rt2x00queue.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  5. <http://rt2x00.serialmonkey.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the
  16. Free Software Foundation, Inc.,
  17. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. /*
  20. Module: rt2x00lib
  21. Abstract: rt2x00 queue specific routines.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/dma-mapping.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00lib.h"
  29. struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
  30. {
  31. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  32. struct sk_buff *skb;
  33. struct skb_frame_desc *skbdesc;
  34. unsigned int frame_size;
  35. unsigned int head_size = 0;
  36. unsigned int tail_size = 0;
  37. /*
  38. * The frame size includes descriptor size, because the
  39. * hardware directly receive the frame into the skbuffer.
  40. */
  41. frame_size = entry->queue->data_size + entry->queue->desc_size;
  42. /*
  43. * The payload should be aligned to a 4-byte boundary,
  44. * this means we need at least 3 bytes for moving the frame
  45. * into the correct offset.
  46. */
  47. head_size = 4;
  48. /*
  49. * For IV/EIV/ICV assembly we must make sure there is
  50. * at least 8 bytes bytes available in headroom for IV/EIV
  51. * and 8 bytes for ICV data as tailroon.
  52. */
  53. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  54. head_size += 8;
  55. tail_size += 8;
  56. }
  57. /*
  58. * Allocate skbuffer.
  59. */
  60. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  61. if (!skb)
  62. return NULL;
  63. /*
  64. * Make sure we not have a frame with the requested bytes
  65. * available in the head and tail.
  66. */
  67. skb_reserve(skb, head_size);
  68. skb_put(skb, frame_size);
  69. /*
  70. * Populate skbdesc.
  71. */
  72. skbdesc = get_skb_frame_desc(skb);
  73. memset(skbdesc, 0, sizeof(*skbdesc));
  74. skbdesc->entry = entry;
  75. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  76. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  77. skb->data,
  78. skb->len,
  79. DMA_FROM_DEVICE);
  80. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  81. }
  82. return skb;
  83. }
  84. void rt2x00queue_map_txskb(struct queue_entry *entry)
  85. {
  86. struct device *dev = entry->queue->rt2x00dev->dev;
  87. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  88. skbdesc->skb_dma =
  89. dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
  90. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  91. }
  92. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  93. void rt2x00queue_unmap_skb(struct queue_entry *entry)
  94. {
  95. struct device *dev = entry->queue->rt2x00dev->dev;
  96. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  97. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  98. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  99. DMA_FROM_DEVICE);
  100. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  101. } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  102. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  103. DMA_TO_DEVICE);
  104. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  105. }
  106. }
  107. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  108. void rt2x00queue_free_skb(struct queue_entry *entry)
  109. {
  110. if (!entry->skb)
  111. return;
  112. rt2x00queue_unmap_skb(entry);
  113. dev_kfree_skb_any(entry->skb);
  114. entry->skb = NULL;
  115. }
  116. void rt2x00queue_align_frame(struct sk_buff *skb)
  117. {
  118. unsigned int frame_length = skb->len;
  119. unsigned int align = ALIGN_SIZE(skb, 0);
  120. if (!align)
  121. return;
  122. skb_push(skb, align);
  123. memmove(skb->data, skb->data + align, frame_length);
  124. skb_trim(skb, frame_length);
  125. }
  126. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  127. {
  128. unsigned int payload_length = skb->len - header_length;
  129. unsigned int header_align = ALIGN_SIZE(skb, 0);
  130. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  131. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  132. /*
  133. * Adjust the header alignment if the payload needs to be moved more
  134. * than the header.
  135. */
  136. if (payload_align > header_align)
  137. header_align += 4;
  138. /* There is nothing to do if no alignment is needed */
  139. if (!header_align)
  140. return;
  141. /* Reserve the amount of space needed in front of the frame */
  142. skb_push(skb, header_align);
  143. /*
  144. * Move the header.
  145. */
  146. memmove(skb->data, skb->data + header_align, header_length);
  147. /* Move the payload, if present and if required */
  148. if (payload_length && payload_align)
  149. memmove(skb->data + header_length + l2pad,
  150. skb->data + header_length + l2pad + payload_align,
  151. payload_length);
  152. /* Trim the skb to the correct size */
  153. skb_trim(skb, header_length + l2pad + payload_length);
  154. }
  155. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  156. {
  157. /*
  158. * L2 padding is only present if the skb contains more than just the
  159. * IEEE 802.11 header.
