;
  661. int i = 0;
  662. size_t ptr;
  663. size_t end, end_cur;
  664. off_t offset;
  665. int page_count;
  666. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  667. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  668. if (offset && (len > PAGE_CACHE_SIZE))
  669. page_count++;
  670. /* Free any previous set of page pointers */
  671. if (pb->pb_pages)
  672. _pagebuf_free_pages(pb);
  673. pb->pb_pages = NULL;
  674. pb->pb_addr = mem;
  675. rval = _pagebuf_get_pages(pb, page_count, 0);
  676. if (rval)
  677. return rval;
  678. pb->pb_offset = offset;
  679. ptr = (size_t) mem & PAGE_CACHE_MASK;
  680. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  681. end_cur = end;
  682. /* set up first page */
  683. pb->pb_pages[0] = mem_to_page(mem);
  684. ptr += PAGE_CACHE_SIZE;
  685. pb->pb_page_count = ++i;
  686. while (ptr < end) {
  687. pb->pb_pages[i] = mem_to_page((void *)ptr);
  688. pb->pb_page_count = ++i;
  689. ptr += PAGE_CACHE_SIZE;
  690. }
  691. pb->pb_locked = 0;
  692. pb->pb_count_desired = pb->pb_buffer_length = len;
  693. pb->pb_flags |= PBF_MAPPED;
  694. return 0;
  695. }
  696. xfs_buf_t *
  697. pagebuf_get_no_daddr(
  698. size_t len,
  699. xfs_buftarg_t *target)
  700. {
  701. size_t malloc_len = len;
  702. xfs_buf_t *bp;
  703. void *data;
  704. int error;
  705. bp = pagebuf_allocate(0);
  706. if (unlikely(bp == NULL))
  707. goto fail;
  708. _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
  709. try_again:
  710. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  711. if (unlikely(data == NULL))
  712. goto fail_free_buf;
  713. /* check whether alignment matches.. */
  714. if ((__psunsigned_t)data !=
  715. ((__psunsigned_t)data & ~target->pbr_smask)) {
  716. /* .. else double the size and try again */
  717. kmem_free(data, malloc_len);
  718. malloc_len <<= 1;
  719. goto try_again;
  720. }
  721. error = pagebuf_associate_memory(bp, data, len);
  722. if (error)
  723. goto fail_free_mem;
  724. bp->pb_flags |= _PBF_KMEM_ALLOC;
  725. pagebuf_unlock(bp);
  726. PB_TRACE(bp, "no_daddr", data);
  727. return bp;
  728. fail_free_mem:
  729. kmem_free(data, malloc_len);
  730. fail_free_buf:
  731. pagebuf_free(bp);
  732. fail:
  733. return NULL;
  734. }
  735. /*
  736. * pagebuf_hold
  737. *
  738. * Increment reference count on buffer, to hold the buffer concurrently
  739. * with another thread which may release (free) the buffer asynchronously.
  740. *
  741. * Must hold the buffer already to call this function.
  742. */
  743. void
  744. pagebuf_hold(
  745. xfs_buf_t *pb)
  746. {
  747. atomic_inc(&pb->pb_hold);
  748. PB_TRACE(pb, "hold", 0);
  749. }
  750. /*
  751. * pagebuf_rele
  752. *
  753. * pagebuf_rele releases a hold on the specified buffer. If the
  754. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  755. */
  756. void
  757. pagebuf_rele(
  758. xfs_buf_t *pb)
  759. {
  760. xfs_bufhash_t *hash = pb->pb_hash;
  761. PB_TRACE(pb, "rele", pb->pb_relse);
  762. /*
  763. * pagebuf_lookup buffers are not hashed, not delayed write,
  764. * and don't have their own release routines. Special case.
  765. */
  766. if (unlikely(!hash)) {
  767. ASSERT(!pb->pb_relse);
  768. if (atomic_dec_and_test(&pb->pb_hold))
  769. xfs_buf_free(pb);
  770. return;
  771. }
  772. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  773. int do_free = 1;
  774. if (pb->pb_relse) {
  775. atomic_inc(&pb->pb_hold);
  776. spin_unlock(&hash->bh_lock);
  777. (*(pb->pb_relse)) (pb);
  778. spin_lock(&hash->bh_lock);
  779. do_free = 0;
  780. }
  781. if (pb->pb_flags & PBF_FS_MANAGED) {
  782. do_free = 0;
  783. }
  784. if (do_free) {
  785. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  786. list_del_init(&pb->pb_hash_list);
  787. spin_unlock(&hash->bh_lock);
  788. pagebuf_free(pb);
  789. } else {
  790. spin_unlock(&hash->bh_lock);
  791. }
  792. } else {
  793. /*
  794. * Catch reference count leaks
  795. */
  796. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  797. }
  798. }
  799. /*
  800. * Mutual exclusion on buffers. Locking model:
  801. *
  802. * Buffers associated with inodes for which buffer locking
  803. * is not enabled are not protected by semaphores, and are
  804. * assumed to be exclusively owned by the caller. There is a
  805. * spinlock in the buffer, used by the caller when concurrent
  806. * access is possible.
