kvm_main.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_window", &kvm_stat.irq_window_exits },
  56. { "halt_exits", &kvm_stat.halt_exits },
  57. { "request_irq", &kvm_stat.request_irq_exits },
  58. { "irq_exits", &kvm_stat.irq_exits },
  59. { 0, 0 }
  60. };
  61. static struct dentry *debugfs_dir;
  62. #define MAX_IO_MSRS 256
  63. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  64. #define LMSW_GUEST_MASK 0x0eULL
  65. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  66. #define CR8_RESEVED_BITS (~0x0fULL)
  67. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  68. #ifdef CONFIG_X86_64
  69. // LDT or TSS descriptor in the GDT. 16 bytes.
  70. struct segment_descriptor_64 {
  71. struct segment_descriptor s;
  72. u32 base_higher;
  73. u32 pad_zero;
  74. };
  75. #endif
  76. unsigned long segment_base(u16 selector)
  77. {
  78. struct descriptor_table gdt;
  79. struct segment_descriptor *d;
  80. unsigned long table_base;
  81. typedef unsigned long ul;
  82. unsigned long v;
  83. if (selector == 0)
  84. return 0;
  85. asm ("sgdt %0" : "=m"(gdt));
  86. table_base = gdt.base;
  87. if (selector & 4) { /* from ldt */
  88. u16 ldt_selector;
  89. asm ("sldt %0" : "=g"(ldt_selector));
  90. table_base = segment_base(ldt_selector);
  91. }
  92. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  93. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  94. #ifdef CONFIG_X86_64
  95. if (d->system == 0
  96. && (d->type == 2 || d->type == 9 || d->type == 11))
  97. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  98. #endif
  99. return v;
  100. }
  101. EXPORT_SYMBOL_GPL(segment_base);
  102. static inline int valid_vcpu(int n)
  103. {
  104. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  105. }
  106. int kvm_read_guest(struct kvm_vcpu *vcpu,
  107. gva_t addr,
  108. unsigned long size,
  109. void *dest)
  110. {
  111. unsigned char *host_buf = dest;
  112. unsigned long req_size = size;
  113. while (size) {
  114. hpa_t paddr;
  115. unsigned now;
  116. unsigned offset;
  117. hva_t guest_buf;
  118. paddr = gva_to_hpa(vcpu, addr);
  119. if (is_error_hpa(paddr))
  120. break;
  121. guest_buf = (hva_t)kmap_atomic(
  122. pfn_to_page(paddr >> PAGE_SHIFT),
  123. KM_USER0);
  124. offset = addr & ~PAGE_MASK;
  125. guest_buf |= offset;
  126. now = min(size, PAGE_SIZE - offset);
  127. memcpy(host_buf, (void*)guest_buf, now);
  128. host_buf += now;
  129. addr += now;
  130. size -= now;
  131. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  132. }
  133. return req_size - size;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_read_guest);
  136. int kvm_write_guest(struct kvm_vcpu *vcpu,
  137. gva_t addr,
  138. unsigned long size,
  139. void *data)
  140. {
  141. unsigned char *host_buf = data;
  142. unsigned long req_size = size;
  143. while (size) {
  144. hpa_t paddr;
  145. unsigned now;
  146. unsigned offset;
  147. hva_t guest_buf;
  148. paddr = gva_to_hpa(vcpu, addr);
  149. if (is_error_hpa(paddr))
  150. break;
  151. guest_buf = (hva_t)kmap_atomic(
  152. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  153. offset = addr & ~PAGE_MASK;
  154. guest_buf |= offset;
  155. now = min(size, PAGE_SIZE - offset);
  156. memcpy((void*)guest_buf, host_buf, now);
  157. host_buf += now;
  158. addr += now;
  159. size -= now;
  160. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  161. }
  162. return req_size - size;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_write_guest);
  165. static int vcpu_slot(struct kvm_vcpu *vcpu)
  166. {
  167. return vcpu - vcpu->kvm->vcpus;
  168. }
  169. /*
  170. * Switches to specified vcpu, until a matching vcpu_put()
  171. */
  172. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  173. {
  174. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  175. mutex_lock(&vcpu->mutex);
  176. if (unlikely(!vcpu->vmcs)) {
  177. mutex_unlock(&vcpu->mutex);
  178. return 0;
  179. }
  180. return kvm_arch_ops->vcpu_load(vcpu);
  181. }
  182. static void vcpu_put(struct kvm_vcpu *vcpu)
  183. {
  184. kvm_arch_ops->vcpu_put(vcpu);
  185. mutex_unlock(&vcpu->mutex);
  186. }
  187. static int kvm_dev_open(struct inode *inode, struct file *filp)
  188. {
  189. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  190. int i;
  191. if (!kvm)
  192. return -ENOMEM;
  193. spin_lock_init(&kvm->lock);
  194. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  195. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  196. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  197. mutex_init(&vcpu->mutex);
  198. vcpu->kvm = kvm;
  199. vcpu->mmu.root_hpa = INVALID_PAGE;
  200. INIT_LIST_HEAD(&vcpu->free_pages);
  201. }
  202. filp->private_data = kvm;
  203. return 0;
  204. }
  205. /*
  206. * Free any memory in @free but not in @dont.
  207. */
  208. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  209. struct kvm_memory_slot *dont)
  210. {
  211. int i;
  212. if (!dont || free->phys_mem != dont->phys_mem)
  213. if (free->phys_mem) {
  214. for (i = 0; i < free->npages; ++i)
  215. if (free->phys_mem[i])
  216. __free_page(free->phys_mem[i]);
  217. vfree(free->phys_mem);
  218. }
  219. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  220. vfree(free->dirty_bitmap);
  221. free->phys_mem = 0;
  222. free->npages = 0;
  223. free->dirty_bitmap = 0;
  224. }
  225. static void kvm_free_physmem(struct kvm *kvm)
  226. {
  227. int i;
  228. for (i = 0; i < kvm->nmemslots; ++i)
  229. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  230. }
  231. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  232. {
  233. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  234. kvm_mmu_destroy(vcpu);
  235. vcpu_put(vcpu);
  236. kvm_arch_ops->vcpu_free(vcpu);
  237. }
  238. static void kvm_free_vcpus(struct kvm *kvm)
  239. {
  240. unsigned int i;
  241. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  242. kvm_free_vcpu(&kvm->vcpus[i]);
  243. }
  244. static int kvm_dev_release(struct inode *inode, struct file *filp)
  245. {
  246. struct kvm *kvm = filp->private_data;
  247. kvm_free_vcpus(kvm);
  248. kvm_free_physmem(kvm);
  249. kfree(kvm);
  250. return 0;
  251. }
  252. static void inject_gp(struct kvm_vcpu *vcpu)
  253. {
  254. kvm_arch_ops->inject_gp(vcpu, 0);
  255. }
  256. /*
  257. * Load the pae pdptrs. Return true is they are all valid.