  160. */
  161. unsigned int l2pad = (skb->len > header_length) ?
  162. L2PAD_SIZE(header_length) : 0;
  163. if (!l2pad)
  164. return;
  165. memmove(skb->data + l2pad, skb->data, header_length);
  166. skb_pull(skb, l2pad);
  167. }
  168. static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
  169. struct txentry_desc *txdesc)
  170. {
  171. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  172. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  173. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  174. unsigned long irqflags;
  175. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  176. return;
  177. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  178. if (!test_bit(DRIVER_REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->flags))
  179. return;
  180. /*
  181. * The hardware is not able to insert a sequence number. Assign a
  182. * software generated one here.
  183. *
  184. * This is wrong because beacons are not getting sequence
  185. * numbers assigned properly.
  186. *
  187. * A secondary problem exists for drivers that cannot toggle
  188. * sequence counting per-frame, since those will override the
  189. * sequence counter given by mac80211.
  190. */
  191. spin_lock_irqsave(&intf->seqlock, irqflags);
  192. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  193. intf->seqno += 0x10;
  194. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  195. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  196. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  197. }
  198. static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
  199. struct txentry_desc *txdesc,
  200. const struct rt2x00_rate *hwrate)
  201. {
  202. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  203. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  204. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  205. unsigned int data_length;
  206. unsigned int duration;
  207. unsigned int residual;
  208. /*
  209. * Determine with what IFS priority this frame should be send.
  210. * Set ifs to IFS_SIFS when the this is not the first fragment,
  211. * or this fragment came after RTS/CTS.
  212. */
  213. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  214. txdesc->u.plcp.ifs = IFS_BACKOFF;
  215. else
  216. txdesc->u.plcp.ifs = IFS_SIFS;
  217. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  218. data_length = entry->skb->len + 4;
  219. data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
  220. /*
  221. * PLCP setup
  222. * Length calculation depends on OFDM/CCK rate.
  223. */
  224. txdesc->u.plcp.signal = hwrate->plcp;
  225. txdesc->u.plcp.service = 0x04;
  226. if (hwrate->flags & DEV_RATE_OFDM) {
  227. txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
  228. txdesc->u.plcp.length_low = data_length & 0x3f;
  229. } else {
  230. /*
  231. * Convert length to microseconds.
  232. */
  233. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  234. duration = GET_DURATION(data_length, hwrate->bitrate);
  235. if (residual != 0) {
  236. duration++;
  237. /*
  238. * Check if we need to set the Length Extension
  239. */
  240. if (hwrate->bitrate == 110 && residual <= 30)
  241. txdesc->u.plcp.service |= 0x80;
  242. }
  243. txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
  244. txdesc->u.plcp.length_low = duration & 0xff;
  245. /*
  246. * When preamble is enabled we should set the
  247. * preamble bit for the signal.
  248. */
  249. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  250. txdesc->u.plcp.signal |= 0x08;
  251. }
  252. }
  253. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  254. struct txentry_desc *txdesc)
  255. {
  256. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  257. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  258. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  259. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  260. struct ieee80211_rate *rate;
  261. const struct rt2x00_rate *hwrate = NULL;
  262. memset(txdesc, 0, sizeof(*txdesc));
  263. /*
  264. * Header and frame information.
  265. */
  266. txdesc->length = entry->skb->len;
  267. txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  268. /*
  269. * Check whether this frame is to be acked.
  270. */
  271. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  272. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  273. /*
  274. * Check if this is a RTS/CTS frame
  275. */
  276. if (ieee80211_is_rts(hdr->frame_control) ||
  277. ieee80211_is_cts(hdr->frame_control)) {
  278. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  279. if (ieee80211_is_rts(hdr->frame_control))
  280. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  281. else
  282. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  283. if (tx_info->control.rts_cts_rate_idx >= 0)
  284. rate =
  285. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  286. }
  287. /*
  288. * Determine retry information.
  289. */
  290. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  291. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  292. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  293. /*
  294. * Check if more fragments are pending
  295. */
  296. if (ieee80211_has_morefrags(hdr->frame_control)) {
  297. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  298. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  299. }
  300. /*
  301. * Check if more frames (!= fragments) are pending
  302. */
  303. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  304. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  305. /*
  306. * Beacons and probe responses require the tsf timestamp
  307. * to be inserted into the frame.