  807. */
  808. /*
  809. * pagebuf_cond_lock
  810. *
  811. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  812. * Note that this in no way
  813. * locks the underlying pages, so it is only useful for synchronizing
  814. * concurrent use of page buffer objects, not for synchronizing independent
  815. * access to the underlying pages.
  816. */
  817. int
  818. pagebuf_cond_lock( /* lock buffer, if not locked */
  819. /* returns -EBUSY if locked) */
  820. xfs_buf_t *pb)
  821. {
  822. int locked;
  823. locked = down_trylock(&pb->pb_sema) == 0;
  824. if (locked) {
  825. PB_SET_OWNER(pb);
  826. }
  827. PB_TRACE(pb, "cond_lock", (long)locked);
  828. return(locked ? 0 : -EBUSY);
  829. }
  830. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  831. /*
  832. * pagebuf_lock_value
  833. *
  834. * Return lock value for a pagebuf
  835. */
  836. int
  837. pagebuf_lock_value(
  838. xfs_buf_t *pb)
  839. {
  840. return(atomic_read(&pb->pb_sema.count));
  841. }
  842. #endif
  843. /*
  844. * pagebuf_lock
  845. *
  846. * pagebuf_lock locks a buffer object. Note that this in no way
  847. * locks the underlying pages, so it is only useful for synchronizing
  848. * concurrent use of page buffer objects, not for synchronizing independent
  849. * access to the underlying pages.
  850. */
  851. int
  852. pagebuf_lock(
  853. xfs_buf_t *pb)
  854. {
  855. PB_TRACE(pb, "lock", 0);
  856. if (atomic_read(&pb->pb_io_remaining))
  857. blk_run_address_space(pb->pb_target->pbr_mapping);
  858. down(&pb->pb_sema);
  859. PB_SET_OWNER(pb);
  860. PB_TRACE(pb, "locked", 0);
  861. return 0;
  862. }
  863. /*
  864. * pagebuf_unlock
  865. *
  866. * pagebuf_unlock releases the lock on the buffer object created by
  867. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  868. * created by pagebuf_pin).
  869. *
  870. * If the buffer is marked delwri but is not queued, do so before we
  871. * unlock the buffer as we need to set flags correctly. We also need to
  872. * take a reference for the delwri queue because the unlocker is going to
  873. * drop their's and they don't know we just queued it.
  874. */
  875. void
  876. pagebuf_unlock( /* unlock buffer */
  877. xfs_buf_t *pb) /* buffer to unlock */
  878. {
  879. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  880. atomic_inc(&pb->pb_hold);
  881. pb->pb_flags |= PBF_ASYNC;
  882. pagebuf_delwri_queue(pb, 0);
  883. }
  884. PB_CLEAR_OWNER(pb);
  885. up(&pb->pb_sema);
  886. PB_TRACE(pb, "unlock", 0);
  887. }
  888. /*
  889. * Pinning Buffer Storage in Memory
  890. */
  891. /*
  892. * pagebuf_pin
  893. *
  894. * pagebuf_pin locks all of the memory represented by a buffer in
  895. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  896. * the same or different buffers affecting a given page, will
  897. * properly count the number of outstanding "pin" requests. The
  898. * buffer may be released after the pagebuf_pin and a different
  899. * buffer used when calling pagebuf_unpin, if desired.
  900. * pagebuf_pin should be used by the file system when it wants be
  901. * assured that no attempt will be made to force the affected
  902. * memory to disk. It does not assure that a given logical page
  903. * will not be moved to a different physical page.
  904. */
  905. void
  906. pagebuf_pin(
  907. xfs_buf_t *pb)
  908. {
  909. atomic_inc(&pb->pb_pin_count);
  910. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  911. }
  912. /*
  913. * pagebuf_unpin
  914. *
  915. * pagebuf_unpin reverses the locking of memory performed by
  916. * pagebuf_pin. Note that both functions affected the logical
  917. * pages associated with the buffer, not the buffer itself.
  918. */
  919. void
  920. pagebuf_unpin(
  921. xfs_buf_t *pb)
  922. {
  923. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  924. wake_up_all(&pb->pb_waiters);
  925. }
  926. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  927. }
  928. int
  929. pagebuf_ispin(
  930. xfs_buf_t *pb)
  931. {
  932. return atomic_read(&pb->pb_pin_count);
  933. }
  934. /*
  935. * pagebuf_wait_unpin
  936. *
  937. * pagebuf_wait_unpin waits until all of the memory associated
  938. * with the buffer is not longer locked in memory. It returns
  939. * immediately if none of the affected pages are locked.
