rt2800pci.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. iounmap(base_addr);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  84. #ifdef CONFIG_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_PCI */
  156. /*
  157. * Queue handlers.
  158. */
  159. static void rt2800pci_start_queue(struct data_queue *queue)
  160. {
  161. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  162. u32 reg;
  163. switch (queue->qid) {
  164. case QID_RX:
  165. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  166. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  167. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  168. break;
  169. case QID_BEACON:
  170. /*
  171. * Allow beacon tasklets to be scheduled for periodic
  172. * beacon updates.
  173. */
  174. tasklet_enable(&rt2x00dev->tbtt_tasklet);
  175. tasklet_enable(&rt2x00dev->pretbtt_tasklet);
  176. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  177. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  178. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  179. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  180. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  181. rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  182. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
  183. rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
  184. break;
  185. default:
  186. break;
  187. };
  188. }
  189. static void rt2800pci_kick_queue(struct data_queue *queue)
  190. {
  191. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  192. struct queue_entry *entry;
  193. switch (queue->qid) {
  194. case QID_AC_VO:
  195. case QID_AC_VI:
  196. case QID_AC_BE:
  197. case QID_AC_BK:
  198. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  199. rt2800_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx);
  200. break;
  201. case QID_MGMT:
  202. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  203. rt2800_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx);
  204. break;
  205. default:
  206. break;
  207. }
  208. }
  209. static void rt2800pci_stop_queue(struct data_queue *queue)
  210. {
  211. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  212. u32 reg;
  213. switch (queue->qid) {
  214. case QID_RX:
  215. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  216. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  217. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  218. break;
  219. case QID_BEACON:
  220. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  221. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  222. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  223. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  224. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  225. rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  226. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
  227. rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
  228. /*
  229. * Wait for tbtt tasklets to finish.
  230. */
  231. tasklet_disable(&rt2x00dev->tbtt_tasklet);
  232. tasklet_disable(&rt2x00dev->pretbtt_tasklet);
  233. break;
  234. default:
  235. break;
  236. }
  237. }
  238. /*
  239. * Firmware functions
  240. */
  241. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  242. {
  243. return FIRMWARE_RT2860;
  244. }
  245. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  246. const u8 *data, const size_t len)
  247. {
  248. u32 reg;
  249. /*
  250. * enable Host program ram write selection
  251. */
  252. reg = 0;
  253. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  254. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  255. /*
  256. * Write firmware to device.
  257. */
  258. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  259. data, len);
  260. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  261. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  262. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  263. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  264. return 0;
  265. }
  266. /*
  267. * Initialization functions.
  268. */
  269. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  270. {
  271. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  272. u32 word;
  273. if (entry->queue->qid == QID_RX) {
  274. rt2x00_desc_read(entry_priv->desc, 1, &word);
  275. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  276. } else {
  277. rt2x00_desc_read(entry_priv->desc, 1, &word);
  278. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  279. }
  280. }
  281. static void rt2800pci_clear_entry(struct queue_entry *entry)
  282. {
  283. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  284. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  285. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  286. u32 word;
  287. if (entry->queue->qid == QID_RX) {
  288. rt2x00_desc_read(entry_priv->desc, 0, &word);
  289. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  290. rt2x00_desc_write(entry_priv->desc, 0, word);
  291. rt2x00_desc_read(entry_priv->desc, 1, &word);
  292. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  293. rt2x00_desc_write(entry_priv->desc, 1, word);
  294. /*
  295. * Set RX IDX in register to inform hardware that we have
  296. * handled this entry and it is available for reuse again.
  297. */
  298. rt2800_register_write(rt2x00dev, RX_CRX_IDX,
  299. entry->entry_idx);
  300. } else {
  301. rt2x00_desc_read(entry_priv->desc, 1, &word);
  302. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  303. rt2x00_desc_write(entry_priv->desc, 1, word);
  304. }
  305. }
  306. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  307. {
  308. struct queue_entry_priv_pci *entry_priv;
  309. u32 reg;
  310. /*
  311. * Initialize registers.
