mmu.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. enum {
  48. AUDIT_PRE_PAGE_FAULT,
  49. AUDIT_POST_PAGE_FAULT,
  50. AUDIT_PRE_PTE_WRITE,
  51. AUDIT_POST_PTE_WRITE
  52. };
  53. char *audit_point_name[] = {
  54. "pre page fault",
  55. "post page fault",
  56. "pre pte write",
  57. "post pte write"
  58. };
  59. #undef MMU_DEBUG
  60. #ifdef MMU_DEBUG
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #else
  64. #define pgprintk(x...) do { } while (0)
  65. #define rmap_printk(x...) do { } while (0)
  66. #endif
  67. #ifdef MMU_DEBUG
  68. static int dbg = 0;
  69. module_param(dbg, bool, 0644);
  70. #endif
  71. static int oos_shadow = 1;
  72. module_param(oos_shadow, bool, 0644);
  73. #ifndef MMU_DEBUG
  74. #define ASSERT(x) do { } while (0)
  75. #else
  76. #define ASSERT(x) \
  77. if (!(x)) { \
  78. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  79. __FILE__, __LINE__, #x); \
  80. }
  81. #endif
  82. #define PTE_PREFETCH_NUM 8
  83. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  84. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  85. #define PT64_LEVEL_BITS 9
  86. #define PT64_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  88. #define PT64_LEVEL_MASK(level) \
  89. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  90. #define PT64_INDEX(address, level)\
  91. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  92. #define PT32_LEVEL_BITS 10
  93. #define PT32_LEVEL_SHIFT(level) \
  94. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  95. #define PT32_LEVEL_MASK(level) \
  96. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  97. #define PT32_LVL_OFFSET_MASK(level) \
  98. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT32_INDEX(address, level)\
  101. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  102. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  103. #define PT64_DIR_BASE_ADDR_MASK \
  104. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  105. #define PT64_LVL_ADDR_MASK(level) \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT64_LEVEL_BITS))) - 1))
  108. #define PT64_LVL_OFFSET_MASK(level) \
  109. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  110. * PT64_LEVEL_BITS))) - 1))
  111. #define PT32_BASE_ADDR_MASK PAGE_MASK
  112. #define PT32_DIR_BASE_ADDR_MASK \
  113. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  114. #define PT32_LVL_ADDR_MASK(level) \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  116. * PT32_LEVEL_BITS))) - 1))
  117. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  118. | PT64_NX_MASK)
  119. #define RMAP_EXT 4
  120. #define ACC_EXEC_MASK 1
  121. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  122. #define ACC_USER_MASK PT_USER_MASK
  123. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  124. #include <trace/events/kvm.h>
  125. #define CREATE_TRACE_POINTS
  126. #include "mmutrace.h"
  127. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  128. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  129. struct kvm_rmap_desc {
  130. u64 *sptes[RMAP_EXT];
  131. struct kvm_rmap_desc *more;
  132. };
  133. struct kvm_shadow_walk_iterator {
  134. u64 addr;
  135. hpa_t shadow_addr;
  136. int level;
  137. u64 *sptep;
  138. unsigned index;
  139. };
  140. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  141. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  142. shadow_walk_okay(&(_walker)); \
  143. shadow_walk_next(&(_walker)))
  144. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  145. static struct kmem_cache *pte_chain_cache;
  146. static struct kmem_cache *rmap_desc_cache;
  147. static struct kmem_cache *mmu_page_header_cache;
  148. static struct percpu_counter kvm_total_used_mmu_pages;
  149. static u64 __read_mostly shadow_trap_nonpresent_pte;
  150. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  151. static u64 __read_mostly shadow_base_present_pte;
  152. static u64 __read_mostly shadow_nx_mask;
  153. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  154. static u64 __read_mostly shadow_user_mask;
  155. static u64 __read_mostly shadow_accessed_mask;
  156. static u64 __read_mostly shadow_dirty_mask;
  157. static inline u64 rsvd_bits(int s, int e)
  158. {
  159. return ((1ULL << (e - s + 1)) - 1) << s;
  160. }
  161. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  162. {
  163. shadow_trap_nonpresent_pte = trap_pte;
  164. shadow_notrap_nonpresent_pte = notrap_pte;
  165. }
  166. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  167. void kvm_mmu_set_base_ptes(u64 base_pte)
  168. {
  169. shadow_base_present_pte = base_pte;
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  172. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  173. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  174. {
  175. shadow_user_mask = user_mask;
  176. shadow_accessed_mask = accessed_mask;
  177. shadow_dirty_mask = dirty_mask;
  178. shadow_nx_mask = nx_mask;
  179. shadow_x_mask = x_mask;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  182. static bool is_write_protection(struct kvm_vcpu *vcpu)
  183. {
  184. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  185. }
  186. static int is_cpuid_PSE36(void)
  187. {
  188. return 1;
  189. }
  190. static int is_nx(struct kvm_vcpu *vcpu)
  191. {
  192. return vcpu->arch.efer & EFER_NX;
  193. }
  194. static int is_shadow_present_pte(u64 pte)
  195. {
  196. return pte != shadow_trap_nonpresent_pte
  197. && pte != shadow_notrap_nonpresent_pte;
  198. }
  199. static int is_large_pte(u64 pte)
  200. {
  201. return pte & PT_PAGE_SIZE_MASK;
  202. }
  203. static int is_writable_pte(unsigned long pte)
  204. {
  205. return pte & PT_WRITABLE_MASK;
  206. }
  207. static int is_dirty_gpte(unsigned long pte)
  208. {
  209. return pte & PT_DIRTY_MASK;
  210. }
  211. static int is_rmap_spte(u64 pte)
  212. {
  213. return is_shadow_present_pte(pte);
  214. }
  215. static int is_last_spte(u64 pte, int level)
  216. {
  217. if (level == PT_PAGE_TABLE_LEVEL)
  218. return 1;
  219. if (is_large_pte(pte))
  220. return 1;
  221. return 0;
  222. }
  223. static pfn_t spte_to_pfn(u64 pte)
  224. {
  225. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  226. }
  227. static gfn_t pse36_gfn_delta(u32 gpte)
  228. {
  229. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  230. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  231. }
  232. static void __set_spte(u64 *sptep, u64 spte)
  233. {
  234. set_64bit(sptep, spte);
  235. }
  236. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  237. {
  238. #ifdef CONFIG_X86_64
  239. return xchg(sptep, new_spte);
  240. #else
  241. u64 old_spte;
  242. do {
  243. old_spte = *sptep;
  244. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  245. return old_spte;
  246. #endif
  247. }
  248. static bool spte_has_volatile_bits(u64 spte)
  249. {
  250. if (!shadow_accessed_mask)
  251. return false;
  252. if (!is_shadow_present_pte(spte))
  253. return false;
  254. if ((spte & shadow_accessed_mask) &&
  255. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  256. return false;
  257. return true;
  258. }
  259. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  260. {
  261. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  262. }
  263. static void update_spte(u64 *sptep, u64 new_spte)
  264. {
  265. u64 mask, old_spte = *sptep;
  266. WARN_ON(!is_rmap_spte(new_spte));
  267. new_spte |= old_spte & shadow_dirty_mask;
  268. mask = shadow_accessed_mask;
  269. if (is_writable_pte(old_spte))
  270. mask |= shadow_dirty_mask;
  271. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  272. __set_spte(sptep, new_spte);
  273. else
  274. old_spte = __xchg_spte(sptep, new_spte);
  275. if (!shadow_accessed_mask)
  276. return;
  277. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  278. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  279. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  280. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  281. }
  282. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  283. struct kmem_cache *base_cache, int min)
  284. {
  285. void *obj;
  286. if (cache->nobjs >= min)
  287. return 0;
  288. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  289. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  290. if (!obj)
  291. return -ENOMEM;
  292. cache->objects[cache->nobjs++] = obj;
  293. }
  294. return 0;
  295. }
  296. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  297. struct kmem_cache *cache)
  298. {
  299. while (mc->nobjs)
  300. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  301. }
  302. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  303. int min)
  304. {
  305. struct page *page;
  306. if (cache->nobjs >= min)
  307. return 0;
  308. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  309. page = alloc_page(GFP_KERNEL);
  310. if (!page)
  311. return -ENOMEM;
  312. cache->objects[cache->nobjs++] = page_address(page);
  313. }
  314. return 0;
  315. }
  316. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  317. {
  318. while (mc->nobjs)
  319. free_page((unsigned long)mc->objects[--mc->nobjs]);
  320. }
  321. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  322. {
  323. int r;
  324. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  325. pte_chain_cache, 4);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  329. rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
  330. if (r)
  331. goto out;
  332. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  333. if (r)
  334. goto out;
  335. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  336. mmu_page_header_cache, 4);
  337. out:
  338. return r;
  339. }
  340. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  341. {
  342. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  343. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  344. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  345. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  346. mmu_page_header_cache);
  347. }
  348. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  349. size_t size)
  350. {
  351. void *p;
  352. BUG_ON(!mc->nobjs);
  353. p = mc->objects[--mc->nobjs];
  354. return p;
  355. }
  356. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  357. {
  358. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  359. sizeof(struct kvm_pte_chain));
  360. }
  361. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  362. {
  363. kmem_cache_free(pte_chain_cache, pc);
  364. }
  365. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  366. {
  367. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  368. sizeof(struct kvm_rmap_desc));
  369. }
  370. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  371. {
  372. kmem_cache_free(rmap_desc_cache, rd);
  373. }
  374. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  375. {
  376. if (!sp->role.direct)
  377. return sp->gfns[index];
  378. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  379. }
  380. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  381. {
  382. if (sp->role.direct)
  383. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  384. else
  385. sp->gfns[index] = gfn;
  386. }
  387. /*
  388. * Return the pointer to the largepage write count for a given
  389. * gfn, handling slots that are not large page aligned.
  390. */
  391. static int *slot_largepage_idx(gfn_t gfn,
  392. struct kvm_memory_slot *slot,
  393. int level)
  394. {
  395. unsigned long idx;
  396. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  397. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  398. return &slot->lpage_info[level - 2][idx].write_count;
  399. }
  400. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  401. {
  402. struct kvm_memory_slot *slot;
  403. int *write_count;
  404. int i;
  405. slot = gfn_to_memslot(kvm, gfn);
  406. for (i = PT_DIRECTORY_LEVEL;
  407. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  408. write_count = slot_largepage_idx(gfn, slot, i);
  409. *write_count += 1;
  410. }
  411. }
  412. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  413. {
  414. struct kvm_memory_slot *slot;
  415. int *write_count;
  416. int i;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. for (i = PT_DIRECTORY_LEVEL;
  419. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  420. write_count = slot_largepage_idx(gfn, slot, i);
  421. *write_count -= 1;
  422. WARN_ON(*write_count < 0);
  423. }
  424. }
  425. static int has_wrprotected_page(struct kvm *kvm,
  426. gfn_t gfn,
  427. int level)
  428. {
  429. struct kvm_memory_slot *slot;
  430. int *largepage_idx;
  431. slot = gfn_to_memslot(kvm, gfn);
  432. if (slot) {
  433. largepage_idx = slot_largepage_idx(gfn, slot, level);
  434. return *largepage_idx;
  435. }
  436. return 1;
  437. }
  438. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  439. {
  440. unsigned long page_size;
  441. int i, ret = 0;
  442. page_size = kvm_host_page_size(kvm, gfn);
  443. for (i = PT_PAGE_TABLE_LEVEL;
  444. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  445. if (page_size >= KVM_HPAGE_SIZE(i))
  446. ret = i;
  447. else
  448. break;
  449. }
  450. return ret;
  451. }
  452. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  453. {
  454. struct kvm_memory_slot *slot;
  455. int host_level, level, max_level;
  456. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  457. if (slot && slot->dirty_bitmap)
  458. return PT_PAGE_TABLE_LEVEL;
  459. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  460. if (host_level == PT_PAGE_TABLE_LEVEL)
  461. return host_level;
  462. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  463. kvm_x86_ops->get_lpage_level() : host_level;
  464. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  465. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  466. break;
  467. return level - 1;
  468. }
  469. /*
  470. * Take gfn and return the reverse mapping to it.
