disk-io.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. /*
  71. * end_io_wq structs are used to do processing in task context when an IO is
  72. * complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. int metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. /*
  86. * async submit bios are used to offload expensive checksumming
  87. * onto the worker threads. They checksum file and metadata bios
  88. * just before they are sent down the IO stack.
  89. */
  90. struct async_submit_bio {
  91. struct inode *inode;
  92. struct bio *bio;
  93. struct list_head list;
  94. extent_submit_bio_hook_t *submit_bio_start;
  95. extent_submit_bio_hook_t *submit_bio_done;
  96. int rw;
  97. int mirror_num;
  98. unsigned long bio_flags;
  99. /*
  100. * bio_offset is optional, can be used if the pages in the bio
  101. * can't tell us where in the file the bio should go
  102. */
  103. u64 bio_offset;
  104. struct btrfs_work work;
  105. int error;
  106. };
  107. /*
  108. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  109. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  110. * the level the eb occupies in the tree.
  111. *
  112. * Different roots are used for different purposes and may nest inside each
  113. * other and they require separate keysets. As lockdep keys should be
  114. * static, assign keysets according to the purpose of the root as indicated
  115. * by btrfs_root->objectid. This ensures that all special purpose roots
  116. * have separate keysets.
  117. *
  118. * Lock-nesting across peer nodes is always done with the immediate parent
  119. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  120. * subclass to avoid triggering lockdep warning in such cases.
  121. *
  122. * The key is set by the readpage_end_io_hook after the buffer has passed
  123. * csum validation but before the pages are unlocked. It is also set by
  124. * btrfs_init_new_buffer on freshly allocated blocks.
  125. *
  126. * We also add a check to make sure the highest level of the tree is the
  127. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  128. * needs update as well.
  129. */
  130. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  131. # if BTRFS_MAX_LEVEL != 8
  132. # error
  133. # endif
  134. static struct btrfs_lockdep_keyset {
  135. u64 id; /* root objectid */
  136. const char *name_stem; /* lock name stem */
  137. char names[BTRFS_MAX_LEVEL + 1][20];
  138. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  139. } btrfs_lockdep_keysets[] = {
  140. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  141. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  142. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  143. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  144. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  145. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  146. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  147. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  148. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  149. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  150. { .id = 0, .name_stem = "tree" },
  151. };
  152. void __init btrfs_init_lockdep(void)
  153. {
  154. int i, j;
  155. /* initialize lockdep class names */
  156. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  157. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  158. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  159. snprintf(ks->names[j], sizeof(ks->names[j]),
  160. "btrfs-%s-%02d", ks->name_stem, j);
  161. }
  162. }
  163. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  164. int level)
  165. {
  166. struct btrfs_lockdep_keyset *ks;
  167. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  168. /* find the matching keyset, id 0 is the default entry */
  169. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  170. if (ks->id == objectid)
  171. break;
  172. lockdep_set_class_and_name(&eb->lock,
  173. &ks->keys[level], ks->names[level]);
  174. }
  175. #endif
  176. /*
  177. * extents on the btree inode are pretty simple, there's one extent
  178. * that covers the entire device
  179. */
  180. static struct extent_map *btree_get_extent(struct inode *inode,
  181. struct page *page, size_t pg_offset, u64 start, u64 len,
  182. int create)
  183. {
  184. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  185. struct extent_map *em;
  186. int ret;
  187. read_lock(&em_tree->lock);
  188. em = lookup_extent_mapping(em_tree, start, len);
  189. if (em) {
  190. em->bdev =
  191. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  192. read_unlock(&em_tree->lock);
  193. goto out;
  194. }
  195. read_unlock(&em_tree->lock);
  196. em = alloc_extent_map();
  197. if (!em) {
  198. em = ERR_PTR(-ENOMEM);
  199. goto out;
  200. }
  201. em->start = 0;
  202. em->len = (u64)-1;
  203. em->block_len = (u64)-1;
  204. em->block_start = 0;
  205. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  206. write_lock(&em_tree->lock);
  207. ret = add_extent_mapping(em_tree, em, 0);
  208. if (ret == -EEXIST) {
  209. free_extent_map(em);
  210. em = lookup_extent_mapping(em_tree, start, len);
  211. if (!em)
  212. em = ERR_PTR(-EIO);
  213. } else if (ret) {
  214. free_extent_map(em);
  215. em = ERR_PTR(ret);
  216. }
  217. write_unlock(&em_tree->lock);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  237. char *result = NULL;
  238. unsigned long len;
  239. unsigned long cur_len;
  240. unsigned long offset = BTRFS_CSUM_SIZE;
  241. char *kaddr;
  242. unsigned long map_start;
  243. unsigned long map_len;
  244. int err;
  245. u32 crc = ~(u32)0;
  246. unsigned long inline_result;
  247. len = buf->len - offset;
  248. while (len > 0) {
  249. err = map_private_extent_buffer(buf, offset, 32,
  250. &kaddr, &map_start, &map_len);
  251. if (err)
  252. return 1;
  253. cur_len = min(len, map_len - (offset - map_start));
  254. crc = btrfs_csum_data(kaddr + offset - map_start,
  255. crc, cur_len);
  256. len -= cur_len;
  257. offset += cur_len;
  258. }
  259. if (csum_size > sizeof(inline_result)) {
  260. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  261. if (!result)
  262. return 1;
  263. } else {
  264. result = (char *)&inline_result;
  265. }
  266. btrfs_csum_final(crc, result);
  267. if (verify) {
  268. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  269. u32 val;
  270. u32 found = 0;
  271. memcpy(&found, result, csum_size);
  272. read_extent_buffer(buf, &val, 0, csum_size);
  273. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  274. "failed on %llu wanted %X found %X "
  275. "level %d\n",
  276. root->fs_info->sb->s_id,
  277. (unsigned long long)buf->start, val, found,
  278. btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid,
  298. int atomic)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. if (atomic)
  305. return -EAGAIN;
  306. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  307. 0, &cached_state);
  308. if (extent_buffer_uptodate(eb) &&
  309. btrfs_header_generation(eb) == parent_transid) {
  310. ret = 0;
  311. goto out;
  312. }
  313. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  314. "found %llu\n",
  315. (unsigned long long)eb->start,
  316. (unsigned long long)parent_transid,
  317. (unsigned long long)btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * helper to read a given tree block, doing retries as required when
  327. * the checksums don't match and we have alternate mirrors to try.
  328. */
  329. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  330. struct extent_buffer *eb,
  331. u64 start, u64 parent_transid)
  332. {
  333. struct extent_io_tree *io_tree;
  334. int failed = 0;
  335. int ret;
  336. int num_copies = 0;
  337. int mirror_num = 0;
  338. int failed_mirror = 0;
  339. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  340. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  341. while (1) {
  342. ret = read_extent_buffer_pages(io_tree, eb, start,
  343. WAIT_COMPLETE,
  344. btree_get_extent, mirror_num);
  345. if (!ret) {
  346. if (!verify_parent_transid(io_tree, eb,
  347. parent_transid, 0))
  348. break;
  349. else
  350. ret = -EIO;
  351. }
  352. /*
  353. * This buffer's crc is fine, but its contents are corrupted, so
  354. * there is no reason to read the other copies, they won't be
  355. * any less wrong.
  356. */
  357. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  358. break;
  359. num_copies = btrfs_num_copies(root->fs_info,
  360. eb->start, eb->len);
  361. if (num_copies == 1)
  362. break;
  363. if (!failed_mirror) {
  364. failed = 1;
  365. failed_mirror = eb->read_mirror;
  366. }
  367. mirror_num++;
  368. if (mirror_num == failed_mirror)
  369. mirror_num++;
  370. if (mirror_num > num_copies)
  371. break;
  372. }
  373. if (failed && !ret && failed_mirror)
  374. repair_eb_io_failure(root, eb, failed_mirror);
  375. return ret;
  376. }
  377. /*
  378. * checksum a dirty tree block before IO. This has extra checks to make sure
  379. * we only fill in the checksum field in the first page of a multi-page block
  380. */
  381. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  382. {
  383. struct extent_io_tree *tree;
  384. u64 start = page_offset(page);
  385. u64 found_start;
  386. struct extent_buffer *eb;
  387. tree = &BTRFS_I(page->mapping->host)->io_tree;
  388. eb = (struct extent_buffer *)page->private;
  389. if (page != eb->pages[0])
  390. return 0;
  391. found_start = btrfs_header_bytenr(eb);
  392. if (found_start != start) {
  393. WARN_ON(1);
  394. return 0;
  395. }
  396. if (!PageUptodate(page)) {
  397. WARN_ON(1);
  398. return 0;
  399. }
  400. csum_tree_block(root, eb, 0);
  401. return 0;
  402. }
  403. static int check_tree_block_fsid(struct btrfs_root *root,
  404. struct extent_buffer *eb)
  405. {
  406. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  407. u8 fsid[BTRFS_UUID_SIZE];
  408. int ret = 1;
  409. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  410. BTRFS_FSID_SIZE);
  411. while (fs_devices) {
  412. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  413. ret = 0;
  414. break;
  415. }
  416. fs_devices = fs_devices->seed;
  417. }
  418. return ret;
  419. }
  420. #define CORRUPT(reason, eb, root, slot) \
  421. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  422. "root=%llu, slot=%d\n", reason, \
  423. (unsigned long long)btrfs_header_bytenr(eb), \
  424. (unsigned long long)root->objectid, slot)
  425. static noinline int check_leaf(struct btrfs_root *root,
  426. struct extent_buffer *leaf)
  427. {
  428. struct btrfs_key key;
  429. struct btrfs_key leaf_key;
  430. u32 nritems = btrfs_header_nritems(leaf);
  431. int slot;
  432. if (nritems == 0)
  433. return 0;
  434. /* Check the 0 item */
  435. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  436. BTRFS_LEAF_DATA_SIZE(root)) {
  437. CORRUPT("invalid item offset size pair", leaf, root, 0);
  438. return -EIO;
  439. }
  440. /*
  441. * Check to make sure each items keys are in the correct order and their
  442. * offsets make sense. We only have to loop through nritems-1 because
  443. * we check the current slot against the next slot, which verifies the
  444. * next slot's offset+size makes sense and that the current's slot
  445. * offset is correct.
  446. */
  447. for (slot = 0; slot < nritems - 1; slot++) {
  448. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  449. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  450. /* Make sure the keys are in the right order */
  451. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  452. CORRUPT("bad key order", leaf, root, slot);
  453. return -EIO;
  454. }
  455. /*
  456. * Make sure the offset and ends are right, remember that the
  457. * item data starts at the end of the leaf and grows towards the
  458. * front.
  459. */
  460. if (btrfs_item_offset_nr(leaf, slot) !=
  461. btrfs_item_end_nr(leaf, slot + 1)) {
  462. CORRUPT("slot offset bad", leaf, root, slot);
  463. return -EIO;
  464. }
  465. /*
  466. * Check to make sure that we don't point outside of the leaf,
  467. * just incase all the items are consistent to eachother, but
  468. * all point outside of the leaf.
  469. */
  470. if (btrfs_item_end_nr(leaf, slot) >
  471. BTRFS_LEAF_DATA_SIZE(root)) {
  472. CORRUPT("slot end outside of leaf", leaf, root, slot);
  473. return -EIO;
  474. }
  475. }
  476. return 0;
  477. }
  478. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  479. struct page *page, int max_walk)
  480. {
  481. struct extent_buffer *eb;
  482. u64 start = page_offset(page);
  483. u64 target = start;
  484. u64 min_start;
  485. if (start < max_walk)
  486. min_start = 0;
  487. else
  488. min_start = start - max_walk;
  489. while (start >= min_start) {
  490. eb = find_extent_buffer(tree, start, 0);
  491. if (eb) {
  492. /*
  493. * we found an extent buffer and it contains our page
  494. * horray!
  495. */
  496. if (eb->start <= target &&
  497. eb->start + eb->len > target)
  498. return eb;
  499. /* we found an extent buffer that wasn't for us */
  500. free_extent_buffer(eb);
  501. return NULL;
  502. }
  503. if (start == 0)
  504. break;
  505. start -= PAGE_CACHE_SIZE;
  506. }
  507. return NULL;
  508. }
  509. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  510. struct extent_state *state, int mirror)
  511. {
  512. struct extent_io_tree *tree;
  513. u64 found_start;
  514. int found_level;
  515. struct extent_buffer *eb;
  516. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  517. int ret = 0;
  518. int reads_done;
  519. if (!page->private)
  520. goto out;
  521. tree = &BTRFS_I(page->mapping->host)->io_tree;
  522. eb = (struct extent_buffer *)page->private;
  523. /* the pending IO might have been the only thing that kept this buffer
  524. * in memory. Make sure we have a ref for all this other checks
  525. */
  526. extent_buffer_get(eb);
  527. reads_done = atomic_dec_and_test(&eb->io_pages);
  528. if (!reads_done)
  529. goto err;
  530. eb->read_mirror = mirror;
  531. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  532. ret = -EIO;
  533. goto err;
  534. }
  535. found_start = btrfs_header_bytenr(eb);
  536. if (found_start != eb->start) {
  537. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  538. "%llu %llu\n",
  539. (unsigned long long)found_start,
  540. (unsigned long long)eb->start);
  541. ret = -EIO;
  542. goto err;
  543. }
  544. if (check_tree_block_fsid(root, eb)) {
  545. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  546. (unsigned long long)eb->start);
  547. ret = -EIO;
  548. goto err;
  549. }
  550. found_level = btrfs_header_level(eb);
  551. if (found_level >= BTRFS_MAX_LEVEL) {
  552. btrfs_info(root->fs_info, "bad tree block level %d\n",
  553. (int)btrfs_header_level(eb));
  554. ret = -EIO;
  555. goto err;
  556. }
  557. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  558. eb, found_level);
  559. ret = csum_tree_block(root, eb, 1);
  560. if (ret) {
  561. ret = -EIO;
  562. goto err;
  563. }
  564. /*
  565. * If this is a leaf block and it is corrupt, set the corrupt bit so
  566. * that we don't try and read the other copies of this block, just
  567. * return -EIO.