  312. */
  313. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  314. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  315. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  316. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  317. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  318. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  319. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  320. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  321. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  322. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  323. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  324. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  325. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  326. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  327. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  328. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  329. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  330. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  331. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  332. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  333. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  334. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  335. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  336. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  337. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  338. /*
  339. * Enable global DMA configuration
  340. */
  341. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  342. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  343. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  344. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  345. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  346. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  347. return 0;
  348. }
  349. /*
  350. * Device state switch handlers.
  351. */
  352. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  353. enum dev_state state)
  354. {
  355. int mask = (state == STATE_RADIO_IRQ_ON);
  356. u32 reg;
  357. unsigned long flags;
  358. /*
  359. * When interrupts are being enabled, the interrupt registers
  360. * should clear the register to assure a clean state.
  361. */
  362. if (state == STATE_RADIO_IRQ_ON) {
  363. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  364. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  365. /*
  366. * Enable tasklets. The beacon related tasklets are
  367. * enabled when the beacon queue is started.
  368. */
  369. tasklet_enable(&rt2x00dev->txstatus_tasklet);
  370. tasklet_enable(&rt2x00dev->rxdone_tasklet);
  371. tasklet_enable(&rt2x00dev->autowake_tasklet);
  372. }
  373. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  374. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  386. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  387. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  388. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  389. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  390. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  391. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  392. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  393. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  394. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  395. if (state == STATE_RADIO_IRQ_OFF) {
  396. /*
  397. * Ensure that all tasklets are finished before
  398. * disabling the interrupts.
  399. */
  400. tasklet_disable(&rt2x00dev->txstatus_tasklet);
  401. tasklet_disable(&rt2x00dev->rxdone_tasklet);
  402. tasklet_disable(&rt2x00dev->autowake_tasklet);
  403. }
  404. }
  405. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  406. {
  407. u32 reg;
  408. /*
  409. * Reset DMA indexes
  410. */
  411. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  412. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  413. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  414. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  415. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  416. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  417. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  418. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  419. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  420. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  421. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  422. if (rt2x00_rt(rt2x00dev, RT5390)) {
  423. rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
  424. rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
  425. rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
  426. rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
  427. }
  428. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  429. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  430. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  431. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  432. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  433. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  434. return 0;
  435. }
  436. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  437. {
  438. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  439. rt2800pci_init_queues(rt2x00dev)))
  440. return -EIO;
  441. return rt2800_enable_radio(rt2x00dev);
  442. }
  443. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  444. {
  445. if (rt2x00_is_soc(rt2x00dev)) {
  446. rt2800_disable_radio(rt2x00dev);
  447. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  448. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  449. }
  450. }
  451. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  452. enum dev_state state)
  453. {
  454. if (state == STATE_AWAKE) {
  455. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
  456. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  457. } else if (state == STATE_SLEEP) {
  458. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, 0xffffffff);
  459. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, 0xffffffff);
  460. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
  461. }
  462. return 0;
  463. }
  464. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  465. enum dev_state state)
  466. {
  467. int retval = 0;
  468. switch (state) {
  469. case STATE_RADIO_ON:
  470. /*
  471. * Before the radio can be enabled, the device first has
  472. * to be woken up. After that it needs a bit of time
  473. * to be fully awake and then the radio can be enabled.
  474. */
  475. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  476. msleep(1);
  477. retval = rt2800pci_enable_radio(rt2x00dev);
  478. break;
  479. case STATE_RADIO_OFF:
  480. /*
  481. * After the radio has been disabled, the device should
  482. * be put to sleep for powersaving.