  258. */
  259. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  260. {
  261. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  262. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  263. int i;
  264. u64 pdpte;
  265. u64 *pdpt;
  266. int ret;
  267. struct kvm_memory_slot *memslot;
  268. spin_lock(&vcpu->kvm->lock);
  269. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  270. /* FIXME: !memslot - emulate? 0xff? */
  271. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  272. ret = 1;
  273. for (i = 0; i < 4; ++i) {
  274. pdpte = pdpt[offset + i];
  275. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  276. ret = 0;
  277. goto out;
  278. }
  279. }
  280. for (i = 0; i < 4; ++i)
  281. vcpu->pdptrs[i] = pdpt[offset + i];
  282. out:
  283. kunmap_atomic(pdpt, KM_USER0);
  284. spin_unlock(&vcpu->kvm->lock);
  285. return ret;
  286. }
  287. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  288. {
  289. if (cr0 & CR0_RESEVED_BITS) {
  290. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  291. cr0, vcpu->cr0);
  292. inject_gp(vcpu);
  293. return;
  294. }
  295. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  297. inject_gp(vcpu);
  298. return;
  299. }
  300. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  301. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  302. "and a clear PE flag\n");
  303. inject_gp(vcpu);
  304. return;
  305. }
  306. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  307. #ifdef CONFIG_X86_64
  308. if ((vcpu->shadow_efer & EFER_LME)) {
  309. int cs_db, cs_l;
  310. if (!is_pae(vcpu)) {
  311. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  312. "in long mode while PAE is disabled\n");
  313. inject_gp(vcpu);
  314. return;
  315. }
  316. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  317. if (cs_l) {
  318. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  319. "in long mode while CS.L == 1\n");
  320. inject_gp(vcpu);
  321. return;
  322. }
  323. } else
  324. #endif
  325. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  326. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  327. "reserved bits\n");
  328. inject_gp(vcpu);
  329. return;
  330. }
  331. }
  332. kvm_arch_ops->set_cr0(vcpu, cr0);
  333. vcpu->cr0 = cr0;
  334. spin_lock(&vcpu->kvm->lock);
  335. kvm_mmu_reset_context(vcpu);
  336. spin_unlock(&vcpu->kvm->lock);
  337. return;
  338. }
  339. EXPORT_SYMBOL_GPL(set_cr0);
  340. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  341. {
  342. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  343. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  344. }
  345. EXPORT_SYMBOL_GPL(lmsw);
  346. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  347. {
  348. if (cr4 & CR4_RESEVED_BITS) {
  349. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  350. inject_gp(vcpu);
  351. return;
  352. }
  353. if (is_long_mode(vcpu)) {
  354. if (!(cr4 & CR4_PAE_MASK)) {
  355. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  356. "in long mode\n");
  357. inject_gp(vcpu);
  358. return;
  359. }
  360. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  361. && !load_pdptrs(vcpu, vcpu->cr3)) {
  362. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  363. inject_gp(vcpu);
  364. }
  365. if (cr4 & CR4_VMXE_MASK) {
  366. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. kvm_arch_ops->set_cr4(vcpu, cr4);
  371. spin_lock(&vcpu->kvm->lock);
  372. kvm_mmu_reset_context(vcpu);
  373. spin_unlock(&vcpu->kvm->lock);
  374. }
  375. EXPORT_SYMBOL_GPL(set_cr4);
  376. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  377. {
  378. if (is_long_mode(vcpu)) {
  379. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  380. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  381. inject_gp(vcpu);
  382. return;
  383. }
  384. } else {
  385. if (cr3 & CR3_RESEVED_BITS) {
  386. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if (is_paging(vcpu) && is_pae(vcpu) &&
  391. !load_pdptrs(vcpu, cr3)) {
  392. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  393. "reserved bits\n");
  394. inject_gp(vcpu);
  395. return;
  396. }
  397. }
  398. vcpu->cr3 = cr3;
  399. spin_lock(&vcpu->kvm->lock);
  400. /*
  401. * Does the new cr3 value map to physical memory? (Note, we
  402. * catch an invalid cr3 even in real-mode, because it would
  403. * cause trouble later on when we turn on paging anyway.)
  404. *
  405. * A real CPU would silently accept an invalid cr3 and would
  406. * attempt to use it - with largely undefined (and often hard
  407. * to debug) behavior on the guest side.
  408. */
  409. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  410. inject_gp(vcpu);
  411. else
  412. vcpu->mmu.new_cr3(vcpu);
  413. spin_unlock(&vcpu->kvm->lock);
  414. }
  415. EXPORT_SYMBOL_GPL(set_cr3);
  416. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  417. {
  418. if ( cr8 & CR8_RESEVED_BITS) {
  419. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  420. inject_gp(vcpu);
  421. return;
  422. }
  423. vcpu->cr8 = cr8;
  424. }
  425. EXPORT_SYMBOL_GPL(set_cr8);
  426. void fx_init(struct kvm_vcpu *vcpu)
  427. {
  428. struct __attribute__ ((__packed__)) fx_image_s {
  429. u16 control; //fcw
  430. u16 status; //fsw
  431. u16 tag; // ftw
  432. u16 opcode; //fop
  433. u64 ip; // fpu ip
  434. u64 operand;// fpu dp
  435. u32 mxcsr;
  436. u32 mxcsr_mask;
  437. } *fx_image;
  438. fx_save(vcpu->host_fx_image);
  439. fpu_init();
  440. fx_save(vcpu->guest_fx_image);
  441. fx_restore(vcpu->host_fx_image);
  442. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  443. fx_image->mxcsr = 0x1f80;
  444. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  445. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  446. }
  447. EXPORT_SYMBOL_GPL(fx_init);
  448. /*
  449. * Creates some virtual cpus. Good luck creating more than one.
  450. */
  451. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  452. {
  453. int r;
  454. struct kvm_vcpu *vcpu;
  455. r = -EINVAL;
  456. if (!valid_vcpu(n))
  457. goto out;
  458. vcpu = &kvm->vcpus[n];
  459. mutex_lock(&vcpu->mutex);
  460. if (vcpu->vmcs) {
  461. mutex_unlock(&vcpu->mutex);
  462. return -EEXIST;
  463. }
  464. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  465. FX_IMAGE_ALIGN);
  466. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  467. vcpu->cpu = -1; /* First load will set up TR */
  468. r = kvm_arch_ops->vcpu_create(vcpu);
  469. if (r < 0)
  470. goto out_free_vcpus;
  471. r = kvm_mmu_create(vcpu);
  472. if (r < 0)
  473. goto out_free_vcpus;
  474. kvm_arch_ops->vcpu_load(vcpu);
  475. r = kvm_mmu_setup(vcpu);
  476. if (r >= 0)
  477. r = kvm_arch_ops->vcpu_setup(vcpu);
  478. vcpu_put(vcpu);
  479. if (r < 0)
  480. goto out_free_vcpus;
  481. return 0;
  482. out_free_vcpus:
  483. kvm_free_vcpu(vcpu);
  484. mutex_unlock(&vcpu->mutex);
  485. out:
  486. return r;
  487. }
  488. /*
  489. * Allocate some memory and give it an address in the guest physical address
  490. * space.