  940. */
  941. static inline void
  942. _pagebuf_wait_unpin(
  943. xfs_buf_t *pb)
  944. {
  945. DECLARE_WAITQUEUE (wait, current);
  946. if (atomic_read(&pb->pb_pin_count) == 0)
  947. return;
  948. add_wait_queue(&pb->pb_waiters, &wait);
  949. for (;;) {
  950. set_current_state(TASK_UNINTERRUPTIBLE);
  951. if (atomic_read(&pb->pb_pin_count) == 0)
  952. break;
  953. if (atomic_read(&pb->pb_io_remaining))
  954. blk_run_address_space(pb->pb_target->pbr_mapping);
  955. schedule();
  956. }
  957. remove_wait_queue(&pb->pb_waiters, &wait);
  958. set_current_state(TASK_RUNNING);
  959. }
  960. /*
  961. * Buffer Utility Routines
  962. */
  963. /*
  964. * pagebuf_iodone
  965. *
  966. * pagebuf_iodone marks a buffer for which I/O is in progress
  967. * done with respect to that I/O. The pb_iodone routine, if
  968. * present, will be called as a side-effect.
  969. */
  970. STATIC void
  971. pagebuf_iodone_work(
  972. void *v)
  973. {
  974. xfs_buf_t *bp = (xfs_buf_t *)v;
  975. if (bp->pb_iodone)
  976. (*(bp->pb_iodone))(bp);
  977. else if (bp->pb_flags & PBF_ASYNC)
  978. xfs_buf_relse(bp);
  979. }
  980. void
  981. pagebuf_iodone(
  982. xfs_buf_t *pb,
  983. int dataio,
  984. int schedule)
  985. {
  986. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  987. if (pb->pb_error == 0) {
  988. pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
  989. }
  990. PB_TRACE(pb, "iodone", pb->pb_iodone);
  991. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  992. if (schedule) {
  993. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  994. queue_work(dataio ? xfsdatad_workqueue :
  995. xfslogd_workqueue, &pb->pb_iodone_work);
  996. } else {
  997. pagebuf_iodone_work(pb);
  998. }
  999. } else {
  1000. up(&pb->pb_iodonesema);
  1001. }
  1002. }
  1003. /*
  1004. * pagebuf_ioerror
  1005. *
  1006. * pagebuf_ioerror sets the error code for a buffer.
  1007. */
  1008. void
  1009. pagebuf_ioerror( /* mark/clear buffer error flag */
  1010. xfs_buf_t *pb, /* buffer to mark */
  1011. int error) /* error to store (0 if none) */
  1012. {
  1013. ASSERT(error >= 0 && error <= 0xffff);
  1014. pb->pb_error = (unsigned short)error;
  1015. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1016. }
  1017. /*
  1018. * pagebuf_iostart
  1019. *
  1020. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1021. * If necessary, it will arrange for any disk space allocation required,
  1022. * and it will break up the request if the block mappings require it.
  1023. * The pb_iodone routine in the buffer supplied will only be called
  1024. * when all of the subsidiary I/O requests, if any, have been completed.
  1025. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1026. * pagebuf_iorequest, if the former routine is not defined, to start
  1027. * the I/O on a given low-level request.
  1028. */
  1029. int
  1030. pagebuf_iostart( /* start I/O on a buffer */
  1031. xfs_buf_t *pb, /* buffer to start */
  1032. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1033. /* PBF_WRITE, PBF_DELWRI, */
  1034. /* PBF_DONT_BLOCK */
  1035. {
  1036. int status = 0;
  1037. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1038. if (flags & PBF_DELWRI) {
  1039. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1040. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1041. pagebuf_delwri_queue(pb, 1);
  1042. return status;
  1043. }
  1044. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1045. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1046. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1047. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1048. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1049. /* For writes allow an alternate strategy routine to precede
  1050. * the actual I/O request (which may not be issued at all in
  1051. * a shutdown situation, for example).
  1052. */
  1053. status = (flags & PBF_WRITE) ?
  1054. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1055. /* Wait for I/O if we are not an async request.
  1056. * Note: async I/O request completion will release the buffer,
  1057. * and that can already be done by this point. So using the
  1058. * buffer pointer from here on, after async I/O, is invalid.