  483. */
  484. rt2800pci_disable_radio(rt2x00dev);
  485. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  486. break;
  487. case STATE_RADIO_IRQ_ON:
  488. case STATE_RADIO_IRQ_OFF:
  489. rt2800pci_toggle_irq(rt2x00dev, state);
  490. break;
  491. case STATE_DEEP_SLEEP:
  492. case STATE_SLEEP:
  493. case STATE_STANDBY:
  494. case STATE_AWAKE:
  495. retval = rt2800pci_set_state(rt2x00dev, state);
  496. break;
  497. default:
  498. retval = -ENOTSUPP;
  499. break;
  500. }
  501. if (unlikely(retval))
  502. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  503. state, retval);
  504. return retval;
  505. }
  506. /*
  507. * TX descriptor initialization
  508. */
  509. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  510. {
  511. return (__le32 *) entry->skb->data;
  512. }
  513. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  514. struct txentry_desc *txdesc)
  515. {
  516. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  517. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  518. __le32 *txd = entry_priv->desc;
  519. u32 word;
  520. /*
  521. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  522. * must contains a TXWI structure + 802.11 header + padding + 802.11
  523. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  524. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  525. * data. It means that LAST_SEC0 is always 0.
  526. */
  527. /*
  528. * Initialize TX descriptor
  529. */
  530. rt2x00_desc_read(txd, 0, &word);
  531. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  532. rt2x00_desc_write(txd, 0, word);
  533. rt2x00_desc_read(txd, 1, &word);
  534. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  535. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  536. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  537. rt2x00_set_field32(&word, TXD_W1_BURST,
  538. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  539. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  540. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  541. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  542. rt2x00_desc_write(txd, 1, word);
  543. rt2x00_desc_read(txd, 2, &word);
  544. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  545. skbdesc->skb_dma + TXWI_DESC_SIZE);
  546. rt2x00_desc_write(txd, 2, word);
  547. rt2x00_desc_read(txd, 3, &word);
  548. rt2x00_set_field32(&word, TXD_W3_WIV,
  549. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  550. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  551. rt2x00_desc_write(txd, 3, word);
  552. /*
  553. * Register descriptor details in skb frame descriptor.
  554. */
  555. skbdesc->desc = txd;
  556. skbdesc->desc_len = TXD_DESC_SIZE;
  557. }
  558. /*
  559. * RX control handlers
  560. */
  561. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  562. struct rxdone_entry_desc *rxdesc)
  563. {
  564. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  565. __le32 *rxd = entry_priv->desc;
  566. u32 word;
  567. rt2x00_desc_read(rxd, 3, &word);
  568. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  569. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  570. /*
  571. * Unfortunately we don't know the cipher type used during
  572. * decryption. This prevents us from correct providing
  573. * correct statistics through debugfs.
  574. */
  575. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  576. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  577. /*
  578. * Hardware has stripped IV/EIV data from 802.11 frame during
  579. * decryption. Unfortunately the descriptor doesn't contain
  580. * any fields with the EIV/IV data either, so they can't
  581. * be restored by rt2x00lib.
  582. */
  583. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  584. /*
  585. * The hardware has already checked the Michael Mic and has
  586. * stripped it from the frame. Signal this to mac80211.
  587. */
  588. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  589. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  590. rxdesc->flags |= RX_FLAG_DECRYPTED;
  591. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  592. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  593. }
  594. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  595. rxdesc->dev_flags |= RXDONE_MY_BSS;
  596. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  597. rxdesc->dev_flags |= RXDONE_L2PAD;
  598. /*
  599. * Process the RXWI structure that is at the start of the buffer.
  600. */
  601. rt2800_process_rxwi(entry, rxdesc);
  602. }
  603. /*
  604. * Interrupt functions.
  605. */
  606. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  607. {
  608. struct ieee80211_conf conf = { .flags = 0 };
  609. struct rt2x00lib_conf libconf = { .conf = &conf };
  610. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  611. }
  612. static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  613. {
  614. struct data_queue *queue;
  615. struct queue_entry *entry;
  616. u32 status;
  617. u8 qid;
  618. int max_tx_done = 16;
  619. while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
  620. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  621. if (unlikely(qid >= QID_RX)) {
  622. /*
  623. * Unknown queue, this shouldn't happen. Just drop
  624. * this tx status.