  491. *
  492. * Discontiguous memory is allowed, mostly for framebuffers.
  493. */
  494. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  495. struct kvm_memory_region *mem)
  496. {
  497. int r;
  498. gfn_t base_gfn;
  499. unsigned long npages;
  500. unsigned long i;
  501. struct kvm_memory_slot *memslot;
  502. struct kvm_memory_slot old, new;
  503. int memory_config_version;
  504. r = -EINVAL;
  505. /* General sanity checks */
  506. if (mem->memory_size & (PAGE_SIZE - 1))
  507. goto out;
  508. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  509. goto out;
  510. if (mem->slot >= KVM_MEMORY_SLOTS)
  511. goto out;
  512. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  513. goto out;
  514. memslot = &kvm->memslots[mem->slot];
  515. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  516. npages = mem->memory_size >> PAGE_SHIFT;
  517. if (!npages)
  518. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  519. raced:
  520. spin_lock(&kvm->lock);
  521. memory_config_version = kvm->memory_config_version;
  522. new = old = *memslot;
  523. new.base_gfn = base_gfn;
  524. new.npages = npages;
  525. new.flags = mem->flags;
  526. /* Disallow changing a memory slot's size. */
  527. r = -EINVAL;
  528. if (npages && old.npages && npages != old.npages)
  529. goto out_unlock;
  530. /* Check for overlaps */
  531. r = -EEXIST;
  532. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  533. struct kvm_memory_slot *s = &kvm->memslots[i];
  534. if (s == memslot)
  535. continue;
  536. if (!((base_gfn + npages <= s->base_gfn) ||
  537. (base_gfn >= s->base_gfn + s->npages)))
  538. goto out_unlock;
  539. }
  540. /*
  541. * Do memory allocations outside lock. memory_config_version will
  542. * detect any races.
  543. */
  544. spin_unlock(&kvm->lock);
  545. /* Deallocate if slot is being removed */
  546. if (!npages)
  547. new.phys_mem = 0;
  548. /* Free page dirty bitmap if unneeded */
  549. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  550. new.dirty_bitmap = 0;
  551. r = -ENOMEM;
  552. /* Allocate if a slot is being created */
  553. if (npages && !new.phys_mem) {
  554. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  555. if (!new.phys_mem)
  556. goto out_free;
  557. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  558. for (i = 0; i < npages; ++i) {
  559. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  560. | __GFP_ZERO);
  561. if (!new.phys_mem[i])
  562. goto out_free;
  563. new.phys_mem[i]->private = 0;
  564. }
  565. }
  566. /* Allocate page dirty bitmap if needed */
  567. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  568. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  569. new.dirty_bitmap = vmalloc(dirty_bytes);
  570. if (!new.dirty_bitmap)
  571. goto out_free;
  572. memset(new.dirty_bitmap, 0, dirty_bytes);
  573. }
  574. spin_lock(&kvm->lock);
  575. if (memory_config_version != kvm->memory_config_version) {
  576. spin_unlock(&kvm->lock);
  577. kvm_free_physmem_slot(&new, &old);
  578. goto raced;
  579. }
  580. r = -EAGAIN;
  581. if (kvm->busy)
  582. goto out_unlock;
  583. if (mem->slot >= kvm->nmemslots)
  584. kvm->nmemslots = mem->slot + 1;
  585. *memslot = new;
  586. ++kvm->memory_config_version;
  587. spin_unlock(&kvm->lock);
  588. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  589. struct kvm_vcpu *vcpu;
  590. vcpu = vcpu_load(kvm, i);
  591. if (!vcpu)
  592. continue;
  593. kvm_mmu_reset_context(vcpu);
  594. vcpu_put(vcpu);
  595. }
  596. kvm_free_physmem_slot(&old, &new);
  597. return 0;
  598. out_unlock:
  599. spin_unlock(&kvm->lock);
  600. out_free:
  601. kvm_free_physmem_slot(&new, &old);
  602. out:
  603. return r;
  604. }
  605. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  606. {
  607. spin_lock(&vcpu->kvm->lock);
  608. kvm_mmu_slot_remove_write_access(vcpu, slot);
  609. spin_unlock(&vcpu->kvm->lock);
  610. }
  611. /*
  612. * Get (and clear) the dirty memory log for a memory slot.
  613. */
  614. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  615. struct kvm_dirty_log *log)
  616. {
  617. struct kvm_memory_slot *memslot;
  618. int r, i;
  619. int n;
  620. int cleared;
  621. unsigned long any = 0;
  622. spin_lock(&kvm->lock);
  623. /*
  624. * Prevent changes to guest memory configuration even while the lock
  625. * is not taken.
  626. */
  627. ++kvm->busy;
  628. spin_unlock(&kvm->lock);
  629. r = -EINVAL;
  630. if (log->slot >= KVM_MEMORY_SLOTS)
  631. goto out;
  632. memslot = &kvm->memslots[log->slot];
  633. r = -ENOENT;
  634. if (!memslot->dirty_bitmap)
  635. goto out;
  636. n = ALIGN(memslot->npages, 8) / 8;
  637. for (i = 0; !any && i < n; ++i)
  638. any = memslot->dirty_bitmap[i];
  639. r = -EFAULT;
  640. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  641. goto out;
  642. if (any) {
  643. cleared = 0;
  644. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  645. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  646. if (!vcpu)
  647. continue;
  648. if (!cleared) {
  649. do_remove_write_access(vcpu, log->slot);
  650. memset(memslot->dirty_bitmap, 0, n);
  651. cleared = 1;
  652. }
  653. kvm_arch_ops->tlb_flush(vcpu);
  654. vcpu_put(vcpu);
  655. }
  656. }
  657. r = 0;
  658. out:
  659. spin_lock(&kvm->lock);
  660. --kvm->busy;
  661. spin_unlock(&kvm->lock);
  662. return r;
  663. }
  664. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  665. {
  666. int i;
  667. for (i = 0; i < kvm->nmemslots; ++i) {
  668. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  669. if (gfn >= memslot->base_gfn
  670. && gfn < memslot->base_gfn + memslot->npages)
  671. return memslot;
  672. }
  673. return 0;
  674. }
  675. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  676. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  677. {
  678. int i;
  679. struct kvm_memory_slot *memslot = 0;
  680. unsigned long rel_gfn;
  681. for (i = 0; i < kvm->nmemslots; ++i) {
  682. memslot = &kvm->memslots[i];
  683. if (gfn >= memslot->base_gfn
  684. && gfn < memslot->base_gfn + memslot->npages) {
  685. if (!memslot || !memslot->dirty_bitmap)
  686. return;
  687. rel_gfn = gfn - memslot->base_gfn;