  1059. */
  1060. if (!status && !(flags & PBF_ASYNC))
  1061. status = pagebuf_iowait(pb);
  1062. return status;
  1063. }
  1064. /*
  1065. * Helper routine for pagebuf_iorequest
  1066. */
  1067. STATIC __inline__ int
  1068. _pagebuf_iolocked(
  1069. xfs_buf_t *pb)
  1070. {
  1071. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1072. if (pb->pb_flags & PBF_READ)
  1073. return pb->pb_locked;
  1074. return 0;
  1075. }
  1076. STATIC __inline__ void
  1077. _pagebuf_iodone(
  1078. xfs_buf_t *pb,
  1079. int schedule)
  1080. {
  1081. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1082. pb->pb_locked = 0;
  1083. pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
  1084. }
  1085. }
  1086. STATIC int
  1087. bio_end_io_pagebuf(
  1088. struct bio *bio,
  1089. unsigned int bytes_done,
  1090. int error)
  1091. {
  1092. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1093. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1094. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1095. if (bio->bi_size)
  1096. return 1;
  1097. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1098. pb->pb_error = EIO;
  1099. do {
  1100. struct page *page = bvec->bv_page;
  1101. if (unlikely(pb->pb_error)) {
  1102. if (pb->pb_flags & PBF_READ)
  1103. ClearPageUptodate(page);
  1104. SetPageError(page);
  1105. } else if (blocksize == PAGE_CACHE_SIZE) {
  1106. SetPageUptodate(page);
  1107. } else if (!PagePrivate(page) &&
  1108. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1109. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1110. }
  1111. if (--bvec >= bio->bi_io_vec)
  1112. prefetchw(&bvec->bv_page->flags);
  1113. if (_pagebuf_iolocked(pb)) {
  1114. unlock_page(page);
  1115. }
  1116. } while (bvec >= bio->bi_io_vec);
  1117. _pagebuf_iodone(pb, 1);
  1118. bio_put(bio);
  1119. return 0;
  1120. }
  1121. STATIC void
  1122. _pagebuf_ioapply(
  1123. xfs_buf_t *pb)
  1124. {
  1125. int i, rw, map_i, total_nr_pages, nr_pages;
  1126. struct bio *bio;
  1127. int offset = pb->pb_offset;
  1128. int size = pb->pb_count_desired;
  1129. sector_t sector = pb->pb_bn;
  1130. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1131. int locking = _pagebuf_iolocked(pb);
  1132. total_nr_pages = pb->pb_page_count;
  1133. map_i = 0;
  1134. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1135. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1136. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1137. } else {
  1138. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1139. }
  1140. /* Special code path for reading a sub page size pagebuf in --
  1141. * we populate up the whole page, and hence the other metadata
  1142. * in the same page. This optimization is only valid when the
  1143. * filesystem block size and the page size are equal.
  1144. */
  1145. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1146. (pb->pb_flags & PBF_READ) && locking &&
  1147. (blocksize == PAGE_CACHE_SIZE)) {
  1148. bio = bio_alloc(GFP_NOIO, 1);
  1149. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1150. bio->bi_sector = sector - (offset >> BBSHIFT);
  1151. bio->bi_end_io = bio_end_io_pagebuf;
  1152. bio->bi_private = pb;
  1153. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1154. size = 0;
  1155. atomic_inc(&pb->pb_io_remaining);
  1156. goto submit_io;
  1157. }
  1158. /* Lock down the pages which we need to for the request */
  1159. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1160. for (i = 0; size; i++) {
  1161. int nbytes = PAGE_CACHE_SIZE - offset;
  1162. struct page *page = pb->pb_pages[i];
  1163. if (nbytes > size)
  1164. nbytes = size;
  1165. lock_page(page);
  1166. size -= nbytes;
  1167. offset = 0;
  1168. }
  1169. offset = pb->pb_offset;
  1170. size = pb->pb_count_desired;
  1171. }
  1172. next_chunk:
  1173. atomic_inc(&pb->pb_io_remaining);
  1174. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1175. if (nr_pages > total_nr_pages)
  1176. nr_pages = total_nr_pages;
  1177. bio = bio_alloc(GFP_NOIO, nr_pages);
  1178. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1179. bio->bi_sector = sector;
  1180. bio->bi_end_io = bio_end_io_pagebuf;
  1181. bio->bi_private = pb;
  1182. for (; size && nr_pages; nr_pages--, map_i++) {
  1183. int nbytes = PAGE_CACHE_SIZE - offset;
  1184. if (nbytes > size)
  1185. nbytes = size;
  1186. if (bio_add_page(bio, pb->pb_pages[map_i],
  1187. nbytes, offset) < nbytes)
  1188. break;
  1189. offset = 0;
  1190. sector += nbytes >> BBSHIFT;
  1191. size -= nbytes;
  1192. total_nr_pages--;
  1193. }
  1194. submit_io:
  1195. if (likely(bio->bi_size)) {
  1196. submit_bio(rw, bio);
  1197. if (size)
  1198. goto next_chunk;
  1199. } else {
  1200. bio_put(bio);
  1201. pagebuf_ioerror(pb, EIO);
  1202. }
  1203. }
  1204. /*
  1205. * pagebuf_iorequest -- the core I/O request routine.
