page-writeback.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. if (vm_dirty_bytes)
  121. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  122. else
  123. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  124. 100;
  125. return 2 + ilog2(dirty_total - 1);
  126. }
  127. /*
  128. * update the period when the dirty threshold changes.
  129. */
  130. static void update_completion_period(void)
  131. {
  132. int shift = calc_period_shift();
  133. prop_change_shift(&vm_completions, shift);
  134. writeback_set_ratelimit();
  135. }
  136. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  137. void __user *buffer, size_t *lenp,
  138. loff_t *ppos)
  139. {
  140. int ret;
  141. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  142. if (ret == 0 && write)
  143. dirty_background_bytes = 0;
  144. return ret;
  145. }
  146. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  147. void __user *buffer, size_t *lenp,
  148. loff_t *ppos)
  149. {
  150. int ret;
  151. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  152. if (ret == 0 && write)
  153. dirty_background_ratio = 0;
  154. return ret;
  155. }
  156. int dirty_ratio_handler(struct ctl_table *table, int write,
  157. void __user *buffer, size_t *lenp,
  158. loff_t *ppos)
  159. {
  160. int old_ratio = vm_dirty_ratio;
  161. int ret;
  162. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  163. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  164. update_completion_period();
  165. vm_dirty_bytes = 0;
  166. }
  167. return ret;
  168. }
  169. int dirty_bytes_handler(struct ctl_table *table, int write,
  170. void __user *buffer, size_t *lenp,
  171. loff_t *ppos)
  172. {
  173. unsigned long old_bytes = vm_dirty_bytes;
  174. int ret;
  175. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  176. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  177. update_completion_period();
  178. vm_dirty_ratio = 0;
  179. }
  180. return ret;
  181. }
  182. /*
  183. * Increment the BDI's writeout completion count and the global writeout
  184. * completion count. Called from test_clear_page_writeback().
  185. */
  186. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  187. {
  188. __inc_bdi_stat(bdi, BDI_WRITTEN);
  189. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  190. bdi->max_prop_frac);
  191. }
  192. void bdi_writeout_inc(struct backing_dev_info *bdi)
  193. {
  194. unsigned long flags;
  195. local_irq_save(flags);
  196. __bdi_writeout_inc(bdi);
  197. local_irq_restore(flags);
  198. }
  199. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  200. /*
  201. * Obtain an accurate fraction of the BDI's portion.
  202. */
  203. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  204. long *numerator, long *denominator)
  205. {
  206. prop_fraction_percpu(&vm_completions, &bdi->completions,
  207. numerator, denominator);
  208. }
  209. /*
  210. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  211. * registered backing devices, which, for obvious reasons, can not
  212. * exceed 100%.
  213. */
  214. static unsigned int bdi_min_ratio;
  215. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  216. {
  217. int ret = 0;
  218. spin_lock_bh(&bdi_lock);
  219. if (min_ratio > bdi->max_ratio) {
  220. ret = -EINVAL;
  221. } else {
  222. min_ratio -= bdi->min_ratio;
  223. if (bdi_min_ratio + min_ratio < 100) {
  224. bdi_min_ratio += min_ratio;
  225. bdi->min_ratio += min_ratio;
  226. } else {
  227. ret = -EINVAL;
  228. }
  229. }
  230. spin_unlock_bh(&bdi_lock);
  231. return ret;
  232. }
  233. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  234. {
  235. int ret = 0;
  236. if (max_ratio > 100)
  237. return -EINVAL;
  238. spin_lock_bh(&bdi_lock);
  239. if (bdi->min_ratio > max_ratio) {
  240. ret = -EINVAL;
  241. } else {
  242. bdi->max_ratio = max_ratio;
  243. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  244. }
  245. spin_unlock_bh(&bdi_lock);
  246. return ret;
  247. }
  248. EXPORT_SYMBOL(bdi_set_max_ratio);
  249. /*
  250. * Work out the current dirty-memory clamping and background writeout
  251. * thresholds.
  252. *
  253. * The main aim here is to lower them aggressively if there is a lot of mapped
  254. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  255. * pages. It is better to clamp down on writers than to start swapping, and
  256. * performing lots of scanning.
  257. *
  258. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  259. *
  260. * We don't permit the clamping level to fall below 5% - that is getting rather
  261. * excessive.
  262. *
  263. * We make sure that the background writeout level is below the adjusted
  264. * clamping level.
  265. */
  266. static unsigned long highmem_dirtyable_memory(unsigned long total)
  267. {
  268. #ifdef CONFIG_HIGHMEM
  269. int node;
  270. unsigned long x = 0;
  271. for_each_node_state(node, N_HIGH_MEMORY) {
  272. struct zone *z =
  273. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  274. x += zone_page_state(z, NR_FREE_PAGES) +
  275. zone_reclaimable_pages(z);
  276. }
  277. /*
  278. * Make sure that the number of highmem pages is never larger
  279. * than the number of the total dirtyable memory. This can only
  280. * occur in very strange VM situations but we want to make sure
  281. * that this does not occur.
  282. */
  283. return min(x, total);
  284. #else
  285. return 0;
  286. #endif
  287. }
  288. /**
  289. * determine_dirtyable_memory - amount of memory that may be used
  290. *
  291. * Returns the numebr of pages that can currently be freed and used
  292. * by the kernel for direct mappings.
  293. */
  294. unsigned long determine_dirtyable_memory(void)
  295. {
  296. unsigned long x;
  297. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  298. if (!vm_highmem_is_dirtyable)
  299. x -= highmem_dirtyable_memory(x);
  300. return x + 1; /* Ensure that we never return 0 */
  301. }
  302. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  303. unsigned long bg_thresh)
  304. {
  305. return (thresh + bg_thresh) / 2;
  306. }
  307. static unsigned long hard_dirty_limit(unsigned long thresh)
  308. {
  309. return max(thresh, global_dirty_limit);
  310. }
  311. /*
  312. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  313. *
  314. * Calculate the dirty thresholds based on sysctl parameters
  315. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  316. * - vm.dirty_ratio or vm.dirty_bytes
  317. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  318. * real-time tasks.
  319. */
  320. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  321. {
  322. unsigned long background;
  323. unsigned long dirty;
  324. unsigned long uninitialized_var(available_memory);
  325. struct task_struct *tsk;
  326. if (!vm_dirty_bytes || !dirty_background_bytes)
  327. available_memory = determine_dirtyable_memory();
  328. if (vm_dirty_bytes)
  329. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  330. else
  331. dirty = (vm_dirty_ratio * available_memory) / 100;
  332. if (dirty_background_bytes)
  333. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  334. else
  335. background = (dirty_background_ratio * available_memory) / 100;
  336. if (background >= dirty)
  337. background = dirty / 2;
  338. tsk = current;
  339. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  340. background += background / 4;
  341. dirty += dirty / 4;
  342. }
  343. *pbackground = background;
  344. *pdirty = dirty;
  345. trace_global_dirty_state(background, dirty);
  346. }
  347. /**
  348. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  349. * @bdi: the backing_dev_info to query
  350. * @dirty: global dirty limit in pages
  351. *
  352. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  353. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  354. *
  355. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  356. * when sleeping max_pause per page is not enough to keep the dirty pages under
  357. * control. For example, when the device is completely stalled due to some error
  358. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  359. * In the other normal situations, it acts more gently by throttling the tasks
  360. * more (rather than completely block them) when the bdi dirty pages go high.