  308. */
  309. if (ieee80211_is_beacon(hdr->frame_control) ||
  310. ieee80211_is_probe_resp(hdr->frame_control))
  311. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  312. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  313. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
  314. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  315. /*
  316. * Determine rate modulation.
  317. */
  318. if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
  319. txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
  320. else if (txrate->flags & IEEE80211_TX_RC_MCS)
  321. txdesc->rate_mode = RATE_MODE_HT_MIX;
  322. else {
  323. rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  324. hwrate = rt2x00_get_rate(rate->hw_value);
  325. if (hwrate->flags & DEV_RATE_OFDM)
  326. txdesc->rate_mode = RATE_MODE_OFDM;
  327. else
  328. txdesc->rate_mode = RATE_MODE_CCK;
  329. }
  330. /*
  331. * Apply TX descriptor handling by components
  332. */
  333. rt2x00crypto_create_tx_descriptor(entry, txdesc);
  334. rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
  335. if (test_bit(DRIVER_REQUIRE_HT_TX_DESC, &rt2x00dev->flags))
  336. rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
  337. else
  338. rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
  339. }
  340. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  341. struct txentry_desc *txdesc)
  342. {
  343. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  344. /*
  345. * This should not happen, we already checked the entry
  346. * was ours. When the hardware disagrees there has been
  347. * a queue corruption!
  348. */
  349. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  350. rt2x00dev->ops->lib->get_entry_state(entry))) {
  351. ERROR(rt2x00dev,
  352. "Corrupt queue %d, accessing entry which is not ours.\n"
  353. "Please file bug report to %s.\n",
  354. entry->queue->qid, DRV_PROJECT);
  355. return -EINVAL;
  356. }
  357. /*
  358. * Add the requested extra tx headroom in front of the skb.
  359. */
  360. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  361. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  362. /*
  363. * Call the driver's write_tx_data function, if it exists.
  364. */
  365. if (rt2x00dev->ops->lib->write_tx_data)
  366. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  367. /*
  368. * Map the skb to DMA.
  369. */
  370. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
  371. rt2x00queue_map_txskb(entry);
  372. return 0;
  373. }
  374. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  375. struct txentry_desc *txdesc)
  376. {
  377. struct data_queue *queue = entry->queue;
  378. queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
  379. /*
  380. * All processing on the frame has been completed, this means
  381. * it is now ready to be dumped to userspace through debugfs.
  382. */
  383. rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
  384. }
  385. static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
  386. struct txentry_desc *txdesc)
  387. {
  388. /*
  389. * Check if we need to kick the queue, there are however a few rules
  390. * 1) Don't kick unless this is the last in frame in a burst.
  391. * When the burst flag is set, this frame is always followed
  392. * by another frame which in some way are related to eachother.
  393. * This is true for fragments, RTS or CTS-to-self frames.
  394. * 2) Rule 1 can be broken when the available entries
  395. * in the queue are less then a certain threshold.
  396. */
  397. if (rt2x00queue_threshold(queue) ||
  398. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  399. queue->rt2x00dev->ops->lib->kick_queue(queue);
  400. }
  401. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  402. bool local)
  403. {
  404. struct ieee80211_tx_info *tx_info;
  405. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  406. struct txentry_desc txdesc;
  407. struct skb_frame_desc *skbdesc;
  408. u8 rate_idx, rate_flags;
  409. if (unlikely(rt2x00queue_full(queue)))
  410. return -ENOBUFS;
  411. if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
  412. &entry->flags))) {
  413. ERROR(queue->rt2x00dev,
  414. "Arrived at non-free entry in the non-full queue %d.\n"
  415. "Please file bug report to %s.\n",
  416. queue->qid, DRV_PROJECT);
  417. return -EINVAL;
  418. }
  419. /*
  420. * Copy all TX descriptor information into txdesc,
  421. * after that we are free to use the skb->cb array
  422. * for our information.
  423. */
  424. entry->skb = skb;
  425. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  426. /*
  427. * All information is retrieved from the skb->cb array,
  428. * now we should claim ownership of the driver part of that
  429. * array, preserving the bitrate index and flags.