  471. */
  472. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  473. {
  474. struct kvm_memory_slot *slot;
  475. unsigned long idx;
  476. slot = gfn_to_memslot(kvm, gfn);
  477. if (likely(level == PT_PAGE_TABLE_LEVEL))
  478. return &slot->rmap[gfn - slot->base_gfn];
  479. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  480. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  481. return &slot->lpage_info[level - 2][idx].rmap_pde;
  482. }
  483. /*
  484. * Reverse mapping data structures:
  485. *
  486. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  487. * that points to page_address(page).
  488. *
  489. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  490. * containing more mappings.
  491. *
  492. * Returns the number of rmap entries before the spte was added or zero if
  493. * the spte was not added.
  494. *
  495. */
  496. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  497. {
  498. struct kvm_mmu_page *sp;
  499. struct kvm_rmap_desc *desc;
  500. unsigned long *rmapp;
  501. int i, count = 0;
  502. if (!is_rmap_spte(*spte))
  503. return count;
  504. sp = page_header(__pa(spte));
  505. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  506. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  507. if (!*rmapp) {
  508. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  509. *rmapp = (unsigned long)spte;
  510. } else if (!(*rmapp & 1)) {
  511. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  512. desc = mmu_alloc_rmap_desc(vcpu);
  513. desc->sptes[0] = (u64 *)*rmapp;
  514. desc->sptes[1] = spte;
  515. *rmapp = (unsigned long)desc | 1;
  516. } else {
  517. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  518. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  519. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  520. desc = desc->more;
  521. count += RMAP_EXT;
  522. }
  523. if (desc->sptes[RMAP_EXT-1]) {
  524. desc->more = mmu_alloc_rmap_desc(vcpu);
  525. desc = desc->more;
  526. }
  527. for (i = 0; desc->sptes[i]; ++i)
  528. ;
  529. desc->sptes[i] = spte;
  530. }
  531. return count;
  532. }
  533. static void rmap_desc_remove_entry(unsigned long *rmapp,
  534. struct kvm_rmap_desc *desc,
  535. int i,
  536. struct kvm_rmap_desc *prev_desc)
  537. {
  538. int j;
  539. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  540. ;
  541. desc->sptes[i] = desc->sptes[j];
  542. desc->sptes[j] = NULL;
  543. if (j != 0)
  544. return;
  545. if (!prev_desc && !desc->more)
  546. *rmapp = (unsigned long)desc->sptes[0];
  547. else
  548. if (prev_desc)
  549. prev_desc->more = desc->more;
  550. else
  551. *rmapp = (unsigned long)desc->more | 1;
  552. mmu_free_rmap_desc(desc);
  553. }
  554. static void rmap_remove(struct kvm *kvm, u64 *spte)
  555. {
  556. struct kvm_rmap_desc *desc;
  557. struct kvm_rmap_desc *prev_desc;
  558. struct kvm_mmu_page *sp;
  559. gfn_t gfn;
  560. unsigned long *rmapp;
  561. int i;
  562. sp = page_header(__pa(spte));
  563. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  564. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  565. if (!*rmapp) {
  566. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  567. BUG();
  568. } else if (!(*rmapp & 1)) {
  569. rmap_printk("rmap_remove: %p 1->0\n", spte);
  570. if ((u64 *)*rmapp != spte) {
  571. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  572. BUG();
  573. }
  574. *rmapp = 0;
  575. } else {
  576. rmap_printk("rmap_remove: %p many->many\n", spte);
  577. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  578. prev_desc = NULL;
  579. while (desc) {
  580. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  581. if (desc->sptes[i] == spte) {
  582. rmap_desc_remove_entry(rmapp,
  583. desc, i,
  584. prev_desc);
  585. return;
  586. }
  587. prev_desc = desc;
  588. desc = desc->more;
  589. }
  590. pr_err("rmap_remove: %p many->many\n", spte);
  591. BUG();
  592. }
  593. }
  594. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  595. {
  596. pfn_t pfn;
  597. u64 old_spte = *sptep;
  598. if (!spte_has_volatile_bits(old_spte))
  599. __set_spte(sptep, new_spte);
  600. else
  601. old_spte = __xchg_spte(sptep, new_spte);
  602. if (!is_rmap_spte(old_spte))
  603. return;
  604. pfn = spte_to_pfn(old_spte);
  605. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  606. kvm_set_pfn_accessed(pfn);
  607. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  608. kvm_set_pfn_dirty(pfn);
  609. }
  610. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  611. {
  612. set_spte_track_bits(sptep, new_spte);
  613. rmap_remove(kvm, sptep);
  614. }
  615. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  616. {
  617. struct kvm_rmap_desc *desc;
  618. u64 *prev_spte;
  619. int i;
  620. if (!*rmapp)
  621. return NULL;
  622. else if (!(*rmapp & 1)) {
  623. if (!spte)
  624. return (u64 *)*rmapp;
  625. return NULL;
  626. }
  627. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  628. prev_spte = NULL;
  629. while (desc) {
  630. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  631. if (prev_spte == spte)
  632. return desc->sptes[i];
  633. prev_spte = desc->sptes[i];
  634. }
  635. desc = desc->more;
  636. }
  637. return NULL;
  638. }
  639. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  640. {
  641. unsigned long *rmapp;
  642. u64 *spte;
  643. int i, write_protected = 0;
  644. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  645. spte = rmap_next(kvm, rmapp, NULL);
  646. while (spte) {
  647. BUG_ON(!spte);
  648. BUG_ON(!(*spte & PT_PRESENT_MASK));
  649. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  650. if (is_writable_pte(*spte)) {
  651. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  652. write_protected = 1;
  653. }
  654. spte = rmap_next(kvm, rmapp, spte);
  655. }
  656. /* check for huge page mappings */
  657. for (i = PT_DIRECTORY_LEVEL;
  658. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  659. rmapp = gfn_to_rmap(kvm, gfn, i);
  660. spte = rmap_next(kvm, rmapp, NULL);
  661. while (spte) {
  662. BUG_ON(!spte);
  663. BUG_ON(!(*spte & PT_PRESENT_MASK));
  664. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  665. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  666. if (is_writable_pte(*spte)) {
  667. drop_spte(kvm, spte,
  668. shadow_trap_nonpresent_pte);
  669. --kvm->stat.lpages;
  670. spte = NULL;
  671. write_protected = 1;
  672. }
  673. spte = rmap_next(kvm, rmapp, spte);
  674. }
  675. }
  676. return write_protected;
  677. }
  678. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  679. unsigned long data)
  680. {
  681. u64 *spte;
  682. int need_tlb_flush = 0;
  683. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  684. BUG_ON(!(*spte & PT_PRESENT_MASK));
  685. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  686. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  687. need_tlb_flush = 1;
  688. }
  689. return need_tlb_flush;
  690. }
  691. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  692. unsigned long data)
  693. {
  694. int need_flush = 0;
  695. u64 *spte, new_spte;
  696. pte_t *ptep = (pte_t *)data;
  697. pfn_t new_pfn;
  698. WARN_ON(pte_huge(*ptep));
  699. new_pfn = pte_pfn(*ptep);
  700. spte = rmap_next(kvm, rmapp, NULL);
  701. while (spte) {
  702. BUG_ON(!is_shadow_present_pte(*spte));
  703. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  704. need_flush = 1;
  705. if (pte_write(*ptep)) {
  706. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  707. spte = rmap_next(kvm, rmapp, NULL);
  708. } else {
  709. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  710. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  711. new_spte &= ~PT_WRITABLE_MASK;
  712. new_spte &= ~SPTE_HOST_WRITEABLE;
  713. new_spte &= ~shadow_accessed_mask;
  714. set_spte_track_bits(spte, new_spte);
  715. spte = rmap_next(kvm, rmapp, spte);
  716. }
  717. }
  718. if (need_flush)
  719. kvm_flush_remote_tlbs(kvm);
  720. return 0;
  721. }
  722. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  723. unsigned long data,
  724. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  725. unsigned long data))
  726. {
  727. int i, j;
  728. int ret;
  729. int retval = 0;
  730. struct kvm_memslots *slots;
  731. slots = kvm_memslots(kvm);
  732. for (i = 0; i < slots->nmemslots; i++) {
  733. struct kvm_memory_slot *memslot = &slots->memslots[i];
  734. unsigned long start = memslot->userspace_addr;
  735. unsigned long end;
  736. end = start + (memslot->npages << PAGE_SHIFT);
  737. if (hva >= start && hva < end) {
  738. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  739. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  740. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  741. unsigned long idx;
  742. int sh;
  743. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  744. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  745. (memslot->base_gfn >> sh);
  746. ret |= handler(kvm,
  747. &memslot->lpage_info[j][idx].rmap_pde,
  748. data);
  749. }
  750. trace_kvm_age_page(hva, memslot, ret);
  751. retval |= ret;
  752. }
  753. }
  754. return retval;
  755. }
  756. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  757. {
  758. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  759. }
  760. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  761. {
  762. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  763. }
  764. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  765. unsigned long data)
  766. {
  767. u64 *spte;
  768. int young = 0;
  769. /*
  770. * Emulate the accessed bit for EPT, by checking if this page has
  771. * an EPT mapping, and clearing it if it does. On the next access,
  772. * a new EPT mapping will be established.
  773. * This has some overhead, but not as much as the cost of swapping
  774. * out actively used pages or breaking up actively used hugepages.
