cpufreq_governor.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. /*
  2. * drivers/cpufreq/cpufreq_governor.c
  3. *
  4. * CPUFREQ governors common code
  5. *
  6. * Copyright (C) 2001 Russell King
  7. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  8. * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
  9. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  10. * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. */
  16. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17. #include <asm/cputime.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/export.h>
  21. #include <linux/kernel_stat.h>
  22. #include <linux/mutex.h>
  23. #include <linux/slab.h>
  24. #include <linux/tick.h>
  25. #include <linux/types.h>
  26. #include <linux/workqueue.h>
  27. #include <linux/cpu.h>
  28. #include "cpufreq_governor.h"
  29. static struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
  30. {
  31. if (have_governor_per_policy())
  32. return &policy->kobj;
  33. else
  34. return cpufreq_global_kobject;
  35. }
  36. static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
  37. {
  38. if (have_governor_per_policy())
  39. return dbs_data->cdata->attr_group_gov_pol;
  40. else
  41. return dbs_data->cdata->attr_group_gov_sys;
  42. }
  43. static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
  44. {
  45. u64 idle_time;
  46. u64 cur_wall_time;
  47. u64 busy_time;
  48. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  49. busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
  50. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
  51. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
  52. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
  53. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
  54. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
  55. idle_time = cur_wall_time - busy_time;
  56. if (wall)
  57. *wall = cputime_to_usecs(cur_wall_time);
  58. return cputime_to_usecs(idle_time);
  59. }
  60. u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
  61. {
  62. u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
  63. if (idle_time == -1ULL)
  64. return get_cpu_idle_time_jiffy(cpu, wall);
  65. else if (!io_busy)
  66. idle_time += get_cpu_iowait_time_us(cpu, wall);
  67. return idle_time;
  68. }
  69. EXPORT_SYMBOL_GPL(get_cpu_idle_time);
  70. void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
  71. {
  72. struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  73. struct od_dbs_tuners *od_tuners = dbs_data->tuners;
  74. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  75. struct cpufreq_policy *policy;
  76. unsigned int max_load = 0;
  77. unsigned int ignore_nice;
  78. unsigned int j;
  79. if (dbs_data->cdata->governor == GOV_ONDEMAND)
  80. ignore_nice = od_tuners->ignore_nice;
  81. else
  82. ignore_nice = cs_tuners->ignore_nice;
  83. policy = cdbs->cur_policy;
  84. /* Get Absolute Load (in terms of freq for ondemand gov) */
  85. for_each_cpu(j, policy->cpus) {
  86. struct cpu_dbs_common_info *j_cdbs;
  87. u64 cur_wall_time, cur_idle_time;
  88. unsigned int idle_time, wall_time;
  89. unsigned int load;
  90. int io_busy = 0;
  91. j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
  92. /*
  93. * For the purpose of ondemand, waiting for disk IO is
  94. * an indication that you're performance critical, and
  95. * not that the system is actually idle. So do not add
  96. * the iowait time to the cpu idle time.
  97. */
  98. if (dbs_data->cdata->governor == GOV_ONDEMAND)
  99. io_busy = od_tuners->io_is_busy;
  100. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
  101. wall_time = (unsigned int)
  102. (cur_wall_time - j_cdbs->prev_cpu_wall);
  103. j_cdbs->prev_cpu_wall = cur_wall_time;
  104. idle_time = (unsigned int)
  105. (cur_idle_time - j_cdbs->prev_cpu_idle);
  106. j_cdbs->prev_cpu_idle = cur_idle_time;
  107. if (ignore_nice) {
  108. u64 cur_nice;
  109. unsigned long cur_nice_jiffies;
  110. cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
  111. cdbs->prev_cpu_nice;
  112. /*
  113. * Assumption: nice time between sampling periods will
  114. * be less than 2^32 jiffies for 32 bit sys
  115. */
  116. cur_nice_jiffies = (unsigned long)