  625. */
  626. WARNING(rt2x00dev, "Got TX status report with "
  627. "unexpected pid %u, dropping\n", qid);
  628. break;
  629. }
  630. queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
  631. if (unlikely(queue == NULL)) {
  632. /*
  633. * The queue is NULL, this shouldn't happen. Stop
  634. * processing here and drop the tx status
  635. */
  636. WARNING(rt2x00dev, "Got TX status for an unavailable "
  637. "queue %u, dropping\n", qid);
  638. break;
  639. }
  640. if (unlikely(rt2x00queue_empty(queue))) {
  641. /*
  642. * The queue is empty. Stop processing here
  643. * and drop the tx status.
  644. */
  645. WARNING(rt2x00dev, "Got TX status for an empty "
  646. "queue %u, dropping\n", qid);
  647. break;
  648. }
  649. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  650. rt2800_txdone_entry(entry, status);
  651. if (--max_tx_done == 0)
  652. break;
  653. }
  654. return !max_tx_done;
  655. }
  656. static void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  657. struct rt2x00_field32 irq_field)
  658. {
  659. u32 reg;
  660. /*
  661. * Enable a single interrupt. The interrupt mask register
  662. * access needs locking.
  663. */
  664. spin_lock_irq(&rt2x00dev->irqmask_lock);
  665. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  666. rt2x00_set_field32(&reg, irq_field, 1);
  667. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  668. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  669. }
  670. static void rt2800pci_txstatus_tasklet(unsigned long data)
  671. {
  672. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  673. if (rt2800pci_txdone(rt2x00dev))
  674. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  675. /*
  676. * No need to enable the tx status interrupt here as we always
  677. * leave it enabled to minimize the possibility of a tx status
  678. * register overflow. See comment in interrupt handler.
  679. */
  680. }
  681. static void rt2800pci_pretbtt_tasklet(unsigned long data)
  682. {
  683. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  684. rt2x00lib_pretbtt(rt2x00dev);
  685. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
  686. }
  687. static void rt2800pci_tbtt_tasklet(unsigned long data)
  688. {
  689. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  690. rt2x00lib_beacondone(rt2x00dev);
  691. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
  692. }
  693. static void rt2800pci_rxdone_tasklet(unsigned long data)
  694. {
  695. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  696. if (rt2x00pci_rxdone(rt2x00dev))
  697. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  698. else
  699. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
  700. }
  701. static void rt2800pci_autowake_tasklet(unsigned long data)
  702. {
  703. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  704. rt2800pci_wakeup(rt2x00dev);
  705. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
  706. }
  707. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  708. {
  709. u32 status;
  710. int i;
  711. /*
  712. * The TX_FIFO_STATUS interrupt needs special care. We should
  713. * read TX_STA_FIFO but we should do it immediately as otherwise
  714. * the register can overflow and we would lose status reports.
  715. *
  716. * Hence, read the TX_STA_FIFO register and copy all tx status
  717. * reports into a kernel FIFO which is handled in the txstatus
  718. * tasklet. We use a tasklet to process the tx status reports
  719. * because we can schedule the tasklet multiple times (when the
  720. * interrupt fires again during tx status processing).
  721. *
  722. * Furthermore we don't disable the TX_FIFO_STATUS
  723. * interrupt here but leave it enabled so that the TX_STA_FIFO
  724. * can also be read while the tx status tasklet gets executed.
  725. *
  726. * Since we have only one producer and one consumer we don't
  727. * need to lock the kfifo.
  728. */
  729. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  730. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  731. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  732. break;
  733. if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
  734. WARNING(rt2x00dev, "TX status FIFO overrun,"
  735. "drop tx status report.\n");
  736. break;
  737. }
  738. }
  739. /* Schedule the tasklet for processing the tx status. */
  740. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  741. }
  742. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  743. {
  744. struct rt2x00_dev *rt2x00dev = dev_instance;
  745. u32 reg, mask;
  746. /* Read status and ACK all interrupts */
  747. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  748. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  749. if (!reg)
  750. return IRQ_NONE;
  751. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  752. return IRQ_HANDLED;
  753. /*
  754. * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
  755. * for interrupts and interrupt masks we can just use the value of
  756. * INT_SOURCE_CSR to create the interrupt mask.