  568. */
  569. if (found_level == 0 && check_leaf(root, eb)) {
  570. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  571. ret = -EIO;
  572. }
  573. if (!ret)
  574. set_extent_buffer_uptodate(eb);
  575. err:
  576. if (reads_done &&
  577. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  578. btree_readahead_hook(root, eb, eb->start, ret);
  579. if (ret) {
  580. /*
  581. * our io error hook is going to dec the io pages
  582. * again, we have to make sure it has something
  583. * to decrement
  584. */
  585. atomic_inc(&eb->io_pages);
  586. clear_extent_buffer_uptodate(eb);
  587. }
  588. free_extent_buffer(eb);
  589. out:
  590. return ret;
  591. }
  592. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  593. {
  594. struct extent_buffer *eb;
  595. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  596. eb = (struct extent_buffer *)page->private;
  597. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  598. eb->read_mirror = failed_mirror;
  599. atomic_dec(&eb->io_pages);
  600. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  601. btree_readahead_hook(root, eb, eb->start, -EIO);
  602. return -EIO; /* we fixed nothing */
  603. }
  604. static void end_workqueue_bio(struct bio *bio, int err)
  605. {
  606. struct end_io_wq *end_io_wq = bio->bi_private;
  607. struct btrfs_fs_info *fs_info;
  608. fs_info = end_io_wq->info;
  609. end_io_wq->error = err;
  610. end_io_wq->work.func = end_workqueue_fn;
  611. end_io_wq->work.flags = 0;
  612. if (bio->bi_rw & REQ_WRITE) {
  613. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  614. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  615. &end_io_wq->work);
  616. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  617. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  618. &end_io_wq->work);
  619. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  620. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  621. &end_io_wq->work);
  622. else
  623. btrfs_queue_worker(&fs_info->endio_write_workers,
  624. &end_io_wq->work);
  625. } else {
  626. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else if (end_io_wq->metadata)
  630. btrfs_queue_worker(&fs_info->endio_meta_workers,
  631. &end_io_wq->work);
  632. else
  633. btrfs_queue_worker(&fs_info->endio_workers,
  634. &end_io_wq->work);
  635. }
  636. }
  637. /*
  638. * For the metadata arg you want
  639. *
  640. * 0 - if data
  641. * 1 - if normal metadta
  642. * 2 - if writing to the free space cache area
  643. * 3 - raid parity work
  644. */
  645. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  646. int metadata)
  647. {
  648. struct end_io_wq *end_io_wq;
  649. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  650. if (!end_io_wq)
  651. return -ENOMEM;
  652. end_io_wq->private = bio->bi_private;
  653. end_io_wq->end_io = bio->bi_end_io;
  654. end_io_wq->info = info;
  655. end_io_wq->error = 0;
  656. end_io_wq->bio = bio;
  657. end_io_wq->metadata = metadata;
  658. bio->bi_private = end_io_wq;
  659. bio->bi_end_io = end_workqueue_bio;
  660. return 0;
  661. }
  662. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  663. {
  664. unsigned long limit = min_t(unsigned long,
  665. info->workers.max_workers,
  666. info->fs_devices->open_devices);
  667. return 256 * limit;
  668. }
  669. static void run_one_async_start(struct btrfs_work *work)
  670. {
  671. struct async_submit_bio *async;
  672. int ret;
  673. async = container_of(work, struct async_submit_bio, work);
  674. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  675. async->mirror_num, async->bio_flags,
  676. async->bio_offset);
  677. if (ret)
  678. async->error = ret;
  679. }
  680. static void run_one_async_done(struct btrfs_work *work)
  681. {
  682. struct btrfs_fs_info *fs_info;
  683. struct async_submit_bio *async;
  684. int limit;
  685. async = container_of(work, struct async_submit_bio, work);
  686. fs_info = BTRFS_I(async->inode)->root->fs_info;
  687. limit = btrfs_async_submit_limit(fs_info);
  688. limit = limit * 2 / 3;
  689. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  690. waitqueue_active(&fs_info->async_submit_wait))
  691. wake_up(&fs_info->async_submit_wait);
  692. /* If an error occured we just want to clean up the bio and move on */
  693. if (async->error) {
  694. bio_endio(async->bio, async->error);
  695. return;
  696. }
  697. async->submit_bio_done(async->inode, async->rw, async->bio,
  698. async->mirror_num, async->bio_flags,
  699. async->bio_offset);
  700. }
  701. static void run_one_async_free(struct btrfs_work *work)
  702. {
  703. struct async_submit_bio *async;
  704. async = container_of(work, struct async_submit_bio, work);
  705. kfree(async);
  706. }
  707. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  708. int rw, struct bio *bio, int mirror_num,
  709. unsigned long bio_flags,
  710. u64 bio_offset,
  711. extent_submit_bio_hook_t *submit_bio_start,
  712. extent_submit_bio_hook_t *submit_bio_done)
  713. {
  714. struct async_submit_bio *async;
  715. async = kmalloc(sizeof(*async), GFP_NOFS);
  716. if (!async)
  717. return -ENOMEM;
  718. async->inode = inode;
  719. async->rw = rw;
  720. async->bio = bio;
  721. async->mirror_num = mirror_num;
  722. async->submit_bio_start = submit_bio_start;
  723. async->submit_bio_done = submit_bio_done;
  724. async->work.func = run_one_async_start;
  725. async->work.ordered_func = run_one_async_done;
  726. async->work.ordered_free = run_one_async_free;
  727. async->work.flags = 0;
  728. async->bio_flags = bio_flags;
  729. async->bio_offset = bio_offset;
  730. async->error = 0;
  731. atomic_inc(&fs_info->nr_async_submits);
  732. if (rw & REQ_SYNC)
  733. btrfs_set_work_high_prio(&async->work);
  734. btrfs_queue_worker(&fs_info->workers, &async->work);
  735. while (atomic_read(&fs_info->async_submit_draining) &&
  736. atomic_read(&fs_info->nr_async_submits)) {
  737. wait_event(fs_info->async_submit_wait,
  738. (atomic_read(&fs_info->nr_async_submits) == 0));
  739. }
  740. return 0;
  741. }
  742. static int btree_csum_one_bio(struct bio *bio)
  743. {
  744. struct bio_vec *bvec = bio->bi_io_vec;
  745. int bio_index = 0;
  746. struct btrfs_root *root;
  747. int ret = 0;
  748. WARN_ON(bio->bi_vcnt <= 0);
  749. while (bio_index < bio->bi_vcnt) {
  750. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  751. ret = csum_dirty_buffer(root, bvec->bv_page);
  752. if (ret)
  753. break;
  754. bio_index++;
  755. bvec++;
  756. }
  757. return ret;
  758. }
  759. static int __btree_submit_bio_start(struct inode *inode, int rw,
  760. struct bio *bio, int mirror_num,
  761. unsigned long bio_flags,
  762. u64 bio_offset)
  763. {
  764. /*
  765. * when we're called for a write, we're already in the async
  766. * submission context. Just jump into btrfs_map_bio
  767. */
  768. return btree_csum_one_bio(bio);
  769. }
  770. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  771. int mirror_num, unsigned long bio_flags,
  772. u64 bio_offset)
  773. {
  774. int ret;
  775. /*
  776. * when we're called for a write, we're already in the async
  777. * submission context. Just jump into btrfs_map_bio
  778. */
  779. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  780. if (ret)
  781. bio_endio(bio, ret);
  782. return ret;
  783. }
  784. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  785. {
  786. if (bio_flags & EXTENT_BIO_TREE_LOG)
  787. return 0;
  788. #ifdef CONFIG_X86
  789. if (cpu_has_xmm4_2)
  790. return 0;
  791. #endif
  792. return 1;
  793. }
  794. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  795. int mirror_num, unsigned long bio_flags,
  796. u64 bio_offset)
  797. {
  798. int async = check_async_write(inode, bio_flags);
  799. int ret;
  800. if (!(rw & REQ_WRITE)) {
  801. /*
  802. * called for a read, do the setup so that checksum validation
  803. * can happen in the async kernel threads
  804. */
  805. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  806. bio, 1);
  807. if (ret)
  808. goto out_w_error;
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  810. mirror_num, 0);
  811. } else if (!async) {
  812. ret = btree_csum_one_bio(bio);
  813. if (ret)
  814. goto out_w_error;
  815. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  816. mirror_num, 0);
  817. } else {
  818. /*
  819. * kthread helpers are used to submit writes so that
  820. * checksumming can happen in parallel across all CPUs
  821. */
  822. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  823. inode, rw, bio, mirror_num, 0,
  824. bio_offset,
  825. __btree_submit_bio_start,
  826. __btree_submit_bio_done);
  827. }
  828. if (ret) {
  829. out_w_error:
  830. bio_endio(bio, ret);
  831. }
  832. return ret;
  833. }
  834. #ifdef CONFIG_MIGRATION
  835. static int btree_migratepage(struct address_space *mapping,
  836. struct page *newpage, struct page *page,
  837. enum migrate_mode mode)
  838. {
  839. /*
  840. * we can't safely write a btree page from here,
  841. * we haven't done the locking hook
  842. */
  843. if (PageDirty(page))
  844. return -EAGAIN;
  845. /*
  846. * Buffers may be managed in a filesystem specific way.
  847. * We must have no buffers or drop them.
  848. */
  849. if (page_has_private(page) &&
  850. !try_to_release_page(page, GFP_KERNEL))
  851. return -EAGAIN;
  852. return migrate_page(mapping, newpage, page, mode);
  853. }
  854. #endif
  855. static int btree_writepages(struct address_space *mapping,
  856. struct writeback_control *wbc)
  857. {
  858. struct extent_io_tree *tree;
  859. struct btrfs_fs_info *fs_info;
  860. int ret;
  861. tree = &BTRFS_I(mapping->host)->io_tree;
  862. if (wbc->sync_mode == WB_SYNC_NONE) {
  863. if (wbc->for_kupdate)
  864. return 0;
  865. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  866. /* this is a bit racy, but that's ok */
  867. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  868. BTRFS_DIRTY_METADATA_THRESH);
  869. if (ret < 0)
  870. return 0;
  871. }
  872. return btree_write_cache_pages(mapping, wbc);
  873. }
  874. static int btree_readpage(struct file *file, struct page *page)
  875. {
  876. struct extent_io_tree *tree;
  877. tree = &BTRFS_I(page->mapping->host)->io_tree;
  878. return extent_read_full_page(tree, page, btree_get_extent, 0);
  879. }
  880. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  881. {
  882. if (PageWriteback(page) || PageDirty(page))
  883. return 0;
  884. /*
  885. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  886. * slab allocation from alloc_extent_state down the callchain where
  887. * it'd hit a BUG_ON as those flags are not allowed.