  361. *
  362. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  363. * - starving fast devices
  364. * - piling up dirty pages (that will take long time to sync) on slow devices
  365. *
  366. * The bdi's share of dirty limit will be adapting to its throughput and
  367. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  368. */
  369. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  370. {
  371. u64 bdi_dirty;
  372. long numerator, denominator;
  373. /*
  374. * Calculate this BDI's share of the dirty ratio.
  375. */
  376. bdi_writeout_fraction(bdi, &numerator, &denominator);
  377. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  378. bdi_dirty *= numerator;
  379. do_div(bdi_dirty, denominator);
  380. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  381. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  382. bdi_dirty = dirty * bdi->max_ratio / 100;
  383. return bdi_dirty;
  384. }
  385. /*
  386. * Dirty position control.
  387. *
  388. * (o) global/bdi setpoints
  389. *
  390. * We want the dirty pages be balanced around the global/bdi setpoints.
  391. * When the number of dirty pages is higher/lower than the setpoint, the
  392. * dirty position control ratio (and hence task dirty ratelimit) will be
  393. * decreased/increased to bring the dirty pages back to the setpoint.
  394. *
  395. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  396. *
  397. * if (dirty < setpoint) scale up pos_ratio
  398. * if (dirty > setpoint) scale down pos_ratio
  399. *
  400. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  401. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  402. *
  403. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  404. *
  405. * (o) global control line
  406. *
  407. * ^ pos_ratio
  408. * |
  409. * | |<===== global dirty control scope ======>|
  410. * 2.0 .............*
  411. * | .*
  412. * | . *
  413. * | . *
  414. * | . *
  415. * | . *
  416. * | . *
  417. * 1.0 ................................*
  418. * | . . *
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * | . . *
  423. * 0 +------------.------------------.----------------------*------------->
  424. * freerun^ setpoint^ limit^ dirty pages
  425. *
  426. * (o) bdi control line
  427. *
  428. * ^ pos_ratio
  429. * |
  430. * | *
  431. * | *
  432. * | *
  433. * | *
  434. * | * |<=========== span ============>|
  435. * 1.0 .......................*
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * | . *
  447. * 1/4 ...............................................* * * * * * * * * * * *
  448. * | . .
  449. * | . .
  450. * | . .
  451. * 0 +----------------------.-------------------------------.------------->
  452. * bdi_setpoint^ x_intercept^
  453. *
  454. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  455. * be smoothly throttled down to normal if it starts high in situations like
  456. * - start writing to a slow SD card and a fast disk at the same time. The SD
  457. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  458. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  459. */
  460. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  461. unsigned long thresh,
  462. unsigned long bg_thresh,
  463. unsigned long dirty,
  464. unsigned long bdi_thresh,
  465. unsigned long bdi_dirty)
  466. {
  467. unsigned long write_bw = bdi->avg_write_bandwidth;
  468. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  469. unsigned long limit = hard_dirty_limit(thresh);
  470. unsigned long x_intercept;
  471. unsigned long setpoint; /* dirty pages' target balance point */
  472. unsigned long bdi_setpoint;
  473. unsigned long span;
  474. long long pos_ratio; /* for scaling up/down the rate limit */
  475. long x;
  476. if (unlikely(dirty >= limit))
  477. return 0;
  478. /*
  479. * global setpoint
  480. *
  481. * setpoint - dirty 3
  482. * f(dirty) := 1.0 + (----------------)
  483. * limit - setpoint
  484. *
  485. * it's a 3rd order polynomial that subjects to
  486. *
  487. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  488. * (2) f(setpoint) = 1.0 => the balance point
  489. * (3) f(limit) = 0 => the hard limit
  490. * (4) df/dx <= 0 => negative feedback control
  491. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  492. * => fast response on large errors; small oscillation near setpoint
  493. */
  494. setpoint = (freerun + limit) / 2;
  495. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  496. limit - setpoint + 1);
  497. pos_ratio = x;
  498. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  499. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  500. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  501. /*
  502. * We have computed basic pos_ratio above based on global situation. If
  503. * the bdi is over/under its share of dirty pages, we want to scale
  504. * pos_ratio further down/up. That is done by the following mechanism.
  505. */
  506. /*
  507. * bdi setpoint
  508. *
  509. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  510. *
  511. * x_intercept - bdi_dirty
  512. * := --------------------------
  513. * x_intercept - bdi_setpoint
  514. *
  515. * The main bdi control line is a linear function that subjects to
  516. *
  517. * (1) f(bdi_setpoint) = 1.0
  518. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  519. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  520. *
  521. * For single bdi case, the dirty pages are observed to fluctuate
  522. * regularly within range
  523. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  524. * for various filesystems, where (2) can yield in a reasonable 12.5%
  525. * fluctuation range for pos_ratio.
  526. *
  527. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  528. * own size, so move the slope over accordingly and choose a slope that
  529. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  530. */
  531. if (unlikely(bdi_thresh > thresh))
  532. bdi_thresh = thresh;
  533. /*
  534. * It's very possible that bdi_thresh is close to 0 not because the
  535. * device is slow, but that it has remained inactive for long time.
  536. * Honour such devices a reasonable good (hopefully IO efficient)
  537. * threshold, so that the occasional writes won't be blocked and active
  538. * writes can rampup the threshold quickly.
  539. */
  540. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  541. /*
  542. * scale global setpoint to bdi's:
  543. * bdi_setpoint = setpoint * bdi_thresh / thresh
  544. */
  545. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  546. bdi_setpoint = setpoint * (u64)x >> 16;
  547. /*
  548. * Use span=(8*write_bw) in single bdi case as indicated by
  549. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  550. *
  551. * bdi_thresh thresh - bdi_thresh
  552. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  553. * thresh thresh
  554. */
  555. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  556. x_intercept = bdi_setpoint + span;
  557. if (bdi_dirty < x_intercept - span / 4) {
  558. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  559. x_intercept - bdi_setpoint + 1);
  560. } else
  561. pos_ratio /= 4;
  562. /*
  563. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  564. * It may push the desired control point of global dirty pages higher
  565. * than setpoint.
  566. */
  567. x_intercept = bdi_thresh / 2;
  568. if (bdi_dirty < x_intercept) {
  569. if (bdi_dirty > x_intercept / 8)
  570. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  571. else
  572. pos_ratio *= 8;
  573. }
  574. return pos_ratio;
  575. }
  576. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  577. unsigned long elapsed,
  578. unsigned long written)
  579. {
  580. const unsigned long period = roundup_pow_of_two(3 * HZ);
  581. unsigned long avg = bdi->avg_write_bandwidth;
  582. unsigned long old = bdi->write_bandwidth;
  583. u64 bw;
  584. /*
  585. * bw = written * HZ / elapsed
  586. *
  587. * bw * elapsed + write_bandwidth * (period - elapsed)
  588. * write_bandwidth = ---------------------------------------------------
  589. * period
  590. */
  591. bw = written - bdi->written_stamp;
  592. bw *= HZ;
  593. if (unlikely(elapsed > period)) {
  594. do_div(bw, elapsed);
  595. avg = bw;
  596. goto out;
  597. }
  598. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  599. bw >>= ilog2(period);
  600. /*
  601. * one more level of smoothing, for filtering out sudden spikes
  602. */
  603. if (avg > old && old >= (unsigned long)bw)
  604. avg -= (avg - old) >> 3;
  605. if (avg < old && old <= (unsigned long)bw)
  606. avg += (old - avg) >> 3;
  607. out:
  608. bdi->write_bandwidth = bw;
  609. bdi->avg_write_bandwidth = avg;
  610. }
  611. /*
  612. * The global dirtyable memory and dirty threshold could be suddenly knocked
  613. * down by a large amount (eg. on the startup of KVM in a swapless system).