  757. */
  758. mask = ~reg;
  759. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
  760. rt2800pci_txstatus_interrupt(rt2x00dev);
  761. /*
  762. * Never disable the TX_FIFO_STATUS interrupt.
  763. */
  764. rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  765. }
  766. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  767. tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
  768. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  769. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  770. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  771. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  772. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  773. tasklet_schedule(&rt2x00dev->autowake_tasklet);
  774. /*
  775. * Disable all interrupts for which a tasklet was scheduled right now,
  776. * the tasklet will reenable the appropriate interrupts.
  777. */
  778. spin_lock(&rt2x00dev->irqmask_lock);
  779. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  780. reg &= mask;
  781. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  782. spin_unlock(&rt2x00dev->irqmask_lock);
  783. return IRQ_HANDLED;
  784. }
  785. /*
  786. * Device probe functions.
  787. */
  788. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  789. {
  790. /*
  791. * Read EEPROM into buffer
  792. */
  793. if (rt2x00_is_soc(rt2x00dev))
  794. rt2800pci_read_eeprom_soc(rt2x00dev);
  795. else if (rt2800pci_efuse_detect(rt2x00dev))
  796. rt2800pci_read_eeprom_efuse(rt2x00dev);
  797. else
  798. rt2800pci_read_eeprom_pci(rt2x00dev);
  799. return rt2800_validate_eeprom(rt2x00dev);
  800. }
  801. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  802. {
  803. int retval;
  804. /*
  805. * Allocate eeprom data.
  806. */
  807. retval = rt2800pci_validate_eeprom(rt2x00dev);
  808. if (retval)
  809. return retval;
  810. retval = rt2800_init_eeprom(rt2x00dev);
  811. if (retval)
  812. return retval;
  813. /*
  814. * Initialize hw specifications.
  815. */
  816. retval = rt2800_probe_hw_mode(rt2x00dev);
  817. if (retval)
  818. return retval;
  819. /*
  820. * This device has multiple filters for control frames
  821. * and has a separate filter for PS Poll frames.
  822. */
  823. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  824. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  825. /*
  826. * This device has a pre tbtt interrupt and thus fetches
  827. * a new beacon directly prior to transmission.
  828. */
  829. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  830. /*
  831. * This device requires firmware.
  832. */
  833. if (!rt2x00_is_soc(rt2x00dev))
  834. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  835. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  836. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  837. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  838. __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
  839. if (!modparam_nohwcrypt)
  840. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  841. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  842. __set_bit(DRIVER_REQUIRE_HT_TX_DESC, &rt2x00dev->flags);
  843. /*
  844. * Set the rssi offset.