  888. */
  889. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  890. return try_release_extent_buffer(page, gfp_flags);
  891. }
  892. static void btree_invalidatepage(struct page *page, unsigned long offset)
  893. {
  894. struct extent_io_tree *tree;
  895. tree = &BTRFS_I(page->mapping->host)->io_tree;
  896. extent_invalidatepage(tree, page, offset);
  897. btree_releasepage(page, GFP_NOFS);
  898. if (PagePrivate(page)) {
  899. printk(KERN_WARNING "btrfs warning page private not zero "
  900. "on page %llu\n", (unsigned long long)page_offset(page));
  901. ClearPagePrivate(page);
  902. set_page_private(page, 0);
  903. page_cache_release(page);
  904. }
  905. }
  906. static int btree_set_page_dirty(struct page *page)
  907. {
  908. #ifdef DEBUG
  909. struct extent_buffer *eb;
  910. BUG_ON(!PagePrivate(page));
  911. eb = (struct extent_buffer *)page->private;
  912. BUG_ON(!eb);
  913. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  914. BUG_ON(!atomic_read(&eb->refs));
  915. btrfs_assert_tree_locked(eb);
  916. #endif
  917. return __set_page_dirty_nobuffers(page);
  918. }
  919. static const struct address_space_operations btree_aops = {
  920. .readpage = btree_readpage,
  921. .writepages = btree_writepages,
  922. .releasepage = btree_releasepage,
  923. .invalidatepage = btree_invalidatepage,
  924. #ifdef CONFIG_MIGRATION
  925. .migratepage = btree_migratepage,
  926. #endif
  927. .set_page_dirty = btree_set_page_dirty,
  928. };
  929. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  930. u64 parent_transid)
  931. {
  932. struct extent_buffer *buf = NULL;
  933. struct inode *btree_inode = root->fs_info->btree_inode;
  934. int ret = 0;
  935. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  936. if (!buf)
  937. return 0;
  938. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  939. buf, 0, WAIT_NONE, btree_get_extent, 0);
  940. free_extent_buffer(buf);
  941. return ret;
  942. }
  943. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  944. int mirror_num, struct extent_buffer **eb)
  945. {
  946. struct extent_buffer *buf = NULL;
  947. struct inode *btree_inode = root->fs_info->btree_inode;
  948. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  949. int ret;
  950. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  951. if (!buf)
  952. return 0;
  953. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  954. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  955. btree_get_extent, mirror_num);
  956. if (ret) {
  957. free_extent_buffer(buf);
  958. return ret;
  959. }
  960. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  961. free_extent_buffer(buf);
  962. return -EIO;
  963. } else if (extent_buffer_uptodate(buf)) {
  964. *eb = buf;
  965. } else {
  966. free_extent_buffer(buf);
  967. }
  968. return 0;
  969. }
  970. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  971. u64 bytenr, u32 blocksize)
  972. {
  973. struct inode *btree_inode = root->fs_info->btree_inode;
  974. struct extent_buffer *eb;
  975. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  976. bytenr, blocksize);
  977. return eb;
  978. }
  979. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  980. u64 bytenr, u32 blocksize)
  981. {
  982. struct inode *btree_inode = root->fs_info->btree_inode;
  983. struct extent_buffer *eb;
  984. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  985. bytenr, blocksize);
  986. return eb;
  987. }
  988. int btrfs_write_tree_block(struct extent_buffer *buf)
  989. {
  990. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  991. buf->start + buf->len - 1);
  992. }
  993. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  994. {
  995. return filemap_fdatawait_range(buf->pages[0]->mapping,
  996. buf->start, buf->start + buf->len - 1);
  997. }
  998. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  999. u32 blocksize, u64 parent_transid)
  1000. {
  1001. struct extent_buffer *buf = NULL;
  1002. int ret;
  1003. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1004. if (!buf)
  1005. return NULL;
  1006. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1007. return buf;
  1008. }
  1009. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1010. struct extent_buffer *buf)
  1011. {
  1012. struct btrfs_fs_info *fs_info = root->fs_info;
  1013. if (btrfs_header_generation(buf) ==
  1014. fs_info->running_transaction->transid) {
  1015. btrfs_assert_tree_locked(buf);
  1016. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1017. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1018. -buf->len,
  1019. fs_info->dirty_metadata_batch);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1027. u32 stripesize, struct btrfs_root *root,
  1028. struct btrfs_fs_info *fs_info,
  1029. u64 objectid)
  1030. {
  1031. root->node = NULL;
  1032. root->commit_root = NULL;
  1033. root->sectorsize = sectorsize;
  1034. root->nodesize = nodesize;
  1035. root->leafsize = leafsize;
  1036. root->stripesize = stripesize;
  1037. root->ref_cows = 0;
  1038. root->track_dirty = 0;
  1039. root->in_radix = 0;
  1040. root->orphan_item_inserted = 0;
  1041. root->orphan_cleanup_state = 0;
  1042. root->objectid = objectid;
  1043. root->last_trans = 0;
  1044. root->highest_objectid = 0;
  1045. root->name = NULL;
  1046. root->inode_tree = RB_ROOT;
  1047. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1048. root->block_rsv = NULL;
  1049. root->orphan_block_rsv = NULL;
  1050. INIT_LIST_HEAD(&root->dirty_list);
  1051. INIT_LIST_HEAD(&root->root_list);
  1052. INIT_LIST_HEAD(&root->logged_list[0]);
  1053. INIT_LIST_HEAD(&root->logged_list[1]);
  1054. spin_lock_init(&root->orphan_lock);
  1055. spin_lock_init(&root->inode_lock);
  1056. spin_lock_init(&root->accounting_lock);
  1057. spin_lock_init(&root->log_extents_lock[0]);
  1058. spin_lock_init(&root->log_extents_lock[1]);
  1059. mutex_init(&root->objectid_mutex);
  1060. mutex_init(&root->log_mutex);
  1061. init_waitqueue_head(&root->log_writer_wait);
  1062. init_waitqueue_head(&root->log_commit_wait[0]);
  1063. init_waitqueue_head(&root->log_commit_wait[1]);
  1064. atomic_set(&root->log_commit[0], 0);
  1065. atomic_set(&root->log_commit[1], 0);
  1066. atomic_set(&root->log_writers, 0);
  1067. atomic_set(&root->log_batch, 0);
  1068. atomic_set(&root->orphan_inodes, 0);
  1069. root->log_transid = 0;
  1070. root->last_log_commit = 0;
  1071. extent_io_tree_init(&root->dirty_log_pages,
  1072. fs_info->btree_inode->i_mapping);
  1073. memset(&root->root_key, 0, sizeof(root->root_key));
  1074. memset(&root->root_item, 0, sizeof(root->root_item));
  1075. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1076. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1077. root->defrag_trans_start = fs_info->generation;
  1078. init_completion(&root->kobj_unregister);
  1079. root->defrag_running = 0;
  1080. root->root_key.objectid = objectid;
  1081. root->anon_dev = 0;
  1082. spin_lock_init(&root->root_item_lock);
  1083. }
  1084. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1085. struct btrfs_fs_info *fs_info,
  1086. u64 objectid,
  1087. struct btrfs_root *root)
  1088. {
  1089. int ret;
  1090. u32 blocksize;
  1091. u64 generation;
  1092. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1093. tree_root->sectorsize, tree_root->stripesize,
  1094. root, fs_info, objectid);
  1095. ret = btrfs_find_last_root(tree_root, objectid,
  1096. &root->root_item, &root->root_key);
  1097. if (ret > 0)
  1098. return -ENOENT;
  1099. else if (ret < 0)
  1100. return ret;
  1101. generation = btrfs_root_generation(&root->root_item);
  1102. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1103. root->commit_root = NULL;
  1104. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1105. blocksize, generation);
  1106. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1107. free_extent_buffer(root->node);
  1108. root->node = NULL;
  1109. return -EIO;
  1110. }
  1111. root->commit_root = btrfs_root_node(root);
  1112. return 0;
  1113. }
  1114. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1115. {
  1116. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1117. if (root)
  1118. root->fs_info = fs_info;
  1119. return root;
  1120. }
  1121. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1122. struct btrfs_fs_info *fs_info,
  1123. u64 objectid)
  1124. {
  1125. struct extent_buffer *leaf;
  1126. struct btrfs_root *tree_root = fs_info->tree_root;
  1127. struct btrfs_root *root;
  1128. struct btrfs_key key;
  1129. int ret = 0;
  1130. u64 bytenr;
  1131. uuid_le uuid;
  1132. root = btrfs_alloc_root(fs_info);
  1133. if (!root)
  1134. return ERR_PTR(-ENOMEM);
  1135. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1136. tree_root->sectorsize, tree_root->stripesize,
  1137. root, fs_info, objectid);
  1138. root->root_key.objectid = objectid;
  1139. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1140. root->root_key.offset = 0;
  1141. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1142. 0, objectid, NULL, 0, 0, 0);
  1143. if (IS_ERR(leaf)) {
  1144. ret = PTR_ERR(leaf);
  1145. leaf = NULL;
  1146. goto fail;
  1147. }
  1148. bytenr = leaf->start;
  1149. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1150. btrfs_set_header_bytenr(leaf, leaf->start);
  1151. btrfs_set_header_generation(leaf, trans->transid);
  1152. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1153. btrfs_set_header_owner(leaf, objectid);
  1154. root->node = leaf;
  1155. write_extent_buffer(leaf, fs_info->fsid,
  1156. (unsigned long)btrfs_header_fsid(leaf),
  1157. BTRFS_FSID_SIZE);
  1158. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1159. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1160. BTRFS_UUID_SIZE);
  1161. btrfs_mark_buffer_dirty(leaf);
  1162. root->commit_root = btrfs_root_node(root);
  1163. root->track_dirty = 1;
  1164. root->root_item.flags = 0;
  1165. root->root_item.byte_limit = 0;
  1166. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1167. btrfs_set_root_generation(&root->root_item, trans->transid);
  1168. btrfs_set_root_level(&root->root_item, 0);
  1169. btrfs_set_root_refs(&root->root_item, 1);
  1170. btrfs_set_root_used(&root->root_item, leaf->len);
  1171. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1172. btrfs_set_root_dirid(&root->root_item, 0);
  1173. uuid_le_gen(&uuid);
  1174. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1175. root->root_item.drop_level = 0;
  1176. key.objectid = objectid;
  1177. key.type = BTRFS_ROOT_ITEM_KEY;
  1178. key.offset = 0;
  1179. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1180. if (ret)
  1181. goto fail;
  1182. btrfs_tree_unlock(leaf);
  1183. return root;
  1184. fail:
  1185. if (leaf) {
  1186. btrfs_tree_unlock(leaf);
  1187. free_extent_buffer(leaf);
  1188. }
  1189. kfree(root);
  1190. return ERR_PTR(ret);
  1191. }
  1192. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1193. struct btrfs_fs_info *fs_info)
  1194. {
  1195. struct btrfs_root *root;
  1196. struct btrfs_root *tree_root = fs_info->tree_root;
  1197. struct extent_buffer *leaf;
  1198. root = btrfs_alloc_root(fs_info);
  1199. if (!root)
  1200. return ERR_PTR(-ENOMEM);
  1201. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1202. tree_root->sectorsize, tree_root->stripesize,
  1203. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1204. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1205. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1206. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1207. /*
  1208. * log trees do not get reference counted because they go away
  1209. * before a real commit is actually done. They do store pointers
  1210. * to file data extents, and those reference counts still get
  1211. * updated (along with back refs to the log tree).
  1212. */
  1213. root->ref_cows = 0;
  1214. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1215. BTRFS_TREE_LOG_OBJECTID, NULL,
  1216. 0, 0, 0);
  1217. if (IS_ERR(leaf)) {
  1218. kfree(root);
  1219. return ERR_CAST(leaf);
  1220. }
  1221. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1222. btrfs_set_header_bytenr(leaf, leaf->start);
  1223. btrfs_set_header_generation(leaf, trans->transid);
  1224. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1225. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1226. root->node = leaf;
  1227. write_extent_buffer(root->node, root->fs_info->fsid,
  1228. (unsigned long)btrfs_header_fsid(root->node),
  1229. BTRFS_FSID_SIZE);
  1230. btrfs_mark_buffer_dirty(root->node);
  1231. btrfs_tree_unlock(root->node);
  1232. return root;
  1233. }
  1234. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1235. struct btrfs_fs_info *fs_info)
  1236. {
  1237. struct btrfs_root *log_root;
  1238. log_root = alloc_log_tree(trans, fs_info);
  1239. if (IS_ERR(log_root))
  1240. return PTR_ERR(log_root);
  1241. WARN_ON(fs_info->log_root_tree);
  1242. fs_info->log_root_tree = log_root;
  1243. return 0;
  1244. }
  1245. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1246. struct btrfs_root *root)
  1247. {
  1248. struct btrfs_root *log_root;
  1249. struct btrfs_inode_item *inode_item;
  1250. log_root = alloc_log_tree(trans, root->fs_info);
  1251. if (IS_ERR(log_root))
  1252. return PTR_ERR(log_root);
  1253. log_root->last_trans = trans->transid;
  1254. log_root->root_key.offset = root->root_key.objectid;
  1255. inode_item = &log_root->root_item.inode;
  1256. inode_item->generation = cpu_to_le64(1);
  1257. inode_item->size = cpu_to_le64(3);
  1258. inode_item->nlink = cpu_to_le32(1);
  1259. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1260. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1261. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1262. WARN_ON(root->log_root);
  1263. root->log_root = log_root;
  1264. root->log_transid = 0;
  1265. root->last_log_commit = 0;
  1266. return 0;
  1267. }
  1268. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1269. struct btrfs_key *location)
  1270. {
  1271. struct btrfs_root *root;
  1272. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1273. struct btrfs_path *path;
  1274. struct extent_buffer *l;
  1275. u64 generation;
  1276. u32 blocksize;
  1277. int ret = 0;
  1278. int slot;
  1279. root = btrfs_alloc_root(fs_info);
  1280. if (!root)
  1281. return ERR_PTR(-ENOMEM);
  1282. if (location->offset == (u64)-1) {
  1283. ret = find_and_setup_root(tree_root, fs_info,
  1284. location->objectid, root);
  1285. if (ret) {
  1286. kfree(root);
  1287. return ERR_PTR(ret);
  1288. }
  1289. goto out;
  1290. }
  1291. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1292. tree_root->sectorsize, tree_root->stripesize,
  1293. root, fs_info, location->objectid);
  1294. path = btrfs_alloc_path();
  1295. if (!path) {
  1296. kfree(root);
  1297. return ERR_PTR(-ENOMEM);
  1298. }
  1299. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1300. if (ret == 0) {
  1301. l = path->nodes[0];
  1302. slot = path->slots[0];
  1303. btrfs_read_root_item(l, slot, &root->root_item);
  1304. memcpy(&root->root_key, location, sizeof(*location));
  1305. }
  1306. btrfs_free_path(path);
  1307. if (ret) {
  1308. kfree(root);
  1309. if (ret > 0)
  1310. ret = -ENOENT;
  1311. return ERR_PTR(ret);
  1312. }
  1313. generation = btrfs_root_generation(&root->root_item);
  1314. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1315. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1316. blocksize, generation);
  1317. if (!root->node || !extent_buffer_uptodate(root->node)) {
  1318. ret = (!root->node) ? -ENOMEM : -EIO;
  1319. free_extent_buffer(root->node);
  1320. kfree(root);
  1321. return ERR_PTR(ret);
  1322. }
  1323. root->commit_root = btrfs_root_node(root);
  1324. BUG_ON(!root->node); /* -ENOMEM */
  1325. out:
  1326. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1327. root->ref_cows = 1;
  1328. btrfs_check_and_init_root_item(&root->root_item);
  1329. }
  1330. return root;
  1331. }
  1332. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1333. struct btrfs_key *location)
  1334. {
  1335. struct btrfs_root *root;
  1336. int ret;
  1337. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1338. return fs_info->tree_root;
  1339. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1340. return fs_info->extent_root;
  1341. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1342. return fs_info->chunk_root;
  1343. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1344. return fs_info->dev_root;
  1345. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1346. return fs_info->csum_root;
  1347. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1348. return fs_info->quota_root ? fs_info->quota_root :
  1349. ERR_PTR(-ENOENT);
  1350. again:
  1351. spin_lock(&fs_info->fs_roots_radix_lock);
  1352. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1353. (unsigned long)location->objectid);
  1354. spin_unlock(&fs_info->fs_roots_radix_lock);
  1355. if (root)
  1356. return root;
  1357. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1358. if (IS_ERR(root))
  1359. return root;
  1360. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1361. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1362. GFP_NOFS);
  1363. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1364. ret = -ENOMEM;
  1365. goto fail;
  1366. }
  1367. btrfs_init_free_ino_ctl(root);
  1368. mutex_init(&root->fs_commit_mutex);
  1369. spin_lock_init(&root->cache_lock);
  1370. init_waitqueue_head(&root->cache_wait);
  1371. ret = get_anon_bdev(&root->anon_dev);
  1372. if (ret)
  1373. goto fail;
  1374. if (btrfs_root_refs(&root->root_item) == 0) {
  1375. ret = -ENOENT;
  1376. goto fail;
  1377. }
  1378. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1379. if (ret < 0)
  1380. goto fail;
  1381. if (ret == 0)
  1382. root->orphan_item_inserted = 1;
  1383. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1384. if (ret)
  1385. goto fail;
  1386. spin_lock(&fs_info->fs_roots_radix_lock);
  1387. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1388. (unsigned long)root->root_key.objectid,
  1389. root);
  1390. if (ret == 0)
  1391. root->in_radix = 1;
  1392. spin_unlock(&fs_info->fs_roots_radix_lock);
  1393. radix_tree_preload_end();
  1394. if (ret) {
  1395. if (ret == -EEXIST) {
  1396. free_fs_root(root);
  1397. goto again;
  1398. }
  1399. goto fail;
  1400. }
  1401. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1402. root->root_key.objectid);
  1403. WARN_ON(ret);
  1404. return root;
  1405. fail:
  1406. free_fs_root(root);
  1407. return ERR_PTR(ret);
  1408. }
  1409. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1410. {
  1411. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1412. int ret = 0;
  1413. struct btrfs_device *device;
  1414. struct backing_dev_info *bdi;
  1415. rcu_read_lock();
  1416. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1417. if (!device->bdev)
  1418. continue;
  1419. bdi = blk_get_backing_dev_info(device->bdev);
  1420. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1421. ret = 1;
  1422. break;
  1423. }
  1424. }
  1425. rcu_read_unlock();
  1426. return ret;
  1427. }
  1428. /*
  1429. * If this fails, caller must call bdi_destroy() to get rid of the
  1430. * bdi again.