  430. */
  431. tx_info = IEEE80211_SKB_CB(skb);
  432. rate_idx = tx_info->control.rates[0].idx;
  433. rate_flags = tx_info->control.rates[0].flags;
  434. skbdesc = get_skb_frame_desc(skb);
  435. memset(skbdesc, 0, sizeof(*skbdesc));
  436. skbdesc->entry = entry;
  437. skbdesc->tx_rate_idx = rate_idx;
  438. skbdesc->tx_rate_flags = rate_flags;
  439. if (local)
  440. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  441. /*
  442. * When hardware encryption is supported, and this frame
  443. * is to be encrypted, we should strip the IV/EIV data from
  444. * the frame so we can provide it to the driver separately.
  445. */
  446. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  447. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  448. if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
  449. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  450. else
  451. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  452. }
  453. /*
  454. * When DMA allocation is required we should guarentee to the
  455. * driver that the DMA is aligned to a 4-byte boundary.
  456. * However some drivers require L2 padding to pad the payload
  457. * rather then the header. This could be a requirement for
  458. * PCI and USB devices, while header alignment only is valid
  459. * for PCI devices.
  460. */
  461. if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
  462. rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
  463. else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  464. rt2x00queue_align_frame(entry->skb);
  465. /*
  466. * It could be possible that the queue was corrupted and this
  467. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  468. * this frame will simply be dropped.
  469. */
  470. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  471. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  472. entry->skb = NULL;
  473. return -EIO;
  474. }
  475. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  476. rt2x00queue_index_inc(queue, Q_INDEX);
  477. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  478. rt2x00queue_kick_tx_queue(queue, &txdesc);
  479. return 0;
  480. }
  481. int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
  482. struct ieee80211_vif *vif)
  483. {
  484. struct rt2x00_intf *intf = vif_to_intf(vif);
  485. if (unlikely(!intf->beacon))
  486. return -ENOBUFS;
  487. mutex_lock(&intf->beacon_skb_mutex);
  488. /*
  489. * Clean up the beacon skb.
  490. */
  491. rt2x00queue_free_skb(intf->beacon);
  492. /*
  493. * Clear beacon (single bssid devices don't need to clear the beacon
  494. * since the beacon queue will get stopped anyway).
  495. */
  496. if (rt2x00dev->ops->lib->clear_beacon)
  497. rt2x00dev->ops->lib->clear_beacon(intf->beacon);
  498. mutex_unlock(&intf->beacon_skb_mutex);
  499. return 0;
  500. }
  501. int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
  502. struct ieee80211_vif *vif)
  503. {
  504. struct rt2x00_intf *intf = vif_to_intf(vif);
  505. struct skb_frame_desc *skbdesc;
  506. struct txentry_desc txdesc;
  507. if (unlikely(!intf->beacon))
  508. return -ENOBUFS;
  509. /*
  510. * Clean up the beacon skb.
  511. */
  512. rt2x00queue_free_skb(intf->beacon);
  513. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  514. if (!intf->beacon->skb)
  515. return -ENOMEM;
  516. /*
  517. * Copy all TX descriptor information into txdesc,
  518. * after that we are free to use the skb->cb array
  519. * for our information.
  520. */
  521. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  522. /*
  523. * Fill in skb descriptor
  524. */
  525. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  526. memset(skbdesc, 0, sizeof(*skbdesc));
  527. skbdesc->entry = intf->beacon;
  528. /*
  529. * Send beacon to hardware.
  530. */
  531. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  532. return 0;
  533. }
  534. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  535. struct ieee80211_vif *vif)
  536. {
  537. struct rt2x00_intf *intf = vif_to_intf(vif);
  538. int ret;
  539. mutex_lock(&intf->beacon_skb_mutex);
  540. ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
  541. mutex_unlock(&intf->beacon_skb_mutex);
  542. return ret;
  543. }
  544. void rt2x00queue_for_each_entry(struct data_queue *queue,
  545. enum queue_index start,
  546. enum queue_index end,
  547. void (*fn)(struct queue_entry *entry))
  548. {
  549. unsigned long irqflags;
  550. unsigned int index_start;
  551. unsigned int index_end;
  552. unsigned int i;
  553. if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
  554. ERROR(queue->rt2x00dev,
  555. "Entry requested from invalid index range (%d - %d)\n",
  556. start, end);
  557. return;
  558. }
  559. /*
  560. * Only protect the range we are going to loop over,
  561. * if during our loop a extra entry is set to pending
  562. * it should not be kicked during this run, since it
  563. * is part of another TX operation.
  564. */
  565. spin_lock_irqsave(&queue->index_lock, irqflags);
  566. index_start = queue->index[start];
  567. index_end = queue->index[end];
  568. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  569. /*
  570. * Start from the TX done pointer, this guarentees that we will
  571. * send out all frames in the correct order.