  845. */
  846. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  847. return 0;
  848. }
  849. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  850. .tx = rt2x00mac_tx,
  851. .start = rt2x00mac_start,
  852. .stop = rt2x00mac_stop,
  853. .add_interface = rt2x00mac_add_interface,
  854. .remove_interface = rt2x00mac_remove_interface,
  855. .config = rt2x00mac_config,
  856. .configure_filter = rt2x00mac_configure_filter,
  857. .set_key = rt2x00mac_set_key,
  858. .sw_scan_start = rt2x00mac_sw_scan_start,
  859. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  860. .get_stats = rt2x00mac_get_stats,
  861. .get_tkip_seq = rt2800_get_tkip_seq,
  862. .set_rts_threshold = rt2800_set_rts_threshold,
  863. .bss_info_changed = rt2x00mac_bss_info_changed,
  864. .conf_tx = rt2800_conf_tx,
  865. .get_tsf = rt2800_get_tsf,
  866. .rfkill_poll = rt2x00mac_rfkill_poll,
  867. .ampdu_action = rt2800_ampdu_action,
  868. .flush = rt2x00mac_flush,
  869. .get_survey = rt2800_get_survey,
  870. };
  871. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  872. .register_read = rt2x00pci_register_read,
  873. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  874. .register_write = rt2x00pci_register_write,
  875. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  876. .register_multiread = rt2x00pci_register_multiread,
  877. .register_multiwrite = rt2x00pci_register_multiwrite,
  878. .regbusy_read = rt2x00pci_regbusy_read,
  879. .drv_write_firmware = rt2800pci_write_firmware,
  880. .drv_init_registers = rt2800pci_init_registers,
  881. .drv_get_txwi = rt2800pci_get_txwi,
  882. };
  883. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  884. .irq_handler = rt2800pci_interrupt,
  885. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  886. .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
  887. .tbtt_tasklet = rt2800pci_tbtt_tasklet,
  888. .rxdone_tasklet = rt2800pci_rxdone_tasklet,
  889. .autowake_tasklet = rt2800pci_autowake_tasklet,
  890. .probe_hw = rt2800pci_probe_hw,
  891. .get_firmware_name = rt2800pci_get_firmware_name,
  892. .check_firmware = rt2800_check_firmware,
  893. .load_firmware = rt2800_load_firmware,
  894. .initialize = rt2x00pci_initialize,
  895. .uninitialize = rt2x00pci_uninitialize,
  896. .get_entry_state = rt2800pci_get_entry_state,
  897. .clear_entry = rt2800pci_clear_entry,
  898. .set_device_state = rt2800pci_set_device_state,
  899. .rfkill_poll = rt2800_rfkill_poll,
  900. .link_stats = rt2800_link_stats,
  901. .reset_tuner = rt2800_reset_tuner,
  902. .link_tuner = rt2800_link_tuner,
  903. .start_queue = rt2800pci_start_queue,
  904. .kick_queue = rt2800pci_kick_queue,
  905. .stop_queue = rt2800pci_stop_queue,
  906. .write_tx_desc = rt2800pci_write_tx_desc,
  907. .write_tx_data = rt2800_write_tx_data,
  908. .write_beacon = rt2800_write_beacon,
  909. .clear_beacon = rt2800_clear_beacon,
  910. .fill_rxdone = rt2800pci_fill_rxdone,
  911. .config_shared_key = rt2800_config_shared_key,
  912. .config_pairwise_key = rt2800_config_pairwise_key,
  913. .config_filter = rt2800_config_filter,
  914. .config_intf = rt2800_config_intf,
  915. .config_erp = rt2800_config_erp,
  916. .config_ant = rt2800_config_ant,
  917. .config = rt2800_config,
  918. };
  919. static const struct data_queue_desc rt2800pci_queue_rx = {
  920. .entry_num = 128,
  921. .data_size = AGGREGATION_SIZE,
  922. .desc_size = RXD_DESC_SIZE,
  923. .priv_size = sizeof(struct queue_entry_priv_pci),
  924. };
  925. static const struct data_queue_desc rt2800pci_queue_tx = {
  926. .entry_num = 64,
  927. .data_size = AGGREGATION_SIZE,
  928. .desc_size = TXD_DESC_SIZE,
  929. .priv_size = sizeof(struct queue_entry_priv_pci),
  930. };
  931. static const struct data_queue_desc rt2800pci_queue_bcn = {
  932. .entry_num = 8,
  933. .data_size = 0, /* No DMA required for beacons */
  934. .desc_size = TXWI_DESC_SIZE,
  935. .priv_size = sizeof(struct queue_entry_priv_pci),
  936. };
  937. static const struct rt2x00_ops rt2800pci_ops = {
  938. .name = KBUILD_MODNAME,
  939. .max_sta_intf = 1,
  940. .max_ap_intf = 8,
  941. .eeprom_size = EEPROM_SIZE,
  942. .rf_size = RF_SIZE,
  943. .tx_queues = NUM_TX_QUEUES,
  944. .extra_tx_headroom = TXWI_DESC_SIZE,
  945. .rx = &rt2800pci_queue_rx,
  946. .tx = &rt2800pci_queue_tx,
  947. .bcn = &rt2800pci_queue_bcn,
  948. .lib = &rt2800pci_rt2x00_ops,
  949. .drv = &rt2800pci_rt2800_ops,
  950. .hw = &rt2800pci_mac80211_ops,
  951. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  952. .debugfs = &rt2800_rt2x00debug,
  953. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  954. };
  955. /*
  956. * RT2800pci module information.