  688. /* avoid RMW */
  689. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  690. set_bit(rel_gfn, memslot->dirty_bitmap);
  691. return;
  692. }
  693. }
  694. }
  695. static int emulator_read_std(unsigned long addr,
  696. unsigned long *val,
  697. unsigned int bytes,
  698. struct x86_emulate_ctxt *ctxt)
  699. {
  700. struct kvm_vcpu *vcpu = ctxt->vcpu;
  701. void *data = val;
  702. while (bytes) {
  703. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  704. unsigned offset = addr & (PAGE_SIZE-1);
  705. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  706. unsigned long pfn;
  707. struct kvm_memory_slot *memslot;
  708. void *page;
  709. if (gpa == UNMAPPED_GVA)
  710. return X86EMUL_PROPAGATE_FAULT;
  711. pfn = gpa >> PAGE_SHIFT;
  712. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  713. if (!memslot)
  714. return X86EMUL_UNHANDLEABLE;
  715. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  716. memcpy(data, page + offset, tocopy);
  717. kunmap_atomic(page, KM_USER0);
  718. bytes -= tocopy;
  719. data += tocopy;
  720. addr += tocopy;
  721. }
  722. return X86EMUL_CONTINUE;
  723. }
  724. static int emulator_write_std(unsigned long addr,
  725. unsigned long val,
  726. unsigned int bytes,
  727. struct x86_emulate_ctxt *ctxt)
  728. {
  729. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  730. addr, bytes);
  731. return X86EMUL_UNHANDLEABLE;
  732. }
  733. static int emulator_read_emulated(unsigned long addr,
  734. unsigned long *val,
  735. unsigned int bytes,
  736. struct x86_emulate_ctxt *ctxt)
  737. {
  738. struct kvm_vcpu *vcpu = ctxt->vcpu;
  739. if (vcpu->mmio_read_completed) {
  740. memcpy(val, vcpu->mmio_data, bytes);
  741. vcpu->mmio_read_completed = 0;
  742. return X86EMUL_CONTINUE;
  743. } else if (emulator_read_std(addr, val, bytes, ctxt)
  744. == X86EMUL_CONTINUE)
  745. return X86EMUL_CONTINUE;
  746. else {
  747. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  748. if (gpa == UNMAPPED_GVA)
  749. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  750. vcpu->mmio_needed = 1;
  751. vcpu->mmio_phys_addr = gpa;
  752. vcpu->mmio_size = bytes;
  753. vcpu->mmio_is_write = 0;
  754. return X86EMUL_UNHANDLEABLE;
  755. }
  756. }
  757. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  758. unsigned long val, int bytes)
  759. {
  760. struct kvm_memory_slot *m;
  761. struct page *page;
  762. void *virt;
  763. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  764. return 0;
  765. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  766. if (!m)
  767. return 0;
  768. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  769. kvm_mmu_pre_write(vcpu, gpa, bytes);
  770. virt = kmap_atomic(page, KM_USER0);
  771. memcpy(virt + offset_in_page(gpa), &val, bytes);
  772. kunmap_atomic(virt, KM_USER0);
  773. kvm_mmu_post_write(vcpu, gpa, bytes);
  774. return 1;
  775. }
  776. static int emulator_write_emulated(unsigned long addr,
  777. unsigned long val,
  778. unsigned int bytes,
  779. struct x86_emulate_ctxt *ctxt)
  780. {
  781. struct kvm_vcpu *vcpu = ctxt->vcpu;
  782. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  783. if (gpa == UNMAPPED_GVA)
  784. return X86EMUL_PROPAGATE_FAULT;
  785. if (emulator_write_phys(vcpu, gpa, val, bytes))
  786. return X86EMUL_CONTINUE;
  787. vcpu->mmio_needed = 1;
  788. vcpu->mmio_phys_addr = gpa;
  789. vcpu->mmio_size = bytes;
  790. vcpu->mmio_is_write = 1;
  791. memcpy(vcpu->mmio_data, &val, bytes);
  792. return X86EMUL_CONTINUE;
  793. }
  794. static int emulator_cmpxchg_emulated(unsigned long addr,
  795. unsigned long old,
  796. unsigned long new,
  797. unsigned int bytes,
  798. struct x86_emulate_ctxt *ctxt)
  799. {
  800. static int reported;
  801. if (!reported) {
  802. reported = 1;
  803. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  804. }
  805. return emulator_write_emulated(addr, new, bytes, ctxt);
  806. }
  807. #ifdef CONFIG_X86_32
  808. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  809. unsigned long old_lo,
  810. unsigned long old_hi,
  811. unsigned long new_lo,
  812. unsigned long new_hi,
  813. struct x86_emulate_ctxt *ctxt)
  814. {
  815. static int reported;
  816. int r;
  817. if (!reported) {
  818. reported = 1;
  819. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  820. }
  821. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  822. if (r != X86EMUL_CONTINUE)
  823. return r;
  824. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  825. }
  826. #endif
  827. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  828. {
  829. return kvm_arch_ops->get_segment_base(vcpu, seg);
  830. }
  831. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  832. {
  833. return X86EMUL_CONTINUE;
  834. }
  835. int emulate_clts(struct kvm_vcpu *vcpu)
  836. {
  837. unsigned long cr0;
  838. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  839. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  840. kvm_arch_ops->set_cr0(vcpu, cr0);
  841. return X86EMUL_CONTINUE;
  842. }
  843. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  844. {
  845. struct kvm_vcpu *vcpu = ctxt->vcpu;
  846. switch (dr) {
  847. case 0 ... 3:
  848. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  849. return X86EMUL_CONTINUE;
  850. default:
  851. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  852. __FUNCTION__, dr);
  853. return X86EMUL_UNHANDLEABLE;
  854. }
  855. }
  856. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  857. {
  858. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  859. int exception;
  860. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  861. if (exception) {
  862. /* FIXME: better handling */
  863. return X86EMUL_UNHANDLEABLE;
  864. }
  865. return X86EMUL_CONTINUE;
  866. }
  867. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  868. {
  869. static int reported;
  870. u8 opcodes[4];
  871. unsigned long rip = ctxt->vcpu->rip;
  872. unsigned long rip_linear;
  873. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  874. if (reported)
  875. return;
  876. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  877. printk(KERN_ERR "emulation failed but !mmio_needed?"