  572. */
  573. if (index_start < index_end) {
  574. for (i = index_start; i < index_end; i++)
  575. fn(&queue->entries[i]);
  576. } else {
  577. for (i = index_start; i < queue->limit; i++)
  578. fn(&queue->entries[i]);
  579. for (i = 0; i < index_end; i++)
  580. fn(&queue->entries[i]);
  581. }
  582. }
  583. EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
  584. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  585. enum queue_index index)
  586. {
  587. struct queue_entry *entry;
  588. unsigned long irqflags;
  589. if (unlikely(index >= Q_INDEX_MAX)) {
  590. ERROR(queue->rt2x00dev,
  591. "Entry requested from invalid index type (%d)\n", index);
  592. return NULL;
  593. }
  594. spin_lock_irqsave(&queue->index_lock, irqflags);
  595. entry = &queue->entries[queue->index[index]];
  596. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  597. return entry;
  598. }
  599. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  600. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  601. {
  602. unsigned long irqflags;
  603. if (unlikely(index >= Q_INDEX_MAX)) {
  604. ERROR(queue->rt2x00dev,
  605. "Index change on invalid index type (%d)\n", index);
  606. return;
  607. }
  608. spin_lock_irqsave(&queue->index_lock, irqflags);
  609. queue->index[index]++;
  610. if (queue->index[index] >= queue->limit)
  611. queue->index[index] = 0;
  612. queue->last_action[index] = jiffies;
  613. if (index == Q_INDEX) {
  614. queue->length++;
  615. } else if (index == Q_INDEX_DONE) {
  616. queue->length--;
  617. queue->count++;
  618. }
  619. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  620. }
  621. void rt2x00queue_pause_queue(struct data_queue *queue)
  622. {
  623. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  624. !test_bit(QUEUE_STARTED, &queue->flags) ||
  625. test_and_set_bit(QUEUE_PAUSED, &queue->flags))
  626. return;
  627. switch (queue->qid) {
  628. case QID_AC_VO:
  629. case QID_AC_VI:
  630. case QID_AC_BE:
  631. case QID_AC_BK:
  632. /*
  633. * For TX queues, we have to disable the queue
  634. * inside mac80211.
  635. */
  636. ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
  637. break;
  638. default:
  639. break;
  640. }
  641. }
  642. EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
  643. void rt2x00queue_unpause_queue(struct data_queue *queue)
  644. {
  645. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  646. !test_bit(QUEUE_STARTED, &queue->flags) ||
  647. !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
  648. return;
  649. switch (queue->qid) {
  650. case QID_AC_VO:
  651. case QID_AC_VI:
  652. case QID_AC_BE:
  653. case QID_AC_BK:
  654. /*
  655. * For TX queues, we have to enable the queue
  656. * inside mac80211.
  657. */
  658. ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
  659. break;
  660. case QID_RX:
  661. /*
  662. * For RX we need to kick the queue now in order to
  663. * receive frames.
  664. */
  665. queue->rt2x00dev->ops->lib->kick_queue(queue);
  666. default:
  667. break;
  668. }
  669. }
  670. EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
  671. void rt2x00queue_start_queue(struct data_queue *queue)
  672. {
  673. mutex_lock(&queue->status_lock);
  674. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  675. test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
  676. mutex_unlock(&queue->status_lock);
  677. return;
  678. }
  679. set_bit(QUEUE_PAUSED, &queue->flags);
  680. queue->rt2x00dev->ops->lib->start_queue(queue);
  681. rt2x00queue_unpause_queue(queue);
  682. mutex_unlock(&queue->status_lock);
  683. }
  684. EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
  685. void rt2x00queue_stop_queue(struct data_queue *queue)
  686. {
  687. mutex_lock(&queue->status_lock);
  688. if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
  689. mutex_unlock(&queue->status_lock);
  690. return;
  691. }
  692. rt2x00queue_pause_queue(queue);
  693. queue->rt2x00dev->ops->lib->stop_queue(queue);
  694. mutex_unlock(&queue->status_lock);
  695. }
  696. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
  697. void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
  698. {
  699. unsigned int i;
  700. bool started;
  701. bool tx_queue =
  702. (queue->qid == QID_AC_VO) ||
  703. (queue->qid == QID_AC_VI) ||
  704. (queue->qid == QID_AC_BE) ||
  705. (queue->qid == QID_AC_BK);
  706. mutex_lock(&queue->status_lock);
  707. /*
  708. * If the queue has been started, we must stop it temporarily
  709. * to prevent any new frames to be queued on the device. If
  710. * we are not dropping the pending frames, the queue must
  711. * only be stopped in the software and not the hardware,
  712. * otherwise the queue will never become empty on its own.