  775. */
  776. if (!shadow_accessed_mask)
  777. return kvm_unmap_rmapp(kvm, rmapp, data);
  778. spte = rmap_next(kvm, rmapp, NULL);
  779. while (spte) {
  780. int _young;
  781. u64 _spte = *spte;
  782. BUG_ON(!(_spte & PT_PRESENT_MASK));
  783. _young = _spte & PT_ACCESSED_MASK;
  784. if (_young) {
  785. young = 1;
  786. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  787. }
  788. spte = rmap_next(kvm, rmapp, spte);
  789. }
  790. return young;
  791. }
  792. #define RMAP_RECYCLE_THRESHOLD 1000
  793. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  794. {
  795. unsigned long *rmapp;
  796. struct kvm_mmu_page *sp;
  797. sp = page_header(__pa(spte));
  798. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  799. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  800. kvm_flush_remote_tlbs(vcpu->kvm);
  801. }
  802. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  803. {
  804. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  805. }
  806. #ifdef MMU_DEBUG
  807. static int is_empty_shadow_page(u64 *spt)
  808. {
  809. u64 *pos;
  810. u64 *end;
  811. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  812. if (is_shadow_present_pte(*pos)) {
  813. printk(KERN_ERR "%s: %p %llx\n", __func__,
  814. pos, *pos);
  815. return 0;
  816. }
  817. return 1;
  818. }
  819. #endif
  820. /*
  821. * This value is the sum of all of the kvm instances's
  822. * kvm->arch.n_used_mmu_pages values. We need a global,
  823. * aggregate version in order to make the slab shrinker
  824. * faster
  825. */
  826. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  827. {
  828. kvm->arch.n_used_mmu_pages += nr;
  829. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  830. }
  831. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  832. {
  833. ASSERT(is_empty_shadow_page(sp->spt));
  834. hlist_del(&sp->hash_link);
  835. list_del(&sp->link);
  836. __free_page(virt_to_page(sp->spt));
  837. if (!sp->role.direct)
  838. __free_page(virt_to_page(sp->gfns));
  839. kmem_cache_free(mmu_page_header_cache, sp);
  840. kvm_mod_used_mmu_pages(kvm, -1);
  841. }
  842. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  843. {
  844. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  845. }
  846. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  847. u64 *parent_pte, int direct)
  848. {
  849. struct kvm_mmu_page *sp;
  850. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  851. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  852. if (!direct)
  853. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  854. PAGE_SIZE);
  855. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  856. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  857. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  858. sp->multimapped = 0;
  859. sp->parent_pte = parent_pte;
  860. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  861. return sp;
  862. }
  863. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  864. struct kvm_mmu_page *sp, u64 *parent_pte)
  865. {
  866. struct kvm_pte_chain *pte_chain;
  867. struct hlist_node *node;
  868. int i;
  869. if (!parent_pte)
  870. return;
  871. if (!sp->multimapped) {
  872. u64 *old = sp->parent_pte;
  873. if (!old) {
  874. sp->parent_pte = parent_pte;
  875. return;
  876. }
  877. sp->multimapped = 1;
  878. pte_chain = mmu_alloc_pte_chain(vcpu);
  879. INIT_HLIST_HEAD(&sp->parent_ptes);
  880. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  881. pte_chain->parent_ptes[0] = old;
  882. }
  883. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  884. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  885. continue;
  886. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  887. if (!pte_chain->parent_ptes[i]) {
  888. pte_chain->parent_ptes[i] = parent_pte;
  889. return;
  890. }
  891. }
  892. pte_chain = mmu_alloc_pte_chain(vcpu);
  893. BUG_ON(!pte_chain);
  894. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  895. pte_chain->parent_ptes[0] = parent_pte;
  896. }
  897. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  898. u64 *parent_pte)
  899. {
  900. struct kvm_pte_chain *pte_chain;
  901. struct hlist_node *node;
  902. int i;
  903. if (!sp->multimapped) {
  904. BUG_ON(sp->parent_pte != parent_pte);
  905. sp->parent_pte = NULL;
  906. return;
  907. }
  908. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  909. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  910. if (!pte_chain->parent_ptes[i])
  911. break;
  912. if (pte_chain->parent_ptes[i] != parent_pte)
  913. continue;
  914. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  915. && pte_chain->parent_ptes[i + 1]) {
  916. pte_chain->parent_ptes[i]
  917. = pte_chain->parent_ptes[i + 1];
  918. ++i;
  919. }
  920. pte_chain->parent_ptes[i] = NULL;
  921. if (i == 0) {
  922. hlist_del(&pte_chain->link);
  923. mmu_free_pte_chain(pte_chain);
  924. if (hlist_empty(&sp->parent_ptes)) {
  925. sp->multimapped = 0;
  926. sp->parent_pte = NULL;
  927. }
  928. }
  929. return;
  930. }
  931. BUG();
  932. }
  933. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  934. {
  935. struct kvm_pte_chain *pte_chain;
  936. struct hlist_node *node;
  937. struct kvm_mmu_page *parent_sp;
  938. int i;
  939. if (!sp->multimapped && sp->parent_pte) {
  940. parent_sp = page_header(__pa(sp->parent_pte));
  941. fn(parent_sp, sp->parent_pte);
  942. return;
  943. }
  944. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  945. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  946. u64 *spte = pte_chain->parent_ptes[i];
  947. if (!spte)
  948. break;
  949. parent_sp = page_header(__pa(spte));
  950. fn(parent_sp, spte);
  951. }
  952. }
  953. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  954. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  955. {
  956. mmu_parent_walk(sp, mark_unsync);
  957. }
  958. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  959. {
  960. unsigned int index;
  961. index = spte - sp->spt;
  962. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  963. return;
  964. if (sp->unsync_children++)
  965. return;
  966. kvm_mmu_mark_parents_unsync(sp);
  967. }
  968. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  969. struct kvm_mmu_page *sp)
  970. {
  971. int i;
  972. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  973. sp->spt[i] = shadow_trap_nonpresent_pte;
  974. }
  975. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  976. struct kvm_mmu_page *sp, bool clear_unsync)
  977. {
  978. return 1;
  979. }
  980. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  981. {
  982. }
  983. #define KVM_PAGE_ARRAY_NR 16
  984. struct kvm_mmu_pages {
  985. struct mmu_page_and_offset {
  986. struct kvm_mmu_page *sp;
  987. unsigned int idx;
  988. } page[KVM_PAGE_ARRAY_NR];
  989. unsigned int nr;
  990. };
  991. #define for_each_unsync_children(bitmap, idx) \
  992. for (idx = find_first_bit(bitmap, 512); \
  993. idx < 512; \
  994. idx = find_next_bit(bitmap, 512, idx+1))
  995. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  996. int idx)
  997. {
  998. int i;
  999. if (sp->unsync)
  1000. for (i=0; i < pvec->nr; i++)
  1001. if (pvec->page[i].sp == sp)
  1002. return 0;
  1003. pvec->page[pvec->nr].sp = sp;
  1004. pvec->page[pvec->nr].idx = idx;
  1005. pvec->nr++;
  1006. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1007. }
  1008. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1009. struct kvm_mmu_pages *pvec)
  1010. {
  1011. int i, ret, nr_unsync_leaf = 0;
  1012. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1013. struct kvm_mmu_page *child;
  1014. u64 ent = sp->spt[i];
  1015. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1016. goto clear_child_bitmap;
  1017. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1018. if (child->unsync_children) {
  1019. if (mmu_pages_add(pvec, child, i))
  1020. return -ENOSPC;
  1021. ret = __mmu_unsync_walk(child, pvec);
  1022. if (!ret)
  1023. goto clear_child_bitmap;
  1024. else if (ret > 0)
  1025. nr_unsync_leaf += ret;
  1026. else
  1027. return ret;
  1028. } else if (child->unsync) {
  1029. nr_unsync_leaf++;
  1030. if (mmu_pages_add(pvec, child, i))
  1031. return -ENOSPC;
  1032. } else
  1033. goto clear_child_bitmap;
  1034. continue;
  1035. clear_child_bitmap:
  1036. __clear_bit(i, sp->unsync_child_bitmap);
  1037. sp->unsync_children--;
  1038. WARN_ON((int)sp->unsync_children < 0);
  1039. }
  1040. return nr_unsync_leaf;
  1041. }
  1042. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1043. struct kvm_mmu_pages *pvec)
  1044. {
  1045. if (!sp->unsync_children)
  1046. return 0;
  1047. mmu_pages_add(pvec, sp, 0);
  1048. return __mmu_unsync_walk(sp, pvec);
  1049. }
  1050. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1051. {
  1052. WARN_ON(!sp->unsync);
  1053. trace_kvm_mmu_sync_page(sp);
  1054. sp->unsync = 0;
  1055. --kvm->stat.mmu_unsync;
  1056. }
  1057. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1058. struct list_head *invalid_list);
  1059. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1060. struct list_head *invalid_list);
  1061. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1062. hlist_for_each_entry(sp, pos, \
  1063. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1064. if ((sp)->gfn != (gfn)) {} else
  1065. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1066. hlist_for_each_entry(sp, pos, \
  1067. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1068. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1069. (sp)->role.invalid) {} else
  1070. /* @sp->gfn should be write-protected at the call site */
  1071. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1072. struct list_head *invalid_list, bool clear_unsync)
  1073. {
  1074. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1075. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1076. return 1;
  1077. }
  1078. if (clear_unsync)
  1079. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1080. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1081. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1082. return 1;
  1083. }
  1084. kvm_mmu_flush_tlb(vcpu);
  1085. return 0;
  1086. }
  1087. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1088. struct kvm_mmu_page *sp)
  1089. {
  1090. LIST_HEAD(invalid_list);
  1091. int ret;
  1092. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1093. if (ret)
  1094. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1095. return ret;
  1096. }
  1097. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1098. struct list_head *invalid_list)
  1099. {
  1100. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1101. }
  1102. /* @gfn should be write-protected at the call site */
  1103. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1104. {
  1105. struct kvm_mmu_page *s;
  1106. struct hlist_node *node;
  1107. LIST_HEAD(invalid_list);
  1108. bool flush = false;
  1109. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1110. if (!s->unsync)
  1111. continue;
  1112. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1113. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1114. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1115. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1116. continue;
  1117. }
  1118. kvm_unlink_unsync_page(vcpu->kvm, s);
  1119. flush = true;
  1120. }
  1121. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1122. if (flush)
  1123. kvm_mmu_flush_tlb(vcpu);
  1124. }
  1125. struct mmu_page_path {
  1126. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1127. unsigned int idx[PT64_ROOT_LEVEL-1];
  1128. };
  1129. #define for_each_sp(pvec, sp, parents, i) \
  1130. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1131. sp = pvec.page[i].sp; \
  1132. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1133. i = mmu_pages_next(&pvec, &parents, i))
  1134. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1135. struct mmu_page_path *parents,
  1136. int i)
  1137. {
  1138. int n;
  1139. for (n = i+1; n < pvec->nr; n++) {
  1140. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1141. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1142. parents->idx[0] = pvec->page[n].idx;
  1143. return n;
  1144. }
  1145. parents->parent[sp->role.level-2] = sp;
  1146. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1147. }
  1148. return n;
  1149. }
  1150. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1151. {
  1152. struct kvm_mmu_page *sp;
  1153. unsigned int level = 0;
  1154. do {
  1155. unsigned int idx = parents->idx[level];
  1156. sp = parents->parent[level];
  1157. if (!sp)
  1158. return;
  1159. --sp->unsync_children;
  1160. WARN_ON((int)sp->unsync_children < 0);
  1161. __clear_bit(idx, sp->unsync_child_bitmap);
  1162. level++;
  1163. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1164. }
  1165. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1166. struct mmu_page_path *parents,
  1167. struct kvm_mmu_pages *pvec)
  1168. {
  1169. parents->parent[parent->role.level-1] = NULL;
  1170. pvec->nr = 0;
  1171. }
  1172. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1173. struct kvm_mmu_page *parent)
  1174. {
  1175. int i;
  1176. struct kvm_mmu_page *sp;
  1177. struct mmu_page_path parents;
  1178. struct kvm_mmu_pages pages;
  1179. LIST_HEAD(invalid_list);
  1180. kvm_mmu_pages_init(parent, &parents, &pages);
  1181. while (mmu_unsync_walk(parent, &pages)) {
  1182. int protected = 0;
  1183. for_each_sp(pages, sp, parents, i)
  1184. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1185. if (protected)
  1186. kvm_flush_remote_tlbs(vcpu->kvm);
  1187. for_each_sp(pages, sp, parents, i) {
  1188. kvm_sync_page(vcpu, sp, &invalid_list);
  1189. mmu_pages_clear_parents(&parents);
  1190. }
  1191. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1192. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1193. kvm_mmu_pages_init(parent, &parents, &pages);
  1194. }
  1195. }
  1196. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1197. gfn_t gfn,
  1198. gva_t gaddr,
  1199. unsigned level,
  1200. int direct,
  1201. unsigned access,
  1202. u64 *parent_pte)
  1203. {
  1204. union kvm_mmu_page_role role;
  1205. unsigned quadrant;
  1206. struct kvm_mmu_page *sp;
  1207. struct hlist_node *node;
  1208. bool need_sync = false;
  1209. role = vcpu->arch.mmu.base_role;
  1210. role.level = level;
  1211. role.direct = direct;
  1212. if (role.direct)
  1213. role.cr4_pae = 0;
  1214. role.access = access;
  1215. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1216. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1217. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1218. role.quadrant = quadrant;