  878. " rip %lx %02x %02x %02x %02x\n",
  879. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  880. reported = 1;
  881. }
  882. struct x86_emulate_ops emulate_ops = {
  883. .read_std = emulator_read_std,
  884. .write_std = emulator_write_std,
  885. .read_emulated = emulator_read_emulated,
  886. .write_emulated = emulator_write_emulated,
  887. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  888. #ifdef CONFIG_X86_32
  889. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  890. #endif
  891. };
  892. int emulate_instruction(struct kvm_vcpu *vcpu,
  893. struct kvm_run *run,
  894. unsigned long cr2,
  895. u16 error_code)
  896. {
  897. struct x86_emulate_ctxt emulate_ctxt;
  898. int r;
  899. int cs_db, cs_l;
  900. kvm_arch_ops->cache_regs(vcpu);
  901. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  902. emulate_ctxt.vcpu = vcpu;
  903. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  904. emulate_ctxt.cr2 = cr2;
  905. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  906. ? X86EMUL_MODE_REAL : cs_l
  907. ? X86EMUL_MODE_PROT64 : cs_db
  908. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  909. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  910. emulate_ctxt.cs_base = 0;
  911. emulate_ctxt.ds_base = 0;
  912. emulate_ctxt.es_base = 0;
  913. emulate_ctxt.ss_base = 0;
  914. } else {
  915. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  916. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  917. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  918. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  919. }
  920. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  921. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  922. vcpu->mmio_is_write = 0;
  923. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  924. if ((r || vcpu->mmio_is_write) && run) {
  925. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  926. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  927. run->mmio.len = vcpu->mmio_size;
  928. run->mmio.is_write = vcpu->mmio_is_write;
  929. }
  930. if (r) {
  931. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  932. return EMULATE_DONE;
  933. if (!vcpu->mmio_needed) {
  934. report_emulation_failure(&emulate_ctxt);
  935. return EMULATE_FAIL;
  936. }
  937. return EMULATE_DO_MMIO;
  938. }
  939. kvm_arch_ops->decache_regs(vcpu);
  940. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  941. if (vcpu->mmio_is_write)
  942. return EMULATE_DO_MMIO;
  943. return EMULATE_DONE;
  944. }
  945. EXPORT_SYMBOL_GPL(emulate_instruction);
  946. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  947. {
  948. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  949. }
  950. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  951. {
  952. struct descriptor_table dt = { limit, base };
  953. kvm_arch_ops->set_gdt(vcpu, &dt);
  954. }
  955. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  956. {
  957. struct descriptor_table dt = { limit, base };
  958. kvm_arch_ops->set_idt(vcpu, &dt);
  959. }
  960. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  961. unsigned long *rflags)
  962. {
  963. lmsw(vcpu, msw);
  964. *rflags = kvm_arch_ops->get_rflags(vcpu);
  965. }
  966. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  967. {
  968. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  969. switch (cr) {
  970. case 0:
  971. return vcpu->cr0;
  972. case 2:
  973. return vcpu->cr2;
  974. case 3:
  975. return vcpu->cr3;
  976. case 4:
  977. return vcpu->cr4;
  978. default:
  979. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  980. return 0;
  981. }
  982. }
  983. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  984. unsigned long *rflags)
  985. {
  986. switch (cr) {
  987. case 0:
  988. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  989. *rflags = kvm_arch_ops->get_rflags(vcpu);
  990. break;
  991. case 2:
  992. vcpu->cr2 = val;
  993. break;
  994. case 3:
  995. set_cr3(vcpu, val);
  996. break;
  997. case 4:
  998. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  999. break;
  1000. default:
  1001. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1002. }
  1003. }
  1004. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1005. {
  1006. u64 data;
  1007. switch (msr) {
  1008. case 0xc0010010: /* SYSCFG */
  1009. case 0xc0010015: /* HWCR */
  1010. case MSR_IA32_PLATFORM_ID:
  1011. case MSR_IA32_P5_MC_ADDR:
  1012. case MSR_IA32_P5_MC_TYPE:
  1013. case MSR_IA32_MC0_CTL:
  1014. case MSR_IA32_MCG_STATUS:
  1015. case MSR_IA32_MCG_CAP:
  1016. case MSR_IA32_MC0_MISC:
  1017. case MSR_IA32_MC0_MISC+4:
  1018. case MSR_IA32_MC0_MISC+8:
  1019. case MSR_IA32_MC0_MISC+12:
  1020. case MSR_IA32_MC0_MISC+16:
  1021. case MSR_IA32_UCODE_REV:
  1022. case MSR_IA32_PERF_STATUS:
  1023. /* MTRR registers */
  1024. case 0xfe:
  1025. case 0x200 ... 0x2ff:
  1026. data = 0;
  1027. break;
  1028. case 0xcd: /* fsb frequency */
  1029. data = 3;
  1030. break;
  1031. case MSR_IA32_APICBASE:
  1032. data = vcpu->apic_base;
  1033. break;
  1034. case MSR_IA32_MISC_ENABLE:
  1035. data = vcpu->ia32_misc_enable_msr;
  1036. break;
  1037. #ifdef CONFIG_X86_64
  1038. case MSR_EFER:
  1039. data = vcpu->shadow_efer;
  1040. break;
  1041. #endif
  1042. default:
  1043. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1044. return 1;
  1045. }
  1046. *pdata = data;
  1047. return 0;
  1048. }
  1049. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1050. /*
  1051. * Reads an msr value (of 'msr_index') into 'pdata'.
  1052. * Returns 0 on success, non-0 otherwise.
  1053. * Assumes vcpu_load() was already called.
  1054. */
  1055. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1056. {
  1057. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1058. }
  1059. #ifdef CONFIG_X86_64
  1060. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1061. {
  1062. if (efer & EFER_RESERVED_BITS) {
  1063. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1064. efer);
  1065. inject_gp(vcpu);
  1066. return;
  1067. }
  1068. if (is_paging(vcpu)
  1069. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1070. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1071. inject_gp(vcpu);
  1072. return;
  1073. }
  1074. kvm_arch_ops->set_efer(vcpu, efer);
  1075. efer &= ~EFER_LMA;
  1076. efer |= vcpu->shadow_efer & EFER_LMA;
  1077. vcpu->shadow_efer = efer;
  1078. }
  1079. #endif
  1080. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1081. {
  1082. switch (msr) {
  1083. #ifdef CONFIG_X86_64
  1084. case MSR_EFER:
  1085. set_efer(vcpu, data);
  1086. break;
  1087. #endif
  1088. case MSR_IA32_MC0_STATUS:
  1089. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1090. __FUNCTION__, data);
  1091. break;
  1092. case MSR_IA32_UCODE_REV:
  1093. case MSR_IA32_UCODE_WRITE:
  1094. case 0x200 ... 0x2ff: /* MTRRs */
  1095. break;
  1096. case MSR_IA32_APICBASE:
  1097. vcpu->apic_base = data;
  1098. break;
  1099. case MSR_IA32_MISC_ENABLE:
  1100. vcpu->ia32_misc_enable_msr = data;
  1101. break;
  1102. default:
  1103. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1104. return 1;
  1105. }
  1106. return 0;
  1107. }
  1108. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1109. /*
  1110. * Writes msr value into into the appropriate "register".
  1111. * Returns 0 on success, non-0 otherwise.
  1112. * Assumes vcpu_load() was already called.