  1206. */
  1207. int
  1208. pagebuf_iorequest( /* start real I/O */
  1209. xfs_buf_t *pb) /* buffer to convey to device */
  1210. {
  1211. PB_TRACE(pb, "iorequest", 0);
  1212. if (pb->pb_flags & PBF_DELWRI) {
  1213. pagebuf_delwri_queue(pb, 1);
  1214. return 0;
  1215. }
  1216. if (pb->pb_flags & PBF_WRITE) {
  1217. _pagebuf_wait_unpin(pb);
  1218. }
  1219. pagebuf_hold(pb);
  1220. /* Set the count to 1 initially, this will stop an I/O
  1221. * completion callout which happens before we have started
  1222. * all the I/O from calling pagebuf_iodone too early.
  1223. */
  1224. atomic_set(&pb->pb_io_remaining, 1);
  1225. _pagebuf_ioapply(pb);
  1226. _pagebuf_iodone(pb, 0);
  1227. pagebuf_rele(pb);
  1228. return 0;
  1229. }
  1230. /*
  1231. * pagebuf_iowait
  1232. *
  1233. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1234. * It returns immediately if no I/O is pending. In any case, it returns
  1235. * the error code, if any, or 0 if there is no error.
  1236. */
  1237. int
  1238. pagebuf_iowait(
  1239. xfs_buf_t *pb)
  1240. {
  1241. PB_TRACE(pb, "iowait", 0);
  1242. if (atomic_read(&pb->pb_io_remaining))
  1243. blk_run_address_space(pb->pb_target->pbr_mapping);
  1244. down(&pb->pb_iodonesema);
  1245. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1246. return pb->pb_error;
  1247. }
  1248. caddr_t
  1249. pagebuf_offset(
  1250. xfs_buf_t *pb,
  1251. size_t offset)
  1252. {
  1253. struct page *page;
  1254. offset += pb->pb_offset;
  1255. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1256. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1257. }
  1258. /*
  1259. * pagebuf_iomove
  1260. *
  1261. * Move data into or out of a buffer.
  1262. */
  1263. void
  1264. pagebuf_iomove(
  1265. xfs_buf_t *pb, /* buffer to process */
  1266. size_t boff, /* starting buffer offset */
  1267. size_t bsize, /* length to copy */
  1268. caddr_t data, /* data address */
  1269. page_buf_rw_t mode) /* read/write flag */
  1270. {
  1271. size_t bend, cpoff, csize;
  1272. struct page *page;
  1273. bend = boff + bsize;
  1274. while (boff < bend) {
  1275. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1276. cpoff = page_buf_poff(boff + pb->pb_offset);
  1277. csize = min_t(size_t,
  1278. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1279. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1280. switch (mode) {
  1281. case PBRW_ZERO:
  1282. memset(page_address(page) + cpoff, 0, csize);
  1283. break;
  1284. case PBRW_READ:
  1285. memcpy(data, page_address(page) + cpoff, csize);
  1286. break;
  1287. case PBRW_WRITE:
  1288. memcpy(page_address(page) + cpoff, data, csize);
  1289. }
  1290. boff += csize;
  1291. data += csize;
  1292. }
  1293. }
  1294. /*
  1295. * Handling of buftargs.
  1296. */
  1297. /*
  1298. * Wait for any bufs with callbacks that have been submitted but
  1299. * have not yet returned... walk the hash list for the target.
  1300. */
  1301. void
  1302. xfs_wait_buftarg(
  1303. xfs_buftarg_t *btp)
  1304. {
  1305. xfs_buf_t *bp, *n;
  1306. xfs_bufhash_t *hash;
  1307. uint i;
  1308. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1309. hash = &btp->bt_hash[i];
  1310. again:
  1311. spin_lock(&hash->bh_lock);
  1312. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1313. ASSERT(btp == bp->pb_target);
  1314. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1315. spin_unlock(&hash->bh_lock);
  1316. /*
  1317. * Catch superblock reference count leaks
  1318. * immediately
  1319. */
  1320. BUG_ON(bp->pb_bn == 0);
  1321. delay(100);
  1322. goto again;
  1323. }
  1324. }
  1325. spin_unlock(&hash->bh_lock);
  1326. }
  1327. }
  1328. /*
  1329. * Allocate buffer hash table for a given target.
  1330. * For devices containing metadata (i.e. not the log/realtime devices)
  1331. * we need to allocate a much larger hash table.