  1219. }
  1220. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1221. if (!need_sync && sp->unsync)
  1222. need_sync = true;
  1223. if (sp->role.word != role.word)
  1224. continue;
  1225. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1226. break;
  1227. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1228. if (sp->unsync_children) {
  1229. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1230. kvm_mmu_mark_parents_unsync(sp);
  1231. } else if (sp->unsync)
  1232. kvm_mmu_mark_parents_unsync(sp);
  1233. trace_kvm_mmu_get_page(sp, false);
  1234. return sp;
  1235. }
  1236. ++vcpu->kvm->stat.mmu_cache_miss;
  1237. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1238. if (!sp)
  1239. return sp;
  1240. sp->gfn = gfn;
  1241. sp->role = role;
  1242. hlist_add_head(&sp->hash_link,
  1243. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1244. if (!direct) {
  1245. if (rmap_write_protect(vcpu->kvm, gfn))
  1246. kvm_flush_remote_tlbs(vcpu->kvm);
  1247. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1248. kvm_sync_pages(vcpu, gfn);
  1249. account_shadowed(vcpu->kvm, gfn);
  1250. }
  1251. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1252. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1253. else
  1254. nonpaging_prefetch_page(vcpu, sp);
  1255. trace_kvm_mmu_get_page(sp, true);
  1256. return sp;
  1257. }
  1258. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1259. struct kvm_vcpu *vcpu, u64 addr)
  1260. {
  1261. iterator->addr = addr;
  1262. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1263. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1264. if (iterator->level == PT32E_ROOT_LEVEL) {
  1265. iterator->shadow_addr
  1266. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1267. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1268. --iterator->level;
  1269. if (!iterator->shadow_addr)
  1270. iterator->level = 0;
  1271. }
  1272. }
  1273. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1274. {
  1275. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1276. return false;
  1277. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1278. if (is_large_pte(*iterator->sptep))
  1279. return false;
  1280. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1281. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1282. return true;
  1283. }
  1284. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1285. {
  1286. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1287. --iterator->level;
  1288. }
  1289. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1290. {
  1291. u64 spte;
  1292. spte = __pa(sp->spt)
  1293. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1294. | PT_WRITABLE_MASK | PT_USER_MASK;
  1295. __set_spte(sptep, spte);
  1296. }
  1297. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1298. {
  1299. if (is_large_pte(*sptep)) {
  1300. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1301. kvm_flush_remote_tlbs(vcpu->kvm);
  1302. }
  1303. }
  1304. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1305. unsigned direct_access)
  1306. {
  1307. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1308. struct kvm_mmu_page *child;
  1309. /*
  1310. * For the direct sp, if the guest pte's dirty bit
  1311. * changed form clean to dirty, it will corrupt the
  1312. * sp's access: allow writable in the read-only sp,
  1313. * so we should update the spte at this point to get
  1314. * a new sp with the correct access.
  1315. */
  1316. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1317. if (child->role.access == direct_access)
  1318. return;
  1319. mmu_page_remove_parent_pte(child, sptep);
  1320. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1321. kvm_flush_remote_tlbs(vcpu->kvm);
  1322. }
  1323. }
  1324. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1325. struct kvm_mmu_page *sp)
  1326. {
  1327. unsigned i;
  1328. u64 *pt;
  1329. u64 ent;
  1330. pt = sp->spt;
  1331. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1332. ent = pt[i];
  1333. if (is_shadow_present_pte(ent)) {
  1334. if (!is_last_spte(ent, sp->role.level)) {
  1335. ent &= PT64_BASE_ADDR_MASK;
  1336. mmu_page_remove_parent_pte(page_header(ent),
  1337. &pt[i]);
  1338. } else {
  1339. if (is_large_pte(ent))
  1340. --kvm->stat.lpages;
  1341. drop_spte(kvm, &pt[i],
  1342. shadow_trap_nonpresent_pte);
  1343. }
  1344. }
  1345. pt[i] = shadow_trap_nonpresent_pte;
  1346. }
  1347. }
  1348. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1349. {
  1350. mmu_page_remove_parent_pte(sp, parent_pte);
  1351. }
  1352. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1353. {
  1354. int i;
  1355. struct kvm_vcpu *vcpu;
  1356. kvm_for_each_vcpu(i, vcpu, kvm)
  1357. vcpu->arch.last_pte_updated = NULL;
  1358. }
  1359. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1360. {
  1361. u64 *parent_pte;
  1362. while (sp->multimapped || sp->parent_pte) {
  1363. if (!sp->multimapped)
  1364. parent_pte = sp->parent_pte;
  1365. else {
  1366. struct kvm_pte_chain *chain;
  1367. chain = container_of(sp->parent_ptes.first,
  1368. struct kvm_pte_chain, link);
  1369. parent_pte = chain->parent_ptes[0];
  1370. }
  1371. BUG_ON(!parent_pte);
  1372. kvm_mmu_put_page(sp, parent_pte);
  1373. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1374. }
  1375. }
  1376. static int mmu_zap_unsync_children(struct kvm *kvm,
  1377. struct kvm_mmu_page *parent,
  1378. struct list_head *invalid_list)
  1379. {
  1380. int i, zapped = 0;
  1381. struct mmu_page_path parents;
  1382. struct kvm_mmu_pages pages;
  1383. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1384. return 0;
  1385. kvm_mmu_pages_init(parent, &parents, &pages);
  1386. while (mmu_unsync_walk(parent, &pages)) {
  1387. struct kvm_mmu_page *sp;
  1388. for_each_sp(pages, sp, parents, i) {
  1389. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1390. mmu_pages_clear_parents(&parents);
  1391. zapped++;
  1392. }
  1393. kvm_mmu_pages_init(parent, &parents, &pages);
  1394. }
  1395. return zapped;
  1396. }
  1397. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1398. struct list_head *invalid_list)
  1399. {
  1400. int ret;
  1401. trace_kvm_mmu_prepare_zap_page(sp);
  1402. ++kvm->stat.mmu_shadow_zapped;
  1403. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1404. kvm_mmu_page_unlink_children(kvm, sp);
  1405. kvm_mmu_unlink_parents(kvm, sp);
  1406. if (!sp->role.invalid && !sp->role.direct)
  1407. unaccount_shadowed(kvm, sp->gfn);
  1408. if (sp->unsync)
  1409. kvm_unlink_unsync_page(kvm, sp);
  1410. if (!sp->root_count) {
  1411. /* Count self */
  1412. ret++;
  1413. list_move(&sp->link, invalid_list);
  1414. } else {
  1415. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1416. kvm_reload_remote_mmus(kvm);
  1417. }
  1418. sp->role.invalid = 1;
  1419. kvm_mmu_reset_last_pte_updated(kvm);
  1420. return ret;
  1421. }
  1422. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1423. struct list_head *invalid_list)
  1424. {
  1425. struct kvm_mmu_page *sp;
  1426. if (list_empty(invalid_list))
  1427. return;
  1428. kvm_flush_remote_tlbs(kvm);
  1429. do {
  1430. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1431. WARN_ON(!sp->role.invalid || sp->root_count);
  1432. kvm_mmu_free_page(kvm, sp);
  1433. } while (!list_empty(invalid_list));
  1434. }
  1435. /*
  1436. * Changing the number of mmu pages allocated to the vm
  1437. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1438. */
  1439. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1440. {
  1441. LIST_HEAD(invalid_list);
  1442. /*
  1443. * If we set the number of mmu pages to be smaller be than the
  1444. * number of actived pages , we must to free some mmu pages before we
  1445. * change the value
  1446. */
  1447. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1448. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1449. !list_empty(&kvm->arch.active_mmu_pages)) {
  1450. struct kvm_mmu_page *page;
  1451. page = container_of(kvm->arch.active_mmu_pages.prev,
  1452. struct kvm_mmu_page, link);
  1453. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1454. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1455. }
  1456. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1457. }
  1458. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1459. }
  1460. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1461. {
  1462. struct kvm_mmu_page *sp;
  1463. struct hlist_node *node;
  1464. LIST_HEAD(invalid_list);
  1465. int r;
  1466. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1467. r = 0;
  1468. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1469. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1470. sp->role.word);
  1471. r = 1;
  1472. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1473. }
  1474. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1475. return r;
  1476. }
  1477. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1478. {
  1479. struct kvm_mmu_page *sp;
  1480. struct hlist_node *node;
  1481. LIST_HEAD(invalid_list);
  1482. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1483. pgprintk("%s: zap %llx %x\n",
  1484. __func__, gfn, sp->role.word);
  1485. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1486. }
  1487. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1488. }
  1489. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1490. {
  1491. int slot = memslot_id(kvm, gfn);
  1492. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1493. __set_bit(slot, sp->slot_bitmap);
  1494. }
  1495. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1496. {
  1497. int i;
  1498. u64 *pt = sp->spt;
  1499. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1500. return;
  1501. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1502. if (pt[i] == shadow_notrap_nonpresent_pte)
  1503. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1504. }
  1505. }
  1506. /*
  1507. * The function is based on mtrr_type_lookup() in
  1508. * arch/x86/kernel/cpu/mtrr/generic.c
  1509. */
  1510. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1511. u64 start, u64 end)
  1512. {
  1513. int i;
  1514. u64 base, mask;
  1515. u8 prev_match, curr_match;
  1516. int num_var_ranges = KVM_NR_VAR_MTRR;
  1517. if (!mtrr_state->enabled)
  1518. return 0xFF;
  1519. /* Make end inclusive end, instead of exclusive */
  1520. end--;
  1521. /* Look in fixed ranges. Just return the type as per start */
  1522. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1523. int idx;
  1524. if (start < 0x80000) {
  1525. idx = 0;
  1526. idx += (start >> 16);
  1527. return mtrr_state->fixed_ranges[idx];
  1528. } else if (start < 0xC0000) {
  1529. idx = 1 * 8;
  1530. idx += ((start - 0x80000) >> 14);
  1531. return mtrr_state->fixed_ranges[idx];
  1532. } else if (start < 0x1000000) {
  1533. idx = 3 * 8;
  1534. idx += ((start - 0xC0000) >> 12);
  1535. return mtrr_state->fixed_ranges[idx];
  1536. }
  1537. }
  1538. /*
  1539. * Look in variable ranges
  1540. * Look of multiple ranges matching this address and pick type
  1541. * as per MTRR precedence
  1542. */
  1543. if (!(mtrr_state->enabled & 2))
  1544. return mtrr_state->def_type;
  1545. prev_match = 0xFF;
  1546. for (i = 0; i < num_var_ranges; ++i) {
  1547. unsigned short start_state, end_state;
  1548. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1549. continue;
  1550. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1551. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1552. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1553. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1554. start_state = ((start & mask) == (base & mask));
  1555. end_state = ((end & mask) == (base & mask));
  1556. if (start_state != end_state)
  1557. return 0xFE;
  1558. if ((start & mask) != (base & mask))
  1559. continue;
  1560. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1561. if (prev_match == 0xFF) {
  1562. prev_match = curr_match;
  1563. continue;
  1564. }
  1565. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1566. curr_match == MTRR_TYPE_UNCACHABLE)
  1567. return MTRR_TYPE_UNCACHABLE;
  1568. if ((prev_match == MTRR_TYPE_WRBACK &&
  1569. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1570. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1571. curr_match == MTRR_TYPE_WRBACK)) {
  1572. prev_match = MTRR_TYPE_WRTHROUGH;
  1573. curr_match = MTRR_TYPE_WRTHROUGH;
  1574. }
  1575. if (prev_match != curr_match)
  1576. return MTRR_TYPE_UNCACHABLE;
  1577. }
  1578. if (prev_match != 0xFF)
  1579. return prev_match;
  1580. return mtrr_state->def_type;
  1581. }
  1582. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1583. {
  1584. u8 mtrr;
  1585. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1586. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1587. if (mtrr == 0xfe || mtrr == 0xff)
  1588. mtrr = MTRR_TYPE_WRBACK;
  1589. return mtrr;
  1590. }
  1591. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1592. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1593. {
  1594. trace_kvm_mmu_unsync_page(sp);
  1595. ++vcpu->kvm->stat.mmu_unsync;
  1596. sp->unsync = 1;
  1597. kvm_mmu_mark_parents_unsync(sp);
  1598. mmu_convert_notrap(sp);
  1599. }
  1600. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1601. {
  1602. struct kvm_mmu_page *s;
  1603. struct hlist_node *node;
  1604. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1605. if (s->unsync)
  1606. continue;
  1607. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1608. __kvm_unsync_page(vcpu, s);
  1609. }
  1610. }
  1611. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1612. bool can_unsync)
  1613. {
  1614. struct kvm_mmu_page *s;
  1615. struct hlist_node *node;
  1616. bool need_unsync = false;
  1617. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1618. if (!can_unsync)
  1619. return 1;
  1620. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1621. return 1;
  1622. if (!need_unsync && !s->unsync) {
  1623. if (!oos_shadow)
  1624. return 1;
  1625. need_unsync = true;
  1626. }
  1627. }
  1628. if (need_unsync)
  1629. kvm_unsync_pages(vcpu, gfn);
  1630. return 0;
  1631. }
  1632. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1633. unsigned pte_access, int user_fault,
  1634. int write_fault, int dirty, int level,
  1635. gfn_t gfn, pfn_t pfn, bool speculative,
  1636. bool can_unsync, bool reset_host_protection)
  1637. {
  1638. u64 spte;
  1639. int ret = 0;
  1640. /*
  1641. * We don't set the accessed bit, since we sometimes want to see
  1642. * whether the guest actually used the pte (in order to detect
  1643. * demand paging).