  1113. */
  1114. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1115. {
  1116. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1117. }
  1118. void kvm_resched(struct kvm_vcpu *vcpu)
  1119. {
  1120. vcpu_put(vcpu);
  1121. cond_resched();
  1122. /* Cannot fail - no vcpu unplug yet. */
  1123. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1124. }
  1125. EXPORT_SYMBOL_GPL(kvm_resched);
  1126. void load_msrs(struct vmx_msr_entry *e, int n)
  1127. {
  1128. int i;
  1129. for (i = 0; i < n; ++i)
  1130. wrmsrl(e[i].index, e[i].data);
  1131. }
  1132. EXPORT_SYMBOL_GPL(load_msrs);
  1133. void save_msrs(struct vmx_msr_entry *e, int n)
  1134. {
  1135. int i;
  1136. for (i = 0; i < n; ++i)
  1137. rdmsrl(e[i].index, e[i].data);
  1138. }
  1139. EXPORT_SYMBOL_GPL(save_msrs);
  1140. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1141. {
  1142. struct kvm_vcpu *vcpu;
  1143. int r;
  1144. if (!valid_vcpu(kvm_run->vcpu))
  1145. return -EINVAL;
  1146. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1147. if (!vcpu)
  1148. return -ENOENT;
  1149. if (kvm_run->emulated) {
  1150. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1151. kvm_run->emulated = 0;
  1152. }
  1153. if (kvm_run->mmio_completed) {
  1154. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1155. vcpu->mmio_read_completed = 1;
  1156. }
  1157. vcpu->mmio_needed = 0;
  1158. r = kvm_arch_ops->run(vcpu, kvm_run);
  1159. vcpu_put(vcpu);
  1160. return r;
  1161. }
  1162. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1163. {
  1164. struct kvm_vcpu *vcpu;
  1165. if (!valid_vcpu(regs->vcpu))
  1166. return -EINVAL;
  1167. vcpu = vcpu_load(kvm, regs->vcpu);
  1168. if (!vcpu)
  1169. return -ENOENT;
  1170. kvm_arch_ops->cache_regs(vcpu);
  1171. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1172. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1173. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1174. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1175. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1176. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1177. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1178. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1179. #ifdef CONFIG_X86_64
  1180. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1181. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1182. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1183. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1184. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1185. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1186. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1187. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1188. #endif
  1189. regs->rip = vcpu->rip;
  1190. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1191. /*
  1192. * Don't leak debug flags in case they were set for guest debugging
  1193. */
  1194. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1195. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1196. vcpu_put(vcpu);
  1197. return 0;
  1198. }
  1199. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1200. {
  1201. struct kvm_vcpu *vcpu;
  1202. if (!valid_vcpu(regs->vcpu))
  1203. return -EINVAL;
  1204. vcpu = vcpu_load(kvm, regs->vcpu);
  1205. if (!vcpu)
  1206. return -ENOENT;
  1207. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1208. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1209. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1210. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1211. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1212. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1213. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1214. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1215. #ifdef CONFIG_X86_64
  1216. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1217. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1218. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1219. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1220. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1221. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1222. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1223. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1224. #endif
  1225. vcpu->rip = regs->rip;
  1226. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1227. kvm_arch_ops->decache_regs(vcpu);
  1228. vcpu_put(vcpu);
  1229. return 0;
  1230. }
  1231. static void get_segment(struct kvm_vcpu *vcpu,
  1232. struct kvm_segment *var, int seg)
  1233. {
  1234. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1235. }
  1236. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1237. {
  1238. struct kvm_vcpu *vcpu;
  1239. struct descriptor_table dt;
  1240. if (!valid_vcpu(sregs->vcpu))
  1241. return -EINVAL;
  1242. vcpu = vcpu_load(kvm, sregs->vcpu);
  1243. if (!vcpu)
  1244. return -ENOENT;
  1245. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1246. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1247. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1248. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1249. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1250. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1251. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1252. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1253. kvm_arch_ops->get_idt(vcpu, &dt);
  1254. sregs->idt.limit = dt.limit;
  1255. sregs->idt.base = dt.base;
  1256. kvm_arch_ops->get_gdt(vcpu, &dt);
  1257. sregs->gdt.limit = dt.limit;
  1258. sregs->gdt.base = dt.base;
  1259. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1260. sregs->cr0 = vcpu->cr0;
  1261. sregs->cr2 = vcpu->cr2;
  1262. sregs->cr3 = vcpu->cr3;
  1263. sregs->cr4 = vcpu->cr4;
  1264. sregs->cr8 = vcpu->cr8;
  1265. sregs->efer = vcpu->shadow_efer;
  1266. sregs->apic_base = vcpu->apic_base;
  1267. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1268. sizeof sregs->interrupt_bitmap);
  1269. vcpu_put(vcpu);
  1270. return 0;
  1271. }
  1272. static void set_segment(struct kvm_vcpu *vcpu,
  1273. struct kvm_segment *var, int seg)
  1274. {
  1275. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1276. }
  1277. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1278. {
  1279. struct kvm_vcpu *vcpu;
  1280. int mmu_reset_needed = 0;
  1281. int i;
  1282. struct descriptor_table dt;
  1283. if (!valid_vcpu(sregs->vcpu))
  1284. return -EINVAL;
  1285. vcpu = vcpu_load(kvm, sregs->vcpu);
  1286. if (!vcpu)
  1287. return -ENOENT;
  1288. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1289. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1290. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1291. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1292. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1293. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1294. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1295. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1296. dt.limit = sregs->idt.limit;
  1297. dt.base = sregs->idt.base;
  1298. kvm_arch_ops->set_idt(vcpu, &dt);
  1299. dt.limit = sregs->gdt.limit;
  1300. dt.base = sregs->gdt.base;
  1301. kvm_arch_ops->set_gdt(vcpu, &dt);
  1302. vcpu->cr2 = sregs->cr2;
  1303. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1304. vcpu->cr3 = sregs->cr3;
  1305. vcpu->cr8 = sregs->cr8;
  1306. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1307. #ifdef CONFIG_X86_64
  1308. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1309. #endif
  1310. vcpu->apic_base = sregs->apic_base;
  1311. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1312. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1313. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1314. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1315. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1316. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1317. load_pdptrs(vcpu, vcpu->cr3);
  1318. if (mmu_reset_needed)
  1319. kvm_mmu_reset_context(vcpu);
  1320. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1321. sizeof vcpu->irq_pending);
  1322. vcpu->irq_summary = 0;
  1323. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1324. if (vcpu->irq_pending[i])
  1325. __set_bit(i, &vcpu->irq_summary);
  1326. vcpu_put(vcpu);
  1327. return 0;
  1328. }
  1329. /*
  1330. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1331. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1332. *
  1333. * This list is modified at module load time to reflect the
  1334. * capabilities of the host cpu.
  1335. */
  1336. static u32 msrs_to_save[] = {
  1337. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1338. MSR_K6_STAR,
  1339. #ifdef CONFIG_X86_64
  1340. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1341. #endif
  1342. MSR_IA32_TIME_STAMP_COUNTER,
  1343. };
  1344. static unsigned num_msrs_to_save;
  1345. static u32 emulated_msrs[] = {
  1346. MSR_IA32_MISC_ENABLE,
  1347. };
  1348. static __init void kvm_init_msr_list(void)
  1349. {
  1350. u32 dummy[2];
  1351. unsigned i, j;
  1352. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1353. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1354. continue;
  1355. if (j < i)
  1356. msrs_to_save[j] = msrs_to_save[i];
  1357. j++;
  1358. }
  1359. num_msrs_to_save = j;
  1360. }
  1361. /*
  1362. * Adapt set_msr() to msr_io()'s calling convention
  1363. */
  1364. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1365. {
  1366. return set_msr(vcpu, index, *data);
  1367. }
  1368. /*
  1369. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1370. *
  1371. * @return number of msrs set successfully.