  1431. */
  1432. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1433. {
  1434. int err;
  1435. bdi->capabilities = BDI_CAP_MAP_COPY;
  1436. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1437. if (err)
  1438. return err;
  1439. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1440. bdi->congested_fn = btrfs_congested_fn;
  1441. bdi->congested_data = info;
  1442. return 0;
  1443. }
  1444. /*
  1445. * called by the kthread helper functions to finally call the bio end_io
  1446. * functions. This is where read checksum verification actually happens
  1447. */
  1448. static void end_workqueue_fn(struct btrfs_work *work)
  1449. {
  1450. struct bio *bio;
  1451. struct end_io_wq *end_io_wq;
  1452. struct btrfs_fs_info *fs_info;
  1453. int error;
  1454. end_io_wq = container_of(work, struct end_io_wq, work);
  1455. bio = end_io_wq->bio;
  1456. fs_info = end_io_wq->info;
  1457. error = end_io_wq->error;
  1458. bio->bi_private = end_io_wq->private;
  1459. bio->bi_end_io = end_io_wq->end_io;
  1460. kfree(end_io_wq);
  1461. bio_endio(bio, error);
  1462. }
  1463. static int cleaner_kthread(void *arg)
  1464. {
  1465. struct btrfs_root *root = arg;
  1466. do {
  1467. int again = 0;
  1468. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1469. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1470. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1471. btrfs_run_delayed_iputs(root);
  1472. again = btrfs_clean_one_deleted_snapshot(root);
  1473. mutex_unlock(&root->fs_info->cleaner_mutex);
  1474. }
  1475. btrfs_run_defrag_inodes(root->fs_info);
  1476. up_read(&root->fs_info->sb->s_umount);
  1477. }
  1478. if (!try_to_freeze() && !again) {
  1479. set_current_state(TASK_INTERRUPTIBLE);
  1480. if (!kthread_should_stop())
  1481. schedule();
  1482. __set_current_state(TASK_RUNNING);
  1483. }
  1484. } while (!kthread_should_stop());
  1485. return 0;
  1486. }
  1487. static int transaction_kthread(void *arg)
  1488. {
  1489. struct btrfs_root *root = arg;
  1490. struct btrfs_trans_handle *trans;
  1491. struct btrfs_transaction *cur;
  1492. u64 transid;
  1493. unsigned long now;
  1494. unsigned long delay;
  1495. bool cannot_commit;
  1496. do {
  1497. cannot_commit = false;
  1498. delay = HZ * 30;
  1499. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1500. spin_lock(&root->fs_info->trans_lock);
  1501. cur = root->fs_info->running_transaction;
  1502. if (!cur) {
  1503. spin_unlock(&root->fs_info->trans_lock);
  1504. goto sleep;
  1505. }
  1506. now = get_seconds();
  1507. if (!cur->blocked &&
  1508. (now < cur->start_time || now - cur->start_time < 30)) {
  1509. spin_unlock(&root->fs_info->trans_lock);
  1510. delay = HZ * 5;
  1511. goto sleep;
  1512. }
  1513. transid = cur->transid;
  1514. spin_unlock(&root->fs_info->trans_lock);
  1515. /* If the file system is aborted, this will always fail. */
  1516. trans = btrfs_attach_transaction(root);
  1517. if (IS_ERR(trans)) {
  1518. if (PTR_ERR(trans) != -ENOENT)
  1519. cannot_commit = true;
  1520. goto sleep;
  1521. }
  1522. if (transid == trans->transid) {
  1523. btrfs_commit_transaction(trans, root);
  1524. } else {
  1525. btrfs_end_transaction(trans, root);
  1526. }
  1527. sleep:
  1528. wake_up_process(root->fs_info->cleaner_kthread);
  1529. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1530. if (!try_to_freeze()) {
  1531. set_current_state(TASK_INTERRUPTIBLE);
  1532. if (!kthread_should_stop() &&
  1533. (!btrfs_transaction_blocked(root->fs_info) ||
  1534. cannot_commit))
  1535. schedule_timeout(delay);
  1536. __set_current_state(TASK_RUNNING);
  1537. }
  1538. } while (!kthread_should_stop());
  1539. return 0;
  1540. }
  1541. /*
  1542. * this will find the highest generation in the array of
  1543. * root backups. The index of the highest array is returned,
  1544. * or -1 if we can't find anything.
  1545. *
  1546. * We check to make sure the array is valid by comparing the
  1547. * generation of the latest root in the array with the generation
  1548. * in the super block. If they don't match we pitch it.
  1549. */
  1550. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1551. {
  1552. u64 cur;
  1553. int newest_index = -1;
  1554. struct btrfs_root_backup *root_backup;
  1555. int i;
  1556. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1557. root_backup = info->super_copy->super_roots + i;
  1558. cur = btrfs_backup_tree_root_gen(root_backup);
  1559. if (cur == newest_gen)
  1560. newest_index = i;
  1561. }
  1562. /* check to see if we actually wrapped around */
  1563. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1564. root_backup = info->super_copy->super_roots;
  1565. cur = btrfs_backup_tree_root_gen(root_backup);
  1566. if (cur == newest_gen)
  1567. newest_index = 0;
  1568. }
  1569. return newest_index;
  1570. }
  1571. /*
  1572. * find the oldest backup so we know where to store new entries
  1573. * in the backup array. This will set the backup_root_index
  1574. * field in the fs_info struct
  1575. */
  1576. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1577. u64 newest_gen)
  1578. {
  1579. int newest_index = -1;
  1580. newest_index = find_newest_super_backup(info, newest_gen);
  1581. /* if there was garbage in there, just move along */
  1582. if (newest_index == -1) {
  1583. info->backup_root_index = 0;
  1584. } else {
  1585. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1586. }
  1587. }
  1588. /*
  1589. * copy all the root pointers into the super backup array.
  1590. * this will bump the backup pointer by one when it is
  1591. * done
  1592. */
  1593. static void backup_super_roots(struct btrfs_fs_info *info)
  1594. {
  1595. int next_backup;
  1596. struct btrfs_root_backup *root_backup;
  1597. int last_backup;
  1598. next_backup = info->backup_root_index;
  1599. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1600. BTRFS_NUM_BACKUP_ROOTS;
  1601. /*
  1602. * just overwrite the last backup if we're at the same generation
  1603. * this happens only at umount
  1604. */
  1605. root_backup = info->super_for_commit->super_roots + last_backup;
  1606. if (btrfs_backup_tree_root_gen(root_backup) ==
  1607. btrfs_header_generation(info->tree_root->node))
  1608. next_backup = last_backup;
  1609. root_backup = info->super_for_commit->super_roots + next_backup;
  1610. /*
  1611. * make sure all of our padding and empty slots get zero filled
  1612. * regardless of which ones we use today
  1613. */
  1614. memset(root_backup, 0, sizeof(*root_backup));
  1615. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1616. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1617. btrfs_set_backup_tree_root_gen(root_backup,
  1618. btrfs_header_generation(info->tree_root->node));
  1619. btrfs_set_backup_tree_root_level(root_backup,
  1620. btrfs_header_level(info->tree_root->node));
  1621. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1622. btrfs_set_backup_chunk_root_gen(root_backup,
  1623. btrfs_header_generation(info->chunk_root->node));
  1624. btrfs_set_backup_chunk_root_level(root_backup,
  1625. btrfs_header_level(info->chunk_root->node));
  1626. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1627. btrfs_set_backup_extent_root_gen(root_backup,
  1628. btrfs_header_generation(info->extent_root->node));
  1629. btrfs_set_backup_extent_root_level(root_backup,
  1630. btrfs_header_level(info->extent_root->node));
  1631. /*
  1632. * we might commit during log recovery, which happens before we set
  1633. * the fs_root. Make sure it is valid before we fill it in.
  1634. */
  1635. if (info->fs_root && info->fs_root->node) {
  1636. btrfs_set_backup_fs_root(root_backup,
  1637. info->fs_root->node->start);
  1638. btrfs_set_backup_fs_root_gen(root_backup,
  1639. btrfs_header_generation(info->fs_root->node));
  1640. btrfs_set_backup_fs_root_level(root_backup,
  1641. btrfs_header_level(info->fs_root->node));
  1642. }
  1643. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1644. btrfs_set_backup_dev_root_gen(root_backup,
  1645. btrfs_header_generation(info->dev_root->node));
  1646. btrfs_set_backup_dev_root_level(root_backup,
  1647. btrfs_header_level(info->dev_root->node));
  1648. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1649. btrfs_set_backup_csum_root_gen(root_backup,
  1650. btrfs_header_generation(info->csum_root->node));
  1651. btrfs_set_backup_csum_root_level(root_backup,
  1652. btrfs_header_level(info->csum_root->node));
  1653. btrfs_set_backup_total_bytes(root_backup,
  1654. btrfs_super_total_bytes(info->super_copy));
  1655. btrfs_set_backup_bytes_used(root_backup,
  1656. btrfs_super_bytes_used(info->super_copy));
  1657. btrfs_set_backup_num_devices(root_backup,
  1658. btrfs_super_num_devices(info->super_copy));
  1659. /*
  1660. * if we don't copy this out to the super_copy, it won't get remembered
  1661. * for the next commit
  1662. */
  1663. memcpy(&info->super_copy->super_roots,
  1664. &info->super_for_commit->super_roots,
  1665. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1666. }
  1667. /*
  1668. * this copies info out of the root backup array and back into
  1669. * the in-memory super block. It is meant to help iterate through
  1670. * the array, so you send it the number of backups you've already
  1671. * tried and the last backup index you used.
  1672. *
  1673. * this returns -1 when it has tried all the backups
  1674. */
  1675. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1676. struct btrfs_super_block *super,
  1677. int *num_backups_tried, int *backup_index)
  1678. {
  1679. struct btrfs_root_backup *root_backup;
  1680. int newest = *backup_index;
  1681. if (*num_backups_tried == 0) {
  1682. u64 gen = btrfs_super_generation(super);
  1683. newest = find_newest_super_backup(info, gen);
  1684. if (newest == -1)
  1685. return -1;
  1686. *backup_index = newest;
  1687. *num_backups_tried = 1;
  1688. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1689. /* we've tried all the backups, all done */
  1690. return -1;
  1691. } else {
  1692. /* jump to the next oldest backup */
  1693. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1694. BTRFS_NUM_BACKUP_ROOTS;
  1695. *backup_index = newest;
  1696. *num_backups_tried += 1;
  1697. }
  1698. root_backup = super->super_roots + newest;
  1699. btrfs_set_super_generation(super,
  1700. btrfs_backup_tree_root_gen(root_backup));
  1701. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1702. btrfs_set_super_root_level(super,
  1703. btrfs_backup_tree_root_level(root_backup));
  1704. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1705. /*
  1706. * fixme: the total bytes and num_devices need to match or we should
  1707. * need a fsck
  1708. */
  1709. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1710. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1711. return 0;
  1712. }
  1713. /* helper to cleanup workers */
  1714. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1715. {
  1716. btrfs_stop_workers(&fs_info->generic_worker);
  1717. btrfs_stop_workers(&fs_info->fixup_workers);
  1718. btrfs_stop_workers(&fs_info->delalloc_workers);
  1719. btrfs_stop_workers(&fs_info->workers);
  1720. btrfs_stop_workers(&fs_info->endio_workers);
  1721. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1722. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1723. btrfs_stop_workers(&fs_info->rmw_workers);
  1724. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1725. btrfs_stop_workers(&fs_info->endio_write_workers);
  1726. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1727. btrfs_stop_workers(&fs_info->submit_workers);
  1728. btrfs_stop_workers(&fs_info->delayed_workers);
  1729. btrfs_stop_workers(&fs_info->caching_workers);
  1730. btrfs_stop_workers(&fs_info->readahead_workers);
  1731. btrfs_stop_workers(&fs_info->flush_workers);
  1732. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1733. }
  1734. /* helper to cleanup tree roots */
  1735. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1736. {
  1737. free_extent_buffer(info->tree_root->node);
  1738. free_extent_buffer(info->tree_root->commit_root);
  1739. free_extent_buffer(info->dev_root->node);
  1740. free_extent_buffer(info->dev_root->commit_root);
  1741. free_extent_buffer(info->extent_root->node);
  1742. free_extent_buffer(info->extent_root->commit_root);
  1743. free_extent_buffer(info->csum_root->node);
  1744. free_extent_buffer(info->csum_root->commit_root);
  1745. if (info->quota_root) {
  1746. free_extent_buffer(info->quota_root->node);
  1747. free_extent_buffer(info->quota_root->commit_root);
  1748. }
  1749. info->tree_root->node = NULL;
  1750. info->tree_root->commit_root = NULL;
  1751. info->dev_root->node = NULL;
  1752. info->dev_root->commit_root = NULL;
  1753. info->extent_root->node = NULL;
  1754. info->extent_root->commit_root = NULL;
  1755. info->csum_root->node = NULL;
  1756. info->csum_root->commit_root = NULL;
  1757. if (info->quota_root) {
  1758. info->quota_root->node = NULL;
  1759. info->quota_root->commit_root = NULL;
  1760. }
  1761. if (chunk_root) {
  1762. free_extent_buffer(info->chunk_root->node);
  1763. free_extent_buffer(info->chunk_root->commit_root);
  1764. info->chunk_root->node = NULL;
  1765. info->chunk_root->commit_root = NULL;
  1766. }
  1767. }
  1768. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1769. {
  1770. int ret;
  1771. struct btrfs_root *gang[8];
  1772. int i;
  1773. while (!list_empty(&fs_info->dead_roots)) {
  1774. gang[0] = list_entry(fs_info->dead_roots.next,
  1775. struct btrfs_root, root_list);
  1776. list_del(&gang[0]->root_list);
  1777. if (gang[0]->in_radix) {
  1778. btrfs_free_fs_root(fs_info, gang[0]);
  1779. } else {
  1780. free_extent_buffer(gang[0]->node);
  1781. free_extent_buffer(gang[0]->commit_root);
  1782. kfree(gang[0]);
  1783. }
  1784. }
  1785. while (1) {
  1786. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1787. (void **)gang, 0,
  1788. ARRAY_SIZE(gang));
  1789. if (!ret)
  1790. break;
  1791. for (i = 0; i < ret; i++)
  1792. btrfs_free_fs_root(fs_info, gang[i]);
  1793. }
  1794. }
  1795. int open_ctree(struct super_block *sb,
  1796. struct btrfs_fs_devices *fs_devices,
  1797. char *options)
  1798. {
  1799. u32 sectorsize;
  1800. u32 nodesize;
  1801. u32 leafsize;
  1802. u32 blocksize;
  1803. u32 stripesize;
  1804. u64 generation;
  1805. u64 features;
  1806. struct btrfs_key location;
  1807. struct buffer_head *bh;
  1808. struct btrfs_super_block *disk_super;
  1809. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1810. struct btrfs_root *tree_root;
  1811. struct btrfs_root *extent_root;
  1812. struct btrfs_root *csum_root;
  1813. struct btrfs_root *chunk_root;
  1814. struct btrfs_root *dev_root;
  1815. struct btrfs_root *quota_root;
  1816. struct btrfs_root *log_tree_root;
  1817. int ret;
  1818. int err = -EINVAL;
  1819. int num_backups_tried = 0;
  1820. int backup_index = 0;
  1821. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1822. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1823. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1824. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1825. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1826. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1827. if (!tree_root || !extent_root || !csum_root ||