  614. * This may throw the system into deep dirty exceeded state and throttle
  615. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  616. * global_dirty_limit for tracking slowly down to the knocked down dirty
  617. * threshold.
  618. */
  619. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  620. {
  621. unsigned long limit = global_dirty_limit;
  622. /*
  623. * Follow up in one step.
  624. */
  625. if (limit < thresh) {
  626. limit = thresh;
  627. goto update;
  628. }
  629. /*
  630. * Follow down slowly. Use the higher one as the target, because thresh
  631. * may drop below dirty. This is exactly the reason to introduce
  632. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  633. */
  634. thresh = max(thresh, dirty);
  635. if (limit > thresh) {
  636. limit -= (limit - thresh) >> 5;
  637. goto update;
  638. }
  639. return;
  640. update:
  641. global_dirty_limit = limit;
  642. }
  643. static void global_update_bandwidth(unsigned long thresh,
  644. unsigned long dirty,
  645. unsigned long now)
  646. {
  647. static DEFINE_SPINLOCK(dirty_lock);
  648. static unsigned long update_time;
  649. /*
  650. * check locklessly first to optimize away locking for the most time
  651. */
  652. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  653. return;
  654. spin_lock(&dirty_lock);
  655. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  656. update_dirty_limit(thresh, dirty);
  657. update_time = now;
  658. }
  659. spin_unlock(&dirty_lock);
  660. }
  661. /*
  662. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  663. *
  664. * Normal bdi tasks will be curbed at or below it in long term.
  665. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  666. */
  667. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  668. unsigned long thresh,
  669. unsigned long bg_thresh,
  670. unsigned long dirty,
  671. unsigned long bdi_thresh,
  672. unsigned long bdi_dirty,
  673. unsigned long dirtied,
  674. unsigned long elapsed)
  675. {
  676. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  677. unsigned long limit = hard_dirty_limit(thresh);
  678. unsigned long setpoint = (freerun + limit) / 2;
  679. unsigned long write_bw = bdi->avg_write_bandwidth;
  680. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  681. unsigned long dirty_rate;
  682. unsigned long task_ratelimit;
  683. unsigned long balanced_dirty_ratelimit;
  684. unsigned long pos_ratio;
  685. unsigned long step;
  686. unsigned long x;
  687. /*
  688. * The dirty rate will match the writeout rate in long term, except
  689. * when dirty pages are truncated by userspace or re-dirtied by FS.
  690. */
  691. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  692. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  693. bdi_thresh, bdi_dirty);
  694. /*
  695. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  696. */
  697. task_ratelimit = (u64)dirty_ratelimit *
  698. pos_ratio >> RATELIMIT_CALC_SHIFT;
  699. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  700. /*
  701. * A linear estimation of the "balanced" throttle rate. The theory is,
  702. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  703. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  704. * formula will yield the balanced rate limit (write_bw / N).
  705. *
  706. * Note that the expanded form is not a pure rate feedback:
  707. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  708. * but also takes pos_ratio into account:
  709. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  710. *
  711. * (1) is not realistic because pos_ratio also takes part in balancing
  712. * the dirty rate. Consider the state
  713. * pos_ratio = 0.5 (3)
  714. * rate = 2 * (write_bw / N) (4)
  715. * If (1) is used, it will stuck in that state! Because each dd will
  716. * be throttled at
  717. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  718. * yielding
  719. * dirty_rate = N * task_ratelimit = write_bw (6)
  720. * put (6) into (1) we get
  721. * rate_(i+1) = rate_(i) (7)
  722. *
  723. * So we end up using (2) to always keep
  724. * rate_(i+1) ~= (write_bw / N) (8)
  725. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  726. * pos_ratio is able to drive itself to 1.0, which is not only where
  727. * the dirty count meet the setpoint, but also where the slope of
  728. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  729. */
  730. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  731. dirty_rate | 1);
  732. /*
  733. * We could safely do this and return immediately:
  734. *
  735. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  736. *
  737. * However to get a more stable dirty_ratelimit, the below elaborated
  738. * code makes use of task_ratelimit to filter out sigular points and
  739. * limit the step size.
  740. *
  741. * The below code essentially only uses the relative value of
  742. *
  743. * task_ratelimit - dirty_ratelimit
  744. * = (pos_ratio - 1) * dirty_ratelimit
  745. *
  746. * which reflects the direction and size of dirty position error.
  747. */
  748. /*
  749. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  750. * task_ratelimit is on the same side of dirty_ratelimit, too.
  751. * For example, when
  752. * - dirty_ratelimit > balanced_dirty_ratelimit
  753. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  754. * lowering dirty_ratelimit will help meet both the position and rate
  755. * control targets. Otherwise, don't update dirty_ratelimit if it will
  756. * only help meet the rate target. After all, what the users ultimately
  757. * feel and care are stable dirty rate and small position error.
  758. *
  759. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  760. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  761. * keeps jumping around randomly and can even leap far away at times
  762. * due to the small 200ms estimation period of dirty_rate (we want to
  763. * keep that period small to reduce time lags).
  764. */
  765. step = 0;
  766. if (dirty < setpoint) {
  767. x = min(bdi->balanced_dirty_ratelimit,
  768. min(balanced_dirty_ratelimit, task_ratelimit));
  769. if (dirty_ratelimit < x)
  770. step = x - dirty_ratelimit;
  771. } else {
  772. x = max(bdi->balanced_dirty_ratelimit,
  773. max(balanced_dirty_ratelimit, task_ratelimit));
  774. if (dirty_ratelimit > x)
  775. step = dirty_ratelimit - x;
  776. }
  777. /*
  778. * Don't pursue 100% rate matching. It's impossible since the balanced
  779. * rate itself is constantly fluctuating. So decrease the track speed
  780. * when it gets close to the target. Helps eliminate pointless tremors.
  781. */
  782. step >>= dirty_ratelimit / (2 * step + 1);
  783. /*
  784. * Limit the tracking speed to avoid overshooting.
  785. */
  786. step = (step + 7) / 8;
  787. if (dirty_ratelimit < balanced_dirty_ratelimit)
  788. dirty_ratelimit += step;
  789. else
  790. dirty_ratelimit -= step;
  791. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  792. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  793. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  794. }
  795. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  796. unsigned long thresh,
  797. unsigned long bg_thresh,
  798. unsigned long dirty,
  799. unsigned long bdi_thresh,
  800. unsigned long bdi_dirty,
  801. unsigned long start_time)
  802. {
  803. unsigned long now = jiffies;
  804. unsigned long elapsed = now - bdi->bw_time_stamp;
  805. unsigned long dirtied;
  806. unsigned long written;
  807. /*
  808. * rate-limit, only update once every 200ms.
  809. */
  810. if (elapsed < BANDWIDTH_INTERVAL)
  811. return;
  812. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  813. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  814. /*
  815. * Skip quiet periods when disk bandwidth is under-utilized.