  1372. */
  1373. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1374. struct kvm_msr_entry *entries,
  1375. int (*do_msr)(struct kvm_vcpu *vcpu,
  1376. unsigned index, u64 *data))
  1377. {
  1378. struct kvm_vcpu *vcpu;
  1379. int i;
  1380. if (!valid_vcpu(msrs->vcpu))
  1381. return -EINVAL;
  1382. vcpu = vcpu_load(kvm, msrs->vcpu);
  1383. if (!vcpu)
  1384. return -ENOENT;
  1385. for (i = 0; i < msrs->nmsrs; ++i)
  1386. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1387. break;
  1388. vcpu_put(vcpu);
  1389. return i;
  1390. }
  1391. /*
  1392. * Read or write a bunch of msrs. Parameters are user addresses.
  1393. *
  1394. * @return number of msrs set successfully.
  1395. */
  1396. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1397. int (*do_msr)(struct kvm_vcpu *vcpu,
  1398. unsigned index, u64 *data),
  1399. int writeback)
  1400. {
  1401. struct kvm_msrs msrs;
  1402. struct kvm_msr_entry *entries;
  1403. int r, n;
  1404. unsigned size;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1407. goto out;
  1408. r = -E2BIG;
  1409. if (msrs.nmsrs >= MAX_IO_MSRS)
  1410. goto out;
  1411. r = -ENOMEM;
  1412. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1413. entries = vmalloc(size);
  1414. if (!entries)
  1415. goto out;
  1416. r = -EFAULT;
  1417. if (copy_from_user(entries, user_msrs->entries, size))
  1418. goto out_free;
  1419. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1420. if (r < 0)
  1421. goto out_free;
  1422. r = -EFAULT;
  1423. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1424. goto out_free;
  1425. r = n;
  1426. out_free:
  1427. vfree(entries);
  1428. out:
  1429. return r;
  1430. }
  1431. /*
  1432. * Translate a guest virtual address to a guest physical address.
  1433. */
  1434. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1435. {
  1436. unsigned long vaddr = tr->linear_address;
  1437. struct kvm_vcpu *vcpu;
  1438. gpa_t gpa;
  1439. vcpu = vcpu_load(kvm, tr->vcpu);
  1440. if (!vcpu)
  1441. return -ENOENT;
  1442. spin_lock(&kvm->lock);
  1443. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1444. tr->physical_address = gpa;
  1445. tr->valid = gpa != UNMAPPED_GVA;
  1446. tr->writeable = 1;
  1447. tr->usermode = 0;
  1448. spin_unlock(&kvm->lock);
  1449. vcpu_put(vcpu);
  1450. return 0;
  1451. }
  1452. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1453. {
  1454. struct kvm_vcpu *vcpu;
  1455. if (!valid_vcpu(irq->vcpu))
  1456. return -EINVAL;
  1457. if (irq->irq < 0 || irq->irq >= 256)
  1458. return -EINVAL;
  1459. vcpu = vcpu_load(kvm, irq->vcpu);
  1460. if (!vcpu)
  1461. return -ENOENT;
  1462. set_bit(irq->irq, vcpu->irq_pending);
  1463. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1464. vcpu_put(vcpu);
  1465. return 0;
  1466. }
  1467. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1468. struct kvm_debug_guest *dbg)
  1469. {
  1470. struct kvm_vcpu *vcpu;
  1471. int r;
  1472. if (!valid_vcpu(dbg->vcpu))
  1473. return -EINVAL;
  1474. vcpu = vcpu_load(kvm, dbg->vcpu);
  1475. if (!vcpu)
  1476. return -ENOENT;
  1477. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1478. vcpu_put(vcpu);
  1479. return r;
  1480. }
  1481. static long kvm_dev_ioctl(struct file *filp,
  1482. unsigned int ioctl, unsigned long arg)
  1483. {
  1484. struct kvm *kvm = filp->private_data;
  1485. void __user *argp = (void __user *)arg;
  1486. int r = -EINVAL;
  1487. switch (ioctl) {
  1488. case KVM_GET_API_VERSION:
  1489. r = KVM_API_VERSION;
  1490. break;
  1491. case KVM_CREATE_VCPU: {
  1492. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1493. if (r)
  1494. goto out;
  1495. break;
  1496. }
  1497. case KVM_RUN: {
  1498. struct kvm_run kvm_run;
  1499. r = -EFAULT;
  1500. if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
  1501. goto out;
  1502. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1503. if (r < 0 && r != -EINTR)
  1504. goto out;
  1505. if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
  1506. r = -EFAULT;
  1507. goto out;
  1508. }
  1509. break;
  1510. }
  1511. case KVM_GET_REGS: {
  1512. struct kvm_regs kvm_regs;
  1513. r = -EFAULT;
  1514. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1515. goto out;
  1516. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1517. if (r)
  1518. goto out;
  1519. r = -EFAULT;
  1520. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1521. goto out;
  1522. r = 0;
  1523. break;
  1524. }
  1525. case KVM_SET_REGS: {
  1526. struct kvm_regs kvm_regs;
  1527. r = -EFAULT;
  1528. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1529. goto out;
  1530. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1531. if (r)
  1532. goto out;
  1533. r = 0;
  1534. break;
  1535. }
  1536. case KVM_GET_SREGS: {
  1537. struct kvm_sregs kvm_sregs;
  1538. r = -EFAULT;
  1539. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1540. goto out;
  1541. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1542. if (r)
  1543. goto out;
  1544. r = -EFAULT;
  1545. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1546. goto out;
  1547. r = 0;
  1548. break;
  1549. }
  1550. case KVM_SET_SREGS: {
  1551. struct kvm_sregs kvm_sregs;
  1552. r = -EFAULT;
  1553. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1554. goto out;
  1555. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1556. if (r)
  1557. goto out;
  1558. r = 0;
  1559. break;
  1560. }
  1561. case KVM_TRANSLATE: {
  1562. struct kvm_translation tr;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&tr, argp, sizeof tr))
  1565. goto out;
  1566. r = kvm_dev_ioctl_translate(kvm, &tr);
  1567. if (r)
  1568. goto out;
  1569. r = -EFAULT;
  1570. if (copy_to_user(argp, &tr, sizeof tr))
  1571. goto out;
  1572. r = 0;
  1573. break;
  1574. }
  1575. case KVM_INTERRUPT: {
  1576. struct kvm_interrupt irq;
  1577. r = -EFAULT;
  1578. if (copy_from_user(&irq, argp, sizeof irq))
  1579. goto out;
  1580. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1581. if (r)
  1582. goto out;
  1583. r = 0;
  1584. break;
  1585. }
  1586. case KVM_DEBUG_GUEST: {
  1587. struct kvm_debug_guest dbg;
  1588. r = -EFAULT;
  1589. if (copy_from_user(&dbg, argp, sizeof dbg))