  1332. */
  1333. STATIC void
  1334. xfs_alloc_bufhash(
  1335. xfs_buftarg_t *btp,
  1336. int external)
  1337. {
  1338. unsigned int i;
  1339. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1340. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1341. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1342. sizeof(xfs_bufhash_t), KM_SLEEP);
  1343. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1344. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1345. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1346. }
  1347. }
  1348. STATIC void
  1349. xfs_free_bufhash(
  1350. xfs_buftarg_t *btp)
  1351. {
  1352. kmem_free(btp->bt_hash,
  1353. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1354. btp->bt_hash = NULL;
  1355. }
  1356. void
  1357. xfs_free_buftarg(
  1358. xfs_buftarg_t *btp,
  1359. int external)
  1360. {
  1361. xfs_flush_buftarg(btp, 1);
  1362. if (external)
  1363. xfs_blkdev_put(btp->pbr_bdev);
  1364. xfs_free_bufhash(btp);
  1365. iput(btp->pbr_mapping->host);
  1366. kmem_free(btp, sizeof(*btp));
  1367. }
  1368. STATIC int
  1369. xfs_setsize_buftarg_flags(
  1370. xfs_buftarg_t *btp,
  1371. unsigned int blocksize,
  1372. unsigned int sectorsize,
  1373. int verbose)
  1374. {
  1375. btp->pbr_bsize = blocksize;
  1376. btp->pbr_sshift = ffs(sectorsize) - 1;
  1377. btp->pbr_smask = sectorsize - 1;
  1378. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1379. printk(KERN_WARNING
  1380. "XFS: Cannot set_blocksize to %u on device %s\n",
  1381. sectorsize, XFS_BUFTARG_NAME(btp));
  1382. return EINVAL;
  1383. }
  1384. if (verbose &&
  1385. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1386. printk(KERN_WARNING
  1387. "XFS: %u byte sectors in use on device %s. "
  1388. "This is suboptimal; %u or greater is ideal.\n",
  1389. sectorsize, XFS_BUFTARG_NAME(btp),
  1390. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1391. }
  1392. return 0;
  1393. }
  1394. /*
  1395. * When allocating the initial buffer target we have not yet
  1396. * read in the superblock, so don't know what sized sectors
  1397. * are being used is at this early stage. Play safe.
  1398. */
  1399. STATIC int
  1400. xfs_setsize_buftarg_early(
  1401. xfs_buftarg_t *btp,
  1402. struct block_device *bdev)
  1403. {
  1404. return xfs_setsize_buftarg_flags(btp,
  1405. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1406. }
  1407. int
  1408. xfs_setsize_buftarg(
  1409. xfs_buftarg_t *btp,
  1410. unsigned int blocksize,
  1411. unsigned int sectorsize)
  1412. {
  1413. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1414. }
  1415. STATIC int
  1416. xfs_mapping_buftarg(
  1417. xfs_buftarg_t *btp,
  1418. struct block_device *bdev)
  1419. {
  1420. struct backing_dev_info *bdi;
  1421. struct inode *inode;
  1422. struct address_space *mapping;
  1423. static struct address_space_operations mapping_aops = {
  1424. .sync_page = block_sync_page,
  1425. };
  1426. inode = new_inode(bdev->bd_inode->i_sb);
  1427. if (!inode) {
  1428. printk(KERN_WARNING
  1429. "XFS: Cannot allocate mapping inode for device %s\n",
  1430. XFS_BUFTARG_NAME(btp));
  1431. return ENOMEM;
  1432. }
  1433. inode->i_mode = S_IFBLK;
  1434. inode->i_bdev = bdev;
  1435. inode->i_rdev = bdev->bd_dev;
  1436. bdi = blk_get_backing_dev_info(bdev);
  1437. if (!bdi)
  1438. bdi = &default_backing_dev_info;
  1439. mapping = &inode->i_data;
  1440. mapping->a_ops = &mapping_aops;
  1441. mapping->backing_dev_info = bdi;
  1442. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1443. btp->pbr_mapping = mapping;
  1444. return 0;
  1445. }
  1446. xfs_buftarg_t *
  1447. xfs_alloc_buftarg(
  1448. struct block_device *bdev,
  1449. int external)
  1450. {
  1451. xfs_buftarg_t *btp;
  1452. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1453. btp->pbr_dev = bdev->bd_dev;
  1454. btp->pbr_bdev = bdev;
  1455. if (xfs_setsize_buftarg_early(btp, bdev))
  1456. goto error;
  1457. if (xfs_mapping_buftarg(btp, bdev))
  1458. goto error;
  1459. xfs_alloc_bufhash(btp, external);
  1460. return btp;
  1461. error:
  1462. kmem_free(btp, sizeof(*btp));
  1463. return NULL;