  713. */
  714. started = test_bit(QUEUE_STARTED, &queue->flags);
  715. if (started) {
  716. /*
  717. * Pause the queue
  718. */
  719. rt2x00queue_pause_queue(queue);
  720. /*
  721. * If we are not supposed to drop any pending
  722. * frames, this means we must force a start (=kick)
  723. * to the queue to make sure the hardware will
  724. * start transmitting.
  725. */
  726. if (!drop && tx_queue)
  727. queue->rt2x00dev->ops->lib->kick_queue(queue);
  728. }
  729. /*
  730. * Check if driver supports flushing, we can only guarentee
  731. * full support for flushing if the driver is able
  732. * to cancel all pending frames (drop = true).
  733. */
  734. if (drop && queue->rt2x00dev->ops->lib->flush_queue)
  735. queue->rt2x00dev->ops->lib->flush_queue(queue);
  736. /*
  737. * When we don't want to drop any frames, or when
  738. * the driver doesn't fully flush the queue correcly,
  739. * we must wait for the queue to become empty.
  740. */
  741. for (i = 0; !rt2x00queue_empty(queue) && i < 100; i++)
  742. msleep(10);
  743. /*
  744. * The queue flush has failed...
  745. */
  746. if (unlikely(!rt2x00queue_empty(queue)))
  747. WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
  748. /*
  749. * Restore the queue to the previous status
  750. */
  751. if (started)
  752. rt2x00queue_unpause_queue(queue);
  753. mutex_unlock(&queue->status_lock);
  754. }
  755. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
  756. void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
  757. {
  758. struct data_queue *queue;
  759. /*
  760. * rt2x00queue_start_queue will call ieee80211_wake_queue
  761. * for each queue after is has been properly initialized.
  762. */
  763. tx_queue_for_each(rt2x00dev, queue)
  764. rt2x00queue_start_queue(queue);
  765. rt2x00queue_start_queue(rt2x00dev->rx);
  766. }
  767. EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
  768. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  769. {
  770. struct data_queue *queue;
  771. /*
  772. * rt2x00queue_stop_queue will call ieee80211_stop_queue
  773. * as well, but we are completely shutting doing everything
  774. * now, so it is much safer to stop all TX queues at once,
  775. * and use rt2x00queue_stop_queue for cleaning up.
  776. */
  777. ieee80211_stop_queues(rt2x00dev->hw);
  778. tx_queue_for_each(rt2x00dev, queue)
  779. rt2x00queue_stop_queue(queue);
  780. rt2x00queue_stop_queue(rt2x00dev->rx);
  781. }
  782. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
  783. void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
  784. {
  785. struct data_queue *queue;
  786. tx_queue_for_each(rt2x00dev, queue)
  787. rt2x00queue_flush_queue(queue, drop);
  788. rt2x00queue_flush_queue(rt2x00dev->rx, drop);
  789. }
  790. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
  791. static void rt2x00queue_reset(struct data_queue *queue)
  792. {
  793. unsigned long irqflags;
  794. unsigned int i;
  795. spin_lock_irqsave(&queue->index_lock, irqflags);
  796. queue->count = 0;
  797. queue->length = 0;
  798. for (i = 0; i < Q_INDEX_MAX; i++) {
  799. queue->index[i] = 0;
  800. queue->last_action[i] = jiffies;
  801. }
  802. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  803. }
  804. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  805. {
  806. struct data_queue *queue;
  807. unsigned int i;
  808. queue_for_each(rt2x00dev, queue) {
  809. rt2x00queue_reset(queue);
  810. for (i = 0; i < queue->limit; i++)
  811. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  812. }
  813. }
  814. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  815. const struct data_queue_desc *qdesc)
  816. {
  817. struct queue_entry *entries;
  818. unsigned int entry_size;
  819. unsigned int i;
  820. rt2x00queue_reset(queue);
  821. queue->limit = qdesc->entry_num;
  822. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  823. queue->data_size = qdesc->data_size;
  824. queue->desc_size = qdesc->desc_size;
  825. /*
  826. * Allocate all queue entries.