  1828. !chunk_root || !dev_root || !quota_root) {
  1829. err = -ENOMEM;
  1830. goto fail;
  1831. }
  1832. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1833. if (ret) {
  1834. err = ret;
  1835. goto fail;
  1836. }
  1837. ret = setup_bdi(fs_info, &fs_info->bdi);
  1838. if (ret) {
  1839. err = ret;
  1840. goto fail_srcu;
  1841. }
  1842. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1843. if (ret) {
  1844. err = ret;
  1845. goto fail_bdi;
  1846. }
  1847. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1848. (1 + ilog2(nr_cpu_ids));
  1849. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1850. if (ret) {
  1851. err = ret;
  1852. goto fail_dirty_metadata_bytes;
  1853. }
  1854. fs_info->btree_inode = new_inode(sb);
  1855. if (!fs_info->btree_inode) {
  1856. err = -ENOMEM;
  1857. goto fail_delalloc_bytes;
  1858. }
  1859. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1860. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1861. INIT_LIST_HEAD(&fs_info->trans_list);
  1862. INIT_LIST_HEAD(&fs_info->dead_roots);
  1863. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1864. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1865. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1866. spin_lock_init(&fs_info->delalloc_lock);
  1867. spin_lock_init(&fs_info->trans_lock);
  1868. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1869. spin_lock_init(&fs_info->delayed_iput_lock);
  1870. spin_lock_init(&fs_info->defrag_inodes_lock);
  1871. spin_lock_init(&fs_info->free_chunk_lock);
  1872. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1873. spin_lock_init(&fs_info->super_lock);
  1874. rwlock_init(&fs_info->tree_mod_log_lock);
  1875. mutex_init(&fs_info->reloc_mutex);
  1876. seqlock_init(&fs_info->profiles_lock);
  1877. init_completion(&fs_info->kobj_unregister);
  1878. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1879. INIT_LIST_HEAD(&fs_info->space_info);
  1880. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1881. btrfs_mapping_init(&fs_info->mapping_tree);
  1882. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1883. BTRFS_BLOCK_RSV_GLOBAL);
  1884. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1885. BTRFS_BLOCK_RSV_DELALLOC);
  1886. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1887. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1888. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1889. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1890. BTRFS_BLOCK_RSV_DELOPS);
  1891. atomic_set(&fs_info->nr_async_submits, 0);
  1892. atomic_set(&fs_info->async_delalloc_pages, 0);
  1893. atomic_set(&fs_info->async_submit_draining, 0);
  1894. atomic_set(&fs_info->nr_async_bios, 0);
  1895. atomic_set(&fs_info->defrag_running, 0);
  1896. atomic64_set(&fs_info->tree_mod_seq, 0);
  1897. fs_info->sb = sb;
  1898. fs_info->max_inline = 8192 * 1024;
  1899. fs_info->metadata_ratio = 0;
  1900. fs_info->defrag_inodes = RB_ROOT;
  1901. fs_info->trans_no_join = 0;
  1902. fs_info->free_chunk_space = 0;
  1903. fs_info->tree_mod_log = RB_ROOT;
  1904. /* readahead state */
  1905. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1906. spin_lock_init(&fs_info->reada_lock);
  1907. fs_info->thread_pool_size = min_t(unsigned long,
  1908. num_online_cpus() + 2, 8);
  1909. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1910. spin_lock_init(&fs_info->ordered_extent_lock);
  1911. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1912. GFP_NOFS);
  1913. if (!fs_info->delayed_root) {
  1914. err = -ENOMEM;
  1915. goto fail_iput;
  1916. }
  1917. btrfs_init_delayed_root(fs_info->delayed_root);
  1918. mutex_init(&fs_info->scrub_lock);
  1919. atomic_set(&fs_info->scrubs_running, 0);
  1920. atomic_set(&fs_info->scrub_pause_req, 0);
  1921. atomic_set(&fs_info->scrubs_paused, 0);
  1922. atomic_set(&fs_info->scrub_cancel_req, 0);
  1923. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1924. init_rwsem(&fs_info->scrub_super_lock);
  1925. fs_info->scrub_workers_refcnt = 0;
  1926. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1927. fs_info->check_integrity_print_mask = 0;
  1928. #endif
  1929. spin_lock_init(&fs_info->balance_lock);
  1930. mutex_init(&fs_info->balance_mutex);
  1931. atomic_set(&fs_info->balance_running, 0);
  1932. atomic_set(&fs_info->balance_pause_req, 0);
  1933. atomic_set(&fs_info->balance_cancel_req, 0);
  1934. fs_info->balance_ctl = NULL;
  1935. init_waitqueue_head(&fs_info->balance_wait_q);
  1936. sb->s_blocksize = 4096;
  1937. sb->s_blocksize_bits = blksize_bits(4096);
  1938. sb->s_bdi = &fs_info->bdi;
  1939. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1940. set_nlink(fs_info->btree_inode, 1);
  1941. /*
  1942. * we set the i_size on the btree inode to the max possible int.
  1943. * the real end of the address space is determined by all of
  1944. * the devices in the system
  1945. */
  1946. fs_info->btree_inode->i_size = OFFSET_MAX;
  1947. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1948. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1949. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1950. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1951. fs_info->btree_inode->i_mapping);
  1952. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1953. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1954. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1955. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1956. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1957. sizeof(struct btrfs_key));
  1958. set_bit(BTRFS_INODE_DUMMY,
  1959. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1960. insert_inode_hash(fs_info->btree_inode);
  1961. spin_lock_init(&fs_info->block_group_cache_lock);
  1962. fs_info->block_group_cache_tree = RB_ROOT;
  1963. fs_info->first_logical_byte = (u64)-1;
  1964. extent_io_tree_init(&fs_info->freed_extents[0],
  1965. fs_info->btree_inode->i_mapping);
  1966. extent_io_tree_init(&fs_info->freed_extents[1],
  1967. fs_info->btree_inode->i_mapping);
  1968. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1969. fs_info->do_barriers = 1;
  1970. mutex_init(&fs_info->ordered_operations_mutex);
  1971. mutex_init(&fs_info->tree_log_mutex);
  1972. mutex_init(&fs_info->chunk_mutex);
  1973. mutex_init(&fs_info->transaction_kthread_mutex);
  1974. mutex_init(&fs_info->cleaner_mutex);
  1975. mutex_init(&fs_info->volume_mutex);
  1976. init_rwsem(&fs_info->extent_commit_sem);
  1977. init_rwsem(&fs_info->cleanup_work_sem);
  1978. init_rwsem(&fs_info->subvol_sem);
  1979. fs_info->dev_replace.lock_owner = 0;
  1980. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1981. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1982. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1983. mutex_init(&fs_info->dev_replace.lock);
  1984. spin_lock_init(&fs_info->qgroup_lock);
  1985. mutex_init(&fs_info->qgroup_ioctl_lock);
  1986. fs_info->qgroup_tree = RB_ROOT;
  1987. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1988. fs_info->qgroup_seq = 1;
  1989. fs_info->quota_enabled = 0;
  1990. fs_info->pending_quota_state = 0;
  1991. mutex_init(&fs_info->qgroup_rescan_lock);
  1992. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1993. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1994. init_waitqueue_head(&fs_info->transaction_throttle);
  1995. init_waitqueue_head(&fs_info->transaction_wait);
  1996. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1997. init_waitqueue_head(&fs_info->async_submit_wait);
  1998. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1999. if (ret) {
  2000. err = ret;
  2001. goto fail_alloc;
  2002. }
  2003. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2004. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2005. invalidate_bdev(fs_devices->latest_bdev);
  2006. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2007. if (!bh) {
  2008. err = -EINVAL;
  2009. goto fail_alloc;
  2010. }
  2011. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2012. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2013. sizeof(*fs_info->super_for_commit));
  2014. brelse(bh);
  2015. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2016. disk_super = fs_info->super_copy;
  2017. if (!btrfs_super_root(disk_super))
  2018. goto fail_alloc;
  2019. /* check FS state, whether FS is broken. */
  2020. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2021. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2022. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2023. if (ret) {
  2024. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2025. err = ret;
  2026. goto fail_alloc;
  2027. }
  2028. /*
  2029. * run through our array of backup supers and setup
  2030. * our ring pointer to the oldest one
  2031. */
  2032. generation = btrfs_super_generation(disk_super);
  2033. find_oldest_super_backup(fs_info, generation);
  2034. /*
  2035. * In the long term, we'll store the compression type in the super
  2036. * block, and it'll be used for per file compression control.
  2037. */
  2038. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2039. ret = btrfs_parse_options(tree_root, options);
  2040. if (ret) {
  2041. err = ret;
  2042. goto fail_alloc;
  2043. }
  2044. features = btrfs_super_incompat_flags(disk_super) &
  2045. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2046. if (features) {
  2047. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2048. "unsupported optional features (%Lx).\n",
  2049. (unsigned long long)features);
  2050. err = -EINVAL;
  2051. goto fail_alloc;
  2052. }
  2053. if (btrfs_super_leafsize(disk_super) !=
  2054. btrfs_super_nodesize(disk_super)) {
  2055. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2056. "blocksizes don't match. node %d leaf %d\n",
  2057. btrfs_super_nodesize(disk_super),
  2058. btrfs_super_leafsize(disk_super));
  2059. err = -EINVAL;
  2060. goto fail_alloc;
  2061. }
  2062. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2063. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2064. "blocksize (%d) was too large\n",
  2065. btrfs_super_leafsize(disk_super));
  2066. err = -EINVAL;
  2067. goto fail_alloc;
  2068. }
  2069. features = btrfs_super_incompat_flags(disk_super);
  2070. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2071. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2072. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2073. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2074. printk(KERN_ERR "btrfs: has skinny extents\n");
  2075. /*
  2076. * flag our filesystem as having big metadata blocks if
  2077. * they are bigger than the page size
  2078. */
  2079. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2080. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2081. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2082. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2083. }
  2084. nodesize = btrfs_super_nodesize(disk_super);
  2085. leafsize = btrfs_super_leafsize(disk_super);
  2086. sectorsize = btrfs_super_sectorsize(disk_super);
  2087. stripesize = btrfs_super_stripesize(disk_super);
  2088. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2089. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2090. /*
  2091. * mixed block groups end up with duplicate but slightly offset
  2092. * extent buffers for the same range. It leads to corruptions
  2093. */
  2094. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2095. (sectorsize != leafsize)) {
  2096. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2097. "are not allowed for mixed block groups on %s\n",
  2098. sb->s_id);
  2099. goto fail_alloc;
  2100. }
  2101. /*
  2102. * Needn't use the lock because there is no other task which will
  2103. * update the flag.
  2104. */
  2105. btrfs_set_super_incompat_flags(disk_super, features);
  2106. features = btrfs_super_compat_ro_flags(disk_super) &
  2107. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2108. if (!(sb->s_flags & MS_RDONLY) && features) {
  2109. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2110. "unsupported option features (%Lx).\n",
  2111. (unsigned long long)features);
  2112. err = -EINVAL;
  2113. goto fail_alloc;
  2114. }
  2115. btrfs_init_workers(&fs_info->generic_worker,
  2116. "genwork", 1, NULL);
  2117. btrfs_init_workers(&fs_info->workers, "worker",
  2118. fs_info->thread_pool_size,
  2119. &fs_info->generic_worker);
  2120. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2121. fs_info->thread_pool_size,
  2122. &fs_info->generic_worker);
  2123. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2124. fs_info->thread_pool_size,
  2125. &fs_info->generic_worker);
  2126. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2127. min_t(u64, fs_devices->num_devices,
  2128. fs_info->thread_pool_size),
  2129. &fs_info->generic_worker);
  2130. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2131. 2, &fs_info->generic_worker);
  2132. /* a higher idle thresh on the submit workers makes it much more
  2133. * likely that bios will be send down in a sane order to the
  2134. * devices
  2135. */
  2136. fs_info->submit_workers.idle_thresh = 64;
  2137. fs_info->workers.idle_thresh = 16;
  2138. fs_info->workers.ordered = 1;
  2139. fs_info->delalloc_workers.idle_thresh = 2;
  2140. fs_info->delalloc_workers.ordered = 1;
  2141. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2142. &fs_info->generic_worker);
  2143. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2144. fs_info->thread_pool_size,
  2145. &fs_info->generic_worker);
  2146. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2147. fs_info->thread_pool_size,
  2148. &fs_info->generic_worker);
  2149. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2150. "endio-meta-write", fs_info->thread_pool_size,
  2151. &fs_info->generic_worker);
  2152. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2153. "endio-raid56", fs_info->thread_pool_size,
  2154. &fs_info->generic_worker);
  2155. btrfs_init_workers(&fs_info->rmw_workers,
  2156. "rmw", fs_info->thread_pool_size,
  2157. &fs_info->generic_worker);
  2158. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2159. fs_info->thread_pool_size,
  2160. &fs_info->generic_worker);
  2161. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2162. 1, &fs_info->generic_worker);
  2163. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2164. fs_info->thread_pool_size,
  2165. &fs_info->generic_worker);
  2166. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2167. fs_info->thread_pool_size,
  2168. &fs_info->generic_worker);
  2169. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2170. &fs_info->generic_worker);
  2171. /*
  2172. * endios are largely parallel and should have a very
  2173. * low idle thresh
  2174. */
  2175. fs_info->endio_workers.idle_thresh = 4;
  2176. fs_info->endio_meta_workers.idle_thresh = 4;
  2177. fs_info->endio_raid56_workers.idle_thresh = 4;
  2178. fs_info->rmw_workers.idle_thresh = 2;
  2179. fs_info->endio_write_workers.idle_thresh = 2;
  2180. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2181. fs_info->readahead_workers.idle_thresh = 2;
  2182. /*
  2183. * btrfs_start_workers can really only fail because of ENOMEM so just
  2184. * return -ENOMEM if any of these fail.