  1464. }
  1465. /*
  1466. * Pagebuf delayed write buffer handling
  1467. */
  1468. STATIC LIST_HEAD(pbd_delwrite_queue);
  1469. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1470. STATIC void
  1471. pagebuf_delwri_queue(
  1472. xfs_buf_t *pb,
  1473. int unlock)
  1474. {
  1475. PB_TRACE(pb, "delwri_q", (long)unlock);
  1476. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1477. (PBF_DELWRI|PBF_ASYNC));
  1478. spin_lock(&pbd_delwrite_lock);
  1479. /* If already in the queue, dequeue and place at tail */
  1480. if (!list_empty(&pb->pb_list)) {
  1481. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1482. if (unlock) {
  1483. atomic_dec(&pb->pb_hold);
  1484. }
  1485. list_del(&pb->pb_list);
  1486. }
  1487. pb->pb_flags |= _PBF_DELWRI_Q;
  1488. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1489. pb->pb_queuetime = jiffies;
  1490. spin_unlock(&pbd_delwrite_lock);
  1491. if (unlock)
  1492. pagebuf_unlock(pb);
  1493. }
  1494. void
  1495. pagebuf_delwri_dequeue(
  1496. xfs_buf_t *pb)
  1497. {
  1498. int dequeued = 0;
  1499. spin_lock(&pbd_delwrite_lock);
  1500. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1501. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1502. list_del_init(&pb->pb_list);
  1503. dequeued = 1;
  1504. }
  1505. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1506. spin_unlock(&pbd_delwrite_lock);
  1507. if (dequeued)
  1508. pagebuf_rele(pb);
  1509. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1510. }
  1511. STATIC void
  1512. pagebuf_runall_queues(
  1513. struct workqueue_struct *queue)
  1514. {
  1515. flush_workqueue(queue);
  1516. }
  1517. /* Defines for pagebuf daemon */
  1518. STATIC DECLARE_COMPLETION(xfsbufd_done);
  1519. STATIC struct task_struct *xfsbufd_task;
  1520. STATIC int xfsbufd_active;
  1521. STATIC int xfsbufd_force_flush;
  1522. STATIC int xfsbufd_force_sleep;
  1523. STATIC int
  1524. xfsbufd_wakeup(
  1525. int priority,
  1526. unsigned int mask)
  1527. {
  1528. if (xfsbufd_force_sleep)
  1529. return 0;
  1530. xfsbufd_force_flush = 1;
  1531. barrier();
  1532. wake_up_process(xfsbufd_task);
  1533. return 0;
  1534. }
  1535. STATIC int
  1536. xfsbufd(
  1537. void *data)
  1538. {
  1539. struct list_head tmp;
  1540. unsigned long age;
  1541. xfs_buftarg_t *target;
  1542. xfs_buf_t *pb, *n;
  1543. /* Set up the thread */
  1544. daemonize("xfsbufd");
  1545. current->flags |= PF_MEMALLOC;
  1546. xfsbufd_task = current;
  1547. xfsbufd_active = 1;
  1548. barrier();
  1549. INIT_LIST_HEAD(&tmp);
  1550. do {
  1551. if (unlikely(freezing(current))) {
  1552. xfsbufd_force_sleep = 1;
  1553. refrigerator();
  1554. } else {
  1555. xfsbufd_force_sleep = 0;
  1556. }
  1557. set_current_state(TASK_INTERRUPTIBLE);
  1558. schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);
  1559. age = (xfs_buf_age_centisecs * HZ) / 100;
  1560. spin_lock(&pbd_delwrite_lock);
  1561. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1562. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1563. ASSERT(pb->pb_flags & PBF_DELWRI);
  1564. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1565. if (!xfsbufd_force_flush &&
  1566. time_before(jiffies,
  1567. pb->pb_queuetime + age)) {
  1568. pagebuf_unlock(pb);
  1569. break;
  1570. }
  1571. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1572. pb->pb_flags |= PBF_WRITE;
  1573. list_move(&pb->pb_list, &tmp);
  1574. }
  1575. }
  1576. spin_unlock(&pbd_delwrite_lock);
  1577. while (!list_empty(&tmp)) {
  1578. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1579. target = pb->pb_target;
  1580. list_del_init(&pb->pb_list);
  1581. pagebuf_iostrategy(pb);
  1582. blk_run_address_space(target->pbr_mapping);
  1583. }
  1584. if (as_list_len > 0)
  1585. purge_addresses();
  1586. xfsbufd_force_flush = 0;
  1587. } while (xfsbufd_active);
  1588. complete_and_exit(&xfsbufd_done, 0);
  1589. }
  1590. /*
  1591. * Go through all incore buffers, and release buffers if they belong to
  1592. * the given device. This is used in filesystem error handling to
  1593. * preserve the consistency of its metadata.