  827. */
  828. entry_size = sizeof(*entries) + qdesc->priv_size;
  829. entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
  830. if (!entries)
  831. return -ENOMEM;
  832. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  833. (((char *)(__base)) + ((__limit) * (__esize)) + \
  834. ((__index) * (__psize)))
  835. for (i = 0; i < queue->limit; i++) {
  836. entries[i].flags = 0;
  837. entries[i].queue = queue;
  838. entries[i].skb = NULL;
  839. entries[i].entry_idx = i;
  840. entries[i].priv_data =
  841. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  842. sizeof(*entries), qdesc->priv_size);
  843. }
  844. #undef QUEUE_ENTRY_PRIV_OFFSET
  845. queue->entries = entries;
  846. return 0;
  847. }
  848. static void rt2x00queue_free_skbs(struct data_queue *queue)
  849. {
  850. unsigned int i;
  851. if (!queue->entries)
  852. return;
  853. for (i = 0; i < queue->limit; i++) {
  854. rt2x00queue_free_skb(&queue->entries[i]);
  855. }
  856. }
  857. static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
  858. {
  859. unsigned int i;
  860. struct sk_buff *skb;
  861. for (i = 0; i < queue->limit; i++) {
  862. skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
  863. if (!skb)
  864. return -ENOMEM;
  865. queue->entries[i].skb = skb;
  866. }
  867. return 0;
  868. }
  869. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  870. {
  871. struct data_queue *queue;
  872. int status;
  873. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  874. if (status)
  875. goto exit;
  876. tx_queue_for_each(rt2x00dev, queue) {
  877. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  878. if (status)
  879. goto exit;
  880. }
  881. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  882. if (status)
  883. goto exit;
  884. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  885. status = rt2x00queue_alloc_entries(rt2x00dev->atim,
  886. rt2x00dev->ops->atim);
  887. if (status)
  888. goto exit;
  889. }
  890. status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
  891. if (status)
  892. goto exit;
  893. return 0;
  894. exit:
  895. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  896. rt2x00queue_uninitialize(rt2x00dev);
  897. return status;
  898. }
  899. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  900. {
  901. struct data_queue *queue;
  902. rt2x00queue_free_skbs(rt2x00dev->rx);
  903. queue_for_each(rt2x00dev, queue) {
  904. kfree(queue->entries);
  905. queue->entries = NULL;
  906. }
  907. }
  908. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  909. struct data_queue *queue, enum data_queue_qid qid)
  910. {
  911. mutex_init(&queue->status_lock);
  912. spin_lock_init(&queue->index_lock);
  913. queue->rt2x00dev = rt2x00dev;
  914. queue->qid = qid;
  915. queue->txop = 0;
  916. queue->aifs = 2;
  917. queue->cw_min = 5;
  918. queue->cw_max = 10;
  919. }
  920. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  921. {
  922. struct data_queue *queue;
  923. enum data_queue_qid qid;
  924. unsigned int req_atim =
  925. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  926. /*
  927. * We need the following queues:
  928. * RX: 1
  929. * TX: ops->tx_queues
  930. * Beacon: 1
  931. * Atim: 1 (if required)
  932. */
  933. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  934. queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
  935. if (!queue) {
  936. ERROR(rt2x00dev, "Queue allocation failed.\n");
  937. return -ENOMEM;
  938. }
  939. /*
  940. * Initialize pointers
  941. */
  942. rt2x00dev->rx = queue;
  943. rt2x00dev->tx = &queue[1];
  944. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  945. rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
  946. /*
  947. * Initialize queue parameters.
  948. * RX: qid = QID_RX
  949. * TX: qid = QID_AC_VO + index
  950. * TX: cw_min: 2^5 = 32.
  951. * TX: cw_max: 2^10 = 1024.
  952. * BCN: qid = QID_BEACON
  953. * ATIM: qid = QID_ATIM
  954. */
  955. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  956. qid = QID_AC_VO;
  957. tx_queue_for_each(rt2x00dev, queue)
  958. rt2x00queue_init(rt2x00dev, queue, qid++);
  959. rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
  960. if (req_atim)
  961. rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
  962. return 0;
  963. }
  964. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  965. {
  966. kfree(rt2x00dev->rx);
  967. rt2x00dev->rx = NULL;
  968. rt2x00dev->tx = NULL;
  969. rt2x00dev->bcn = NULL;
  970. }