  117. cputime64_to_jiffies64(cur_nice);
  118. cdbs->prev_cpu_nice =
  119. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  120. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  121. }
  122. if (unlikely(!wall_time || wall_time < idle_time))
  123. continue;
  124. load = 100 * (wall_time - idle_time) / wall_time;
  125. if (dbs_data->cdata->governor == GOV_ONDEMAND) {
  126. int freq_avg = __cpufreq_driver_getavg(policy, j);
  127. if (freq_avg <= 0)
  128. freq_avg = policy->cur;
  129. load *= freq_avg;
  130. }
  131. if (load > max_load)
  132. max_load = load;
  133. }
  134. dbs_data->cdata->gov_check_cpu(cpu, max_load);
  135. }
  136. EXPORT_SYMBOL_GPL(dbs_check_cpu);
  137. static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
  138. unsigned int delay)
  139. {
  140. struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  141. mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
  142. }
  143. void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
  144. unsigned int delay, bool all_cpus)
  145. {
  146. int i;
  147. if (!all_cpus) {
  148. __gov_queue_work(smp_processor_id(), dbs_data, delay);
  149. } else {
  150. get_online_cpus();
  151. for_each_cpu(i, policy->cpus)
  152. __gov_queue_work(i, dbs_data, delay);
  153. put_online_cpus();
  154. }
  155. }
  156. EXPORT_SYMBOL_GPL(gov_queue_work);
  157. static inline void gov_cancel_work(struct dbs_data *dbs_data,
  158. struct cpufreq_policy *policy)
  159. {
  160. struct cpu_dbs_common_info *cdbs;
  161. int i;
  162. for_each_cpu(i, policy->cpus) {
  163. cdbs = dbs_data->cdata->get_cpu_cdbs(i);
  164. cancel_delayed_work_sync(&cdbs->work);
  165. }
  166. }
  167. /* Will return if we need to evaluate cpu load again or not */
  168. bool need_load_eval(struct cpu_dbs_common_info *cdbs,
  169. unsigned int sampling_rate)
  170. {
  171. if (policy_is_shared(cdbs->cur_policy)) {
  172. ktime_t time_now = ktime_get();
  173. s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
  174. /* Do nothing if we recently have sampled */
  175. if (delta_us < (s64)(sampling_rate / 2))
  176. return false;
  177. else
  178. cdbs->time_stamp = time_now;
  179. }
  180. return true;
  181. }
  182. EXPORT_SYMBOL_GPL(need_load_eval);
  183. static void set_sampling_rate(struct dbs_data *dbs_data,
  184. unsigned int sampling_rate)
  185. {
  186. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  187. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  188. cs_tuners->sampling_rate = sampling_rate;
  189. } else {
  190. struct od_dbs_tuners *od_tuners = dbs_data->tuners;
  191. od_tuners->sampling_rate = sampling_rate;
  192. }
  193. }
  194. int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  195. struct common_dbs_data *cdata, unsigned int event)
  196. {
  197. struct dbs_data *dbs_data;
  198. struct od_cpu_dbs_info_s *od_dbs_info = NULL;
  199. struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
  200. struct od_ops *od_ops = NULL;
  201. struct od_dbs_tuners *od_tuners = NULL;
  202. struct cs_dbs_tuners *cs_tuners = NULL;
  203. struct cpu_dbs_common_info *cpu_cdbs;
  204. unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
  205. int io_busy = 0;
  206. int rc;
  207. if (have_governor_per_policy())
  208. dbs_data = policy->governor_data;
  209. else
  210. dbs_data = cdata->gdbs_data;
  211. WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
  212. switch (event) {
  213. case CPUFREQ_GOV_POLICY_INIT:
  214. if (have_governor_per_policy()) {
  215. WARN_ON(dbs_data);
  216. } else if (dbs_data) {
  217. dbs_data->usage_count++;
  218. policy->governor_data = dbs_data;
  219. return 0;
  220. }
  221. dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
  222. if (!dbs_data) {
  223. pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
  224. return -ENOMEM;
  225. }
  226. dbs_data->cdata = cdata;
  227. dbs_data->usage_count = 1;
  228. rc = cdata->init(dbs_data);
  229. if (rc) {
  230. pr_err("%s: POLICY_INIT: init() failed\n", __func__);
  231. kfree(dbs_data);
  232. return rc;
  233. }
  234. rc = sysfs_create_group(get_governor_parent_kobj(policy),
  235. get_sysfs_attr(dbs_data));
  236. if (rc) {
  237. cdata->exit(dbs_data);
  238. kfree(dbs_data);
  239. return rc;