  816. * (at least 1s idle time between two flusher runs)
  817. */
  818. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  819. goto snapshot;
  820. if (thresh) {
  821. global_update_bandwidth(thresh, dirty, now);
  822. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  823. bdi_thresh, bdi_dirty,
  824. dirtied, elapsed);
  825. }
  826. bdi_update_write_bandwidth(bdi, elapsed, written);
  827. snapshot:
  828. bdi->dirtied_stamp = dirtied;
  829. bdi->written_stamp = written;
  830. bdi->bw_time_stamp = now;
  831. }
  832. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  833. unsigned long thresh,
  834. unsigned long bg_thresh,
  835. unsigned long dirty,
  836. unsigned long bdi_thresh,
  837. unsigned long bdi_dirty,
  838. unsigned long start_time)
  839. {
  840. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  841. return;
  842. spin_lock(&bdi->wb.list_lock);
  843. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  844. bdi_thresh, bdi_dirty, start_time);
  845. spin_unlock(&bdi->wb.list_lock);
  846. }
  847. /*
  848. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  849. * will look to see if it needs to start dirty throttling.
  850. *
  851. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  852. * global_page_state() too often. So scale it near-sqrt to the safety margin
  853. * (the number of pages we may dirty without exceeding the dirty limits).
  854. */
  855. static unsigned long dirty_poll_interval(unsigned long dirty,
  856. unsigned long thresh)
  857. {
  858. if (thresh > dirty)
  859. return 1UL << (ilog2(thresh - dirty) >> 1);
  860. return 1;
  861. }
  862. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  863. unsigned long bdi_dirty)
  864. {
  865. unsigned long bw = bdi->avg_write_bandwidth;
  866. unsigned long hi = ilog2(bw);
  867. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  868. unsigned long t;
  869. /* target for 20ms max pause on 1-dd case */
  870. t = HZ / 50;
  871. /*
  872. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  873. * overheads.
  874. *
  875. * (N * 20ms) on 2^N concurrent tasks.
  876. */
  877. if (hi > lo)
  878. t += (hi - lo) * (20 * HZ) / 1024;
  879. /*
  880. * Limit pause time for small memory systems. If sleeping for too long
  881. * time, a small pool of dirty/writeback pages may go empty and disk go
  882. * idle.
  883. *
  884. * 8 serves as the safety ratio.
  885. */
  886. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  887. /*
  888. * The pause time will be settled within range (max_pause/4, max_pause).
  889. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  890. */
  891. return clamp_val(t, 4, MAX_PAUSE);
  892. }
  893. /*
  894. * balance_dirty_pages() must be called by processes which are generating dirty
  895. * data. It looks at the number of dirty pages in the machine and will force
  896. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  897. * If we're over `background_thresh' then the writeback threads are woken to
  898. * perform some writeout.
  899. */
  900. static void balance_dirty_pages(struct address_space *mapping,
  901. unsigned long pages_dirtied)
  902. {
  903. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  904. unsigned long bdi_reclaimable;
  905. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  906. unsigned long bdi_dirty;
  907. unsigned long freerun;
  908. unsigned long background_thresh;
  909. unsigned long dirty_thresh;
  910. unsigned long bdi_thresh;
  911. long pause = 0;
  912. long uninitialized_var(max_pause);
  913. bool dirty_exceeded = false;
  914. unsigned long task_ratelimit;
  915. unsigned long uninitialized_var(dirty_ratelimit);
  916. unsigned long pos_ratio;
  917. struct backing_dev_info *bdi = mapping->backing_dev_info;
  918. unsigned long start_time = jiffies;
  919. for (;;) {
  920. /*
  921. * Unstable writes are a feature of certain networked
  922. * filesystems (i.e. NFS) in which data may have been
  923. * written to the server's write cache, but has not yet
  924. * been flushed to permanent storage.
  925. */
  926. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  927. global_page_state(NR_UNSTABLE_NFS);
  928. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  929. global_dirty_limits(&background_thresh, &dirty_thresh);
  930. /*
  931. * Throttle it only when the background writeback cannot
  932. * catch-up. This avoids (excessively) small writeouts
  933. * when the bdi limits are ramping up.
  934. */
  935. freerun = dirty_freerun_ceiling(dirty_thresh,
  936. background_thresh);
  937. if (nr_dirty <= freerun)
  938. break;
  939. if (unlikely(!writeback_in_progress(bdi)))
  940. bdi_start_background_writeback(bdi);
  941. /*
  942. * bdi_thresh is not treated as some limiting factor as
  943. * dirty_thresh, due to reasons
  944. * - in JBOD setup, bdi_thresh can fluctuate a lot
  945. * - in a system with HDD and USB key, the USB key may somehow
  946. * go into state (bdi_dirty >> bdi_thresh) either because
  947. * bdi_dirty starts high, or because bdi_thresh drops low.
  948. * In this case we don't want to hard throttle the USB key
  949. * dirtiers for 100 seconds until bdi_dirty drops under
  950. * bdi_thresh. Instead the auxiliary bdi control line in
  951. * bdi_position_ratio() will let the dirtier task progress
  952. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  953. */
  954. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  955. /*
  956. * In order to avoid the stacked BDI deadlock we need
  957. * to ensure we accurately count the 'dirty' pages when
  958. * the threshold is low.
  959. *
  960. * Otherwise it would be possible to get thresh+n pages
  961. * reported dirty, even though there are thresh-m pages
  962. * actually dirty; with m+n sitting in the percpu
  963. * deltas.
  964. */
  965. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  966. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  967. bdi_dirty = bdi_reclaimable +
  968. bdi_stat_sum(bdi, BDI_WRITEBACK);
  969. } else {
  970. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  971. bdi_dirty = bdi_reclaimable +
  972. bdi_stat(bdi, BDI_WRITEBACK);
  973. }
  974. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  975. (nr_dirty > dirty_thresh);
  976. if (dirty_exceeded && !bdi->dirty_exceeded)
  977. bdi->dirty_exceeded = 1;
  978. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  979. nr_dirty, bdi_thresh, bdi_dirty,
  980. start_time);
  981. max_pause = bdi_max_pause(bdi, bdi_dirty);
  982. dirty_ratelimit = bdi->dirty_ratelimit;
  983. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  984. background_thresh, nr_dirty,
  985. bdi_thresh, bdi_dirty);
  986. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  987. RATELIMIT_CALC_SHIFT;
  988. if (unlikely(task_ratelimit == 0)) {
  989. pause = max_pause;
  990. goto pause;
  991. }
  992. pause = HZ * pages_dirtied / task_ratelimit;
  993. if (unlikely(pause <= 0)) {
  994. trace_balance_dirty_pages(bdi,
  995. dirty_thresh,
  996. background_thresh,
  997. nr_dirty,
  998. bdi_thresh,
  999. bdi_dirty,
  1000. dirty_ratelimit,
  1001. task_ratelimit,
  1002. pages_dirtied,
  1003. pause,
  1004. start_time);
  1005. pause = 1; /* avoid resetting nr_dirtied_pause below */
  1006. break;
  1007. }
  1008. pause = min(pause, max_pause);
  1009. pause:
  1010. trace_balance_dirty_pages(bdi,
  1011. dirty_thresh,
  1012. background_thresh,
  1013. nr_dirty,
  1014. bdi_thresh,
  1015. bdi_dirty,
  1016. dirty_ratelimit,
  1017. task_ratelimit,
  1018. pages_dirtied,
  1019. pause,
  1020. start_time);
  1021. __set_current_state(TASK_KILLABLE);
  1022. io_schedule_timeout(pause);
  1023. /*
  1024. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1025. * also keep "1000+ dd on a slow USB stick" under control.
  1026. */
  1027. if (task_ratelimit)
  1028. break;
  1029. /*
  1030. * In the case of an unresponding NFS server and the NFS dirty
  1031. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1032. * to go through, so that tasks on them still remain responsive.