  957. */
  958. #ifdef CONFIG_PCI
  959. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  960. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  961. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  962. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  963. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  964. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  965. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  966. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  967. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  968. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  969. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  970. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  971. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  972. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  973. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  974. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  975. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  976. #ifdef CONFIG_RT2800PCI_RT33XX
  977. { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
  978. #endif
  979. #ifdef CONFIG_RT2800PCI_RT35XX
  980. { PCI_DEVICE(0x1432, 0x7711), PCI_DEVICE_DATA(&rt2800pci_ops) },
  981. { PCI_DEVICE(0x1432, 0x7722), PCI_DEVICE_DATA(&rt2800pci_ops) },
  982. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  983. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  984. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  985. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  986. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  987. #endif
  988. #ifdef CONFIG_RT2800PCI_RT53XX
  989. { PCI_DEVICE(0x1814, 0x5390), PCI_DEVICE_DATA(&rt2800pci_ops) },
  990. #endif
  991. { 0, }
  992. };
  993. #endif /* CONFIG_PCI */
  994. MODULE_AUTHOR(DRV_PROJECT);
  995. MODULE_VERSION(DRV_VERSION);
  996. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  997. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  998. #ifdef CONFIG_PCI
  999. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1000. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1001. #endif /* CONFIG_PCI */
  1002. MODULE_LICENSE("GPL");
  1003. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  1004. static int rt2800soc_probe(struct platform_device *pdev)
  1005. {
  1006. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  1007. }
  1008. static struct platform_driver rt2800soc_driver = {
  1009. .driver = {
  1010. .name = "rt2800_wmac",
  1011. .owner = THIS_MODULE,
  1012. .mod_name = KBUILD_MODNAME,
  1013. },
  1014. .probe = rt2800soc_probe,
  1015. .remove = __devexit_p(rt2x00soc_remove),
  1016. .suspend = rt2x00soc_suspend,
  1017. .resume = rt2x00soc_resume,
  1018. };
  1019. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  1020. #ifdef CONFIG_PCI
  1021. static struct pci_driver rt2800pci_driver = {
  1022. .name = KBUILD_MODNAME,
  1023. .id_table = rt2800pci_device_table,
  1024. .probe = rt2x00pci_probe,
  1025. .remove = __devexit_p(rt2x00pci_remove),
  1026. .suspend = rt2x00pci_suspend,
  1027. .resume = rt2x00pci_resume,
  1028. };
  1029. #endif /* CONFIG_PCI */
  1030. static int __init rt2800pci_init(void)
  1031. {
  1032. int ret = 0;
  1033. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  1034. ret = platform_driver_register(&rt2800soc_driver);
  1035. if (ret)
  1036. return ret;
  1037. #endif
  1038. #ifdef CONFIG_PCI
  1039. ret = pci_register_driver(&rt2800pci_driver);
  1040. if (ret) {
  1041. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  1042. platform_driver_unregister(&rt2800soc_driver);
  1043. #endif
  1044. return ret;
  1045. }
  1046. #endif
  1047. return ret;
  1048. }
  1049. static void __exit rt2800pci_exit(void)
  1050. {
  1051. #ifdef CONFIG_PCI
  1052. pci_unregister_driver(&rt2800pci_driver);
  1053. #endif
  1054. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  1055. platform_driver_unregister(&rt2800soc_driver);
  1056. #endif
  1057. }
  1058. module_init(rt2800pci_init);
  1059. module_exit(rt2800pci_exit);