  1644. */
  1645. spte = shadow_base_present_pte;
  1646. if (!speculative)
  1647. spte |= shadow_accessed_mask;
  1648. if (!dirty)
  1649. pte_access &= ~ACC_WRITE_MASK;
  1650. if (pte_access & ACC_EXEC_MASK)
  1651. spte |= shadow_x_mask;
  1652. else
  1653. spte |= shadow_nx_mask;
  1654. if (pte_access & ACC_USER_MASK)
  1655. spte |= shadow_user_mask;
  1656. if (level > PT_PAGE_TABLE_LEVEL)
  1657. spte |= PT_PAGE_SIZE_MASK;
  1658. if (tdp_enabled)
  1659. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1660. kvm_is_mmio_pfn(pfn));
  1661. if (reset_host_protection)
  1662. spte |= SPTE_HOST_WRITEABLE;
  1663. spte |= (u64)pfn << PAGE_SHIFT;
  1664. if ((pte_access & ACC_WRITE_MASK)
  1665. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1666. && !user_fault)) {
  1667. if (level > PT_PAGE_TABLE_LEVEL &&
  1668. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1669. ret = 1;
  1670. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1671. goto done;
  1672. }
  1673. spte |= PT_WRITABLE_MASK;
  1674. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1675. spte &= ~PT_USER_MASK;
  1676. /*
  1677. * Optimization: for pte sync, if spte was writable the hash
  1678. * lookup is unnecessary (and expensive). Write protection
  1679. * is responsibility of mmu_get_page / kvm_sync_page.
  1680. * Same reasoning can be applied to dirty page accounting.
  1681. */
  1682. if (!can_unsync && is_writable_pte(*sptep))
  1683. goto set_pte;
  1684. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1685. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1686. __func__, gfn);
  1687. ret = 1;
  1688. pte_access &= ~ACC_WRITE_MASK;
  1689. if (is_writable_pte(spte))
  1690. spte &= ~PT_WRITABLE_MASK;
  1691. }
  1692. }
  1693. if (pte_access & ACC_WRITE_MASK)
  1694. mark_page_dirty(vcpu->kvm, gfn);
  1695. set_pte:
  1696. update_spte(sptep, spte);
  1697. done:
  1698. return ret;
  1699. }
  1700. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1701. unsigned pt_access, unsigned pte_access,
  1702. int user_fault, int write_fault, int dirty,
  1703. int *ptwrite, int level, gfn_t gfn,
  1704. pfn_t pfn, bool speculative,
  1705. bool reset_host_protection)
  1706. {
  1707. int was_rmapped = 0;
  1708. int rmap_count;
  1709. pgprintk("%s: spte %llx access %x write_fault %d"
  1710. " user_fault %d gfn %llx\n",
  1711. __func__, *sptep, pt_access,
  1712. write_fault, user_fault, gfn);
  1713. if (is_rmap_spte(*sptep)) {
  1714. /*
  1715. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1716. * the parent of the now unreachable PTE.
  1717. */
  1718. if (level > PT_PAGE_TABLE_LEVEL &&
  1719. !is_large_pte(*sptep)) {
  1720. struct kvm_mmu_page *child;
  1721. u64 pte = *sptep;
  1722. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1723. mmu_page_remove_parent_pte(child, sptep);
  1724. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1725. kvm_flush_remote_tlbs(vcpu->kvm);
  1726. } else if (pfn != spte_to_pfn(*sptep)) {
  1727. pgprintk("hfn old %llx new %llx\n",
  1728. spte_to_pfn(*sptep), pfn);
  1729. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1730. kvm_flush_remote_tlbs(vcpu->kvm);
  1731. } else
  1732. was_rmapped = 1;
  1733. }
  1734. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1735. dirty, level, gfn, pfn, speculative, true,
  1736. reset_host_protection)) {
  1737. if (write_fault)
  1738. *ptwrite = 1;
  1739. kvm_mmu_flush_tlb(vcpu);
  1740. }
  1741. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1742. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1743. is_large_pte(*sptep)? "2MB" : "4kB",
  1744. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1745. *sptep, sptep);
  1746. if (!was_rmapped && is_large_pte(*sptep))
  1747. ++vcpu->kvm->stat.lpages;
  1748. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1749. if (!was_rmapped) {
  1750. rmap_count = rmap_add(vcpu, sptep, gfn);
  1751. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1752. rmap_recycle(vcpu, sptep, gfn);
  1753. }
  1754. kvm_release_pfn_clean(pfn);
  1755. if (speculative) {
  1756. vcpu->arch.last_pte_updated = sptep;
  1757. vcpu->arch.last_pte_gfn = gfn;
  1758. }
  1759. }
  1760. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1761. {
  1762. }
  1763. static struct kvm_memory_slot *
  1764. pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
  1765. {
  1766. struct kvm_memory_slot *slot;
  1767. slot = gfn_to_memslot(vcpu->kvm, gfn);
  1768. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  1769. (no_dirty_log && slot->dirty_bitmap))
  1770. slot = NULL;
  1771. return slot;
  1772. }
  1773. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1774. bool no_dirty_log)
  1775. {
  1776. struct kvm_memory_slot *slot;
  1777. unsigned long hva;
  1778. slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
  1779. if (!slot) {
  1780. get_page(bad_page);
  1781. return page_to_pfn(bad_page);
  1782. }
  1783. hva = gfn_to_hva_memslot(slot, gfn);
  1784. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1785. }
  1786. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1787. struct kvm_mmu_page *sp,
  1788. u64 *start, u64 *end)
  1789. {
  1790. struct page *pages[PTE_PREFETCH_NUM];
  1791. unsigned access = sp->role.access;
  1792. int i, ret;
  1793. gfn_t gfn;
  1794. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1795. if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
  1796. return -1;
  1797. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1798. if (ret <= 0)
  1799. return -1;
  1800. for (i = 0; i < ret; i++, gfn++, start++)
  1801. mmu_set_spte(vcpu, start, ACC_ALL,
  1802. access, 0, 0, 1, NULL,
  1803. sp->role.level, gfn,
  1804. page_to_pfn(pages[i]), true, true);
  1805. return 0;
  1806. }
  1807. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1808. struct kvm_mmu_page *sp, u64 *sptep)
  1809. {
  1810. u64 *spte, *start = NULL;
  1811. int i;
  1812. WARN_ON(!sp->role.direct);
  1813. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1814. spte = sp->spt + i;
  1815. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1816. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1817. if (!start)
  1818. continue;
  1819. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1820. break;
  1821. start = NULL;
  1822. } else if (!start)
  1823. start = spte;
  1824. }
  1825. }
  1826. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1827. {
  1828. struct kvm_mmu_page *sp;
  1829. /*
  1830. * Since it's no accessed bit on EPT, it's no way to
  1831. * distinguish between actually accessed translations
  1832. * and prefetched, so disable pte prefetch if EPT is
  1833. * enabled.
  1834. */
  1835. if (!shadow_accessed_mask)
  1836. return;
  1837. sp = page_header(__pa(sptep));
  1838. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1839. return;
  1840. __direct_pte_prefetch(vcpu, sp, sptep);
  1841. }
  1842. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1843. int level, gfn_t gfn, pfn_t pfn)
  1844. {
  1845. struct kvm_shadow_walk_iterator iterator;
  1846. struct kvm_mmu_page *sp;
  1847. int pt_write = 0;
  1848. gfn_t pseudo_gfn;
  1849. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1850. if (iterator.level == level) {
  1851. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1852. 0, write, 1, &pt_write,
  1853. level, gfn, pfn, false, true);
  1854. direct_pte_prefetch(vcpu, iterator.sptep);
  1855. ++vcpu->stat.pf_fixed;
  1856. break;
  1857. }
  1858. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1859. u64 base_addr = iterator.addr;
  1860. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1861. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1862. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1863. iterator.level - 1,
  1864. 1, ACC_ALL, iterator.sptep);
  1865. if (!sp) {
  1866. pgprintk("nonpaging_map: ENOMEM\n");
  1867. kvm_release_pfn_clean(pfn);
  1868. return -ENOMEM;
  1869. }
  1870. __set_spte(iterator.sptep,
  1871. __pa(sp->spt)
  1872. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1873. | shadow_user_mask | shadow_x_mask);
  1874. }
  1875. }
  1876. return pt_write;
  1877. }
  1878. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1879. {
  1880. char buf[1];
  1881. void __user *hva;
  1882. int r;
  1883. /* Touch the page, so send SIGBUS */
  1884. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1885. r = copy_from_user(buf, hva, 1);
  1886. }
  1887. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1888. {
  1889. kvm_release_pfn_clean(pfn);
  1890. if (is_hwpoison_pfn(pfn)) {
  1891. kvm_send_hwpoison_signal(kvm, gfn);
  1892. return 0;
  1893. } else if (is_fault_pfn(pfn))
  1894. return -EFAULT;
  1895. return 1;
  1896. }
  1897. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1898. {
  1899. int r;
  1900. int level;
  1901. pfn_t pfn;
  1902. unsigned long mmu_seq;
  1903. level = mapping_level(vcpu, gfn);
  1904. /*
  1905. * This path builds a PAE pagetable - so we can map 2mb pages at
  1906. * maximum. Therefore check if the level is larger than that.