  1594. */
  1595. int
  1596. xfs_flush_buftarg(
  1597. xfs_buftarg_t *target,
  1598. int wait)
  1599. {
  1600. struct list_head tmp;
  1601. xfs_buf_t *pb, *n;
  1602. int pincount = 0;
  1603. pagebuf_runall_queues(xfsdatad_workqueue);
  1604. pagebuf_runall_queues(xfslogd_workqueue);
  1605. INIT_LIST_HEAD(&tmp);
  1606. spin_lock(&pbd_delwrite_lock);
  1607. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1608. if (pb->pb_target != target)
  1609. continue;
  1610. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1611. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1612. if (pagebuf_ispin(pb)) {
  1613. pincount++;
  1614. continue;
  1615. }
  1616. list_move(&pb->pb_list, &tmp);
  1617. }
  1618. spin_unlock(&pbd_delwrite_lock);
  1619. /*
  1620. * Dropped the delayed write list lock, now walk the temporary list
  1621. */
  1622. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1623. pagebuf_lock(pb);
  1624. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1625. pb->pb_flags |= PBF_WRITE;
  1626. if (wait)
  1627. pb->pb_flags &= ~PBF_ASYNC;
  1628. else
  1629. list_del_init(&pb->pb_list);
  1630. pagebuf_iostrategy(pb);
  1631. }
  1632. /*
  1633. * Remaining list items must be flushed before returning
  1634. */
  1635. while (!list_empty(&tmp)) {
  1636. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1637. list_del_init(&pb->pb_list);
  1638. xfs_iowait(pb);
  1639. xfs_buf_relse(pb);
  1640. }
  1641. if (wait)
  1642. blk_run_address_space(target->pbr_mapping);
  1643. return pincount;
  1644. }
  1645. STATIC int
  1646. xfs_buf_daemons_start(void)
  1647. {
  1648. int error = -ENOMEM;
  1649. xfslogd_workqueue = create_workqueue("xfslogd");
  1650. if (!xfslogd_workqueue)
  1651. goto out;
  1652. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1653. if (!xfsdatad_workqueue)
  1654. goto out_destroy_xfslogd_workqueue;
  1655. error = kernel_thread(xfsbufd, NULL, CLONE_FS|CLONE_FILES);
  1656. if (error < 0)
  1657. goto out_destroy_xfsdatad_workqueue;
  1658. return 0;
  1659. out_destroy_xfsdatad_workqueue:
  1660. destroy_workqueue(xfsdatad_workqueue);
  1661. out_destroy_xfslogd_workqueue:
  1662. destroy_workqueue(xfslogd_workqueue);
  1663. out:
  1664. return error;
  1665. }
  1666. /*
  1667. * Note: do not mark as __exit, it is called from pagebuf_terminate.
  1668. */
  1669. STATIC void
  1670. xfs_buf_daemons_stop(void)
  1671. {
  1672. xfsbufd_active = 0;
  1673. barrier();
  1674. wait_for_completion(&xfsbufd_done);
  1675. destroy_workqueue(xfslogd_workqueue);
  1676. destroy_workqueue(xfsdatad_workqueue);
  1677. }
  1678. /*
  1679. * Initialization and Termination
  1680. */
  1681. int __init
  1682. pagebuf_init(void)
  1683. {
  1684. int error = -ENOMEM;
  1685. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1686. if (!pagebuf_zone)
  1687. goto out;
  1688. #ifdef PAGEBUF_TRACE
  1689. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1690. #endif
  1691. error = xfs_buf_daemons_start();
  1692. if (error)
  1693. goto out_free_buf_zone;
  1694. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1695. if (!pagebuf_shake) {
  1696. error = -ENOMEM;
  1697. goto out_stop_daemons;
  1698. }
  1699. return 0;
  1700. out_stop_daemons:
  1701. xfs_buf_daemons_stop();
  1702. out_free_buf_zone:
  1703. #ifdef PAGEBUF_TRACE
  1704. ktrace_free(pagebuf_trace_buf);
  1705. #endif
  1706. kmem_zone_destroy(pagebuf_zone);
  1707. out:
  1708. return error;
  1709. }
  1710. /*
  1711. * pagebuf_terminate.
  1712. *
  1713. * Note: do not mark as __exit, this is also called from the __init code.
  1714. */
  1715. void
  1716. pagebuf_terminate(void)
  1717. {
  1718. xfs_buf_daemons_stop();
  1719. #ifdef PAGEBUF_TRACE
  1720. ktrace_free(pagebuf_trace_buf);
  1721. #endif
  1722. kmem_zone_destroy(pagebuf_zone);
  1723. kmem_shake_deregister(pagebuf_shake);
  1724. }