  1033. *
  1034. * In theory 1 page is enough to keep the comsumer-producer
  1035. * pipe going: the flusher cleans 1 page => the task dirties 1
  1036. * more page. However bdi_dirty has accounting errors. So use
  1037. * the larger and more IO friendly bdi_stat_error.
  1038. */
  1039. if (bdi_dirty <= bdi_stat_error(bdi))
  1040. break;
  1041. if (fatal_signal_pending(current))
  1042. break;
  1043. }
  1044. if (!dirty_exceeded && bdi->dirty_exceeded)
  1045. bdi->dirty_exceeded = 0;
  1046. current->nr_dirtied = 0;
  1047. if (pause == 0) { /* in freerun area */
  1048. current->nr_dirtied_pause =
  1049. dirty_poll_interval(nr_dirty, dirty_thresh);
  1050. } else if (pause <= max_pause / 4 &&
  1051. pages_dirtied >= current->nr_dirtied_pause) {
  1052. current->nr_dirtied_pause = clamp_val(
  1053. dirty_ratelimit * (max_pause / 2) / HZ,
  1054. pages_dirtied + pages_dirtied / 8,
  1055. pages_dirtied * 4);
  1056. } else if (pause >= max_pause) {
  1057. current->nr_dirtied_pause = 1 | clamp_val(
  1058. dirty_ratelimit * (max_pause / 2) / HZ,
  1059. pages_dirtied / 4,
  1060. pages_dirtied - pages_dirtied / 8);
  1061. }
  1062. if (writeback_in_progress(bdi))
  1063. return;
  1064. /*
  1065. * In laptop mode, we wait until hitting the higher threshold before
  1066. * starting background writeout, and then write out all the way down
  1067. * to the lower threshold. So slow writers cause minimal disk activity.
  1068. *
  1069. * In normal mode, we start background writeout at the lower
  1070. * background_thresh, to keep the amount of dirty memory low.
  1071. */
  1072. if (laptop_mode)
  1073. return;
  1074. if (nr_reclaimable > background_thresh)
  1075. bdi_start_background_writeback(bdi);
  1076. }
  1077. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1078. {
  1079. if (set_page_dirty(page) || page_mkwrite) {
  1080. struct address_space *mapping = page_mapping(page);
  1081. if (mapping)
  1082. balance_dirty_pages_ratelimited(mapping);
  1083. }
  1084. }
  1085. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1086. /*
  1087. * Normal tasks are throttled by
  1088. * loop {
  1089. * dirty tsk->nr_dirtied_pause pages;
  1090. * take a snap in balance_dirty_pages();
  1091. * }
  1092. * However there is a worst case. If every task exit immediately when dirtied
  1093. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1094. * called to throttle the page dirties. The solution is to save the not yet
  1095. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1096. * randomly into the running tasks. This works well for the above worst case,
  1097. * as the new task will pick up and accumulate the old task's leaked dirty
  1098. * count and eventually get throttled.
  1099. */
  1100. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1101. /**
  1102. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1103. * @mapping: address_space which was dirtied
  1104. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1105. *
  1106. * Processes which are dirtying memory should call in here once for each page
  1107. * which was newly dirtied. The function will periodically check the system's
  1108. * dirty state and will initiate writeback if needed.
  1109. *
  1110. * On really big machines, get_writeback_state is expensive, so try to avoid
  1111. * calling it too often (ratelimiting). But once we're over the dirty memory
  1112. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1113. * from overshooting the limit by (ratelimit_pages) each.
  1114. */
  1115. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1116. unsigned long nr_pages_dirtied)
  1117. {
  1118. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1119. int ratelimit;
  1120. int *p;
  1121. if (!bdi_cap_account_dirty(bdi))
  1122. return;
  1123. ratelimit = current->nr_dirtied_pause;
  1124. if (bdi->dirty_exceeded)
  1125. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1126. preempt_disable();
  1127. /*
  1128. * This prevents one CPU to accumulate too many dirtied pages without
  1129. * calling into balance_dirty_pages(), which can happen when there are
  1130. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1131. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1132. */
  1133. p = &__get_cpu_var(bdp_ratelimits);
  1134. if (unlikely(current->nr_dirtied >= ratelimit))
  1135. *p = 0;
  1136. else if (unlikely(*p >= ratelimit_pages)) {
  1137. *p = 0;
  1138. ratelimit = 0;
  1139. }
  1140. /*
  1141. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1142. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1143. * the dirty throttling and livelock other long-run dirtiers.
  1144. */
  1145. p = &__get_cpu_var(dirty_throttle_leaks);
  1146. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1147. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1148. *p -= nr_pages_dirtied;
  1149. current->nr_dirtied += nr_pages_dirtied;
  1150. }
  1151. preempt_enable();
  1152. if (unlikely(current->nr_dirtied >= ratelimit))
  1153. balance_dirty_pages(mapping, current->nr_dirtied);
  1154. }
  1155. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1156. void throttle_vm_writeout(gfp_t gfp_mask)
  1157. {
  1158. unsigned long background_thresh;
  1159. unsigned long dirty_thresh;
  1160. for ( ; ; ) {
  1161. global_dirty_limits(&background_thresh, &dirty_thresh);
  1162. /*
  1163. * Boost the allowable dirty threshold a bit for page
  1164. * allocators so they don't get DoS'ed by heavy writers
  1165. */
  1166. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1167. if (global_page_state(NR_UNSTABLE_NFS) +
  1168. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1169. break;
  1170. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1171. /*
  1172. * The caller might hold locks which can prevent IO completion
  1173. * or progress in the filesystem. So we cannot just sit here
  1174. * waiting for IO to complete.
  1175. */
  1176. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1177. break;
  1178. }
  1179. }
  1180. /*
  1181. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1182. */
  1183. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1184. void __user *buffer, size_t *length, loff_t *ppos)
  1185. {
  1186. proc_dointvec(table, write, buffer, length, ppos);
  1187. bdi_arm_supers_timer();
  1188. return 0;
  1189. }
  1190. #ifdef CONFIG_BLOCK
  1191. void laptop_mode_timer_fn(unsigned long data)
  1192. {
  1193. struct request_queue *q = (struct request_queue *)data;
  1194. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1195. global_page_state(NR_UNSTABLE_NFS);
  1196. /*
  1197. * We want to write everything out, not just down to the dirty
  1198. * threshold
  1199. */
  1200. if (bdi_has_dirty_io(&q->backing_dev_info))
  1201. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1202. WB_REASON_LAPTOP_TIMER);
  1203. }
  1204. /*
  1205. * We've spun up the disk and we're in laptop mode: schedule writeback
  1206. * of all dirty data a few seconds from now. If the flush is already scheduled
  1207. * then push it back - the user is still using the disk.
  1208. */
  1209. void laptop_io_completion(struct backing_dev_info *info)
  1210. {
  1211. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1212. }
  1213. /*
  1214. * We're in laptop mode and we've just synced. The sync's writes will have
  1215. * caused another writeback to be scheduled by laptop_io_completion.
  1216. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1217. */
  1218. void laptop_sync_completion(void)
  1219. {
  1220. struct backing_dev_info *bdi;
  1221. rcu_read_lock();
  1222. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1223. del_timer(&bdi->laptop_mode_wb_timer);
  1224. rcu_read_unlock();
  1225. }
  1226. #endif
  1227. /*
  1228. * If ratelimit_pages is too high then we can get into dirty-data overload
  1229. * if a large number of processes all perform writes at the same time.
  1230. * If it is too low then SMP machines will call the (expensive)
  1231. * get_writeback_state too often.