  1907. */
  1908. if (level > PT_DIRECTORY_LEVEL)
  1909. level = PT_DIRECTORY_LEVEL;
  1910. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1911. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1912. smp_rmb();
  1913. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1914. /* mmio */
  1915. if (is_error_pfn(pfn))
  1916. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1917. spin_lock(&vcpu->kvm->mmu_lock);
  1918. if (mmu_notifier_retry(vcpu, mmu_seq))
  1919. goto out_unlock;
  1920. kvm_mmu_free_some_pages(vcpu);
  1921. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1922. spin_unlock(&vcpu->kvm->mmu_lock);
  1923. return r;
  1924. out_unlock:
  1925. spin_unlock(&vcpu->kvm->mmu_lock);
  1926. kvm_release_pfn_clean(pfn);
  1927. return 0;
  1928. }
  1929. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1930. {
  1931. int i;
  1932. struct kvm_mmu_page *sp;
  1933. LIST_HEAD(invalid_list);
  1934. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1935. return;
  1936. spin_lock(&vcpu->kvm->mmu_lock);
  1937. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1938. hpa_t root = vcpu->arch.mmu.root_hpa;
  1939. sp = page_header(root);
  1940. --sp->root_count;
  1941. if (!sp->root_count && sp->role.invalid) {
  1942. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1943. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1944. }
  1945. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1946. spin_unlock(&vcpu->kvm->mmu_lock);
  1947. return;
  1948. }
  1949. for (i = 0; i < 4; ++i) {
  1950. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1951. if (root) {
  1952. root &= PT64_BASE_ADDR_MASK;
  1953. sp = page_header(root);
  1954. --sp->root_count;
  1955. if (!sp->root_count && sp->role.invalid)
  1956. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1957. &invalid_list);
  1958. }
  1959. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1960. }
  1961. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1962. spin_unlock(&vcpu->kvm->mmu_lock);
  1963. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1964. }
  1965. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1966. {
  1967. int ret = 0;
  1968. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1969. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1970. ret = 1;
  1971. }
  1972. return ret;
  1973. }
  1974. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1975. {
  1976. int i;
  1977. gfn_t root_gfn;
  1978. struct kvm_mmu_page *sp;
  1979. int direct = 0;
  1980. u64 pdptr;
  1981. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1982. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1983. hpa_t root = vcpu->arch.mmu.root_hpa;
  1984. ASSERT(!VALID_PAGE(root));
  1985. if (mmu_check_root(vcpu, root_gfn))
  1986. return 1;
  1987. if (tdp_enabled) {
  1988. direct = 1;
  1989. root_gfn = 0;
  1990. }
  1991. spin_lock(&vcpu->kvm->mmu_lock);
  1992. kvm_mmu_free_some_pages(vcpu);
  1993. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1994. PT64_ROOT_LEVEL, direct,
  1995. ACC_ALL, NULL);
  1996. root = __pa(sp->spt);
  1997. ++sp->root_count;
  1998. spin_unlock(&vcpu->kvm->mmu_lock);
  1999. vcpu->arch.mmu.root_hpa = root;
  2000. return 0;
  2001. }
  2002. direct = !is_paging(vcpu);
  2003. for (i = 0; i < 4; ++i) {
  2004. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2005. ASSERT(!VALID_PAGE(root));
  2006. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2007. pdptr = kvm_pdptr_read(vcpu, i);
  2008. if (!is_present_gpte(pdptr)) {
  2009. vcpu->arch.mmu.pae_root[i] = 0;
  2010. continue;
  2011. }
  2012. root_gfn = pdptr >> PAGE_SHIFT;
  2013. } else if (vcpu->arch.mmu.root_level == 0)
  2014. root_gfn = 0;
  2015. if (mmu_check_root(vcpu, root_gfn))
  2016. return 1;
  2017. if (tdp_enabled) {
  2018. direct = 1;
  2019. root_gfn = i << 30;
  2020. }
  2021. spin_lock(&vcpu->kvm->mmu_lock);
  2022. kvm_mmu_free_some_pages(vcpu);
  2023. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2024. PT32_ROOT_LEVEL, direct,
  2025. ACC_ALL, NULL);
  2026. root = __pa(sp->spt);
  2027. ++sp->root_count;
  2028. spin_unlock(&vcpu->kvm->mmu_lock);
  2029. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2030. }
  2031. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2032. return 0;
  2033. }
  2034. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2035. {
  2036. int i;
  2037. struct kvm_mmu_page *sp;
  2038. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2039. return;
  2040. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2041. hpa_t root = vcpu->arch.mmu.root_hpa;
  2042. sp = page_header(root);
  2043. mmu_sync_children(vcpu, sp);
  2044. return;
  2045. }
  2046. for (i = 0; i < 4; ++i) {
  2047. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2048. if (root && VALID_PAGE(root)) {
  2049. root &= PT64_BASE_ADDR_MASK;
  2050. sp = page_header(root);
  2051. mmu_sync_children(vcpu, sp);
  2052. }
  2053. }
  2054. }
  2055. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2056. {
  2057. spin_lock(&vcpu->kvm->mmu_lock);
  2058. mmu_sync_roots(vcpu);
  2059. spin_unlock(&vcpu->kvm->mmu_lock);
  2060. }
  2061. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2062. u32 access, u32 *error)
  2063. {
  2064. if (error)
  2065. *error = 0;
  2066. return vaddr;
  2067. }
  2068. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2069. u32 error_code)
  2070. {
  2071. gfn_t gfn;
  2072. int r;
  2073. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2074. r = mmu_topup_memory_caches(vcpu);
  2075. if (r)
  2076. return r;
  2077. ASSERT(vcpu);
  2078. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2079. gfn = gva >> PAGE_SHIFT;
  2080. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2081. error_code & PFERR_WRITE_MASK, gfn);
  2082. }
  2083. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  2084. u32 error_code)
  2085. {
  2086. pfn_t pfn;
  2087. int r;
  2088. int level;
  2089. gfn_t gfn = gpa >> PAGE_SHIFT;
  2090. unsigned long mmu_seq;
  2091. ASSERT(vcpu);
  2092. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2093. r = mmu_topup_memory_caches(vcpu);
  2094. if (r)
  2095. return r;
  2096. level = mapping_level(vcpu, gfn);
  2097. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2098. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2099. smp_rmb();
  2100. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2101. if (is_error_pfn(pfn))
  2102. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2103. spin_lock(&vcpu->kvm->mmu_lock);
  2104. if (mmu_notifier_retry(vcpu, mmu_seq))
  2105. goto out_unlock;
  2106. kvm_mmu_free_some_pages(vcpu);
  2107. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2108. level, gfn, pfn);
  2109. spin_unlock(&vcpu->kvm->mmu_lock);
  2110. return r;
  2111. out_unlock:
  2112. spin_unlock(&vcpu->kvm->mmu_lock);
  2113. kvm_release_pfn_clean(pfn);
  2114. return 0;
  2115. }
  2116. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2117. {
  2118. mmu_free_roots(vcpu);
  2119. }
  2120. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2121. {
  2122. struct kvm_mmu *context = &vcpu->arch.mmu;
  2123. context->new_cr3 = nonpaging_new_cr3;
  2124. context->page_fault = nonpaging_page_fault;
  2125. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2126. context->free = nonpaging_free;
  2127. context->prefetch_page = nonpaging_prefetch_page;
  2128. context->sync_page = nonpaging_sync_page;
  2129. context->invlpg = nonpaging_invlpg;
  2130. context->root_level = 0;
  2131. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2132. context->root_hpa = INVALID_PAGE;
  2133. return 0;
  2134. }
  2135. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2136. {
  2137. ++vcpu->stat.tlb_flush;
  2138. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2139. }
  2140. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2141. {
  2142. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2143. mmu_free_roots(vcpu);
  2144. }
  2145. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2146. u64 addr,
  2147. u32 err_code)
  2148. {
  2149. kvm_inject_page_fault(vcpu, addr, err_code);
  2150. }
  2151. static void paging_free(struct kvm_vcpu *vcpu)
  2152. {
  2153. nonpaging_free(vcpu);
  2154. }
  2155. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2156. {
  2157. int bit7;
  2158. bit7 = (gpte >> 7) & 1;
  2159. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2160. }
  2161. #define PTTYPE 64
  2162. #include "paging_tmpl.h"
  2163. #undef PTTYPE
  2164. #define PTTYPE 32
  2165. #include "paging_tmpl.h"
  2166. #undef PTTYPE
  2167. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2168. {
  2169. struct kvm_mmu *context = &vcpu->arch.mmu;
  2170. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2171. u64 exb_bit_rsvd = 0;
  2172. if (!is_nx(vcpu))
  2173. exb_bit_rsvd = rsvd_bits(63, 63);
  2174. switch (level) {
  2175. case PT32_ROOT_LEVEL:
  2176. /* no rsvd bits for 2 level 4K page table entries */
  2177. context->rsvd_bits_mask[0][1] = 0;
  2178. context->rsvd_bits_mask[0][0] = 0;
  2179. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2180. if (!is_pse(vcpu)) {
  2181. context->rsvd_bits_mask[1][1] = 0;
  2182. break;
  2183. }
  2184. if (is_cpuid_PSE36())
  2185. /* 36bits PSE 4MB page */
  2186. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2187. else
  2188. /* 32 bits PSE 4MB page */
  2189. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2190. break;
  2191. case PT32E_ROOT_LEVEL:
  2192. context->rsvd_bits_mask[0][2] =
  2193. rsvd_bits(maxphyaddr, 63) |
  2194. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2195. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2196. rsvd_bits(maxphyaddr, 62); /* PDE */
  2197. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2198. rsvd_bits(maxphyaddr, 62); /* PTE */
  2199. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2200. rsvd_bits(maxphyaddr, 62) |
  2201. rsvd_bits(13, 20); /* large page */
  2202. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2203. break;
  2204. case PT64_ROOT_LEVEL:
  2205. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2206. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2207. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2208. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2209. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2210. rsvd_bits(maxphyaddr, 51);
  2211. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2212. rsvd_bits(maxphyaddr, 51);
  2213. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2214. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2215. rsvd_bits(maxphyaddr, 51) |
  2216. rsvd_bits(13, 29);
  2217. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2218. rsvd_bits(maxphyaddr, 51) |
  2219. rsvd_bits(13, 20); /* large page */
  2220. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2221. break;
  2222. }
  2223. }
  2224. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2225. {
  2226. struct kvm_mmu *context = &vcpu->arch.mmu;
  2227. ASSERT(is_pae(vcpu));
  2228. context->new_cr3 = paging_new_cr3;
  2229. context->page_fault = paging64_page_fault;