  2185. */
  2186. ret = btrfs_start_workers(&fs_info->workers);
  2187. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2188. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2189. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2190. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2191. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2192. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2193. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2194. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2195. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2196. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2197. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2198. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2199. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2200. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2201. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2202. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2203. if (ret) {
  2204. err = -ENOMEM;
  2205. goto fail_sb_buffer;
  2206. }
  2207. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2208. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2209. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2210. tree_root->nodesize = nodesize;
  2211. tree_root->leafsize = leafsize;
  2212. tree_root->sectorsize = sectorsize;
  2213. tree_root->stripesize = stripesize;
  2214. sb->s_blocksize = sectorsize;
  2215. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2216. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2217. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2218. goto fail_sb_buffer;
  2219. }
  2220. if (sectorsize != PAGE_SIZE) {
  2221. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2222. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2223. goto fail_sb_buffer;
  2224. }
  2225. mutex_lock(&fs_info->chunk_mutex);
  2226. ret = btrfs_read_sys_array(tree_root);
  2227. mutex_unlock(&fs_info->chunk_mutex);
  2228. if (ret) {
  2229. printk(KERN_WARNING "btrfs: failed to read the system "
  2230. "array on %s\n", sb->s_id);
  2231. goto fail_sb_buffer;
  2232. }
  2233. blocksize = btrfs_level_size(tree_root,
  2234. btrfs_super_chunk_root_level(disk_super));
  2235. generation = btrfs_super_chunk_root_generation(disk_super);
  2236. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2237. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2238. chunk_root->node = read_tree_block(chunk_root,
  2239. btrfs_super_chunk_root(disk_super),
  2240. blocksize, generation);
  2241. if (!chunk_root->node ||
  2242. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2243. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2244. sb->s_id);
  2245. goto fail_tree_roots;
  2246. }
  2247. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2248. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2249. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2250. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2251. BTRFS_UUID_SIZE);
  2252. ret = btrfs_read_chunk_tree(chunk_root);
  2253. if (ret) {
  2254. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2255. sb->s_id);
  2256. goto fail_tree_roots;
  2257. }
  2258. /*
  2259. * keep the device that is marked to be the target device for the
  2260. * dev_replace procedure
  2261. */
  2262. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2263. if (!fs_devices->latest_bdev) {
  2264. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2265. sb->s_id);
  2266. goto fail_tree_roots;
  2267. }
  2268. retry_root_backup:
  2269. blocksize = btrfs_level_size(tree_root,
  2270. btrfs_super_root_level(disk_super));
  2271. generation = btrfs_super_generation(disk_super);
  2272. tree_root->node = read_tree_block(tree_root,
  2273. btrfs_super_root(disk_super),
  2274. blocksize, generation);
  2275. if (!tree_root->node ||
  2276. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2277. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2278. sb->s_id);
  2279. goto recovery_tree_root;
  2280. }
  2281. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2282. tree_root->commit_root = btrfs_root_node(tree_root);
  2283. ret = find_and_setup_root(tree_root, fs_info,
  2284. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2285. if (ret)
  2286. goto recovery_tree_root;
  2287. extent_root->track_dirty = 1;
  2288. ret = find_and_setup_root(tree_root, fs_info,
  2289. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2290. if (ret)
  2291. goto recovery_tree_root;
  2292. dev_root->track_dirty = 1;
  2293. ret = find_and_setup_root(tree_root, fs_info,
  2294. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2295. if (ret)
  2296. goto recovery_tree_root;
  2297. csum_root->track_dirty = 1;
  2298. ret = find_and_setup_root(tree_root, fs_info,
  2299. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2300. if (ret) {
  2301. kfree(quota_root);
  2302. quota_root = fs_info->quota_root = NULL;
  2303. } else {
  2304. quota_root->track_dirty = 1;
  2305. fs_info->quota_enabled = 1;
  2306. fs_info->pending_quota_state = 1;
  2307. }
  2308. fs_info->generation = generation;
  2309. fs_info->last_trans_committed = generation;
  2310. ret = btrfs_recover_balance(fs_info);
  2311. if (ret) {
  2312. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2313. goto fail_block_groups;
  2314. }
  2315. ret = btrfs_init_dev_stats(fs_info);
  2316. if (ret) {
  2317. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2318. ret);
  2319. goto fail_block_groups;
  2320. }
  2321. ret = btrfs_init_dev_replace(fs_info);
  2322. if (ret) {
  2323. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2324. goto fail_block_groups;
  2325. }
  2326. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2327. ret = btrfs_init_space_info(fs_info);
  2328. if (ret) {
  2329. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2330. goto fail_block_groups;
  2331. }
  2332. ret = btrfs_read_block_groups(extent_root);
  2333. if (ret) {
  2334. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2335. goto fail_block_groups;
  2336. }
  2337. fs_info->num_tolerated_disk_barrier_failures =
  2338. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2339. if (fs_info->fs_devices->missing_devices >
  2340. fs_info->num_tolerated_disk_barrier_failures &&
  2341. !(sb->s_flags & MS_RDONLY)) {
  2342. printk(KERN_WARNING
  2343. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2344. goto fail_block_groups;
  2345. }
  2346. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2347. "btrfs-cleaner");
  2348. if (IS_ERR(fs_info->cleaner_kthread))
  2349. goto fail_block_groups;
  2350. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2351. tree_root,
  2352. "btrfs-transaction");
  2353. if (IS_ERR(fs_info->transaction_kthread))
  2354. goto fail_cleaner;
  2355. if (!btrfs_test_opt(tree_root, SSD) &&
  2356. !btrfs_test_opt(tree_root, NOSSD) &&
  2357. !fs_info->fs_devices->rotating) {
  2358. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2359. "mode\n");
  2360. btrfs_set_opt(fs_info->mount_opt, SSD);
  2361. }
  2362. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2363. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2364. ret = btrfsic_mount(tree_root, fs_devices,
  2365. btrfs_test_opt(tree_root,
  2366. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2367. 1 : 0,
  2368. fs_info->check_integrity_print_mask);
  2369. if (ret)
  2370. printk(KERN_WARNING "btrfs: failed to initialize"
  2371. " integrity check module %s\n", sb->s_id);
  2372. }
  2373. #endif
  2374. ret = btrfs_read_qgroup_config(fs_info);
  2375. if (ret)
  2376. goto fail_trans_kthread;
  2377. /* do not make disk changes in broken FS */
  2378. if (btrfs_super_log_root(disk_super) != 0) {
  2379. u64 bytenr = btrfs_super_log_root(disk_super);
  2380. if (fs_devices->rw_devices == 0) {
  2381. printk(KERN_WARNING "Btrfs log replay required "
  2382. "on RO media\n");
  2383. err = -EIO;
  2384. goto fail_qgroup;
  2385. }
  2386. blocksize =
  2387. btrfs_level_size(tree_root,
  2388. btrfs_super_log_root_level(disk_super));
  2389. log_tree_root = btrfs_alloc_root(fs_info);
  2390. if (!log_tree_root) {
  2391. err = -ENOMEM;
  2392. goto fail_qgroup;
  2393. }
  2394. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2395. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2396. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2397. blocksize,
  2398. generation + 1);
  2399. if (!log_tree_root->node ||
  2400. !extent_buffer_uptodate(log_tree_root->node)) {
  2401. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2402. free_extent_buffer(log_tree_root->node);
  2403. kfree(log_tree_root);
  2404. goto fail_trans_kthread;
  2405. }
  2406. /* returns with log_tree_root freed on success */
  2407. ret = btrfs_recover_log_trees(log_tree_root);
  2408. if (ret) {
  2409. btrfs_error(tree_root->fs_info, ret,
  2410. "Failed to recover log tree");
  2411. free_extent_buffer(log_tree_root->node);
  2412. kfree(log_tree_root);
  2413. goto fail_trans_kthread;
  2414. }
  2415. if (sb->s_flags & MS_RDONLY) {
  2416. ret = btrfs_commit_super(tree_root);
  2417. if (ret)
  2418. goto fail_trans_kthread;
  2419. }
  2420. }
  2421. ret = btrfs_find_orphan_roots(tree_root);
  2422. if (ret)
  2423. goto fail_trans_kthread;
  2424. if (!(sb->s_flags & MS_RDONLY)) {
  2425. ret = btrfs_cleanup_fs_roots(fs_info);
  2426. if (ret)
  2427. goto fail_trans_kthread;
  2428. ret = btrfs_recover_relocation(tree_root);
  2429. if (ret < 0) {
  2430. printk(KERN_WARNING
  2431. "btrfs: failed to recover relocation\n");
  2432. err = -EINVAL;
  2433. goto fail_qgroup;
  2434. }
  2435. }
  2436. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2437. location.type = BTRFS_ROOT_ITEM_KEY;
  2438. location.offset = (u64)-1;
  2439. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2440. if (!fs_info->fs_root)
  2441. goto fail_qgroup;
  2442. if (IS_ERR(fs_info->fs_root)) {
  2443. err = PTR_ERR(fs_info->fs_root);
  2444. goto fail_qgroup;
  2445. }
  2446. if (sb->s_flags & MS_RDONLY)
  2447. return 0;
  2448. down_read(&fs_info->cleanup_work_sem);
  2449. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2450. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2451. up_read(&fs_info->cleanup_work_sem);
  2452. close_ctree(tree_root);
  2453. return ret;
  2454. }
  2455. up_read(&fs_info->cleanup_work_sem);
  2456. ret = btrfs_resume_balance_async(fs_info);
  2457. if (ret) {
  2458. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2459. close_ctree(tree_root);
  2460. return ret;
  2461. }
  2462. ret = btrfs_resume_dev_replace_async(fs_info);
  2463. if (ret) {
  2464. pr_warn("btrfs: failed to resume dev_replace\n");
  2465. close_ctree(tree_root);
  2466. return ret;
  2467. }
  2468. return 0;
  2469. fail_qgroup:
  2470. btrfs_free_qgroup_config(fs_info);
  2471. fail_trans_kthread:
  2472. kthread_stop(fs_info->transaction_kthread);
  2473. del_fs_roots(fs_info);
  2474. btrfs_cleanup_transaction(fs_info->tree_root);
  2475. fail_cleaner:
  2476. kthread_stop(fs_info->cleaner_kthread);
  2477. /*
  2478. * make sure we're done with the btree inode before we stop our
  2479. * kthreads
  2480. */
  2481. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2482. fail_block_groups:
  2483. btrfs_put_block_group_cache(fs_info);
  2484. btrfs_free_block_groups(fs_info);
  2485. fail_tree_roots:
  2486. free_root_pointers(fs_info, 1);
  2487. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2488. fail_sb_buffer:
  2489. btrfs_stop_all_workers(fs_info);
  2490. fail_alloc:
  2491. fail_iput:
  2492. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2493. iput(fs_info->btree_inode);
  2494. fail_delalloc_bytes:
  2495. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2496. fail_dirty_metadata_bytes:
  2497. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2498. fail_bdi:
  2499. bdi_destroy(&fs_info->bdi);
  2500. fail_srcu:
  2501. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2502. fail:
  2503. btrfs_free_stripe_hash_table(fs_info);
  2504. btrfs_close_devices(fs_info->fs_devices);
  2505. return err;
  2506. recovery_tree_root:
  2507. if (!btrfs_test_opt(tree_root, RECOVERY))
  2508. goto fail_tree_roots;
  2509. free_root_pointers(fs_info, 0);
  2510. /* don't use the log in recovery mode, it won't be valid */
  2511. btrfs_set_super_log_root(disk_super, 0);
  2512. /* we can't trust the free space cache either */
  2513. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2514. ret = next_root_backup(fs_info, fs_info->super_copy,
  2515. &num_backups_tried, &backup_index);
  2516. if (ret == -1)
  2517. goto fail_block_groups;
  2518. goto retry_root_backup;
  2519. }
  2520. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2521. {
  2522. if (uptodate) {
  2523. set_buffer_uptodate(bh);
  2524. } else {
  2525. struct btrfs_device *device = (struct btrfs_device *)
  2526. bh->b_private;
  2527. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2528. "I/O error on %s\n",
  2529. rcu_str_deref(device->name));
  2530. /* note, we dont' set_buffer_write_io_error because we have
  2531. * our own ways of dealing with the IO errors
  2532. */
  2533. clear_buffer_uptodate(bh);
  2534. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2535. }
  2536. unlock_buffer(bh);
  2537. put_bh(bh);
  2538. }
  2539. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2540. {
  2541. struct buffer_head *bh;
  2542. struct buffer_head *latest = NULL;
  2543. struct btrfs_super_block *super;
  2544. int i;
  2545. u64 transid = 0;
  2546. u64 bytenr;
  2547. /* we would like to check all the supers, but that would make
  2548. * a btrfs mount succeed after a mkfs from a different FS.
  2549. * So, we need to add a special mount option to scan for
  2550. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2551. */
  2552. for (i = 0; i < 1; i++) {
  2553. bytenr = btrfs_sb_offset(i);
  2554. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2555. break;
  2556. bh = __bread(bdev, bytenr / 4096, 4096);
  2557. if (!bh)
  2558. continue;
  2559. super = (struct btrfs_super_block *)bh->b_data;
  2560. if (btrfs_super_bytenr(super) != bytenr ||
  2561. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2562. brelse(bh);
  2563. continue;
  2564. }
  2565. if (!latest || btrfs_super_generation(super) > transid) {
  2566. brelse(latest);
  2567. latest = bh;
  2568. transid = btrfs_super_generation(super);
  2569. } else {
  2570. brelse(bh);
  2571. }
  2572. }
  2573. return latest;
  2574. }
  2575. /*
  2576. * this should be called twice, once with wait == 0 and
  2577. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2578. * we write are pinned.
  2579. *
  2580. * They are released when wait == 1 is done.
  2581. * max_mirrors must be the same for both runs, and it indicates how
  2582. * many supers on this one device should be written.
  2583. *
  2584. * max_mirrors == 0 means to write them all.