  1232. *
  1233. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1234. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1235. * thresholds.
  1236. */
  1237. void writeback_set_ratelimit(void)
  1238. {
  1239. unsigned long background_thresh;
  1240. unsigned long dirty_thresh;
  1241. global_dirty_limits(&background_thresh, &dirty_thresh);
  1242. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1243. if (ratelimit_pages < 16)
  1244. ratelimit_pages = 16;
  1245. }
  1246. static int __cpuinit
  1247. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1248. {
  1249. writeback_set_ratelimit();
  1250. return NOTIFY_DONE;
  1251. }
  1252. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1253. .notifier_call = ratelimit_handler,
  1254. .next = NULL,
  1255. };
  1256. /*
  1257. * Called early on to tune the page writeback dirty limits.
  1258. *
  1259. * We used to scale dirty pages according to how total memory
  1260. * related to pages that could be allocated for buffers (by
  1261. * comparing nr_free_buffer_pages() to vm_total_pages.
  1262. *
  1263. * However, that was when we used "dirty_ratio" to scale with
  1264. * all memory, and we don't do that any more. "dirty_ratio"
  1265. * is now applied to total non-HIGHPAGE memory (by subtracting
  1266. * totalhigh_pages from vm_total_pages), and as such we can't
  1267. * get into the old insane situation any more where we had
  1268. * large amounts of dirty pages compared to a small amount of
  1269. * non-HIGHMEM memory.
  1270. *
  1271. * But we might still want to scale the dirty_ratio by how
  1272. * much memory the box has..
  1273. */
  1274. void __init page_writeback_init(void)
  1275. {
  1276. int shift;
  1277. writeback_set_ratelimit();
  1278. register_cpu_notifier(&ratelimit_nb);
  1279. shift = calc_period_shift();
  1280. prop_descriptor_init(&vm_completions, shift);
  1281. }
  1282. /**
  1283. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1284. * @mapping: address space structure to write
  1285. * @start: starting page index
  1286. * @end: ending page index (inclusive)
  1287. *
  1288. * This function scans the page range from @start to @end (inclusive) and tags
  1289. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1290. * that write_cache_pages (or whoever calls this function) will then use
  1291. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1292. * used to avoid livelocking of writeback by a process steadily creating new
  1293. * dirty pages in the file (thus it is important for this function to be quick
  1294. * so that it can tag pages faster than a dirtying process can create them).
  1295. */
  1296. /*
  1297. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1298. */
  1299. void tag_pages_for_writeback(struct address_space *mapping,
  1300. pgoff_t start, pgoff_t end)
  1301. {
  1302. #define WRITEBACK_TAG_BATCH 4096
  1303. unsigned long tagged;
  1304. do {
  1305. spin_lock_irq(&mapping->tree_lock);
  1306. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1307. &start, end, WRITEBACK_TAG_BATCH,
  1308. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1309. spin_unlock_irq(&mapping->tree_lock);
  1310. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1311. cond_resched();
  1312. /* We check 'start' to handle wrapping when end == ~0UL */
  1313. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1314. }
  1315. EXPORT_SYMBOL(tag_pages_for_writeback);
  1316. /**
  1317. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1318. * @mapping: address space structure to write
  1319. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1320. * @writepage: function called for each page
  1321. * @data: data passed to writepage function
  1322. *
  1323. * If a page is already under I/O, write_cache_pages() skips it, even
  1324. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1325. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1326. * and msync() need to guarantee that all the data which was dirty at the time
  1327. * the call was made get new I/O started against them. If wbc->sync_mode is
  1328. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1329. * existing IO to complete.
  1330. *
  1331. * To avoid livelocks (when other process dirties new pages), we first tag
  1332. * pages which should be written back with TOWRITE tag and only then start
  1333. * writing them. For data-integrity sync we have to be careful so that we do
  1334. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1335. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1336. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1337. */
  1338. int write_cache_pages(struct address_space *mapping,
  1339. struct writeback_control *wbc, writepage_t writepage,
  1340. void *data)
  1341. {
  1342. int ret = 0;
  1343. int done = 0;
  1344. struct pagevec pvec;
  1345. int nr_pages;
  1346. pgoff_t uninitialized_var(writeback_index);
  1347. pgoff_t index;
  1348. pgoff_t end; /* Inclusive */
  1349. pgoff_t done_index;
  1350. int cycled;
  1351. int range_whole = 0;
  1352. int tag;
  1353. pagevec_init(&pvec, 0);
  1354. if (wbc->range_cyclic) {
  1355. writeback_index = mapping->writeback_index; /* prev offset */
  1356. index = writeback_index;
  1357. if (index == 0)
  1358. cycled = 1;
  1359. else
  1360. cycled = 0;
  1361. end = -1;
  1362. } else {
  1363. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1364. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1365. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1366. range_whole = 1;
  1367. cycled = 1; /* ignore range_cyclic tests */
  1368. }
  1369. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1370. tag = PAGECACHE_TAG_TOWRITE;
  1371. else
  1372. tag = PAGECACHE_TAG_DIRTY;
  1373. retry:
  1374. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1375. tag_pages_for_writeback(mapping, index, end);
  1376. done_index = index;
  1377. while (!done && (index <= end)) {
  1378. int i;
  1379. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1380. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1381. if (nr_pages == 0)
  1382. break;
  1383. for (i = 0; i < nr_pages; i++) {
  1384. struct page *page = pvec.pages[i];
  1385. /*
  1386. * At this point, the page may be truncated or
  1387. * invalidated (changing page->mapping to NULL), or
  1388. * even swizzled back from swapper_space to tmpfs file
  1389. * mapping. However, page->index will not change
  1390. * because we have a reference on the page.
  1391. */
  1392. if (page->index > end) {
  1393. /*
  1394. * can't be range_cyclic (1st pass) because
  1395. * end == -1 in that case.
  1396. */
  1397. done = 1;
  1398. break;
  1399. }
  1400. done_index = page->index;
  1401. lock_page(page);
  1402. /*
  1403. * Page truncated or invalidated. We can freely skip it
  1404. * then, even for data integrity operations: the page
  1405. * has disappeared concurrently, so there could be no
  1406. * real expectation of this data interity operation
  1407. * even if there is now a new, dirty page at the same
  1408. * pagecache address.
  1409. */
  1410. if (unlikely(page->mapping != mapping)) {
  1411. continue_unlock:
  1412. unlock_page(page);
  1413. continue;
  1414. }
  1415. if (!PageDirty(page)) {
  1416. /* someone wrote it for us */
  1417. goto continue_unlock;
  1418. }
  1419. if (PageWriteback(page)) {
  1420. if (wbc->sync_mode != WB_SYNC_NONE)
  1421. wait_on_page_writeback(page);
  1422. else
  1423. goto continue_unlock;
  1424. }
  1425. BUG_ON(PageWriteback(page));
  1426. if (!clear_page_dirty_for_io(page))
  1427. goto continue_unlock;
  1428. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1429. ret = (*writepage)(page, wbc, data);
  1430. if (unlikely(ret)) {
  1431. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1432. unlock_page(page);
  1433. ret = 0;
  1434. } else {
  1435. /*
  1436. * done_index is set past this page,
  1437. * so media errors will not choke
  1438. * background writeout for the entire
  1439. * file. This has consequences for
  1440. * range_cyclic semantics (ie. it may
  1441. * not be suitable for data integrity
  1442. * writeout).