  2230. context->gva_to_gpa = paging64_gva_to_gpa;
  2231. context->prefetch_page = paging64_prefetch_page;
  2232. context->sync_page = paging64_sync_page;
  2233. context->invlpg = paging64_invlpg;
  2234. context->free = paging_free;
  2235. context->root_level = level;
  2236. context->shadow_root_level = level;
  2237. context->root_hpa = INVALID_PAGE;
  2238. return 0;
  2239. }
  2240. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2241. {
  2242. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2243. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2244. }
  2245. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2246. {
  2247. struct kvm_mmu *context = &vcpu->arch.mmu;
  2248. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2249. context->new_cr3 = paging_new_cr3;
  2250. context->page_fault = paging32_page_fault;
  2251. context->gva_to_gpa = paging32_gva_to_gpa;
  2252. context->free = paging_free;
  2253. context->prefetch_page = paging32_prefetch_page;
  2254. context->sync_page = paging32_sync_page;
  2255. context->invlpg = paging32_invlpg;
  2256. context->root_level = PT32_ROOT_LEVEL;
  2257. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2258. context->root_hpa = INVALID_PAGE;
  2259. return 0;
  2260. }
  2261. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2262. {
  2263. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2264. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2265. }
  2266. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2267. {
  2268. struct kvm_mmu *context = &vcpu->arch.mmu;
  2269. context->new_cr3 = nonpaging_new_cr3;
  2270. context->page_fault = tdp_page_fault;
  2271. context->free = nonpaging_free;
  2272. context->prefetch_page = nonpaging_prefetch_page;
  2273. context->sync_page = nonpaging_sync_page;
  2274. context->invlpg = nonpaging_invlpg;
  2275. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2276. context->root_hpa = INVALID_PAGE;
  2277. if (!is_paging(vcpu)) {
  2278. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2279. context->root_level = 0;
  2280. } else if (is_long_mode(vcpu)) {
  2281. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2282. context->gva_to_gpa = paging64_gva_to_gpa;
  2283. context->root_level = PT64_ROOT_LEVEL;
  2284. } else if (is_pae(vcpu)) {
  2285. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2286. context->gva_to_gpa = paging64_gva_to_gpa;
  2287. context->root_level = PT32E_ROOT_LEVEL;
  2288. } else {
  2289. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2290. context->gva_to_gpa = paging32_gva_to_gpa;
  2291. context->root_level = PT32_ROOT_LEVEL;
  2292. }
  2293. return 0;
  2294. }
  2295. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2296. {
  2297. int r;
  2298. ASSERT(vcpu);
  2299. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2300. if (!is_paging(vcpu))
  2301. r = nonpaging_init_context(vcpu);
  2302. else if (is_long_mode(vcpu))
  2303. r = paging64_init_context(vcpu);
  2304. else if (is_pae(vcpu))
  2305. r = paging32E_init_context(vcpu);
  2306. else
  2307. r = paging32_init_context(vcpu);
  2308. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2309. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2310. return r;
  2311. }
  2312. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2313. {
  2314. vcpu->arch.update_pte.pfn = bad_pfn;
  2315. if (tdp_enabled)
  2316. return init_kvm_tdp_mmu(vcpu);
  2317. else
  2318. return init_kvm_softmmu(vcpu);
  2319. }
  2320. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2321. {
  2322. ASSERT(vcpu);
  2323. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2324. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2325. vcpu->arch.mmu.free(vcpu);
  2326. }
  2327. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2328. {
  2329. destroy_kvm_mmu(vcpu);
  2330. return init_kvm_mmu(vcpu);
  2331. }
  2332. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2333. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2334. {
  2335. int r;
  2336. r = mmu_topup_memory_caches(vcpu);
  2337. if (r)
  2338. goto out;
  2339. r = mmu_alloc_roots(vcpu);
  2340. spin_lock(&vcpu->kvm->mmu_lock);
  2341. mmu_sync_roots(vcpu);
  2342. spin_unlock(&vcpu->kvm->mmu_lock);
  2343. if (r)
  2344. goto out;
  2345. /* set_cr3() should ensure TLB has been flushed */
  2346. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2347. out:
  2348. return r;
  2349. }
  2350. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2351. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2352. {
  2353. mmu_free_roots(vcpu);
  2354. }
  2355. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2356. struct kvm_mmu_page *sp,
  2357. u64 *spte)
  2358. {
  2359. u64 pte;
  2360. struct kvm_mmu_page *child;
  2361. pte = *spte;
  2362. if (is_shadow_present_pte(pte)) {
  2363. if (is_last_spte(pte, sp->role.level))
  2364. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2365. else {
  2366. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2367. mmu_page_remove_parent_pte(child, spte);
  2368. }
  2369. }
  2370. __set_spte(spte, shadow_trap_nonpresent_pte);
  2371. if (is_large_pte(pte))
  2372. --vcpu->kvm->stat.lpages;
  2373. }
  2374. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2375. struct kvm_mmu_page *sp,
  2376. u64 *spte,
  2377. const void *new)
  2378. {
  2379. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2380. ++vcpu->kvm->stat.mmu_pde_zapped;
  2381. return;
  2382. }
  2383. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2384. return;
  2385. ++vcpu->kvm->stat.mmu_pte_updated;
  2386. if (!sp->role.cr4_pae)
  2387. paging32_update_pte(vcpu, sp, spte, new);
  2388. else
  2389. paging64_update_pte(vcpu, sp, spte, new);
  2390. }
  2391. static bool need_remote_flush(u64 old, u64 new)
  2392. {
  2393. if (!is_shadow_present_pte(old))
  2394. return false;
  2395. if (!is_shadow_present_pte(new))
  2396. return true;
  2397. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2398. return true;
  2399. old ^= PT64_NX_MASK;
  2400. new ^= PT64_NX_MASK;
  2401. return (old & ~new & PT64_PERM_MASK) != 0;
  2402. }
  2403. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2404. bool remote_flush, bool local_flush)
  2405. {
  2406. if (zap_page)
  2407. return;
  2408. if (remote_flush)
  2409. kvm_flush_remote_tlbs(vcpu->kvm);
  2410. else if (local_flush)
  2411. kvm_mmu_flush_tlb(vcpu);
  2412. }
  2413. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2414. {
  2415. u64 *spte = vcpu->arch.last_pte_updated;
  2416. return !!(spte && (*spte & shadow_accessed_mask));
  2417. }
  2418. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2419. u64 gpte)
  2420. {
  2421. gfn_t gfn;
  2422. pfn_t pfn;
  2423. if (!is_present_gpte(gpte))
  2424. return;
  2425. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2426. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2427. smp_rmb();
  2428. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2429. if (is_error_pfn(pfn)) {
  2430. kvm_release_pfn_clean(pfn);
  2431. return;
  2432. }
  2433. vcpu->arch.update_pte.gfn = gfn;
  2434. vcpu->arch.update_pte.pfn = pfn;
  2435. }
  2436. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2437. {
  2438. u64 *spte = vcpu->arch.last_pte_updated;
  2439. if (spte
  2440. && vcpu->arch.last_pte_gfn == gfn
  2441. && shadow_accessed_mask
  2442. && !(*spte & shadow_accessed_mask)
  2443. && is_shadow_present_pte(*spte))
  2444. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2445. }
  2446. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2447. const u8 *new, int bytes,
  2448. bool guest_initiated)
  2449. {
  2450. gfn_t gfn = gpa >> PAGE_SHIFT;
  2451. union kvm_mmu_page_role mask = { .word = 0 };
  2452. struct kvm_mmu_page *sp;
  2453. struct hlist_node *node;
  2454. LIST_HEAD(invalid_list);
  2455. u64 entry, gentry;
  2456. u64 *spte;
  2457. unsigned offset = offset_in_page(gpa);
  2458. unsigned pte_size;
  2459. unsigned page_offset;
  2460. unsigned misaligned;
  2461. unsigned quadrant;
  2462. int level;
  2463. int flooded = 0;
  2464. int npte;
  2465. int r;
  2466. int invlpg_counter;
  2467. bool remote_flush, local_flush, zap_page;
  2468. zap_page = remote_flush = local_flush = false;
  2469. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2470. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2471. /*
  2472. * Assume that the pte write on a page table of the same type
  2473. * as the current vcpu paging mode. This is nearly always true
  2474. * (might be false while changing modes). Note it is verified later
  2475. * by update_pte().
  2476. */
  2477. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2478. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2479. if (is_pae(vcpu)) {
  2480. gpa &= ~(gpa_t)7;
  2481. bytes = 8;
  2482. }
  2483. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2484. if (r)
  2485. gentry = 0;
  2486. new = (const u8 *)&gentry;
  2487. }
  2488. switch (bytes) {
  2489. case 4:
  2490. gentry = *(const u32 *)new;
  2491. break;
  2492. case 8:
  2493. gentry = *(const u64 *)new;
  2494. break;
  2495. default:
  2496. gentry = 0;
  2497. break;
  2498. }
  2499. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2500. spin_lock(&vcpu->kvm->mmu_lock);
  2501. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2502. gentry = 0;
  2503. kvm_mmu_access_page(vcpu, gfn);
  2504. kvm_mmu_free_some_pages(vcpu);
  2505. ++vcpu->kvm->stat.mmu_pte_write;
  2506. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2507. if (guest_initiated) {
  2508. if (gfn == vcpu->arch.last_pt_write_gfn
  2509. && !last_updated_pte_accessed(vcpu)) {
  2510. ++vcpu->arch.last_pt_write_count;
  2511. if (vcpu->arch.last_pt_write_count >= 3)
  2512. flooded = 1;
  2513. } else {
  2514. vcpu->arch.last_pt_write_gfn = gfn;
  2515. vcpu->arch.last_pt_write_count = 1;
  2516. vcpu->arch.last_pte_updated = NULL;
  2517. }
  2518. }
  2519. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2520. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2521. pte_size = sp->role.cr4_pae ? 8 : 4;
  2522. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2523. misaligned |= bytes < 4;
  2524. if (misaligned || flooded) {
  2525. /*
  2526. * Misaligned accesses are too much trouble to fix
  2527. * up; also, they usually indicate a page is not used
  2528. * as a page table.
  2529. *
  2530. * If we're seeing too many writes to a page,
  2531. * it may no longer be a page table, or we may be
  2532. * forking, in which case it is better to unmap the
  2533. * page.
  2534. */
  2535. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2536. gpa, bytes, sp->role.word);
  2537. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2538. &invalid_list);
  2539. ++vcpu->kvm->stat.mmu_flooded;
  2540. continue;
  2541. }
  2542. page_offset = offset;
  2543. level = sp->role.level;
  2544. npte = 1;
  2545. if (!sp->role.cr4_pae) {
  2546. page_offset <<= 1; /* 32->64 */
  2547. /*
  2548. * A 32-bit pde maps 4MB while the shadow pdes map
  2549. * only 2MB. So we need to double the offset again
  2550. * and zap two pdes instead of one.