  2585. */
  2586. static int write_dev_supers(struct btrfs_device *device,
  2587. struct btrfs_super_block *sb,
  2588. int do_barriers, int wait, int max_mirrors)
  2589. {
  2590. struct buffer_head *bh;
  2591. int i;
  2592. int ret;
  2593. int errors = 0;
  2594. u32 crc;
  2595. u64 bytenr;
  2596. if (max_mirrors == 0)
  2597. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2598. for (i = 0; i < max_mirrors; i++) {
  2599. bytenr = btrfs_sb_offset(i);
  2600. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2601. break;
  2602. if (wait) {
  2603. bh = __find_get_block(device->bdev, bytenr / 4096,
  2604. BTRFS_SUPER_INFO_SIZE);
  2605. BUG_ON(!bh);
  2606. wait_on_buffer(bh);
  2607. if (!buffer_uptodate(bh))
  2608. errors++;
  2609. /* drop our reference */
  2610. brelse(bh);
  2611. /* drop the reference from the wait == 0 run */
  2612. brelse(bh);
  2613. continue;
  2614. } else {
  2615. btrfs_set_super_bytenr(sb, bytenr);
  2616. crc = ~(u32)0;
  2617. crc = btrfs_csum_data((char *)sb +
  2618. BTRFS_CSUM_SIZE, crc,
  2619. BTRFS_SUPER_INFO_SIZE -
  2620. BTRFS_CSUM_SIZE);
  2621. btrfs_csum_final(crc, sb->csum);
  2622. /*
  2623. * one reference for us, and we leave it for the
  2624. * caller
  2625. */
  2626. bh = __getblk(device->bdev, bytenr / 4096,
  2627. BTRFS_SUPER_INFO_SIZE);
  2628. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2629. /* one reference for submit_bh */
  2630. get_bh(bh);
  2631. set_buffer_uptodate(bh);
  2632. lock_buffer(bh);
  2633. bh->b_end_io = btrfs_end_buffer_write_sync;
  2634. bh->b_private = device;
  2635. }
  2636. /*
  2637. * we fua the first super. The others we allow
  2638. * to go down lazy.
  2639. */
  2640. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2641. if (ret)
  2642. errors++;
  2643. }
  2644. return errors < i ? 0 : -1;
  2645. }
  2646. /*
  2647. * endio for the write_dev_flush, this will wake anyone waiting
  2648. * for the barrier when it is done
  2649. */
  2650. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2651. {
  2652. if (err) {
  2653. if (err == -EOPNOTSUPP)
  2654. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2655. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2656. }
  2657. if (bio->bi_private)
  2658. complete(bio->bi_private);
  2659. bio_put(bio);
  2660. }
  2661. /*
  2662. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2663. * sent down. With wait == 1, it waits for the previous flush.
  2664. *
  2665. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2666. * capable
  2667. */
  2668. static int write_dev_flush(struct btrfs_device *device, int wait)
  2669. {
  2670. struct bio *bio;
  2671. int ret = 0;
  2672. if (device->nobarriers)
  2673. return 0;
  2674. if (wait) {
  2675. bio = device->flush_bio;
  2676. if (!bio)
  2677. return 0;
  2678. wait_for_completion(&device->flush_wait);
  2679. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2680. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2681. rcu_str_deref(device->name));
  2682. device->nobarriers = 1;
  2683. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2684. ret = -EIO;
  2685. btrfs_dev_stat_inc_and_print(device,
  2686. BTRFS_DEV_STAT_FLUSH_ERRS);
  2687. }
  2688. /* drop the reference from the wait == 0 run */
  2689. bio_put(bio);
  2690. device->flush_bio = NULL;
  2691. return ret;
  2692. }
  2693. /*
  2694. * one reference for us, and we leave it for the
  2695. * caller
  2696. */
  2697. device->flush_bio = NULL;
  2698. bio = bio_alloc(GFP_NOFS, 0);
  2699. if (!bio)
  2700. return -ENOMEM;
  2701. bio->bi_end_io = btrfs_end_empty_barrier;
  2702. bio->bi_bdev = device->bdev;
  2703. init_completion(&device->flush_wait);
  2704. bio->bi_private = &device->flush_wait;
  2705. device->flush_bio = bio;
  2706. bio_get(bio);
  2707. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2708. return 0;
  2709. }
  2710. /*
  2711. * send an empty flush down to each device in parallel,
  2712. * then wait for them
  2713. */
  2714. static int barrier_all_devices(struct btrfs_fs_info *info)
  2715. {
  2716. struct list_head *head;
  2717. struct btrfs_device *dev;
  2718. int errors_send = 0;
  2719. int errors_wait = 0;
  2720. int ret;
  2721. /* send down all the barriers */
  2722. head = &info->fs_devices->devices;
  2723. list_for_each_entry_rcu(dev, head, dev_list) {
  2724. if (!dev->bdev) {
  2725. errors_send++;
  2726. continue;
  2727. }
  2728. if (!dev->in_fs_metadata || !dev->writeable)
  2729. continue;
  2730. ret = write_dev_flush(dev, 0);
  2731. if (ret)
  2732. errors_send++;
  2733. }
  2734. /* wait for all the barriers */
  2735. list_for_each_entry_rcu(dev, head, dev_list) {
  2736. if (!dev->bdev) {
  2737. errors_wait++;
  2738. continue;
  2739. }
  2740. if (!dev->in_fs_metadata || !dev->writeable)
  2741. continue;
  2742. ret = write_dev_flush(dev, 1);
  2743. if (ret)
  2744. errors_wait++;
  2745. }
  2746. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2747. errors_wait > info->num_tolerated_disk_barrier_failures)
  2748. return -EIO;
  2749. return 0;
  2750. }
  2751. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2752. struct btrfs_fs_info *fs_info)
  2753. {
  2754. struct btrfs_ioctl_space_info space;
  2755. struct btrfs_space_info *sinfo;
  2756. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2757. BTRFS_BLOCK_GROUP_SYSTEM,
  2758. BTRFS_BLOCK_GROUP_METADATA,
  2759. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2760. int num_types = 4;
  2761. int i;
  2762. int c;
  2763. int num_tolerated_disk_barrier_failures =
  2764. (int)fs_info->fs_devices->num_devices;
  2765. for (i = 0; i < num_types; i++) {
  2766. struct btrfs_space_info *tmp;
  2767. sinfo = NULL;
  2768. rcu_read_lock();
  2769. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2770. if (tmp->flags == types[i]) {
  2771. sinfo = tmp;
  2772. break;
  2773. }
  2774. }
  2775. rcu_read_unlock();
  2776. if (!sinfo)
  2777. continue;
  2778. down_read(&sinfo->groups_sem);
  2779. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2780. if (!list_empty(&sinfo->block_groups[c])) {
  2781. u64 flags;
  2782. btrfs_get_block_group_info(
  2783. &sinfo->block_groups[c], &space);
  2784. if (space.total_bytes == 0 ||
  2785. space.used_bytes == 0)
  2786. continue;
  2787. flags = space.flags;
  2788. /*
  2789. * return
  2790. * 0: if dup, single or RAID0 is configured for
  2791. * any of metadata, system or data, else
  2792. * 1: if RAID5 is configured, or if RAID1 or
  2793. * RAID10 is configured and only two mirrors
  2794. * are used, else
  2795. * 2: if RAID6 is configured, else
  2796. * num_mirrors - 1: if RAID1 or RAID10 is
  2797. * configured and more than
  2798. * 2 mirrors are used.
  2799. */
  2800. if (num_tolerated_disk_barrier_failures > 0 &&
  2801. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2802. BTRFS_BLOCK_GROUP_RAID0)) ||
  2803. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2804. == 0)))
  2805. num_tolerated_disk_barrier_failures = 0;
  2806. else if (num_tolerated_disk_barrier_failures > 1) {
  2807. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2808. BTRFS_BLOCK_GROUP_RAID5 |
  2809. BTRFS_BLOCK_GROUP_RAID10)) {
  2810. num_tolerated_disk_barrier_failures = 1;
  2811. } else if (flags &
  2812. BTRFS_BLOCK_GROUP_RAID5) {
  2813. num_tolerated_disk_barrier_failures = 2;
  2814. }
  2815. }
  2816. }
  2817. }
  2818. up_read(&sinfo->groups_sem);
  2819. }
  2820. return num_tolerated_disk_barrier_failures;
  2821. }
  2822. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2823. {
  2824. struct list_head *head;
  2825. struct btrfs_device *dev;
  2826. struct btrfs_super_block *sb;
  2827. struct btrfs_dev_item *dev_item;
  2828. int ret;
  2829. int do_barriers;
  2830. int max_errors;
  2831. int total_errors = 0;
  2832. u64 flags;
  2833. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2834. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2835. backup_super_roots(root->fs_info);
  2836. sb = root->fs_info->super_for_commit;
  2837. dev_item = &sb->dev_item;
  2838. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2839. head = &root->fs_info->fs_devices->devices;
  2840. if (do_barriers) {
  2841. ret = barrier_all_devices(root->fs_info);
  2842. if (ret) {
  2843. mutex_unlock(
  2844. &root->fs_info->fs_devices->device_list_mutex);
  2845. btrfs_error(root->fs_info, ret,
  2846. "errors while submitting device barriers.");
  2847. return ret;
  2848. }
  2849. }
  2850. list_for_each_entry_rcu(dev, head, dev_list) {
  2851. if (!dev->bdev) {
  2852. total_errors++;
  2853. continue;
  2854. }
  2855. if (!dev->in_fs_metadata || !dev->writeable)
  2856. continue;
  2857. btrfs_set_stack_device_generation(dev_item, 0);
  2858. btrfs_set_stack_device_type(dev_item, dev->type);
  2859. btrfs_set_stack_device_id(dev_item, dev->devid);
  2860. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2861. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2862. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2863. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2864. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2865. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2866. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2867. flags = btrfs_super_flags(sb);
  2868. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2869. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2870. if (ret)
  2871. total_errors++;
  2872. }
  2873. if (total_errors > max_errors) {
  2874. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2875. total_errors);
  2876. /* This shouldn't happen. FUA is masked off if unsupported */
  2877. BUG();
  2878. }
  2879. total_errors = 0;
  2880. list_for_each_entry_rcu(dev, head, dev_list) {
  2881. if (!dev->bdev)
  2882. continue;
  2883. if (!dev->in_fs_metadata || !dev->writeable)
  2884. continue;
  2885. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2886. if (ret)
  2887. total_errors++;
  2888. }
  2889. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2890. if (total_errors > max_errors) {
  2891. btrfs_error(root->fs_info, -EIO,
  2892. "%d errors while writing supers", total_errors);
  2893. return -EIO;
  2894. }
  2895. return 0;
  2896. }
  2897. int write_ctree_super(struct btrfs_trans_handle *trans,
  2898. struct btrfs_root *root, int max_mirrors)
  2899. {
  2900. int ret;
  2901. ret = write_all_supers(root, max_mirrors);
  2902. return ret;
  2903. }
  2904. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2905. {
  2906. spin_lock(&fs_info->fs_roots_radix_lock);
  2907. radix_tree_delete(&fs_info->fs_roots_radix,
  2908. (unsigned long)root->root_key.objectid);
  2909. spin_unlock(&fs_info->fs_roots_radix_lock);
  2910. if (btrfs_root_refs(&root->root_item) == 0)
  2911. synchronize_srcu(&fs_info->subvol_srcu);
  2912. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2913. btrfs_free_log(NULL, root);
  2914. btrfs_free_log_root_tree(NULL, fs_info);
  2915. }
  2916. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2917. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2918. free_fs_root(root);
  2919. }
  2920. static void free_fs_root(struct btrfs_root *root)
  2921. {
  2922. iput(root->cache_inode);
  2923. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2924. if (root->anon_dev)
  2925. free_anon_bdev(root->anon_dev);
  2926. free_extent_buffer(root->node);
  2927. free_extent_buffer(root->commit_root);
  2928. kfree(root->free_ino_ctl);
  2929. kfree(root->free_ino_pinned);
  2930. kfree(root->name);
  2931. kfree(root);
  2932. }
  2933. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2934. {
  2935. u64 root_objectid = 0;
  2936. struct btrfs_root *gang[8];
  2937. int i;
  2938. int ret;
  2939. while (1) {
  2940. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2941. (void **)gang, root_objectid,
  2942. ARRAY_SIZE(gang));
  2943. if (!ret)
  2944. break;
  2945. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2946. for (i = 0; i < ret; i++) {
  2947. int err;
  2948. root_objectid = gang[i]->root_key.objectid;
  2949. err = btrfs_orphan_cleanup(gang[i]);
  2950. if (err)
  2951. return err;
  2952. }
  2953. root_objectid++;
  2954. }
  2955. return 0;
  2956. }
  2957. int btrfs_commit_super(struct btrfs_root *root)
  2958. {
  2959. struct btrfs_trans_handle *trans;
  2960. int ret;
  2961. mutex_lock(&root->fs_info->cleaner_mutex);
  2962. btrfs_run_delayed_iputs(root);
  2963. mutex_unlock(&root->fs_info->cleaner_mutex);
  2964. wake_up_process(root->fs_info->cleaner_kthread);
  2965. /* wait until ongoing cleanup work done */
  2966. down_write(&root->fs_info->cleanup_work_sem);
  2967. up_write(&root->fs_info->cleanup_work_sem);
  2968. trans = btrfs_join_transaction(root);
  2969. if (IS_ERR(trans))
  2970. return PTR_ERR(trans);
  2971. ret = btrfs_commit_transaction(trans, root);
  2972. if (ret)
  2973. return ret;
  2974. /* run commit again to drop the original snapshot */
  2975. trans = btrfs_join_transaction(root);
  2976. if (IS_ERR(trans))
  2977. return PTR_ERR(trans);
  2978. ret = btrfs_commit_transaction(trans, root);
  2979. if (ret)
  2980. return ret;
  2981. ret = btrfs_write_and_wait_transaction(NULL, root);
  2982. if (ret) {
  2983. btrfs_error(root->fs_info, ret,
  2984. "Failed to sync btree inode to disk.");
  2985. return ret;
  2986. }
  2987. ret = write_ctree_super(NULL, root, 0);
  2988. return ret;
  2989. }
  2990. int close_ctree(struct btrfs_root *root)
  2991. {
  2992. struct btrfs_fs_info *fs_info = root->fs_info;
  2993. int ret;
  2994. fs_info->closing = 1;
  2995. smp_mb();
  2996. /* pause restriper - we want to resume on mount */
  2997. btrfs_pause_balance(fs_info);
  2998. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2999. btrfs_scrub_cancel(fs_info);
  3000. /* wait for any defraggers to finish */
  3001. wait_event(fs_info->transaction_wait,
  3002. (atomic_read(&fs_info->defrag_running) == 0));
  3003. /* clear out the rbtree of defraggable inodes */
  3004. btrfs_cleanup_defrag_inodes(fs_info);