  1443. */
  1444. done_index = page->index + 1;
  1445. done = 1;
  1446. break;
  1447. }
  1448. }
  1449. /*
  1450. * We stop writing back only if we are not doing
  1451. * integrity sync. In case of integrity sync we have to
  1452. * keep going until we have written all the pages
  1453. * we tagged for writeback prior to entering this loop.
  1454. */
  1455. if (--wbc->nr_to_write <= 0 &&
  1456. wbc->sync_mode == WB_SYNC_NONE) {
  1457. done = 1;
  1458. break;
  1459. }
  1460. }
  1461. pagevec_release(&pvec);
  1462. cond_resched();
  1463. }
  1464. if (!cycled && !done) {
  1465. /*
  1466. * range_cyclic:
  1467. * We hit the last page and there is more work to be done: wrap
  1468. * back to the start of the file
  1469. */
  1470. cycled = 1;
  1471. index = 0;
  1472. end = writeback_index - 1;
  1473. goto retry;
  1474. }
  1475. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1476. mapping->writeback_index = done_index;
  1477. return ret;
  1478. }
  1479. EXPORT_SYMBOL(write_cache_pages);
  1480. /*
  1481. * Function used by generic_writepages to call the real writepage
  1482. * function and set the mapping flags on error
  1483. */
  1484. static int __writepage(struct page *page, struct writeback_control *wbc,
  1485. void *data)
  1486. {
  1487. struct address_space *mapping = data;
  1488. int ret = mapping->a_ops->writepage(page, wbc);
  1489. mapping_set_error(mapping, ret);
  1490. return ret;
  1491. }
  1492. /**
  1493. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1494. * @mapping: address space structure to write
  1495. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1496. *
  1497. * This is a library function, which implements the writepages()
  1498. * address_space_operation.
  1499. */
  1500. int generic_writepages(struct address_space *mapping,
  1501. struct writeback_control *wbc)
  1502. {
  1503. struct blk_plug plug;
  1504. int ret;
  1505. /* deal with chardevs and other special file */
  1506. if (!mapping->a_ops->writepage)
  1507. return 0;
  1508. blk_start_plug(&plug);
  1509. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1510. blk_finish_plug(&plug);
  1511. return ret;
  1512. }
  1513. EXPORT_SYMBOL(generic_writepages);
  1514. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1515. {
  1516. int ret;
  1517. if (wbc->nr_to_write <= 0)
  1518. return 0;
  1519. if (mapping->a_ops->writepages)
  1520. ret = mapping->a_ops->writepages(mapping, wbc);
  1521. else
  1522. ret = generic_writepages(mapping, wbc);
  1523. return ret;
  1524. }
  1525. /**
  1526. * write_one_page - write out a single page and optionally wait on I/O
  1527. * @page: the page to write
  1528. * @wait: if true, wait on writeout
  1529. *
  1530. * The page must be locked by the caller and will be unlocked upon return.
  1531. *
  1532. * write_one_page() returns a negative error code if I/O failed.
  1533. */
  1534. int write_one_page(struct page *page, int wait)
  1535. {
  1536. struct address_space *mapping = page->mapping;
  1537. int ret = 0;
  1538. struct writeback_control wbc = {
  1539. .sync_mode = WB_SYNC_ALL,
  1540. .nr_to_write = 1,
  1541. };
  1542. BUG_ON(!PageLocked(page));
  1543. if (wait)
  1544. wait_on_page_writeback(page);
  1545. if (clear_page_dirty_for_io(page)) {
  1546. page_cache_get(page);
  1547. ret = mapping->a_ops->writepage(page, &wbc);
  1548. if (ret == 0 && wait) {
  1549. wait_on_page_writeback(page);
  1550. if (PageError(page))
  1551. ret = -EIO;
  1552. }
  1553. page_cache_release(page);
  1554. } else {
  1555. unlock_page(page);
  1556. }
  1557. return ret;
  1558. }
  1559. EXPORT_SYMBOL(write_one_page);
  1560. /*
  1561. * For address_spaces which do not use buffers nor write back.
  1562. */
  1563. int __set_page_dirty_no_writeback(struct page *page)
  1564. {
  1565. if (!PageDirty(page))
  1566. return !TestSetPageDirty(page);
  1567. return 0;
  1568. }
  1569. /*
  1570. * Helper function for set_page_dirty family.
  1571. * NOTE: This relies on being atomic wrt interrupts.
  1572. */
  1573. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1574. {
  1575. if (mapping_cap_account_dirty(mapping)) {
  1576. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1577. __inc_zone_page_state(page, NR_DIRTIED);
  1578. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1579. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1580. task_io_account_write(PAGE_CACHE_SIZE);
  1581. current->nr_dirtied++;
  1582. this_cpu_inc(bdp_ratelimits);
  1583. }
  1584. }
  1585. EXPORT_SYMBOL(account_page_dirtied);
  1586. /*
  1587. * Helper function for set_page_writeback family.
  1588. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1589. * wrt interrupts.
  1590. */
  1591. void account_page_writeback(struct page *page)
  1592. {
  1593. inc_zone_page_state(page, NR_WRITEBACK);
  1594. }
  1595. EXPORT_SYMBOL(account_page_writeback);
  1596. /*
  1597. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1598. * its radix tree.
  1599. *
  1600. * This is also used when a single buffer is being dirtied: we want to set the
  1601. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1602. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1603. *
  1604. * Most callers have locked the page, which pins the address_space in memory.
  1605. * But zap_pte_range() does not lock the page, however in that case the
  1606. * mapping is pinned by the vma's ->vm_file reference.
  1607. *
  1608. * We take care to handle the case where the page was truncated from the
  1609. * mapping by re-checking page_mapping() inside tree_lock.
  1610. */
  1611. int __set_page_dirty_nobuffers(struct page *page)
  1612. {
  1613. if (!TestSetPageDirty(page)) {
  1614. struct address_space *mapping = page_mapping(page);
  1615. struct address_space *mapping2;
  1616. if (!mapping)
  1617. return 1;
  1618. spin_lock_irq(&mapping->tree_lock);
  1619. mapping2 = page_mapping(page);
  1620. if (mapping2) { /* Race with truncate? */
  1621. BUG_ON(mapping2 != mapping);
  1622. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1623. account_page_dirtied(page, mapping);
  1624. radix_tree_tag_set(&mapping->page_tree,
  1625. page_index(page), PAGECACHE_TAG_DIRTY);
  1626. }
  1627. spin_unlock_irq(&mapping->tree_lock);
  1628. if (mapping->host) {
  1629. /* !PageAnon && !swapper_space */
  1630. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1631. }
  1632. return 1;
  1633. }
  1634. return 0;
  1635. }
  1636. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1637. /*
  1638. * Call this whenever redirtying a page, to de-account the dirty counters
  1639. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1640. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1641. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1642. * control.
  1643. */
  1644. void account_page_redirty(struct page *page)
  1645. {
  1646. struct address_space *mapping = page->mapping;
  1647. if (mapping && mapping_cap_account_dirty(mapping)) {
  1648. current->nr_dirtied--;
  1649. dec_zone_page_state(page, NR_DIRTIED);
  1650. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1651. }
  1652. }
  1653. EXPORT_SYMBOL(account_page_redirty);
  1654. /*
  1655. * When a writepage implementation decides that it doesn't want to write this
  1656. * page for some reason, it should redirty the locked page via
  1657. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1658. */
  1659. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1660. {
  1661. wbc->pages_skipped++;
  1662. account_page_redirty(page);
  1663. return __set_page_dirty_nobuffers(page);
  1664. }
  1665. EXPORT_SYMBOL(redirty_page_for_writepage);
  1666. /*
  1667. * Dirty a page.