  2551. */
  2552. if (level == PT32_ROOT_LEVEL) {
  2553. page_offset &= ~7; /* kill rounding error */
  2554. page_offset <<= 1;
  2555. npte = 2;
  2556. }
  2557. quadrant = page_offset >> PAGE_SHIFT;
  2558. page_offset &= ~PAGE_MASK;
  2559. if (quadrant != sp->role.quadrant)
  2560. continue;
  2561. }
  2562. local_flush = true;
  2563. spte = &sp->spt[page_offset / sizeof(*spte)];
  2564. while (npte--) {
  2565. entry = *spte;
  2566. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2567. if (gentry &&
  2568. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2569. & mask.word))
  2570. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2571. if (!remote_flush && need_remote_flush(entry, *spte))
  2572. remote_flush = true;
  2573. ++spte;
  2574. }
  2575. }
  2576. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2577. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2578. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2579. spin_unlock(&vcpu->kvm->mmu_lock);
  2580. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2581. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2582. vcpu->arch.update_pte.pfn = bad_pfn;
  2583. }
  2584. }
  2585. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2586. {
  2587. gpa_t gpa;
  2588. int r;
  2589. if (tdp_enabled)
  2590. return 0;
  2591. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2592. spin_lock(&vcpu->kvm->mmu_lock);
  2593. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2594. spin_unlock(&vcpu->kvm->mmu_lock);
  2595. return r;
  2596. }
  2597. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2598. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2599. {
  2600. LIST_HEAD(invalid_list);
  2601. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2602. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2603. struct kvm_mmu_page *sp;
  2604. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2605. struct kvm_mmu_page, link);
  2606. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2607. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2608. ++vcpu->kvm->stat.mmu_recycled;
  2609. }
  2610. }
  2611. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2612. {
  2613. int r;
  2614. enum emulation_result er;
  2615. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2616. if (r < 0)
  2617. goto out;
  2618. if (!r) {
  2619. r = 1;
  2620. goto out;
  2621. }
  2622. r = mmu_topup_memory_caches(vcpu);
  2623. if (r)
  2624. goto out;
  2625. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2626. switch (er) {
  2627. case EMULATE_DONE:
  2628. return 1;
  2629. case EMULATE_DO_MMIO:
  2630. ++vcpu->stat.mmio_exits;
  2631. /* fall through */
  2632. case EMULATE_FAIL:
  2633. return 0;
  2634. default:
  2635. BUG();
  2636. }
  2637. out:
  2638. return r;
  2639. }
  2640. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2641. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2642. {
  2643. vcpu->arch.mmu.invlpg(vcpu, gva);
  2644. kvm_mmu_flush_tlb(vcpu);
  2645. ++vcpu->stat.invlpg;
  2646. }
  2647. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2648. void kvm_enable_tdp(void)
  2649. {
  2650. tdp_enabled = true;
  2651. }
  2652. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2653. void kvm_disable_tdp(void)
  2654. {
  2655. tdp_enabled = false;
  2656. }
  2657. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2658. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2659. {
  2660. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2661. }
  2662. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2663. {
  2664. struct page *page;
  2665. int i;
  2666. ASSERT(vcpu);
  2667. /*
  2668. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2669. * Therefore we need to allocate shadow page tables in the first
  2670. * 4GB of memory, which happens to fit the DMA32 zone.
  2671. */
  2672. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2673. if (!page)
  2674. return -ENOMEM;
  2675. vcpu->arch.mmu.pae_root = page_address(page);
  2676. for (i = 0; i < 4; ++i)
  2677. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2678. return 0;
  2679. }
  2680. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2681. {
  2682. ASSERT(vcpu);
  2683. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2684. return alloc_mmu_pages(vcpu);
  2685. }
  2686. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2687. {
  2688. ASSERT(vcpu);
  2689. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2690. return init_kvm_mmu(vcpu);
  2691. }
  2692. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2693. {
  2694. ASSERT(vcpu);
  2695. destroy_kvm_mmu(vcpu);
  2696. free_mmu_pages(vcpu);
  2697. mmu_free_memory_caches(vcpu);
  2698. }
  2699. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2700. {
  2701. struct kvm_mmu_page *sp;
  2702. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2703. int i;
  2704. u64 *pt;
  2705. if (!test_bit(slot, sp->slot_bitmap))
  2706. continue;
  2707. pt = sp->spt;
  2708. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2709. /* avoid RMW */
  2710. if (is_writable_pte(pt[i]))
  2711. pt[i] &= ~PT_WRITABLE_MASK;
  2712. }
  2713. kvm_flush_remote_tlbs(kvm);
  2714. }
  2715. void kvm_mmu_zap_all(struct kvm *kvm)
  2716. {
  2717. struct kvm_mmu_page *sp, *node;
  2718. LIST_HEAD(invalid_list);
  2719. spin_lock(&kvm->mmu_lock);
  2720. restart:
  2721. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2722. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2723. goto restart;
  2724. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2725. spin_unlock(&kvm->mmu_lock);
  2726. }
  2727. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2728. struct list_head *invalid_list)
  2729. {
  2730. struct kvm_mmu_page *page;
  2731. page = container_of(kvm->arch.active_mmu_pages.prev,
  2732. struct kvm_mmu_page, link);
  2733. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2734. }
  2735. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2736. {
  2737. struct kvm *kvm;
  2738. struct kvm *kvm_freed = NULL;
  2739. if (nr_to_scan == 0)
  2740. goto out;
  2741. spin_lock(&kvm_lock);
  2742. list_for_each_entry(kvm, &vm_list, vm_list) {
  2743. int idx, freed_pages;
  2744. LIST_HEAD(invalid_list);
  2745. idx = srcu_read_lock(&kvm->srcu);
  2746. spin_lock(&kvm->mmu_lock);
  2747. if (!kvm_freed && nr_to_scan > 0 &&
  2748. kvm->arch.n_used_mmu_pages > 0) {
  2749. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2750. &invalid_list);
  2751. kvm_freed = kvm;
  2752. }
  2753. nr_to_scan--;
  2754. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2755. spin_unlock(&kvm->mmu_lock);
  2756. srcu_read_unlock(&kvm->srcu, idx);
  2757. }
  2758. if (kvm_freed)
  2759. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2760. spin_unlock(&kvm_lock);
  2761. out:
  2762. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2763. }
  2764. static struct shrinker mmu_shrinker = {
  2765. .shrink = mmu_shrink,
  2766. .seeks = DEFAULT_SEEKS * 10,
  2767. };
  2768. static void mmu_destroy_caches(void)
  2769. {
  2770. if (pte_chain_cache)
  2771. kmem_cache_destroy(pte_chain_cache);
  2772. if (rmap_desc_cache)
  2773. kmem_cache_destroy(rmap_desc_cache);
  2774. if (mmu_page_header_cache)
  2775. kmem_cache_destroy(mmu_page_header_cache);
  2776. }
  2777. void kvm_mmu_module_exit(void)
  2778. {
  2779. mmu_destroy_caches();
  2780. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  2781. unregister_shrinker(&mmu_shrinker);
  2782. }
  2783. int kvm_mmu_module_init(void)
  2784. {
  2785. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2786. sizeof(struct kvm_pte_chain),
  2787. 0, 0, NULL);
  2788. if (!pte_chain_cache)
  2789. goto nomem;
  2790. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2791. sizeof(struct kvm_rmap_desc),
  2792. 0, 0, NULL);
  2793. if (!rmap_desc_cache)
  2794. goto nomem;
  2795. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2796. sizeof(struct kvm_mmu_page),
  2797. 0, 0, NULL);
  2798. if (!mmu_page_header_cache)
  2799. goto nomem;
  2800. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2801. goto nomem;
  2802. register_shrinker(&mmu_shrinker);
  2803. return 0;
  2804. nomem:
  2805. mmu_destroy_caches();
  2806. return -ENOMEM;
  2807. }
  2808. /*
  2809. * Caculate mmu pages needed for kvm.
  2810. */
  2811. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2812. {
  2813. int i;
  2814. unsigned int nr_mmu_pages;
  2815. unsigned int nr_pages = 0;
  2816. struct kvm_memslots *slots;
  2817. slots = kvm_memslots(kvm);
  2818. for (i = 0; i < slots->nmemslots; i++)
  2819. nr_pages += slots->memslots[i].npages;
  2820. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2821. nr_mmu_pages = max(nr_mmu_pages,
  2822. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2823. return nr_mmu_pages;
  2824. }
  2825. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2826. unsigned len)
  2827. {
  2828. if (len > buffer->len)
  2829. return NULL;
  2830. return buffer->ptr;
  2831. }
  2832. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2833. unsigned len)
  2834. {
  2835. void *ret;
  2836. ret = pv_mmu_peek_buffer(buffer, len);
  2837. if (!ret)
  2838. return ret;
  2839. buffer->ptr += len;
  2840. buffer->len -= len;
  2841. buffer->processed += len;
  2842. return ret;
  2843. }
  2844. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2845. gpa_t addr, gpa_t value)
  2846. {
  2847. int bytes = 8;
  2848. int r;
  2849. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2850. bytes = 4;
  2851. r = mmu_topup_memory_caches(vcpu);
  2852. if (r)
  2853. return r;
  2854. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2855. return -EFAULT;
  2856. return 1;
  2857. }
  2858. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2859. {
  2860. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2861. return 1;
  2862. }
  2863. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2864. {
  2865. spin_lock(&vcpu->kvm->mmu_lock);
  2866. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2867. spin_unlock(&vcpu->kvm->mmu_lock);
  2868. return 1;
  2869. }
  2870. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2871. struct kvm_pv_mmu_op_buffer *buffer)
  2872. {
  2873. struct kvm_mmu_op_header *header;
  2874. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2875. if (!header)
  2876. return 0;
  2877. switch (header->op) {
  2878. case KVM_MMU_OP_WRITE_PTE: {
  2879. struct kvm_mmu_op_write_pte *wpte;
  2880. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2881. if (!wpte)
  2882. return 0;
  2883. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2884. wpte->pte_val);
  2885. }
  2886. case KVM_MMU_OP_FLUSH_TLB: {
  2887. struct kvm_mmu_op_flush_tlb *ftlb;
  2888. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2889. if (!ftlb)
  2890. return 0;
  2891. return kvm_pv_mmu_flush_tlb(vcpu);
  2892. }
  2893. case KVM_MMU_OP_RELEASE_PT: {
  2894. struct kvm_mmu_op_release_pt *rpt;
  2895. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2896. if (!rpt)
  2897. return 0;
  2898. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2899. }
  2900. default: return 0;
  2901. }
  2902. }
  2903. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2904. gpa_t addr, unsigned long *ret)
  2905. {
  2906. int r;
  2907. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2908. buffer->ptr = buffer->buf;
  2909. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2910. buffer->processed = 0;
  2911. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2912. if (r)
  2913. goto out;
  2914. while (buffer->len) {
  2915. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2916. if (r < 0)
  2917. goto out;
  2918. if (r == 0)
  2919. break;
  2920. }
  2921. r = 1;
  2922. out:
  2923. *ret = buffer->processed;
  2924. return r;
  2925. }
  2926. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2927. {
  2928. struct kvm_shadow_walk_iterator iterator;
  2929. int nr_sptes = 0;
  2930. spin_lock(&vcpu->kvm->mmu_lock);
  2931. for_each_shadow_entry(vcpu, addr, iterator) {
  2932. sptes[iterator.level-1] = *iterator.sptep;
  2933. nr_sptes++;
  2934. if (!is_shadow_present_pte(*iterator.sptep))
  2935. break;
  2936. }
  2937. spin_unlock(&vcpu->kvm->mmu_lock);
  2938. return nr_sptes;
  2939. }
  2940. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2941. #ifdef CONFIG_KVM_MMU_AUDIT
  2942. #include "mmu_audit.c"
  2943. #endif