  1590. goto out;
  1591. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1592. if (r)
  1593. goto out;
  1594. r = 0;
  1595. break;
  1596. }
  1597. case KVM_SET_MEMORY_REGION: {
  1598. struct kvm_memory_region kvm_mem;
  1599. r = -EFAULT;
  1600. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1601. goto out;
  1602. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1603. if (r)
  1604. goto out;
  1605. break;
  1606. }
  1607. case KVM_GET_DIRTY_LOG: {
  1608. struct kvm_dirty_log log;
  1609. r = -EFAULT;
  1610. if (copy_from_user(&log, argp, sizeof log))
  1611. goto out;
  1612. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1613. if (r)
  1614. goto out;
  1615. break;
  1616. }
  1617. case KVM_GET_MSRS:
  1618. r = msr_io(kvm, argp, get_msr, 1);
  1619. break;
  1620. case KVM_SET_MSRS:
  1621. r = msr_io(kvm, argp, do_set_msr, 0);
  1622. break;
  1623. case KVM_GET_MSR_INDEX_LIST: {
  1624. struct kvm_msr_list __user *user_msr_list = argp;
  1625. struct kvm_msr_list msr_list;
  1626. unsigned n;
  1627. r = -EFAULT;
  1628. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1629. goto out;
  1630. n = msr_list.nmsrs;
  1631. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1632. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1633. goto out;
  1634. r = -E2BIG;
  1635. if (n < num_msrs_to_save)
  1636. goto out;
  1637. r = -EFAULT;
  1638. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1639. num_msrs_to_save * sizeof(u32)))
  1640. goto out;
  1641. if (copy_to_user(user_msr_list->indices
  1642. + num_msrs_to_save * sizeof(u32),
  1643. &emulated_msrs,
  1644. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1645. goto out;
  1646. r = 0;
  1647. break;
  1648. }
  1649. default:
  1650. ;
  1651. }
  1652. out:
  1653. return r;
  1654. }
  1655. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1656. unsigned long address,
  1657. int *type)
  1658. {
  1659. struct kvm *kvm = vma->vm_file->private_data;
  1660. unsigned long pgoff;
  1661. struct kvm_memory_slot *slot;
  1662. struct page *page;
  1663. *type = VM_FAULT_MINOR;
  1664. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1665. slot = gfn_to_memslot(kvm, pgoff);
  1666. if (!slot)
  1667. return NOPAGE_SIGBUS;
  1668. page = gfn_to_page(slot, pgoff);
  1669. if (!page)
  1670. return NOPAGE_SIGBUS;
  1671. get_page(page);
  1672. return page;
  1673. }
  1674. static struct vm_operations_struct kvm_dev_vm_ops = {
  1675. .nopage = kvm_dev_nopage,
  1676. };
  1677. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1678. {
  1679. vma->vm_ops = &kvm_dev_vm_ops;
  1680. return 0;
  1681. }
  1682. static struct file_operations kvm_chardev_ops = {
  1683. .open = kvm_dev_open,
  1684. .release = kvm_dev_release,
  1685. .unlocked_ioctl = kvm_dev_ioctl,
  1686. .compat_ioctl = kvm_dev_ioctl,
  1687. .mmap = kvm_dev_mmap,
  1688. };
  1689. static struct miscdevice kvm_dev = {
  1690. MISC_DYNAMIC_MINOR,
  1691. "kvm",
  1692. &kvm_chardev_ops,
  1693. };
  1694. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1695. void *v)
  1696. {
  1697. if (val == SYS_RESTART) {
  1698. /*
  1699. * Some (well, at least mine) BIOSes hang on reboot if
  1700. * in vmx root mode.
  1701. */
  1702. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1703. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1704. }
  1705. return NOTIFY_OK;
  1706. }
  1707. static struct notifier_block kvm_reboot_notifier = {
  1708. .notifier_call = kvm_reboot,
  1709. .priority = 0,
  1710. };
  1711. static __init void kvm_init_debug(void)
  1712. {
  1713. struct kvm_stats_debugfs_item *p;
  1714. debugfs_dir = debugfs_create_dir("kvm", 0);
  1715. for (p = debugfs_entries; p->name; ++p)
  1716. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1717. p->data);
  1718. }
  1719. static void kvm_exit_debug(void)
  1720. {
  1721. struct kvm_stats_debugfs_item *p;
  1722. for (p = debugfs_entries; p->name; ++p)
  1723. debugfs_remove(p->dentry);
  1724. debugfs_remove(debugfs_dir);
  1725. }
  1726. hpa_t bad_page_address;
  1727. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1728. {
  1729. int r;
  1730. if (kvm_arch_ops) {
  1731. printk(KERN_ERR "kvm: already loaded the other module\n");
  1732. return -EEXIST;
  1733. }
  1734. if (!ops->cpu_has_kvm_support()) {
  1735. printk(KERN_ERR "kvm: no hardware support\n");
  1736. return -EOPNOTSUPP;
  1737. }
  1738. if (ops->disabled_by_bios()) {
  1739. printk(KERN_ERR "kvm: disabled by bios\n");
  1740. return -EOPNOTSUPP;
  1741. }
  1742. kvm_arch_ops = ops;
  1743. r = kvm_arch_ops->hardware_setup();
  1744. if (r < 0)
  1745. return r;
  1746. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1747. register_reboot_notifier(&kvm_reboot_notifier);
  1748. kvm_chardev_ops.owner = module;
  1749. r = misc_register(&kvm_dev);
  1750. if (r) {
  1751. printk (KERN_ERR "kvm: misc device register failed\n");
  1752. goto out_free;
  1753. }
  1754. return r;
  1755. out_free:
  1756. unregister_reboot_notifier(&kvm_reboot_notifier);
  1757. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1758. kvm_arch_ops->hardware_unsetup();
  1759. return r;
  1760. }
  1761. void kvm_exit_arch(void)
  1762. {
  1763. misc_deregister(&kvm_dev);
  1764. unregister_reboot_notifier(&kvm_reboot_notifier);
  1765. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1766. kvm_arch_ops->hardware_unsetup();
  1767. kvm_arch_ops = NULL;
  1768. }
  1769. static __init int kvm_init(void)
  1770. {
  1771. static struct page *bad_page;
  1772. int r = 0;
  1773. kvm_init_debug();
  1774. kvm_init_msr_list();
  1775. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1776. r = -ENOMEM;
  1777. goto out;
  1778. }
  1779. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1780. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1781. return r;
  1782. out:
  1783. kvm_exit_debug();
  1784. return r;
  1785. }
  1786. static __exit void kvm_exit(void)
  1787. {
  1788. kvm_exit_debug();
  1789. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1790. }
  1791. module_init(kvm_init)
  1792. module_exit(kvm_exit)
  1793. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1794. EXPORT_SYMBOL_GPL(kvm_exit_arch);