  1668. *
  1669. * For pages with a mapping this should be done under the page lock
  1670. * for the benefit of asynchronous memory errors who prefer a consistent
  1671. * dirty state. This rule can be broken in some special cases,
  1672. * but should be better not to.
  1673. *
  1674. * If the mapping doesn't provide a set_page_dirty a_op, then
  1675. * just fall through and assume that it wants buffer_heads.
  1676. */
  1677. int set_page_dirty(struct page *page)
  1678. {
  1679. struct address_space *mapping = page_mapping(page);
  1680. if (likely(mapping)) {
  1681. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1682. /*
  1683. * readahead/lru_deactivate_page could remain
  1684. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1685. * About readahead, if the page is written, the flags would be
  1686. * reset. So no problem.
  1687. * About lru_deactivate_page, if the page is redirty, the flag
  1688. * will be reset. So no problem. but if the page is used by readahead
  1689. * it will confuse readahead and make it restart the size rampup
  1690. * process. But it's a trivial problem.
  1691. */
  1692. ClearPageReclaim(page);
  1693. #ifdef CONFIG_BLOCK
  1694. if (!spd)
  1695. spd = __set_page_dirty_buffers;
  1696. #endif
  1697. return (*spd)(page);
  1698. }
  1699. if (!PageDirty(page)) {
  1700. if (!TestSetPageDirty(page))
  1701. return 1;
  1702. }
  1703. return 0;
  1704. }
  1705. EXPORT_SYMBOL(set_page_dirty);
  1706. /*
  1707. * set_page_dirty() is racy if the caller has no reference against
  1708. * page->mapping->host, and if the page is unlocked. This is because another
  1709. * CPU could truncate the page off the mapping and then free the mapping.
  1710. *
  1711. * Usually, the page _is_ locked, or the caller is a user-space process which
  1712. * holds a reference on the inode by having an open file.
  1713. *
  1714. * In other cases, the page should be locked before running set_page_dirty().
  1715. */
  1716. int set_page_dirty_lock(struct page *page)
  1717. {
  1718. int ret;
  1719. lock_page(page);
  1720. ret = set_page_dirty(page);
  1721. unlock_page(page);
  1722. return ret;
  1723. }
  1724. EXPORT_SYMBOL(set_page_dirty_lock);
  1725. /*
  1726. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1727. * Returns true if the page was previously dirty.
  1728. *
  1729. * This is for preparing to put the page under writeout. We leave the page
  1730. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1731. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1732. * implementation will run either set_page_writeback() or set_page_dirty(),
  1733. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1734. * back into sync.
  1735. *
  1736. * This incoherency between the page's dirty flag and radix-tree tag is
  1737. * unfortunate, but it only exists while the page is locked.
  1738. */
  1739. int clear_page_dirty_for_io(struct page *page)
  1740. {
  1741. struct address_space *mapping = page_mapping(page);
  1742. BUG_ON(!PageLocked(page));
  1743. if (mapping && mapping_cap_account_dirty(mapping)) {
  1744. /*
  1745. * Yes, Virginia, this is indeed insane.
  1746. *
  1747. * We use this sequence to make sure that
  1748. * (a) we account for dirty stats properly
  1749. * (b) we tell the low-level filesystem to
  1750. * mark the whole page dirty if it was
  1751. * dirty in a pagetable. Only to then
  1752. * (c) clean the page again and return 1 to
  1753. * cause the writeback.
  1754. *
  1755. * This way we avoid all nasty races with the
  1756. * dirty bit in multiple places and clearing
  1757. * them concurrently from different threads.
  1758. *
  1759. * Note! Normally the "set_page_dirty(page)"
  1760. * has no effect on the actual dirty bit - since
  1761. * that will already usually be set. But we
  1762. * need the side effects, and it can help us
  1763. * avoid races.
  1764. *
  1765. * We basically use the page "master dirty bit"
  1766. * as a serialization point for all the different
  1767. * threads doing their things.
  1768. */
  1769. if (page_mkclean(page))
  1770. set_page_dirty(page);
  1771. /*
  1772. * We carefully synchronise fault handlers against
  1773. * installing a dirty pte and marking the page dirty
  1774. * at this point. We do this by having them hold the
  1775. * page lock at some point after installing their
  1776. * pte, but before marking the page dirty.
  1777. * Pages are always locked coming in here, so we get
  1778. * the desired exclusion. See mm/memory.c:do_wp_page()
  1779. * for more comments.
  1780. */
  1781. if (TestClearPageDirty(page)) {
  1782. dec_zone_page_state(page, NR_FILE_DIRTY);
  1783. dec_bdi_stat(mapping->backing_dev_info,
  1784. BDI_RECLAIMABLE);
  1785. return 1;
  1786. }
  1787. return 0;
  1788. }
  1789. return TestClearPageDirty(page);
  1790. }
  1791. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1792. int test_clear_page_writeback(struct page *page)
  1793. {
  1794. struct address_space *mapping = page_mapping(page);
  1795. int ret;
  1796. if (mapping) {
  1797. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1798. unsigned long flags;
  1799. spin_lock_irqsave(&mapping->tree_lock, flags);
  1800. ret = TestClearPageWriteback(page);
  1801. if (ret) {
  1802. radix_tree_tag_clear(&mapping->page_tree,
  1803. page_index(page),
  1804. PAGECACHE_TAG_WRITEBACK);
  1805. if (bdi_cap_account_writeback(bdi)) {
  1806. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1807. __bdi_writeout_inc(bdi);
  1808. }
  1809. }
  1810. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1811. } else {
  1812. ret = TestClearPageWriteback(page);
  1813. }
  1814. if (ret) {
  1815. dec_zone_page_state(page, NR_WRITEBACK);
  1816. inc_zone_page_state(page, NR_WRITTEN);
  1817. }
  1818. return ret;
  1819. }
  1820. int test_set_page_writeback(struct page *page)
  1821. {
  1822. struct address_space *mapping = page_mapping(page);
  1823. int ret;
  1824. if (mapping) {
  1825. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1826. unsigned long flags;
  1827. spin_lock_irqsave(&mapping->tree_lock, flags);
  1828. ret = TestSetPageWriteback(page);
  1829. if (!ret) {
  1830. radix_tree_tag_set(&mapping->page_tree,
  1831. page_index(page),
  1832. PAGECACHE_TAG_WRITEBACK);
  1833. if (bdi_cap_account_writeback(bdi))
  1834. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1835. }
  1836. if (!PageDirty(page))
  1837. radix_tree_tag_clear(&mapping->page_tree,
  1838. page_index(page),
  1839. PAGECACHE_TAG_DIRTY);
  1840. radix_tree_tag_clear(&mapping->page_tree,
  1841. page_index(page),
  1842. PAGECACHE_TAG_TOWRITE);
  1843. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1844. } else {
  1845. ret = TestSetPageWriteback(page);
  1846. }
  1847. if (!ret)
  1848. account_page_writeback(page);
  1849. return ret;
  1850. }
  1851. EXPORT_SYMBOL(test_set_page_writeback);
  1852. /*
  1853. * Return true if any of the pages in the mapping are marked with the
  1854. * passed tag.
  1855. */
  1856. int mapping_tagged(struct address_space *mapping, int tag)
  1857. {
  1858. return radix_tree_tagged(&mapping->page_tree, tag);
  1859. }
  1860. EXPORT_SYMBOL(mapping_tagged);