  240. }
  241. policy->governor_data = dbs_data;
  242. /* policy latency is in nS. Convert it to uS first */
  243. latency = policy->cpuinfo.transition_latency / 1000;
  244. if (latency == 0)
  245. latency = 1;
  246. /* Bring kernel and HW constraints together */
  247. dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
  248. MIN_LATENCY_MULTIPLIER * latency);
  249. set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
  250. latency * LATENCY_MULTIPLIER));
  251. if ((cdata->governor == GOV_CONSERVATIVE) &&
  252. (!policy->governor->initialized)) {
  253. struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
  254. cpufreq_register_notifier(cs_ops->notifier_block,
  255. CPUFREQ_TRANSITION_NOTIFIER);
  256. }
  257. if (!have_governor_per_policy())
  258. cdata->gdbs_data = dbs_data;
  259. return 0;
  260. case CPUFREQ_GOV_POLICY_EXIT:
  261. if (!--dbs_data->usage_count) {
  262. sysfs_remove_group(get_governor_parent_kobj(policy),
  263. get_sysfs_attr(dbs_data));
  264. if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
  265. (policy->governor->initialized == 1)) {
  266. struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
  267. cpufreq_unregister_notifier(cs_ops->notifier_block,
  268. CPUFREQ_TRANSITION_NOTIFIER);
  269. }
  270. cdata->exit(dbs_data);
  271. kfree(dbs_data);
  272. cdata->gdbs_data = NULL;
  273. }
  274. policy->governor_data = NULL;
  275. return 0;
  276. }
  277. cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  278. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  279. cs_tuners = dbs_data->tuners;
  280. cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
  281. sampling_rate = cs_tuners->sampling_rate;
  282. ignore_nice = cs_tuners->ignore_nice;
  283. } else {
  284. od_tuners = dbs_data->tuners;
  285. od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
  286. sampling_rate = od_tuners->sampling_rate;
  287. ignore_nice = od_tuners->ignore_nice;
  288. od_ops = dbs_data->cdata->gov_ops;
  289. io_busy = od_tuners->io_is_busy;
  290. }
  291. switch (event) {
  292. case CPUFREQ_GOV_START:
  293. if (!policy->cur)
  294. return -EINVAL;
  295. mutex_lock(&dbs_data->mutex);
  296. for_each_cpu(j, policy->cpus) {
  297. struct cpu_dbs_common_info *j_cdbs =
  298. dbs_data->cdata->get_cpu_cdbs(j);
  299. j_cdbs->cpu = j;
  300. j_cdbs->cur_policy = policy;
  301. j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
  302. &j_cdbs->prev_cpu_wall, io_busy);
  303. if (ignore_nice)
  304. j_cdbs->prev_cpu_nice =
  305. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  306. mutex_init(&j_cdbs->timer_mutex);
  307. INIT_DEFERRABLE_WORK(&j_cdbs->work,
  308. dbs_data->cdata->gov_dbs_timer);
  309. }
  310. /*
  311. * conservative does not implement micro like ondemand
  312. * governor, thus we are bound to jiffes/HZ
  313. */
  314. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  315. cs_dbs_info->down_skip = 0;
  316. cs_dbs_info->enable = 1;
  317. cs_dbs_info->requested_freq = policy->cur;
  318. } else {
  319. od_dbs_info->rate_mult = 1;
  320. od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
  321. od_ops->powersave_bias_init_cpu(cpu);
  322. }
  323. mutex_unlock(&dbs_data->mutex);
  324. /* Initiate timer time stamp */
  325. cpu_cdbs->time_stamp = ktime_get();
  326. gov_queue_work(dbs_data, policy,
  327. delay_for_sampling_rate(sampling_rate), true);
  328. break;
  329. case CPUFREQ_GOV_STOP:
  330. if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
  331. cs_dbs_info->enable = 0;
  332. gov_cancel_work(dbs_data, policy);
  333. mutex_lock(&dbs_data->mutex);
  334. mutex_destroy(&cpu_cdbs->timer_mutex);
  335. mutex_unlock(&dbs_data->mutex);
  336. break;
  337. case CPUFREQ_GOV_LIMITS:
  338. mutex_lock(&cpu_cdbs->timer_mutex);
  339. if (policy->max < cpu_cdbs->cur_policy->cur)
  340. __cpufreq_driver_target(cpu_cdbs->cur_policy,
  341. policy->max, CPUFREQ_RELATION_H);
  342. else if (policy->min > cpu_cdbs->cur_policy->cur)
  343. __cpufreq_driver_target(cpu_cdbs->cur_policy,
  344. policy->min, CPUFREQ_RELATION_L);
  345. dbs_check_cpu(dbs_data, cpu);
  346. mutex_unlock(&cpu_cdbs->timer_mutex);
  347. break;
  348. }
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);