  3005. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3006. ret = btrfs_commit_super(root);
  3007. if (ret)
  3008. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3009. }
  3010. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3011. btrfs_error_commit_super(root);
  3012. btrfs_put_block_group_cache(fs_info);
  3013. kthread_stop(fs_info->transaction_kthread);
  3014. kthread_stop(fs_info->cleaner_kthread);
  3015. fs_info->closing = 2;
  3016. smp_mb();
  3017. btrfs_free_qgroup_config(root->fs_info);
  3018. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3019. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3020. percpu_counter_sum(&fs_info->delalloc_bytes));
  3021. }
  3022. free_root_pointers(fs_info, 1);
  3023. btrfs_free_block_groups(fs_info);
  3024. del_fs_roots(fs_info);
  3025. iput(fs_info->btree_inode);
  3026. btrfs_stop_all_workers(fs_info);
  3027. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3028. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3029. btrfsic_unmount(root, fs_info->fs_devices);
  3030. #endif
  3031. btrfs_close_devices(fs_info->fs_devices);
  3032. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3033. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3034. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3035. bdi_destroy(&fs_info->bdi);
  3036. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3037. btrfs_free_stripe_hash_table(fs_info);
  3038. return 0;
  3039. }
  3040. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3041. int atomic)
  3042. {
  3043. int ret;
  3044. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3045. ret = extent_buffer_uptodate(buf);
  3046. if (!ret)
  3047. return ret;
  3048. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3049. parent_transid, atomic);
  3050. if (ret == -EAGAIN)
  3051. return ret;
  3052. return !ret;
  3053. }
  3054. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3055. {
  3056. return set_extent_buffer_uptodate(buf);
  3057. }
  3058. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3059. {
  3060. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3061. u64 transid = btrfs_header_generation(buf);
  3062. int was_dirty;
  3063. btrfs_assert_tree_locked(buf);
  3064. if (transid != root->fs_info->generation)
  3065. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3066. "found %llu running %llu\n",
  3067. (unsigned long long)buf->start,
  3068. (unsigned long long)transid,
  3069. (unsigned long long)root->fs_info->generation);
  3070. was_dirty = set_extent_buffer_dirty(buf);
  3071. if (!was_dirty)
  3072. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3073. buf->len,
  3074. root->fs_info->dirty_metadata_batch);
  3075. }
  3076. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3077. int flush_delayed)
  3078. {
  3079. /*
  3080. * looks as though older kernels can get into trouble with
  3081. * this code, they end up stuck in balance_dirty_pages forever
  3082. */
  3083. int ret;
  3084. if (current->flags & PF_MEMALLOC)
  3085. return;
  3086. if (flush_delayed)
  3087. btrfs_balance_delayed_items(root);
  3088. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3089. BTRFS_DIRTY_METADATA_THRESH);
  3090. if (ret > 0) {
  3091. balance_dirty_pages_ratelimited(
  3092. root->fs_info->btree_inode->i_mapping);
  3093. }
  3094. return;
  3095. }
  3096. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3097. {
  3098. __btrfs_btree_balance_dirty(root, 1);
  3099. }
  3100. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3101. {
  3102. __btrfs_btree_balance_dirty(root, 0);
  3103. }
  3104. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3105. {
  3106. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3107. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3108. }
  3109. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3110. int read_only)
  3111. {
  3112. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3113. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3114. return -EINVAL;
  3115. }
  3116. if (read_only)
  3117. return 0;
  3118. return 0;
  3119. }
  3120. void btrfs_error_commit_super(struct btrfs_root *root)
  3121. {
  3122. mutex_lock(&root->fs_info->cleaner_mutex);
  3123. btrfs_run_delayed_iputs(root);
  3124. mutex_unlock(&root->fs_info->cleaner_mutex);
  3125. down_write(&root->fs_info->cleanup_work_sem);
  3126. up_write(&root->fs_info->cleanup_work_sem);
  3127. /* cleanup FS via transaction */
  3128. btrfs_cleanup_transaction(root);
  3129. }
  3130. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3131. struct btrfs_root *root)
  3132. {
  3133. struct btrfs_inode *btrfs_inode;
  3134. struct list_head splice;
  3135. INIT_LIST_HEAD(&splice);
  3136. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3137. spin_lock(&root->fs_info->ordered_extent_lock);
  3138. list_splice_init(&t->ordered_operations, &splice);
  3139. while (!list_empty(&splice)) {
  3140. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3141. ordered_operations);
  3142. list_del_init(&btrfs_inode->ordered_operations);
  3143. btrfs_invalidate_inodes(btrfs_inode->root);
  3144. }
  3145. spin_unlock(&root->fs_info->ordered_extent_lock);
  3146. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3147. }
  3148. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3149. {
  3150. struct btrfs_ordered_extent *ordered;
  3151. spin_lock(&root->fs_info->ordered_extent_lock);
  3152. /*
  3153. * This will just short circuit the ordered completion stuff which will
  3154. * make sure the ordered extent gets properly cleaned up.
  3155. */
  3156. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3157. root_extent_list)
  3158. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3159. spin_unlock(&root->fs_info->ordered_extent_lock);
  3160. }
  3161. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3162. struct btrfs_root *root)
  3163. {
  3164. struct rb_node *node;
  3165. struct btrfs_delayed_ref_root *delayed_refs;
  3166. struct btrfs_delayed_ref_node *ref;
  3167. int ret = 0;
  3168. delayed_refs = &trans->delayed_refs;
  3169. spin_lock(&delayed_refs->lock);
  3170. if (delayed_refs->num_entries == 0) {
  3171. spin_unlock(&delayed_refs->lock);
  3172. printk(KERN_INFO "delayed_refs has NO entry\n");
  3173. return ret;
  3174. }
  3175. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3176. struct btrfs_delayed_ref_head *head = NULL;
  3177. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3178. atomic_set(&ref->refs, 1);
  3179. if (btrfs_delayed_ref_is_head(ref)) {
  3180. head = btrfs_delayed_node_to_head(ref);
  3181. if (!mutex_trylock(&head->mutex)) {
  3182. atomic_inc(&ref->refs);
  3183. spin_unlock(&delayed_refs->lock);
  3184. /* Need to wait for the delayed ref to run */
  3185. mutex_lock(&head->mutex);
  3186. mutex_unlock(&head->mutex);
  3187. btrfs_put_delayed_ref(ref);
  3188. spin_lock(&delayed_refs->lock);
  3189. continue;
  3190. }
  3191. if (head->must_insert_reserved)
  3192. btrfs_pin_extent(root, ref->bytenr,
  3193. ref->num_bytes, 1);
  3194. btrfs_free_delayed_extent_op(head->extent_op);
  3195. delayed_refs->num_heads--;
  3196. if (list_empty(&head->cluster))
  3197. delayed_refs->num_heads_ready--;
  3198. list_del_init(&head->cluster);
  3199. }
  3200. ref->in_tree = 0;
  3201. rb_erase(&ref->rb_node, &delayed_refs->root);
  3202. delayed_refs->num_entries--;
  3203. if (head)
  3204. mutex_unlock(&head->mutex);
  3205. spin_unlock(&delayed_refs->lock);
  3206. btrfs_put_delayed_ref(ref);
  3207. cond_resched();
  3208. spin_lock(&delayed_refs->lock);
  3209. }
  3210. spin_unlock(&delayed_refs->lock);
  3211. return ret;
  3212. }
  3213. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3214. {
  3215. struct btrfs_pending_snapshot *snapshot;
  3216. struct list_head splice;
  3217. INIT_LIST_HEAD(&splice);
  3218. list_splice_init(&t->pending_snapshots, &splice);
  3219. while (!list_empty(&splice)) {
  3220. snapshot = list_entry(splice.next,
  3221. struct btrfs_pending_snapshot,
  3222. list);
  3223. snapshot->error = -ECANCELED;
  3224. list_del_init(&snapshot->list);
  3225. }
  3226. }
  3227. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3228. {
  3229. struct btrfs_inode *btrfs_inode;
  3230. struct list_head splice;
  3231. INIT_LIST_HEAD(&splice);
  3232. spin_lock(&root->fs_info->delalloc_lock);
  3233. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3234. while (!list_empty(&splice)) {
  3235. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3236. delalloc_inodes);
  3237. list_del_init(&btrfs_inode->delalloc_inodes);
  3238. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3239. &btrfs_inode->runtime_flags);
  3240. btrfs_invalidate_inodes(btrfs_inode->root);
  3241. }
  3242. spin_unlock(&root->fs_info->delalloc_lock);
  3243. }
  3244. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3245. struct extent_io_tree *dirty_pages,
  3246. int mark)
  3247. {
  3248. int ret;
  3249. struct extent_buffer *eb;
  3250. u64 start = 0;
  3251. u64 end;
  3252. while (1) {
  3253. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3254. mark, NULL);
  3255. if (ret)
  3256. break;
  3257. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3258. while (start <= end) {
  3259. eb = btrfs_find_tree_block(root, start,
  3260. root->leafsize);
  3261. start += eb->len;
  3262. if (!eb)
  3263. continue;
  3264. wait_on_extent_buffer_writeback(eb);
  3265. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3266. &eb->bflags))
  3267. clear_extent_buffer_dirty(eb);
  3268. free_extent_buffer_stale(eb);
  3269. }
  3270. }
  3271. return ret;
  3272. }
  3273. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3274. struct extent_io_tree *pinned_extents)
  3275. {
  3276. struct extent_io_tree *unpin;
  3277. u64 start;
  3278. u64 end;
  3279. int ret;
  3280. bool loop = true;
  3281. unpin = pinned_extents;
  3282. again:
  3283. while (1) {
  3284. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3285. EXTENT_DIRTY, NULL);
  3286. if (ret)
  3287. break;
  3288. /* opt_discard */
  3289. if (btrfs_test_opt(root, DISCARD))
  3290. ret = btrfs_error_discard_extent(root, start,
  3291. end + 1 - start,
  3292. NULL);
  3293. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3294. btrfs_error_unpin_extent_range(root, start, end);
  3295. cond_resched();
  3296. }
  3297. if (loop) {
  3298. if (unpin == &root->fs_info->freed_extents[0])
  3299. unpin = &root->fs_info->freed_extents[1];
  3300. else
  3301. unpin = &root->fs_info->freed_extents[0];
  3302. loop = false;
  3303. goto again;
  3304. }
  3305. return 0;
  3306. }
  3307. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3308. struct btrfs_root *root)
  3309. {
  3310. btrfs_destroy_delayed_refs(cur_trans, root);
  3311. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3312. cur_trans->dirty_pages.dirty_bytes);
  3313. /* FIXME: cleanup wait for commit */
  3314. cur_trans->in_commit = 1;
  3315. cur_trans->blocked = 1;
  3316. wake_up(&root->fs_info->transaction_blocked_wait);
  3317. btrfs_evict_pending_snapshots(cur_trans);
  3318. cur_trans->blocked = 0;
  3319. wake_up(&root->fs_info->transaction_wait);
  3320. cur_trans->commit_done = 1;
  3321. wake_up(&cur_trans->commit_wait);
  3322. btrfs_destroy_delayed_inodes(root);
  3323. btrfs_assert_delayed_root_empty(root);
  3324. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3325. EXTENT_DIRTY);
  3326. btrfs_destroy_pinned_extent(root,
  3327. root->fs_info->pinned_extents);
  3328. /*
  3329. memset(cur_trans, 0, sizeof(*cur_trans));
  3330. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3331. */
  3332. }
  3333. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3334. {
  3335. struct btrfs_transaction *t;
  3336. LIST_HEAD(list);
  3337. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3338. spin_lock(&root->fs_info->trans_lock);
  3339. list_splice_init(&root->fs_info->trans_list, &list);
  3340. root->fs_info->trans_no_join = 1;
  3341. spin_unlock(&root->fs_info->trans_lock);
  3342. while (!list_empty(&list)) {
  3343. t = list_entry(list.next, struct btrfs_transaction, list);
  3344. btrfs_destroy_ordered_operations(t, root);
  3345. btrfs_destroy_ordered_extents(root);
  3346. btrfs_destroy_delayed_refs(t, root);
  3347. /* FIXME: cleanup wait for commit */
  3348. t->in_commit = 1;
  3349. t->blocked = 1;
  3350. smp_mb();
  3351. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3352. wake_up(&root->fs_info->transaction_blocked_wait);
  3353. btrfs_evict_pending_snapshots(t);
  3354. t->blocked = 0;
  3355. smp_mb();
  3356. if (waitqueue_active(&root->fs_info->transaction_wait))
  3357. wake_up(&root->fs_info->transaction_wait);
  3358. t->commit_done = 1;
  3359. smp_mb();
  3360. if (waitqueue_active(&t->commit_wait))
  3361. wake_up(&t->commit_wait);
  3362. btrfs_destroy_delayed_inodes(root);
  3363. btrfs_assert_delayed_root_empty(root);
  3364. btrfs_destroy_delalloc_inodes(root);
  3365. spin_lock(&root->fs_info->trans_lock);
  3366. root->fs_info->running_transaction = NULL;
  3367. spin_unlock(&root->fs_info->trans_lock);
  3368. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3369. EXTENT_DIRTY);
  3370. btrfs_destroy_pinned_extent(root,
  3371. root->fs_info->pinned_extents);
  3372. atomic_set(&t->use_count, 0);
  3373. list_del_init(&t->list);
  3374. memset(t, 0, sizeof(*t));
  3375. kmem_cache_free(btrfs_transaction_cachep, t);
  3376. }
  3377. spin_lock(&root->fs_info->trans_lock);
  3378. root->fs_info->trans_no_join = 0;
  3379. spin_unlock(&root->fs_info->trans_lock);
  3380. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3381. return 0;
  3382. }
  3383. static struct extent_io_ops btree_extent_io_ops = {
  3384. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3385. .readpage_io_failed_hook = btree_io_failed_hook,
  3386. .submit_bio_hook = btree_submit_bio_hook,
  3387. /* note we're sharing with inode.c for the merge bio hook */
  3388. .merge_bio_hook = btrfs_merge_bio_hook,
  3389. };